12 United States Patent

US010747733B2

(10) Patent No.: US 10,747,733 B2

Rowley 45) Date of Patent: Aug. 18, 2020
(54) GENERATING CATEGORY-BASED VIEWS (56) References Cited
OF A DIRECTORY
U.S. PATENT DOCUMENTS
71) Applicant: Red Hat, Inc., Raleigh, NC (US
(71) PP 2h (US) 5,287447 A 2/1994 Miller et al.
: : - 6,005,034 A 12/1999 Tuli
(72) Inventor: %’Stse)r Rowley, Mountain View, CA 6587856 Bl 17003 Srinivasan of al
6,768,988 B2 7/2004 Boreham et al.
| | 6,775,771 Bl 82004 Shrader et al.
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 7,020,662 B2 3/2006 Boreham et al.
7,099,885 B2* 82006 Hellman et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 1035 days. OTHER PURT ICATIONS
(21) Appl. No.: 13/692,915 University of Victoria; “Permission Levels and Types in SharPoint™;
(22) Filed: Dec. 3. 2012 https://www.uvic.ca/systems/support/web/sharepoint/permissionlevels.
' - php; Jul. 9, 2012.*
(65) Prior Publication Data (Continued)
US 2013/0097206 Al Apr. 18, 2013 L
o Primary Examiner — Amanda L Willis
Related U.5. Application Data (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(63) Continuation of application No. 11/679,696, filed on
Feb. 27, 2007, now Pat. No. 8,326,871. (57) ABSTRACT
(51) Int. CL. A computer system creates a view that has a class defimition
GO6F 16721 (2019.01) and one or more attributes of a directory to support graphical
HO4L 29/12 (2006.01) representation of the directory. A distributed processing
HO4L 1224 (2006.01) system includes the directory and a number of nodes, one of
(52) U.S. CL the nodes being a service node. The directory includes
CPC GO6F 16/21 (2019.01); HO4L 29/12132 entries that are associated with the nodes. The service node
(2013.01); HO4L 41/22 (2013.01); HO4L recerves an attribute value that 1s associated with one of
61/1552 (2013.01); HO4L 41/0233 (2013.01) nodes. The service node determines from the class definition
(58) TField of Classification Search of the view that the received attribute value 1s associated

CPC GO6F 21/6218; GO6F 12/0868; GO6F
2209/541; GO6F 17/30194; GO6F
17/5004; GO6F 17/30289; GO6F
17/30067, GO6F 17/30557; GO6F 17/211;
GO6F 17/30994; GO6F 16/21
See application file for complete search history.

with an attribute type that describes a new attribute value
and creates an updated view without defining the received
attribute value 1n the entries of the directory. The updated
view 1ncludes the received attribute value.

20 Claims, 7 Drawing Sheets

0C . NSview

an : attribute_type=new_val
ou : dynamic_view_container
dc : example

F Y

nsviewfilter : {attribute_type=new_val)

500
/'_/
510
51"
LOCt |
512
Locz [
. 520

L OCnew [~

US 10,747,733 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
7,392,255 B1* 6/2008 Sholtis et al.
8,145,845 B2 3/2012 Rowley
2003/0088678 Al* 5/2003 Boreham et al. 709/228
2003/0135491 Al 7/2003 Rowley
2004/0010665 Al 1/2004 Agarwal et al.
2006/0059107 Al1* 3/2006 Elmore G06Q) 10/06
705/64
2006/0129652 Al* 6/2006 Petrovskaya 709/208
2007/0112789 Al 5/2007 Harvey et al.
OTHER PUBLICATIONS

Unknown. “SearchMobileComputing.com Definitions”, May 3, 2005.
Whatls.com. May 3, 2005. Http://searchmobilecomputing.techtarget.

com/sDefinition/0,,51d40 _gc1212051,00.html.3 pages.
Ames, Andre,Public Key Certificate Revocation Schemes,” Thesis
for Department of Telematics, Norwegian University of Science and

Technology, Queen’s University Kingston Ontario, Canada Feb.
2000. 136 pages.

* cited by examiner

U.S. Patent Aug. 18, 2020 Sheet 1 of 7 US 10,747,733 B2

CLIENT CLIENT
[
- E N

113 '5
. PRINTER
STORAGE
102 105
101 104
CLIENT
o

107 . LIENT CLIENT

| . 122 E 141
108 120 =

STORAGE
142

CLIENT CLIENT

131
IE y IE 132 140

: E - E .

FIG. 1

U.S. Patent Aug. 18, 2020 Sheet 2 of 7 US 10,747,733 B2

200

Administrator Properties

Published Certificates MéfnberOf m Object

EH
[X]

Environment Sessions Remoie control Terminal Services Profile 202
Exchange General E-maif Addresses Exchange Advanced
General Telephones Organization 10
Administrator
@ 211 212 201
_ 213
Last name:
| 21
Display name: e
I
Description: Built-in account for administering the computer/domain
| 216
Office.
217
Telephone number: [:rl Other... \
_ | 218
E-mail; -
_ 219

| Cancel \ | Apply | I Help |
;__W,_ _

220

FIG. 2

US 10,747,733 B2

Sheet 3 of 7

Aug. 18, 2020

U.S. Patent

3] J0J JUN0J9. S JOPUBA B SI SIU|

$S8208 1S9ND0 10) JUnoaoe ul-}jing
Ipow ueo dnoJb siyj ut sleguwe
slasn ulewop ||y

s1sanb ulewop ||y

WOP 8y} Ul SI8[j0JIU0D Llewlop ||V
UIOf SIBAISS PUE SUOIIB)SHIOM ||
9U] JO SJOlBJISIUIWpE pajeubisa)

