US010747515B2

a2y United States Patent (10) Patent No.: US 10,747,515 B2

Eimouri et al. 45) Date of Patent: Aug. 18, 2020
(54) FIELDS HOTNESS BASED OBJECT USPC e, 717/151
SPLITTING See application file for complete search history.
(71) Applicant: International Business Machines (56) References Cited

Corporation, Armonk, NY (US)
U.S. PATENT DOCUMENTS

(72) Inventors: Taees Eimouri, Tokyo (JP); Kenneth
Blair Kent, New Brunswick (CA); 7,343,598 B2* 3/2008 Chilimbi GO6F 12/0802

Aleksandar Micic, Ottawa (CA) 711/118
7,496,909 B2 2/2009 Kuch et al.

7,650,464 B2 1/2010 Liu et al.

73) Assi . Int tional Busi Machi
(73) Assignee: International Business Machines 7,765,534 B2 7/2010 Archambault et al.

Corporation, Armonk, NY (US)

8,261,297 B2* 9/2012 Kabanov GO6F 9/449
(*) Notice: Subject‘ to any disclaimer,. the term of this 8.789.028 B2 7/2014 Shen et al. 7197332
patent 1s extended or adjusted under 35 8.910,135 B2 12/2014 Lai
U.S.C. 154(b) by O days. 10,360,928 B1* 7/2019 Brockie G11B 5/09
(Continued)
(21) Appl. No.: 16/257,931
(22) Filed: Jan. 25, 2019 OTHER PUBLICATIONS
(65) Prior Publication Data Rubin et al, “An Efficient Profile-Analysis Framework for Data-
Layout Optimizations”, [Online], 2002, pp. 140-153, [Retrieved
US 2020/0142677 Al May 7, 2020 from internet on Apr. 4, 2020], <https://dl.acm.org/doi/abs/10.1145/
Related U.S. Application Data 503272.503287> (Year: 2002).”
(60) Provisional application No. 62/755,671, filed on Nov. (Continued)
>, 2018, Primary Examiner — Geoflrey R St Leger
(51) Int. CL Assistant Examiner — Zengpu Wet
GO6F 8/11 (2018.01) (74) Attorney, Agent, or Firm — Yee & Associates, P.C.
GOol’ 9/455 (2018.01)
GOG6F 12/02 (2006.01) (57) ABSTRACT
GO6F 9/50 (2006.01) Objects are managed 1n a virtual machine. A frequency of
(52) U.S. CL access to fields in objects for an application is identified
CPC ... GOOF 8/4442 (2013.01); GO6Y 9745558 while the application runs in the virtual machine. An object

(2013.01); GOGF 9/5016 (2013.01); GOOF in the objects 1s split into a hot object and a cold semi-object
12/0269 (2013.01); GOGF 2009/4557 based on the frequency of access to the fields 1n the object
(2013.01); GO6F 2009/45583 (2013.01) as 1dentified while the application runs 1n the virtual

(58) Field of Classification Search machine, wherein cache misses are reduced from splitting
CPC .. GO6F 8/4442; GO6F 9/45558; GO6F 9/3016; objects based of the frequency of access.

GO6F 12/0269; GO6F 2009/4557; GO6F
2009/45583 17 Claims, 12 Drawing Sheets

(START)

1704 ANALYZING THE INFORMATION RECEIVED
™ ACCORDING TO PREDETERMINED
CRITERIA TOQ CREATED ANALYZED DATA

-

SAVE THE ANALYZED DATA ABOUT THE

1706~ NONSTATIC FIELDS IN A MEMORY TO IDENTIFY,
ON SUBSEQUENT EXECUTIONS, NEW LAYOUTS
FOR OBJECTS OF THE EXECUTED APPLICATION

ey

REORDERS, USING THE FIELD ACCESS
FREQUENCY, OF THE NON-STATIC FIELDS
1708~ INCLUDING FIELDS OF SUPER CLASSES
INSIDE THE OBJECTS INTO A HOT PORTION

CONTAINING HOT FIELDS AND A COLD
PORTION CONTAINING COLD FIELDS

e

ADD A FIELD, AFTER AND ADJACENT TO THE
HOT PORTION, TO MAINTAIN AN ADDRESS OF
17107 AFIRST COLD FIELD IN THE COLD PORTION
OF THE OBJECT AS A COLD POINTER

A

SPLITS THE OBJECT USING A SELECTED
OBJECT SPLITTING TECHNIQUE (OST) TO
17127 CREATE A HOT-OBJECT AND A COLD
SEMI-OBJECT DURING OBJECT ALLOCATICN

R R S T

END

US 10,747,515 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0215880 Al* 10/2004 Chilimbi GO6F 12/0802
711/118
2004/0243692 Al* 12/2004 Amold GO6F 9/5016
709/220
2005/0177822 Al* 82005 Kuch GOOF 9/445
717/155
2008/0282266 Al* 11/2008 Kabanov GOOF 9/449
719/320

2011/0154289 Al 6/2011 Mannarswamy et al.