) Joddng pue djgH 2y3 Jo) dnole) [Ba0T Uiel

BQO
£qo
2qo
BqO

2q0

L | |
T _

Y008 9ABY dnolb Siyl JO siaquIB |y |20 UieWo(] - dnoigy A}Inoas

198

558008 UBD dnolb S|y} U SI8A18S |B30T UleWa(- dnoloy Allinoes

12s[
185[

100 - dnolo Ajlun%ag

1880

)y - dnolg) Ajlunnes

0) - dr
) - dr

0 - dr

0i) A

0l10) A)

¥

1n%9g
0i9y AjINoas
1no8g

2qols) - dnoig Q._:omm

IEg
IEH,

lwJad ale dnoib sjUj Jo SiequUS |E307 ulewAo(- dnolo) AHinoag

188
Jes(

¢ Old

I K1 N 1

51Ul EE&@

vecl 1d0ddNS &y
SIBAISG GV| PUE SV £73

X[usoyd
19AUa(]

IYOr g3 0Z¢
1yor g8

dnoigseointesdieH g3

}sang @

o) - dnote A}1noeg O 1018819 Adl|0d a:E@%

SI1as() ule
g)5aNK) Uie
S13|j0J1u0D ule
sjalndwon uie

SUIWpY Ule

NEERE:;

PUEJIIOM BUBl B
siaYsi[qnd tm_o%
30 uyor
iojelisiuiwpy &5

adA| _ mEmz_

ilfelg
0(]

UOC

10(]

WOC

0LE

NRCRGRG R

s18s) [

s|ediouiid AlInoag ”_ ¥
siojjopuo) uiewoq [»] &
sio1ndwon [] B
U-ing] @
wod dioo’sajes (L) =

Eom_n..o.. Q] S19s|)

salleny pereg [] =

18Jndwo) pue s1asn A10j381|q SAIY €7

BOALHSL m[c]|s]<]0]x]w]%]|[m[]s]=]

disH MODUIM M8IA UOHIY

olF €

S13NAW0] PUE SIS Al0JI3lI(] IAINY £S5

L0

U.S. Patent Aug. 18, 2020 Sheet 4 of 7 US 10,747,733 B2

400
| . 410 '5
0C. Nsview
nsviewfilter: attribute

411
LOC
419
L OC2
420 ~ .
add to DIT o0 A2
CREATE ENTRY new

422

i 430
1 LOCnew
| |

U.S. Patent Aug. 18, 2020 Sheet 5 of 7 US 10,747,733 B2

500

510

VIEW

0C . NSVIEeW

an : attribute_type=new_val

ou . dynamic_view_container

dc : example

nsviewfilter : (attribute_type=new_val)

011

LOC

520
LOCnew

FIG. 5

U.S. Patent Aug. 18, 2020 Sheet 6 of 7 US 10,747,733 B2

601
START 500

RECEIVE NEW 002
ATTRIBUTE VALUE

603

NEW
ATTRIBUTE VALUE
CORRESPONDS TO EXISTING
CONTAINER OBJECT?

NO

604 UPDATE CONTAINER 605
CREATE NEW OBJECT WITH NEW
ATTRIBUTE VALUE

CONTAINER OBJECT

606

UPDATE DIRECTORY VIEWS TO REFLECT
NEW CONTAINER OBJECT/ATTRIBUTE VALUE

END 607

FIG. 6

U.S. Patent Aug. 18, 2020 Sheet 7 of 7 US 10,747,733 B2

700

711 713
)

| PROCESSOR INTERFACE

CLIENT

s
|

714 | DISPLAY
0S, USER DATA, VARIABLES,
APPLICATIONS .
o > e
{ AUNCH DIRECTORY
SERVICES 741
- 716
ESTABLISH VIEW l
717
RECEIVE NEW ATTRIBUTE
OR CONTAINER OBJECT
UPDATE CONTAINER OBJECT oy
WITH NEW ATTRIBUTE
OR
ADD NEW CONTAINER OBJECT .
= 719
UPDATE DIRECTORY
VIEWS
e 0
$
$

. MEMORY 712
DIRECTORY SERVER

FIG. 7

US 10,747,733 B2

1

GENERATING CATEGORY-BASED VIEWS
OF A DIRECTORY

RELATED APPLICATIONS

This application 1s a continuation of U.S. Nonprovisional
application Ser. No. 11/679,696, filed Feb. 27, 2007, entitled
“METHOD AND SYSTEM FOR DYNAMICALLY GEN-

ERATING CATEGORY-BASED VIEWS.” which 1s incor-
porated herein by reference for all purposes.

TECHNICAL FIELD

The present invention relates generally to directory ser-
vices and more particularly to providing directory views that
change dynamically based on the addition of new attributes
associated with entries 1 a directory.

BACKGROUND

Within modern enterprises, large numbers of mndividuals
and organizations are present each having different func-
tions, organizational associations, group athliations, and the
like. A directory service can provide a repository of infor-
mation about the individuals, organizations, services, aflili-
ations and resources within an enterprise according to a
particular structure that facilitates management and commu-
nication within the enterprise. In an enterprise network
environment for example, a directory service can identily
network users, installed software, installed hardware, per-
missions, and the like. Subsequent access to information can
be accomplished without particular knowledge of certain
aspects such as physical location or the like.