2012/0110561 Al* 5/2012 Lalcccoooevinnnnnnn, GOOF 8/4442

717/151
2015/0347296 Al* 12/2015 Kotte GO6F 12/0269

711/103
2017/0249257 Al* 8/2017 Bonnet GOoF 12/121
2018/0136842 Al* 5/2018 Kimoooovvvvinnn, GOO6F 3/064
2019/0196731 Al* 6/2019 Sapuntzakis GO6F 3/0689

OTHER PUBLICATIONS

Kadayif et al, “Quasidynannic Layout Optimizations for Improving
Data Locality”, [Online], 2004, pp. 996-1011, [Retrieved from
internet on Apr. 4, 2020], <https://1eeexplore.ieee.org/stamp/stamp.
1sp?tp=&arnumber=1339250> (Year: 2004).*

Eimour et al, “Using Field Access Frequency to Optimize Layout
of Objects in the JVM”, [Online], 2016, pp. 1815-1818, [Retrieved

from internet on Apr. 4, 2020], <https://dl.acm.org/dor/abs/10.1145/
2851613.2851942> (Year: 2016).*

Rubin et al., “An Efficient Profile-Analysis Framework for Data-
Layout Optimizations,” Computer Sciences Dept. at the University

of Wisconsin-Madison, Jan. 2002, pp. 140-153.

Kistler et al., “Automated Data-Member Layout of Heap Objects to
Improve Memory-Hierarchy Performance,” ACM Transactions on
Programming Languages and Systems, vol. 22, No. 3, May 2000,
pp. 490-505.

Chilimbr et al., “Cache-Conscious Structure Definition,” Proceed-
ings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, Atlanta, Georgia, May 1-4,
1999, pp. 13-24.

[Tham et al., “Evaluation and Optimization of Java Object Ordering
Schemes,”Proceedings of the 2011 International Conference on
Electrical Engineering and Informatics, Jul. 17-19, 2011, 5 pages.
Truong et al., “Improving Cache Behavior of Dynamically Allo-
cated Data Structures,” Proceedings: 1998 International Conference
on Parallel Architectures and Compilation Techniques, Oct. 18,
1998, 8 pages.

Hundt et al., “Practical Structure Layout Optimization and Advice,”
Proceedings of the International Symposium on Code Generation
and Optimization, Mar. 26-29, 2006, 12 pages.

Kaman et al., “Structure Layout Optimization for Multithreaded
Programs,” International Symposium on Code Generation and
Optimization (CGO’07),Mar. 11-14, 2007, 12 pages.

Eimouri et al., “Using Field Access Frequent to Optimize Layout of
Objects 1n the JVM,” Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, Pisa, Italy, Apr. 4-8, 2016, pp.
1815-1818.

* cited by examiner

U.S. Patent Aug. 18, 2020 Sheet 1 of 12 US 10,747,515 B2

100 o m— =
\ 110 \4 CLIENT DEVICES |
|
130 ENHANCED JAVA	
VIRTUAL MACHINE	
	— =
112~ OBJECT MANAGER	
l	
— 132 134	1
CLIENT	
COMPUTER OBJECTS	
:	HOT OBJECTS :
1 114~	
! 136	
. coo	
CLIENT SEMI-OBJECTS :	
COMPUTER	
) 138	
% : 116\|— FIELDS :	
- —	
l I m (—— 40	1
I § : CLIENT	
SERVER COMPUTER	COMPUTER :
1% (= { f— :	
; NETWORK	p
102 ’	
111 —=	118
I\	_O_
SERVER COMPUTER : MOBILE PHONE	
<l	l
STORAGE	
UNIT l 120 :	
108	. I
TABLET	
. '
AT
: @ 122 :

SMART GLASSES

FIG. 1

US 10,747,515 B2

Sheet 2 of 12

Aug. 18, 2020

U.S. Patent

¢ DId

00¢

0ke

ANIHOVIA
TVNLAIA SS300dd

8¥¢
9vc

¢eC

9l¢

1%

Vivad 3ZA VNV

VId41lI§0
J4ININYH1404dd

S1NOAVTM4N

SS300V 40
AONINOIYA

NOLLYINHOANI

NZLSAS INJWAOVNVIN LOAr80

80¢C

9¢¢
077 96z || -2z
| 193r90-IN3S | | 193r90 507
L2 DA et INIHOVIA
S103rg0-TNS ~l_ S103r80
| | IVNLYIA
@09 uINIOd || | 1Ok
S103rg0 @100 | | SYIINIOd N gez
. P I_
S103r60 L17dS