In order to provide a more umform and wide ranging
standard, access to directory information for example 1n
complex heterogeneous computer networks 1s governed by
standards such as those established by the International
Telecommunications Unions (ITU). One such standard 1s the
so-called directory access protocol (DAP) specified under
the X.500 standard and also the international standards
organization (ISO) under the ISO/IEC 9594 standard. The
above noted standards provide a umversal structure for
clectronic directories of, for example, nodes 1 an enterprise
so that the information can become part of a global directory
available to anyone in the world having access to the
Internet. In accordance with X.500, a directory system agent
(DSA) hosts a hierarchical database for storing the directory
information for expeditious search and retrieval of informa-
tion with multiple DSAs capable of being interconnected.
Clients or users can access directory information through the
use of an application known as a directory user agent
(DUA). In a typical installation, a DUA can provide a
capability for simple i1nquiries and can also include more
features such as a graphical user intertace (GUI) or the like.
A directory system protocol (DSP) 1s also specified to
control interaction between DSAs, and DUAs and DSAs
such that an end user can access information 1n the directory
without needing to know the exact location of that specific
piece of information.

In accordance with X.500, each site 1s only responsible
for its local Directory portion and as a result, updates and
maintenance can be done instantly. Directory services under
X.500 further provide powerful searching facilities that
allow users to construct arbitrarily complex queries. Direc-
tory services under X.500 are further provided using a single
homogeneous namespace to users such as under domain
name service (DNS). Directory services under X.500 are

10

15

20

25

30

35

40

45

50

55

60

65

2

defined using a structured information framework that
allows for local extensions. Still further, X.500 compliant
directory service can provide resident applications that
require directory information, such as e-mail applications,
automated resources locator applications, and special-pur-
pose directory tools with access to huge amounts of infor-
mation in accordance with a uniform structure. Since fully
teatured X.500 directory can be complex to implement, the
lightweight directory access protocol (LDAP) was devel-
oped to provide less complex implementation. LDAP 1s a
TCP/IP-based version of DAP primarily for use on the
Internet. While much of the functionality of DAP 1s pre-
served, LDAP can be configured to query data from various
proprietary and open X.500 directory services. While LDAP
compliant directory services can provide standard interac-
tion between clients having queries and other LDAP com-
plhiant servers, problems can arise i that based on the
structure of the directory information tree, navigation of
entries or changes to the hierarchical structure becomes
difficult.

It 1s understood that directory services applications, and
particularly user interface applications or GUIs, are typically
programmed using object-oriented methodologies since
object-oriented languages allow reusability and scalability
of code. As will be appreciated, object-oriented GUI appli-
cations are programmed using objects. In the context of
object-oriented programming, an object 1s a data-centric
construct or abstraction that can be used to define and
control the operation of the application i terms of funda-
mental units. For example, 1n an object oriented application
for managing a doctor’s oflice, one type ol object might
include a “patient” object. The patient object then consists of
data associated with the patient such as address and account
data and operations performed on the data such as billing
operations and account management operations.

A typical object includes a collection of operations or
methods and data or attributes that can be unique to the
object and that define a set of behaviors that the object can
perform or behaviors that can be performed on the object.
The class of an object defines a group characteristic of an
object based on one or more common properties shared by
the group. For example a patient object 1s of the class
patient. Another class of object might include “caregiver.”
An 1nstance of the object would be a particular patient object
or caregiver object corresponding to an individual patient or
caregiver. A class definition can define methods for con-
structing new object instances and also for determining the

behavior of each instance of the object, which define how
cach instance behaves.

The class definition also includes attributes that define
particular features of an instance of an object such as a
salary. Object-oriented applications can include objects that
may generally be divided roughly into three object types:
model objects, view objects, and controller objects. Model
objects generally handle operations such as manipulating
data. View objects are used to support graphical presentation
such as the content and operation of the GUI. Lastly,
controller objects can be used handle interaction between
model objects and view objects including input from exter-
nal input devices such as keyboards and pointing devices. In
connection with view objects, container objects can be used
to represent data 1n structures such as folders, drawers, and
file cabinets normally associated with a GUI.

Views m an LDAP directory services environment
include sets of attribute 1nformation associated with an
LDAP directory entry that are available to be “viewed,” for
example, by a particular software application, a user, or the

US 10,747,733 B2

3

like. Views can be filtered depending on access permission
levels or on organizational function and can be limited or
expanded based on parameters such as permission levels,
organizational functions, and the like. As described, an
attribute 1s a value that describes one characteristic of an
object, which can have many attributes associated with 1it. In
a large enterprise, as people are added, move and depart
from organizations, and as organizations change and are
added or removed from an enterprise, attributes associated
with objects 1n the enterprise change.

In view of the above explanations, problems can arise in
that, as new attributes are added to objects within a directory,
or as new container objects are added to represent changes
to the enterprise, they may not be readily available to certain
views within available within the enterprise. Accordingly,
when changes occur to the actual structural hierarchy of the
directory 1n terms of container objects and attributes,
changes to the view should also occur. Such changes can be
dificult to represent particularly 1n real time. In security
environments, such as PKI environments, the need to accu-
rately retlect the current state of the directory in terms of
container objects further amplifies the need for rapid direc-
tory updates since failure to accurately represent the network
state can lead to vulnerabilities that can be exploited.

While a general background including problems 1n the art
are described hereinabove, with occasional reference to
related art or general concepts associated with the present
invention, the above description 1s not intending to be
limiting since the primary features of the present invention
will be set forth in the description which follows. Some
aspects of the present mvention not specifically described
herein may become obvious after a review of the attendant
description, or may be learned by practice of the invention.
Accordingly, 1t 1s to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only 1n nature and are not
restrictive of the scope or applicability of the present inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate embodi-
ments ol the mvention and together with the description,
serve to explain the principles of the invention. In the
figures:

FIG. 1 1s a diagram 1illustrating an exemplary enterprise
environment including network connections;

FIG. 2 1s a diagram illustrating a control for entering
information associated with a directory entry consistent with
embodiments of the present invention;

FIG. 3 1s a diagram illustrating a directory view of
portions of an exemplary container object consistent with
embodiments of the present invention;

FIG. 4 1s a diagram 1llustrating an exemplary view with
manual addition of a new attribute;

FIG. 5 1s a diagram 1illustrating an exemplary container
object with dynamic view update consistent with embodi-
ments ol the present invention;

FIG. 6 1s a flowchart illustrating exemplary procedures for
generating updated views consistent with embodiments of
the present invention; and

FIG. 7 1s a diagram 1llustrating an exemplary directory
server for generating updated views consistent with embodi-

ments of the present invention.

DESCRIPTION OF TH.

EMBODIMENTS

(L.
1]

Embodiments of the present invention provide a method
and system for dynamically creating a view 1n a distributed

10

15

20

25

30

35

40

45

50

55

60

65

4

processing system. The system, such as an enterprise, can
have a plurality of nodes including a service node and a
directory with entries associated with the nodes. In accor-
dance with various embodiments, an object class of the view
can be defined as including an attribute type that accommo-
dates a new attribute value associated with the attribute type.
An attribute value associated with one of the nodes in the
distributed processing system can be recerved at the service
node such as through an email transmission or the like
containing the attribute value. It can then be determined
whether the attribute value i1s associated with the new
attribute value, for example, as defined 1n connection with
the attribute type. A new view can be dynamically created 11
the attribute value 1s associated with the new attribute value.
Further, an existing view can be dynamically updated 1if the
attribute value 1s currently associated with the existing view,
such as when the new view 1s dynamically created. It should
be noted that operations such as creating the new view,
defining the object class of the view, or the like can be
performed in accordance with a lightweight directory access
protocol (LDAP). The directory can include a hierarchical
tree directory, an active directory, a lightweight directory
access protocol (LDAP) directory, an X.500 directory, or the
like. In some embodiments, the attribute can include a
virtual attribute and accordingly, determining whether the
attribute value has an attribute format associated with an
existing container object includes searching an index of
virtual attributes.

In other embodiments, a local node can be provided 1n a
distributed computer network. The local node can include a
network interface coupled to the distributed computer net-
work and a storage device for storing a directory. The
directory can include one or more entries associated with an
existing view. An object class of the view can be defined as
including an attribute type that accommodates a new attri-
bute value associated with the attribute type. A processor
coupled to the network interface and the storage device can
be configured to receive an attribute value from a node in the
distributed computer network, including an internal source
and process the received attribute value to automatically
create a new view based on the attribute value 11 the attribute
value 1s associated with the new attribute value, such as 1t
the attribute value 1s of the attribute type that accommodates
the new attribute value. The local node can include a display
coupled to the processor such that the processor can be
configured to display the new view on the display. Alterna-
tively, the processor can be configured to process the
received attribute to update the existing view 1f the attribute
value 1s not associated with the new attribute value, such as
if the attribute value 1s associated with the existing view. In
some embodiments, the attribute includes a virtual attribute.
The processor can therefore be further configured to search
a virtual index of virtual attributes to determine 11 the virtual
attribute 1s included in the directory.

In still other embodiments, a directory server can be
provided 1n a distributed processing system. The directory
server can include a storage device for storing a directory,
such as an Active Directory, that 1s configured in accordance
with a protocol, such as an LDAP protocol. The directory
server can also include a network interface coupled to a
network that includes nodes having entries associated there-
with that are stored in the directory. The entries can be
associated with an existing view and an object class of the
view can be defined as including an attribute type that
accommodates a new attribute value associated with the
attribute type. A processor can be coupled to the storage
device and the network interface and can be configured to

US 10,747,733 B2

S

determine 1f an attribute value received from one of the
nodes over the network interface, such as through an email
or the like, 1s associated with the existing view. I the
attribute value 1s determined not to be associated with the
existing view, a new view can be added including the new 5
attribute value. Alternatively, the processor can be config-
ured to update the existing view 1f the attribute value 1s
determined to be associated with the existing view.

Reference will now be made 1n detaill to exemplary
embodiments of the invention, which are illustrated in the 10
accompanying drawings. Wherever possible, the same ret-
erence numbers will be used throughout the drawings to
refer to the same or like parts.

Referring now to FIG. 1, a simplified and representative
heterogonous computing environment 100 associated with, 15
for example, an enterprise computer system will be dis-
cussed and described. The basic representative environment
100 includes several nodes 110, 120, 130 and 140. It will be
appreciated that nodes 110-140 may correspond to enterprise
servers, hubs or the like within the enterprise including 20
remote nodes that are separated from each other by a private
network and/or a public network 101 such as the internet.
Each of the nodes 110-140 can have clients associated
therewith, and, for illustrative purposes, client 110 can have
a client 111 and client 112 connected thereto, and other 25
devices such as, for example, a network printer 113. Node
110 can be connected to network 101 through a network
connection 102. It will be appreciated that all connections
shown herein can be wired connections, either through, for
example, metal cable, coaxial cable, fiber optical cable or the 30
like, or wireless connection as will be appreciated. Node 120
can have a client 121 and a client 122 connected thereto,
node 130 can have a client 131 and a client 132 connected
thereto and node 140 can have a client 141 and other devices
such as a storage device 142 connected thereto. It will 35
turther be appreciated that the enterprise can also include,
for example, a storage device 103 that 1s accessible through
network 101 using connection 104.