* SNOIDHd d100-NON 747

Ovc

4¥4

H3OVNVIA
104rd0

AHJONWAW dV3H

S1o4rdo z0Z | SIEIE
WA1SAS H31NdNOD

INJWNOXIANS INJWAOVNVIN 104180

U.S. Patent

Aug. 18, 2020 Sheet 3 of 12

300
DATA PROCESSING SYSTEM
301 308 ENHANCED JAVA
\!_ VIRTUAL MACHINE
L
OBJECT MANAGER

OBJECT SPLITTER
307

304

305

GARBAGE
COLLECTOR
CLASS SPECIFIC
INFORMATION

310

FIG. 3

302
306

OBJECT LAYOUT
400

\‘

HEADER

SUPER CLASS
FIELDS

402 DOUBLE-SIZE FIELDS

OBJECT
FIELDS POINTER FIELDS 404

FI1G. 4

US 10,747,515 B2

INSTANCE
SINGLE-SIZE FIELDS FIELDS

U.S. Patent Aug. 18, 2020 Sheet 4 of 12 US 10,747,515 B2

OBJECT LAYOUT
500

\

HOT
SUPER CLASS HOT FIELDS L FIELDS
504
HOT FIELDS J
502
OBJECT SUPER CLASS COLD FIELDS
FIELDS 506
COLD FIELDS COLD
FIELDS
FIG. 5
OBJECT LAYOUT
S
HEADER
HOT PART OF
THE OBJECT
SUPER CLASS HOT FIELDS 602
HOT FIELDS
POINTER 606
SUPER CLASS COLD FIELDS
604
COLD FIELDS COLD PART OF
THE OBJECT

FI1G. 6

U.S. Patent Aug. 18, 2020 Sheet 5 of 12 US 10,747,515 B2

HOT
OBJECTS
702

R

HEADER
COLD SEMI

SUPER CLASS HOT FIELDS OBJECT
- 104
HOT FIELDS /

POINTER 606 SUPER CLASS COLD FIELDS

COLD FIELDS

FI1G. 7

HEAP MEMORY

HOT REGIONS @302 ’8/00

COLD REGIONS |:|/804

% N
) o

FIG. 8

U.S. Patent Aug. 18, 2020 Sheet 6 of 12 US 10,747,515 B2

UNIFORM MEMORY NON UNIFORM MEMORY
ACCESS (UMA) ¢ - ACCESS (NUMA)
ALL MEMORY ACCESSES MEMORY ACCESSES HAVE
HAVE THE SAME LATENCY DIFFERENT LATENCIES

CIRCTD
900

INTERCONNECTION MEMORY MEMORY
MEMORY MEMORY ~ INTERCONNECTION
ONE TWO NETWORK 902

FI1G. 9

NUMA NODES NODE 1 NODE 2
1000~
1002 ‘ 1004 | 1008

NODE 3 NODE 4

FIG. 10

HEAP MEMORY
HOT REGIONS 8/1 102 1100

/

COLD REGIONS [:}/1 104

V V V SN AN
i) ||

FIG. 11

U.S. Patent Aug. 18, 2020 Sheet 7 of 12 US 10,747,515 B2

NUMA NODES
1300
1202 1204
1208 1206
COLD ALLOCATION
1940~ CONTEXT FIG. 12

1400

1404 HOT AREA

OBJECTS

1408 HOT FIELDS COLD AREA

1410
COLD = -- ;
OBJECT 7 OLD POINTER

1

1416 COLD SEML-
OBJECT 21IS 1414 OBJECTS
MOVED DURING OC 413
NEW POINTER 1415
OBJECT 2
o0 OBIECTZ

1418
FI1G. 14

US 10,747,515 B2

Sheet 8 of 12

Aug. 18, 2020

U.S. Patent

oLEL—" 13S-03438N3NJY | NOID3H 100
9 10drdo

G 104rdo

¢ 104140
S104rdo

S193rE0 LITdS-NON D\N Lel

S193rdo 10H D\SQ

S104rd0-IN3S d109 |-

142"

o 117dS IALLOVY
| NOIOTIY QG
d100 OR-

r -] r " E -]] r r - E k|]

L] T - - L L L] > n - L n L]] r e L]
] - L] [] []] L 4 L] kE L] - r L] +

1 - -]] |] 4 4 + L - 4 []
- F - N - o -] . - L i ’] - L '}

L] L] . 4 Y = a a - f -] - - = |] -
[] W & L] [] r L L] n [L] [L]] + [} [3 []

L] i -+ a a - L]]] - » = [] - -]] -
] - E] r 13 -] a E] 1] +] = !]