To manage information about the various configurations
of the enterprise environment 100, particularly in environ- 40
ments where security 1s of importance, directory services
can be provided to configure and display various aspects of
the enterprise network. In connection with FIG. 1, therefore,
it will be appreciated that the various nodes 110-140 can be
considered as servers capable of operating, for example, as 45
directory system agents (DSAs), which are correspondingly
configured to manage directory information associated with
their respective portions of the enterprise network. Informa-
tion associated with users, administrators, devices, domain
controllers and the like can all be configured as shown, for 50
example, in FIG. 2, which shows an exemplary environment
200 for entering information nto a directory services appli-
cation in connection with an administrator entry. Window
201 contains various text entry boxes for entering property
information for each of a variety of properties associated 55
with an administrator that can be represented by tabs 202. In
connection with the “general” tab 210, as shown, informa-
tion such as First name 211, Initials 212, Last name 213,
Display name 214, Description 215, Office 216, Telephone
number 217, E-mail 218, and Web page 219 can all be 60
entered in connection with an Administrator. It will be
appreciated that additional tabs can be selected to show or
enter additional information such as Published Certificates,
Member Of, Dial-in, Object, Security, Environment, Ses-
sions, Remote control, Terminal Services Profile, Exchange 65
General, E-mail Addresses, Exchange Advanced, Address,
Account, Profile, Telephones, and Organization tabs, which

6

information should be self-explanatory to one of skill in the
art. Once information 1s entered or 11 the window 1s accessed
for viewing only or by mistake, control buttons 220 can be
used to acknowledge actions, cancel actions, apply settings
to seek help, or the like. It will also be appreciated that while
window 201 i1s shown in connection with settings for an
Admuinistrator, other windows are provided for settings for
other entities within the enterprise for which directory
services are provided. Once entered the information associ-
ated with the Administrator entry can be used to populate a
directory object associated with the particular Administrator
entry and information about the Administrator can appear 1n
a directory view. Also, based on the information associated
with the Administrator, certain views may be available to the
Administrator that may not be available to other objects.

In connection with the entities associated with an exem-
plary enterprise operating with directory services, and as
described above, information about the attributes of direc-
tory entries can be provided in various views. Views or
container objects are shown in an exemplary scenario 300
illustrated 1n FIG. 3. Window 301 can be thought of as a
vIew Or views or a container object or series of container
objects associated with an Active Directory listing of the
users and computers in the enterprise. In view 310 a hier-
archy of the various categories of entities in the enterprise 1s
shown, while 320 shows a detailed view of the individual
components or views within the Users category. It should be
noted that, depending on the various roles of individuals
interacting with the directory services applications, and
depending on how view objects are defined including attri-
bute types and view filters, diflerent views are possible as
are diflerent capabilities to input and/or modily information
associated with a directory entry. It will be understood that
certain permissions are required to view, access and moditly
information particularly where security information 1is
involved. When new information 1s necessary for an existing
object, new attributes can be applied or entirely new view
objects generated for attributes that have not been previously
accounted for.

To better appreciate how a new attribute 1s manually
added to a view a scenario 400 1s shown 1n FIG. 4. A view
410 1s an object as will be understood by one of skill 1n the
art, and in the present example 1s of the object class
“nsview.” The view 410 through the use of, for example, a
filter specification such as “nsviewfilter” can be used to
determine which attributes are displayed. In the present
example the attribute can be location. As illustrated, LOC1
411 and LOC2 412 {it the parameters of nsviewlilter and thus
appear 1n the view associated with view 410. For a new
location to be added to the view 410, entry information such
as LOCnew attribute information 421 must be added to the
directory or directory information tree (DIT) such as in
process 420. After the entry associated with LOCnew 421 1s
added, information 422 about the entry can be used to update
the view 410 such that a LOCnew 430 attribute can be
included 1n view 410. It will be appreciated that 1n gener-
ating new 1nformation for a directory, certain steps can be
followed such as connecting to the directory container that
will store the new object; creating the object; setting the
object’s required attributes, 1 necessary; and saving or
commit the new object to the directory. The steps are
generally performed using scripts that require updating the
directory and the views and include LDAP commands such
as “ldapadd,” or the like that will be familiar to those of
ordinary skill in the art. Also, a record can be added as a file
such as a “*.1dif” file or the like. Thus, problems arise when
new attributes are added to an object or when an entirely

US 10,747,733 B2

7

new object class 1s created. Until the objects or attributes are
added to the directory, the new attributes may not be
available to the directory views.

An exemplary table of common characteristics of an
LDAP attribute 1s shown 1n Table 1. It can be seen that the
definition of an attribute 1tself contains attributes. It will be
appreciated that some of the attributes such as the common
name are required while others are not required. Still further,
in some scenario virtual attributes can be used, for example,
as place holders or the like 1n anticipation of values yet to be
obtained or to simulate values. Indexes of virtual attributes
may also be used as a way to categorize and search attributes
in a directory oriented application such as a directory
services application or the like. It should be noted that while
Table 1 contains many of the common definitions, additional
definitions can be contemplated that fall within the scope of
the invention, particularly given that the present invention 1s
intended to accommodate the addition of new attributes and
container objects and the like. It will also be appreciated that
in some cases, attributes generated internally, such as
through a plug-in software module or the like may be useful.

TABLE 1

L.DAP Attribute definition

Attribute Description

The access control category of this

attribute type

The mnternal attribute Id that this record governs
Identifies the data representation syntax

X.500 Common Name (DN of this object)

=1 Extended characters allowed, =0

not allowed.

Indicates if the attribute 1s single or
multi-valued

LDAP display name for the attribute

Access-Category

Attribute-1D
Attribute-Syntax
Common-Name

Extended-Chars-Allowed
Is-Single-Valued

LDAP-Display-Name

Link-ID Identifies links and back-links
(DL=>Member & Mailbox=>Is-Member-Of)

MAPI-ID The MAPI ID of this attribute

OID-Type Specifies the Object ID type in the scripts.

OM-Object-Class The XAPIA OM Object class of this attribute

(if 1t has one)

OM-Syntax The XAPIA OM Syntax of this attribute
Range-Lower Minimum size for attribute value
Range-Upper Maximum size for attribute value

The flags for the attribute

(replicate to other site or not etc.)

TRUE will cause the DS to generate a fast
search index.

Schema-Flags

Search-Flags

To better illustrate the dynamic update of views, such as
category based view, a view scenario 500 with respect to an
exemplary location attribute 1s shown in FIG. 5. A view 510
corresponding to for example, a top level view object can be
defined so as to accommodate new attributes as they are
added 1n the directory, such as an email directory or the like.
Accordingly, view 510 can contain an object class descriptor
oc: indicating an object class of “nsview.” However, unlike
the previous nsview definition, for example, 1n connection
with view 401, the view object class definition for view 510
can be modified in accordance with the invention. The view
510 can thus include a distinguished name or “dn:” of
“attribute_type” which 1 turn i1s defined as equal to
“new_val.” It will be appreciated that dn 1dentifies informa-
tion about attributes to be used in view searches to populate
the view as defined for example by the nsviewlilter param-
cter, which, m the present example, 15 also
attribute_type=new_val. It will be appreciated that the view
510 may also include descriptors such as the organizational
unit “ou” descriptor shown as “dynamic_view_container,”

10

15

20

25

30

35

40

45

50

55

60

65

8

and the domain component “dc” descriptor shown as
“example,” however, the attribute_type=new_val definition
provides the association between attributes shown in the
view and the ability to display a new attribute value. For
example, 1t can be seen that the view 510 includes LOC1 511
and LOC2 512 as determined for example, by the contents
of the nsviewlilter definition. If a new location attribute 1s
included 1n the directory, such as a LOCnew 520, then 1n
accordance with the definition attribute_type=new_val, the
new value LOCnew 520 will dynamically appear in the view
510 without the need to separately create and define the
LOCnew 520 as described above in connection with FIG. 4.

It should be noted that the contents of view 510 are shown
for 1llustrative purposes only and should not be considered
as limiting the present invention to the descriptors used 1n
the example. Rather the present invention can be applied to
any view object, or other object or object class, instantiation,
or the like, to dynamically accommodate new attributes
without the need for separate entry or addition to a directory.

A procedure and system to allow for dynamically updat-
ing views when object attributes, such as container object
attributes, change can be advantageous. Thus, when a new
attribute 1s learned of, such as through a communication
received from an entity with an attribute not presently listed
in a directory associated with a DSA for that portion, the
view can be automatically updated. It 1s possible to construct
an object class as will be described with function or method
or other definition for the object class to dynamically include
the new attribute and possibly to define and create a new
container object associated with the attribute. For example,
if a new oflice location associated with an enterprise is
opened, a new value for the attribute associated with, for
example, location can be established and all views to con-
taimner objects displaying the attribute can be dynamically
updated to retlect the new attribute, or the like.

Accordingly, the exemplary procedure 600 can be
described as a series of procedures or steps that can occur 1n
connection with a software program, or a combination of
software and hardware interaction or the like. After start at
601, a new attribute value can be received at 602. A
determination can be made at 603 as to whether the new
attribute 1s associated with an existing container object. If
not, a new container object can be created at 604. If a
container object already exists, then the container object can
be updated at 605 with the new attribute value. When the
new container object 1s created or the existing object 1s
updated, the directory view or views can be updated to
reflect the new container object/attribute value at 606. While
the exemplary procedure 1s indicated as ending at 607, 1t will
be appreciated that the procedure can be repeated as often as
necessary or even continuously to address new attributes
that are recerved.

It will be appreciated by those of ordinary skill that the
present invention can be embodied, for example 1n scenario
700 as shown 1n FIG. 7 as a general or dedicated computer
system having a processor and memory, or the like. In one
such embodiment an exemplary directory server 710 can be
provided with a processor 711 a memory 712 and an
interface 713 for, for example, coupling to a network such as
an enterprise network including enterprise clients such as
client 740 having a display 741 upon which, for example,
views can be displayed. The processor 711 can communicate
with the memory 712 through for example a bus or the like
to load and execute instructions for causing processors 711
to carry out various procedures in accordance with the
invention. For example, during imitialization the enterprise
server 710 can execute instructions 1n the memory 712 to

US 10,747,733 B2

9

load an operating system, data, variables, and application
code and the like at 714. At 715 instructions can be executed
that cause the processor to launch a directory services
application associated with information about the enterprise
clients. The directory services application can establish a
directory view or views at 716 that can be displayed for
example on display 741 of client 740. The contents of the
view 1n terms ol attributes displayed will, as described,
depend on the entity to which the view i1s presented. A user
entity, for example, will have a limited view of attributes,
while an administrator view will contain more attributes not
available to the user view. When a new attribute 1s received
such through an email from a new oflice within the enter-
prise at 717, an existing container object can be updated with
the new attribute or a new container object can be added to
accommodate the new attribute at 718. When updates asso-
ciated with the new attributes are performed, the directory
views as appropriate can be updated at 719. For example, 1
the new attribute 1s a user attribute, user views can be
updated to retlect the new attribute. On the other hand, if the
new attribute 1s a DSA specific attribute, only the DSA
administrator view will be updated.