] L4 +]] L L] E]] L * L |] + -]] L

oo 4 /o
— —
¢ NOIO3Y e 0 e
e R A
pOE | °© N _° ©
- /
¢ NOID L
oD
201 / o /
%
| NOIOAY
00sL-" L)

U.S. Patent Aug. 18, 2020 Sheet 9 of 12 US 10,747,515 B2

LIVE SPLIT OBJECTS |

|

' '

| | 1502

: -
1500 : OBJECT 7
|
|

I

LIVE COLD ':
REGIONS LIST L o e e e e r

COLD REGION 1 LIVE SPLIT OBJECTS
COLD REGION 5 OBJECT 2 e 1504

COLD REGION 6 OBJECT 9

1600 IDENTIFY A FREQUENCY OF ACCESS TO FIELDS IN OBJECTS FOR AN
APPLICATION WHILE THE APPLICATION RUNS IN THE VIRTUAL MACHINE

SPLIT AN OBJECT INTO AHOT OBJECT AND A COLD SEMI-OBJECT BASED
1602 ON THE FREQUENCY OF ACCESS TO THE FIELDS IN THE OBJECT AS
IDENTIFIED WHILE THE APPLICATION RUNS IN THE VIRTUAL MACHINE

FIG. 16

U.S. Patent Aug. 18, 2020 Sheet 10 of 12 US 10,747,515 B2

1704 ANALYZING THE INFORMATION RECEIVED
ACCORDING TO PREDETERMINED
CRITERIA TO CREATED ANALYZED DATA

SAVE THE ANALYZED DATA ABOUT THE
1706 NONSTATIC FIELDS IN A MEMORY TO IDENTIFY,
ON SUBSEQUENT EXECUTIONS, NEW LAYOUTS
FOR OBJECTS OF THE EXECUTED APPLICATION

REORDERS, USING THE FIELD ACCESS
FREQUENCY, OF THE NON-STATIC FIELDS
1708 INCLUDING FIELDS OF SUPER CLASSES
INSIDE THE OBJECTS INTO A HOT PORTION
CONTAINING HOT FIELDS AND A COLD
PORTION CONTAINING COLD FIELDS

ADD A FIELD, AFTER AND ADJACENT TO THE
HOT PORTION, TO MAINTAIN AN ADDRESS OF
1710 A FIRST COLD FIELD IN THE COLD PORTION
OF THE OBJECT AS A COLD POINTER

SPLITS THE OBJECT USING A SELECTED
OBJECT SPLITTING TECHNIQUE (OST) TO
1712 CREATE A HOT-OBJECT AND A COLD
SEMI-OBJECT DURING OBJECT ALLOCATION

FIG. 17

U.S. Patent

1804

1806~

Aug. 18, 2020

SPLITTING ALLOCATION OF HOT
PORTIONS AND COLD PORTIONS
OF THE OBJECTS INTO
RESPECTIVE DIFFERENT
PORTIONS OF HEAP MEMORY

PERFORM A REGION-BASED
OBJECT SPLITTING TECHNIQUE
FOR WHICH SEPARATION IS AT

A REGION LEVEL

HOT OBJECTS ARE ONLY

ALLOCATED IN NON-COLD REGIONS

1808-"| AND COLD SEMI-OBJECTS ARE ONLY

ALLOCATED IN COLD REGIONS

END

FIG. 18

Sheet 11 of 12

PERFORM AN ALLOCATION
CONTEXT-BASED OBJECT
SPLITTING TECHNIQUE FOR
WHICH THE SEPARATION IS AT AN
ALLOCATION CONTEXT LEVEL
WHICH IS A NON-UNIFORM
MEMORY ACCESS (NUMA) NODE

COLD REGIONS ARE ONLY
SELECTED FROM A SPECIFIC
ALLOCATION CONTEXT USING

NON-UNIFORM MEMORY
ACCESS NODES

US 10,747,515 B2

1810

1812

U.S. Patent Aug. 18, 2020 Sheet 12 of 12 US 10,747,515 B2

1900

DATA PROCESSING SYSTEM

1916 1906 storaGEDEVICES 1908
1904

PERSISTENT
MEMORY STORAGE
PROCESSOR UNIT
t 1902 I I
COMMUNICATIONS INPUT/OUTPUT
UNIT UNIT DISPLAY

1910 1912 1914

i

1920 COMPUTER
PROGRAM PRODUCT

COMPUTER-READABLE MEDIA

PROGRAM CODE

1922 1918 1924

COMPUTER-READABLE
STORAGE MEDIA

US 10,747,515 B2

1

FIELDS HOTNESS BASED OBJECT
SPLITTING

CROSS-REFERENCE TO RELATED CASE(S)

This application claims the benefit of U.S. Provisional
Application Ser. No. 62/755,671, filed Nov. 5, 2018, entitled
“Allocation Context-Based Object Splitting”, which 1s

incorporated herein by reference 1n 1ts entirety.