Other embodiments of the invention will be apparent to
those skilled in the art from consideration of the specifica-
tion and practice of the invention disclosed hereimn. It 1s
intended that the specification and illustrations contained
therein be considered as exemplary, with the scope and spirit
of the mvention being indicated by the following claims.

What 1s claimed 1s:

1. A method comprising:

creating a view comprising a class definition and one or
more attributes of a directory to support graphical
representation of the directory that corresponds to a
network;

defimng a distinguished name (DN) for the class defini-
tion for the view, wherein a value of the DN specifies
that an attribute type for the view 1s associated with a
new attribute value;

defining an organizational unit (OU) for the view, wherein
a value of the OU 1s specified as a dynamic view
container to indicate that new attributes appear dynami-
cally 1n the view;

defining a view filter for the view to populate the view, the
view filter used to determine which attribute values are
to be displayed in the view, wherein a value of the view
filter comprises a value same as the value of the DN to
indicate that the attribute type for the view 1s associated
with the new attribute value;

receiving, by a processor of a service node in a plurality
of nodes 1n a distributed processing system, an attribute
value for a virtual attribute that 1s associated with one
of the plurality of nodes, wherein the distributed pro-
cessing system comprises the directory, the directory
comprising entries associated with the plurality of
nodes;

determining, from the class definition of the view,
whether the received attribute value has an attribute
format associated with an existing container object and
whether the received attribute value 1s associated with
the new attribute value, as defined 1n connection with
the DN value, by searching an imndex of a plurality of
virtual attributes, wherein the new attribute value
describes a new characteristic associated with the one
of the plurality of nodes, and wherein the new charac-
teristic specifies a size of the new attribute value, a
search flag to cause the processor to generate a fast

10

15

20

25

30

35

40

45

50

55

60

65

10

search index, and an access category to control user
access to view the received attribute value;

creating a new container object in response to determining,
that the received attribute value does not have the
attribute format associated with the existing container
object and that the received attribute value 1s associated
with the new attribute value that describes the new
characteristic that specifies the size of the new attribute
value, the search tlag to cause the processor to generate

the fast search index, and the access category to control
user access to view the received attribute value;

updating the existing container object using the received

attribute value 1n response to determining that the
received attribute value has the attribute format asso-
ciated with the existing container object and that the
received attribute value 1s associated with the new
attribute value;

determining whether the access category associated with

the new attribute value satisfies a parameter of the view
filter, wherein the parameter corresponds to an access
permission level of a user;

determining whether to limit or expand an updated view

associated with the new attribute value 1n view of the
access permission level of the user; and

creating the updated view of the network by the processor

of the service node without defining the received attri-
bute value 1n the entries of the directory in response to
the new attribute value satistying the parameter of the
view filter that corresponds to the access permission
level of the user, wherein the updated view comprises
the received attribute value 1n view of one of the new
container object or the existing container object, and 1s
in view ol the determination of whether to limit or
expand the updated view 1n view of the access permis-
sion level of the user.

2. The method of claim 1, wherein creating the updated
VIEW COmMPrises:

dynamically creating the updated view 1n response to the

determination that the recerved attribute value 1s asso-
ciated with the new attribute value, and wherein the
s1ize specified by the new characteristic corresponds to
a minimum size and a maximum size ol the new
attribute value.

3. The method of claim 1, wherein creating the updated
VIEW COMPrises:

determining that the received attribute value 1s associated

with the view; and

updating the view.

4. The method of claim 1, wherein creating the updated
VIEW COMmPIises:

determining that the received attribute value 1s not asso-

ciated with the view; and

creating a new view, wherein the new view comprises the

received attribute value.

5. The method of claam 1, wherein the creating the
updated view 1s performed 1n accordance with a lightweight
directory access protocol (LDAP).

6. The method of claim 1, wherein the directory compris-
ing one of a hierarchical tree directory, an active directory,
a lightweight directory access protocol (LDAP) directory, or
an X.500 directory.

7. The method of claim 1, wherein the one or more
attributes comprises one or more virtual attributes.

8. A non-transitory computer-readable storage medium
comprising instructions which, when executed, cause a
processor to:

US 10,747,733 B2

11

create a view comprising a class definition and one or
more attributes of a directory to support graphical
representation of the directory that corresponds to a
network;

define a distinguished name (DN) for the class definition
for the view, wherein a value of the DN specifies that
an attribute type for the view 1s associated with a new
attribute value;

define an organizational unit (OU) for the view, wherein
a value of the OU 1s specified as a dynamic view
container to indicate that new attributes appear dynami-
cally 1n the view;

define a view filter for the view to populate the view, the
view filter used to determine which attribute values are
to be displayed 1n the view, wherein a value of the view
filter comprises a value same as the value of the DN to
indicate that the attribute type for the view 1s associated
with the new attribute value;

receive, by the processor, wherein the processor 1s of a
service node in a plurality of nodes 1n a distributed
processing system, an attribute value for a wvirtual
attribute that 1s associated with one of the plurality of
nodes, wherein the distributed processing system com-
prises the directory, the directory comprising entries
associated with the plurality of nodes;

determine from the class definition of the view, whether
the received attribute value has an attribute format
associated with an existing container object and
whether the received attribute value 1s associated with
the new attribute value, as defined i1n connection with
the DN value, by searching an index of a plurality of
virtual attributes, wherein the new attribute wvalue
describes a new characteristic associated with the one
of the plurality of nodes, and wherein the new charac-
teristic specifies a size of the new attribute value, a
search flag to cause the processor to generate a fast
search 1index, and an access category to control user
access to view the received attribute value;