BACKGROUND

1. Field

The disclosure relates generally to an improved computer
system and more specifically to splitting objects based on
hotness of fields within the objects.

2. Description of the Related Art

Reference locality 1s a concept typically used in cache
optimization. The premise behind locality 1s that software
programs tend to use memory locations, including data or
instructions, near memory locations the respective software
programs have used recently. To improve locality, afline data
clements should be placed into the same cache blocks. Afline
data eclements are data elements that often referenced
together.

Data layout transformations are categories ol optimiza-
tions typically used to increase cache performance, mostly
by 1mproving reference locality. Data layout optimizations
try to rearrange data elements 1n such a way that related data
clements are proximate each other in the cache. The rear-
rangement of data elements 1s performed to decrease a
number of cache misses resulting from a lack of locality
among the related data elements. This type of optimization
comprises layouts of global variables, heap, stack and data
structures. Object layout optimization seeks to improve

cache performance by decreasing a number of cache misses
resulting from a lack of locality inside objects.

SUMMARY

The different illustrative embodiments provide a method,
system, and computer program product for managing
objects 1n a virtual machine. A frequency of access to fields
in objects for an application 1s identified while the applica-
tion runs in the virtual machine. An object 1n the objects 1s
split 1nto a hot object and a cold semi-object based on the
frequency of access to the fields in the object as identified
while the application runs in the virtual machine, wherein
cache misses are reduced from splitting objects based of the
frequency of access.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a pictorial representation of a network of data
processing systems in which illustrative embodiments may
be 1mplemented;

FIG. 2 1s a block diagram of an object management
environment 1 accordance with an illustrative embodiment;

FIG. 3 1s a block diagram of a block diagram of a data
processing system including an enhanced Java wvirtual
machine 1n accordance with an illustrative embodiment;

FIG. 4 1s a block diagram of a layout of an object in
accordance with an illustrative embodiment:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 1s a block diagram of an intermediate object layout
in accordance with an illustrative embodiment:

FIG. 6 1s a block diagram of a new object layout 1n
accordance with an 1illustrative embodiment;

FIG. 7 1s a block diagram of an object split into a hot
object and a cold semi-object in accordance with an 1llus-
trative embodiment;

FIG. 8 1s a block diagram of a heap memory in accordance
with an illustrative embodiment:

FIG. 9 1s block diagram of memory access types in
accordance with an illustrative embodiment;

FIG. 10 1s a block diagram of a non-uniform memory
access nodes 1s depicted in accordance with an illustrative
embodiment;

FIG. 11 1s a block diagram of a heap memory 1n accor-
dance with an illustrative embodiment;

FIG. 12 1s a block diagram of non-uniform memory
access nodes 1n accordance with an 1llustrative embodiment;

FIG. 13 1s a block diagram of a memory data structure in
accordance with an 1illustrative embodiment;

FIG. 14, a block diagram dataflow 1n updating a memory
data structure 1s depicted 1n accordance with an illustrative

embodiment;

FIG. 15 1s a block diagram of a memory data structure in
accordance with an illustrative embodiment;

FIG. 16, a tlowchart of a process for managing objects 1n
a virtual machine 1n accordance with an illustrative embodi-
ment,

FIG. 17 1s a flowchart of process for splitting objects 1n
accordance with an 1llustrative embodiment:

FIG. 18 1s a tlowchart of a process for splitting objects 1s
depicted 1n accordance with an 1llustrative embodiment; and

FIG. 19 1s a block diagram of a data processing system 1n
accordance with an 1llustrative embodiment.

DETAILED DESCRIPTION

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer-readable storage medium (or media)
having computer-readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer-readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer-readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer-readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer-readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-

US 10,747,515 B2

3

guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer-readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer-readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or

network interface 1 each computing/processing device
receives computer-readable program instructions from the
network and forwards the computer-readable program
instructions for storage in a computer-readable storage
medium within the respective computing/processing device.

Computer-readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer-readable program
instructions may run entirely on the user’s computer, partly
on the user’s computer, as a stand-alone soiftware package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry includ-
ing, for example, programmable logic circuitry, field-pro-
grammable gate arrays (FPGA), or programmable logic
arrays (PLA) may process the computer-readable program
instructions by utilizing state information of the computer-
readable program instructions to personalize the electronic
circuitry, in order to perform aspects of the present inven-
tion.

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer-readable program instructions.

These computer program instructions may be provided to
a processor of a general-purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the mstructions, which are
processed via the processor of the computer or other pro-
grammable data processing apparatus, create means for
implementing the functions/acts specified 1in the flowchart
and/or block diagram block or blocks. These computer
program 1nstructions may also be stored mn a computer-
readable medium that can direct a computer, other program-
mable data processing apparatus, or other devices to func-
tion 1n a particular manner, such that the mnstructions stored
in the computer-readable medium produce an article of

10

15

20

25

30

35

40

45

50

55

60

65

4

manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer-readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mstructions which run on the
computer, other programmable apparatus, or other device
implement the functions/acts specified 1n the flowchart and/
or block diagram block or blocks.

The flowcharts and block diagrams 1n the figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be processed substantially concurrently, or the
blocks may sometimes be processed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The illustrative embodiments recognize and take into
account a number of different considerations. For example,
the illustrative embodiments recognize and take into account
that an 1ssue for applications running on a Java platform 1s
that field organmization 1s a responsibility of a respective
implementation of a Java virtual machine (JVM). As a
result, when a compiler organizes fields mside the objects
produced by the compiler, the Java virtual machine also later
reorganizes these objects according to a policy of the Java
virtual machine. The illustrative embodiments recognize and
take 1nto account that fields are usually reordered inside
objects based on criteria including hotness. The hotness can
be defined as a total number of accesses to a particular field
and an afhnity, which 1s a dependency between two fields.
Two fields are afline to each other when the two fields are
accessed close to each other in time. Based on the hotness
or the athnity among fields, the fields are typically reorga-
nized inside objects using one of several techniques.

The 1llustrative embodiments also recognize and take 1nto
account that structure splitting, also referred to as “class
splitting”, 1s a technique used to improve cache utilization
by placing more objects 1n the same cache line. The 1llus-
trative embodiments recognize and take into account that
using the class splitting approach, requires the source code
of classes or the bytecode for the classes to change to split
the classes into two or more sub-classes. The illustrative
embodiments recognize and take into account that when
performing class splitting, a given structure 1s broken into
two or more portions and fields are gathered into the portions
grouped according to a hotness attributed to respective
fields. The 1llustrative embodiments also recognize and take
into account that the hot fields are placed 1n a root portion
of the cache line, which also references a cold portion of the
cache line with a pointer. The illustrative embodiments also
recognize and take 1to account that a s1ze of new hot objects

US 10,747,515 B2

S

(the hot portion of objects) can be less than the size of a
cache block enabling more hot objects to be placed 1n the
cache when using this partitioning technique.

The illustrative embodiments recognize and take into
account that class splitting 1s performed before execution
time, for example, at a bytecode level. The hotness of the
field 1 an object 1s based on a frequency at which the field
that 1s accessed. In other words, the number of times that the
field 1s accessed 1s tracked or observed to determine the
hotness of the field. As the field 1s accessed more often, the
field becomes hotter.

This access can include: read, write, or any other type of
access. The illustrative embodiments recognize and take into
account that class splitting 1s undesirable because access to
source code or bytecode 1s required. The illustrative embodi-
ments recognize and take into account that this access 1s not
always available or desirable. For example, the illustrative
embodiments recognize and take 1into account that access to
Java classes like “string™ 1s unavailable.

The illustrative embodiments recognize and take into
account that structure peeling 1s a technique and 1s a special
case of the structure splitting techmque in which structures
are split without inserting a link pointer from the hot portion
to the cold portion. The 1llustrative embodiments also rec-
ognize and take in account that when structure peeling is
used a new pointer or variable 1s typically created to point
to each portion rather than using a link pointer. The 1llus-
trative embodiments also recognize and take 1n account that
field reordering 1s a technique 1n which fields are reordered
according to associated afhinity. The illustrative embodi-
ments also recognize and take 1n account that fields having
high athnity are placed in the same cache line to increase
spatial locality. The 1llustrative embodiments recognize and
take 1nto account that other techniques for structure layout
optimizations can include a technique of mstance interleav-
ng.

Thus, 1t would be desirable to have a method and appa-
ratus that take into account at least some of the issues
discussed above, as well as other possible 1ssues. For
example, it would be desirable to have a method and
apparatus that overcomes a technical problem with optimiz-
ing access objects i caches. The illustrative embodiments
recognize and take into one account that virtual machines
are currently used to manage fields 1 objects. In one
illustrative example, objects are managed in a virtual
machine. A frequency of access to fields 1n objects for an
application 1s i1dentified while the application runs in the
virtual machine. An object in the objects 1s split into a hot
object and a cold semi-object based on the frequency of
access to the fields 1 the object as identified while the
application runs in the wvirtual machine, wherein cache
misses are reduced from splitting objects based of the
frequency of access.