create a new container object in response to determining,
that the received attribute value does not have the
attribute format associated with the existing container
object and that the received attribute value 1s associated
with the new attribute value that describes the new
characteristic that specifies the size of the new attribute
value, the search flag to cause the processor to generate
the fast search index, and the access category to control
user access to view the received attribute value;

update the existing container object using the received
attribute value 1n response to determining that the
received attribute value has the attribute format asso-
ciated with the existing container object and that the
received attribute value 1s associated with the new
attribute value;

determine whether the access category associated with the
new attribute value satisfies a parameter of the view
filter, wherein the parameter corresponds to an access
permission level of a user;

determine whether to limit or expand an updated view
associated with the new attribute value i view of the
access permission level of the user; and

create the updated view of the network by the processor
of the service node without defining the received attri-
bute value 1n the entries of the directory 1n response to
the new attribute value satistying the parameter of the
view filter that corresponds to the access permission
level of the user, wherein the updated view comprises
the recerved attribute value 1n view of one of the new

5

10

15

20

25

30

35

40

45

50

55

60

65

12

container object or the existing container object and 1s
in view ol the determination of whether to limit or
expand the updated view 1n view of the access permis-
sion level of the user.

9. The non-transitory computer-readable storage medium
of claim 8, wherein to create the updated view, the processor
1s to:

dynamically create the updated view 1n response to the

determination that the recerved attribute value 1s asso-
ciated with the new attribute value.

10. The non-transitory computer-readable storage
medium of claim 8, wherein to create the updated view, the
processor 1s to:

determine that the received attribute value 1s associated

with the view; and update the view.

11. The non-transitory computer-readable storage
medium of claim 8, wherein to create the updated view, the
processor 1s to:

determine that the received attribute value 1s not associ-

ated with the view:; and

create a new view, wherein the new view comprises the

received attribute value.

12. The non-transitory computer-readable storage
medium of claim 8, wherein to create the updated view 1s
performed in accordance with a lightweight directory access
protocol (LDAP).

13. The non-transitory computer-readable storage
medium of claim 8, wherein the directory comprises one of
a hierarchical tree directory, an active directory, a light-
weight directory access protocol (LDAP) directory, or an
X.500 directory.

14. The non-transitory computer-readable storage
medium of claim 8, wherein the one or more attributes
comprises one or more virtual attributes.

15. A system comprising;:

a memory; and

a processor of a service node 1n a plurality of nodes 1n a

distributed processing system, the processor opera-
tively coupled to the memory to:

create a view comprising a class definition and one or

more attributes of a directory to support graphical
representation of the directory that corresponds to a
network;

define a distinguished name (DN) for the class definition

for the view, wherein a value of the DN specifies that
an attribute type for the view 1s associated with a new
attribute value;

define an organizational unit (OU) for the view, wherein

a value of the OU 1s specified as a dynamic view
container to indicate that new attributes appear dynami-
cally 1n the view;

define a view filter for the view to populate the view, the

view filter used to determine which attribute values are
to be displayed 1n the view, wherein a value of the view
filter comprises a value same as the value of the DN to
indicate that the attribute type for the view 1s associated
with the new attribute value;

recerve an attribute value for a virtual attribute that 1s

associated with one of the plurality of nodes, wherein
the distributed processing system comprises the direc-
tory, the directory comprising entries associated with
the plurality of nodes;

determine from the class definition of the view, whether

the received attribute value has an attribute format
assocliated with an existing container object and
whether the received attribute value 1s associated with
the new attribute value, as defined 1n connection with

US 10,747,733 B2

13

the DN value, by searching an index of a plurality of
virtual attributes, wherein the new attribute wvalue
describes a new characteristic associated with the one

of the plurality of nodes, and wherein the new charac-
teristic specifies a size of the new attribute value, a
search flag to cause the processor to generate a fast
search index, and an access category to control user
access to view the received attribute value;

create a new container object in response to determining,

that the received attribute value does not have the
attribute format associated with the existing container
object and that the received attribute value 1s associated
with the new attribute value that describes the new
characteristic that specifies the size of the new attribute
value, the search tlag to cause the processor to generate
the fast search index, and the access category to control
user access to view the received attribute value;

update the existing container object using the received

attribute value 1n response to determining that the
received attribute value has the attribute format asso-
ciated with the existing container object and that the
received attribute value 1s associated with the new
attribute value;

determine whether the access category associated with the

new attribute value satisfies a parameter of the view
filter, wherein the parameter corresponds to an access
permission level of a user;

determine whether to limit or expand an updated view

associated with the new attribute value 1n view of the
access permission level of the user; and

create the updated view of the network by the processor

of the service node without defining the received attri-

10

15

20

25

30

14

bute value 1n the entries of the directory in response to
the new attribute value satistying the parameter of the
view filter that corresponds to the access permission
level of the user, wherein the updated view comprises
the recerved attribute value 1n view of one of the new
container object or the existing container object and 1s
in view ol the determination of whether to limit or
expand the updated view 1n view of the access permis-
sion level of the user.

16. The system of claim 135, wherein to create the updated
view, the processor 1s to:

dynamically create the updated view 1n response to the

determination that the received attribute value 1s asso-
ciated with the new attribute value.

17. The system of claim 15, wherein to create the updated
view, the processor 1s to:

determine that the received attribute value 1s associated

with the view; and

update the view.

18. The system of claim 15, wherein to create the updated
view, the processor 1s to:

determine that the receirved attribute value 1s not associ-

ated with the view; and

create a new view, wherein the new view comprises the

received attribute value.

19. The system of claim 135, wherein to create the updated
view 1s performed in accordance with a lightweight direc-
tory access protocol (LDAP).

20. The system of claim 15, wherein the one or more
attributes comprises one or more virtual attribute.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