With reference now to the figures and, 1n particular, with
reference to FIG. 1, a pictonial representation of a network
ol data processing systems 1s depicted 1n which 1llustrative
embodiments may be implemented. Network data process-
ing system 100 1s a network of computers in which the
illustrative embodiments may be implemented. Network
data processing system 100 contains network 102, which 1s
the medium used to provide communications links between
various devices and computers connected together within
network data processing system 100. Network 102 may
include connections, such as wire, wireless communication
links, or fiber optic cables.

In the depicted example, server computer 104 and server
computer 106 connect to network 102 along with storage

10

15

20

25

30

35

40

45

50

55

60

65

6

unit 108. In addition, client devices 110 connect to network
102. As depicted, client devices 110 1include client computer
112, client computer 114, and client computer 116. Client
devices 110 can be, for example, computers, workstations,
or network computers. In the depicted example, server
computer 104 provides information, such as boot files,
operating system 1mages, and applications to client devices
110. Further, client devices 110 can also 1nclude other types
of client devices such as mobile phone 118, tablet computer
120, and smart glasses 122. In this illustrative example,
server computer 104, server computer 106, storage unit 108,
and client devices 110 are network devices that connect to
network 102 1n which network 102 1s the communications
media for these network devices. Some or all of client
devices 110 may form an Internet of things (IoT) in which
these physical devices can connect to network 102 and
exchange imformation with each other over network 102.

Client devices 110 are clients to server computer 104 1n
this example. Network data processing system 100 may
include additional server computers, client computers, and
other devices not shown. Client devices 110 connect to
network 102 utilizing at least one of wired, optical fiber, or
wireless connections.

Program code located 1n network data processing system
100 can be stored on a computer-recordable storage medium
and downloaded to a data processing system or other device
for use. For example, program code can be stored on a
computer-recordable storage medium on server computer
104 and downloaded to client devices 110 over network 102
for use on client devices 110.

In the depicted example, network data processing system
100 1s the Internet with network 102 representing a world-
wide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet 1s a backbone of high-speed data
communication lines between major nodes or host comput-
ers consisting of thousands of commercial, governmental,
educational, and other computer systems that route data and
messages. Of course, network data processing system 100
also may be implemented using a number of different types
of networks. For example, network 102 can be comprised of
at least one of the Internet, an intranet, a local area network
(LAN), a metropolitan area network (MAN), or a wide area
network (WAN). FIG. 1 1s intended as an example, and not
as an architectural limitation for the different illustrative
embodiments.

As used herein, “a number of” when used with reference
to 1tems, means one or more items. For example, “a number
of different types of networks™ 1s one or more different types
ol networks.

Further, the phrase “at least one of,” when used with a list
of items, means different combinations of one or more of the
listed 1items can be used, and only one of each item 1n the list
may be needed. In other words, “at least one of” means any
combination of 1items and number of 1tems may be used from
the list, but not all of the 1tems 1n the list are required. The
item can be a particular object, a thing, or a category.

For example, without limitation, “at least one of 1tem A,
item B, or item C” may include item A, 1item A and 1tem B,
or item B. This example also may include item A, item B,
and 1tem C or 1tem B and 1tem C. Of course, any combina-
tions of these i1tems can be present. In some illustrative
examples, “at least one of” can be, for example, without
limitation, two of item A: one of item B; and ten of item C;
four of item B and seven of item C; or other suitable
combinations.

US 10,747,515 B2

7

In this illustrative example, server computer 104 can also
supply enhanced Java virtual machines (JVMs) to client
devices 110. “Java™ 1s a registered trademark of Oracle. As
another 1llustrative example, enhanced Java wvirtual
machines can be accessed directly 1n network data process-
ing system 100 by client devices 110 from storage unit 108
instead of or in addition to server computer 104 or some
other server computer. Enhanced Java virtual machines
obtained from server computer 104, storage unit 108, or
other devices 1n network data processing system 100 can
provide improved cache performance as compared to cur-
rently available Java virtual machines.

For example, client computer 112 can run enhanced Java
virtual machine 130 such that splitting of objects 132 in
enhanced Java virtual machine 130 do not require splitting
classes. Instead, 1n this illustrative example, object manager
134 runs 1 enhanced Java virtual machine 130 to split
objects 132 into hot objects 136 and cold semi-objects 138.
The splitting of objects 132 1s based on the hotness of fields
140 1 objects 132. This hotness 1s determined in this
illustrative example by the frequency at which fields 140 are
accessed 1 objects 132.

In this 1llustrative example, object manager 134 places hot
objects 136 and cold semi-objects 138 into memory loca-
tions 1n a manner that reduces cache misses when runming,
enhanced Java virtual machine 130 on client computer 112.
For example, hot objects 136 are placed 1n memory locations
that are used to select objects for cache lines and cold
semi-objects 138 1into memory locations that are less likely
to be selected for placement into a cache line.

In the illustrative example, object manager 134 improves
cache utilization by placing more objects in the same cache
line. More objects can be placed mto a cache line by
reducing the size of objects 132 through objects splitting in
which a given object 1s split into two or more pieces in the
fields are grouped 1n these pieces according to the hotness of
the fields. These pieces form hot objects 136 and cold
semi-objects 138.

As result, hot objects 136 are generated from fields that
have a frequency of access that 1s greater than some selected
threshold. This type of selection fields for hot objects 136
increases the likelihood that a cache hit occurs when hot
objects 136 are placed into the cache line. Further, by
removing colder fields with less access and placing those
fields 1n another object, a cold semi-object, the hot object has
a smaller size, allowing for the placement of more hot
objects 1n the cache line. By placing cold semi-objects 138
in selected areas of memory such that fewer cache misses
can occur. This process does not require changing source
code or bytecodes as with current techniques. Additionally,
cold semi-objects 138 also do not have object headers 1n the
illustrative example, reducing the memory footprint. Fur-
ther, 1n the illustrative example, a single class present as a
result, a single lock 1s used to lock the object.

Further, at the bytecode level, access to the code for Java
classes like “string” 1s not present. With object manager 134,
Java class instances can be optimized in the illustrative
examples.

In this 1llustrative example, enhanced Java wvirtual
machine 130 1s a virtual machine 1n which objects 132 have
been split into hot objects 136 and cold semi-objects 138
during allocation of objects based on the frequency of
access. In other words, hot objects 136 and cold semi-
objects 138 formed from the splitting of objects 132 1s a
characteristic of enhanced Java virtual machine 130.

The 1llustration of network data processing system 100 in
FIG. 1 1s provided as an example of one manner 1n which an

10

15

20

25

30

35

40

45

50

55

60

65

8

illustrative example can be implemented. This 1llustration 1s
not meant to limit the manner 1n which other 1illustrative
examples can be implemented. For example, client computer
112 can include one or more enhanced Java virtual machines
in addition to enhanced Java virtual machine 130. As another
example, other client devices in client devices 110 and other
devices 1 network data processing system 100 such as
server computer 106 can also run enhanced Java virtual
machines. As yet another example, other types of enhanced
virtual machines can be used in addition to or in place of
enhanced Java virtual machines. For example, an enhanced
virtual machine can include an enhanced Parrot virtual
machine.

With reference now to FIG. 2, a block diagram of an
object management environment 1s depicted in accordance
with an 1llustrative embodiment. In this illustrative example,
object management environment 200 includes components
that can be implemented in hardware such as the hardware
shown 1n network data processing system 100 in FIG. 1.

In this depicted example, objects 202 are for application
204 running 1n virtual machine 206 on computer system 208.
Each object 1n objects 202 1s an 1nstance of a class in the
illustrative example. In this illustrative example, virtual
machine 206 1s process virtual machine 210. Process virtual
machine 210 1s an application of a virtual machine and also
can be referred to as a managed runtime environment. In this
illustrative example, process virtual machine runs as a
normal application inside of a host operating system and
supports a single process. This type virtual machine provides
a platform independent programming environment that
abstracts away details of the underlying hardware or oper-
ating system.

Computer system 208 1s a physical hardware system and
includes one or more data processing systems. When more
than one data processing system 1s present in computer
system 208, those data processing systems are 1 commu-
nication with each other using a communications medium.
The communications medium can be a network. The data
processing systems can be selected from at least one of a
computer, a server computer, a tablet computer, or some
other suitable data processing system.

In this 1llustrative example, object manager 212 1n object
management system 214 operates to increase the perfor-
mance of computer system 208 when running virtual
machine 206. In this illustrative example, the increase in
performance can be reduction in cache misses occurring
within computer system 208. Object manager 212 1s
depicted as a functional component in which one or more
processes of object manager 212 can be located within
virtual machine 206.

In this 1llustrative example, object manager 212 1n object
management system 214 monitors the runming of application
204 within virtual machine 206. Object manager 212 gen-
erates information 216 from monitoring application 204.
Information 204 can include, for example, information about
classes and their non-static fields for objects 202 for appli-
cation 204. Information 216 can include at least one of
names, types and modifiers, and field access frequency, and
other suitable mformation about classes in their non-static
fields. In this illustrative example, non-static fields are
tracked because each object 1n objects 202 has 1ts own copy
of non-static fields. This information can include, for
example, access barriers, static class immformation such as
class name and the number of non-static fields. Information
about non-static fields includes at least one of a name, a type,
a modifier, or other information about non-static fields.

US 10,747,515 B2

9

Further, information 216 about non-static fields also
includes information about the frequency or how often a
field 1s accessed.

Object manager 212 can 1dentify frequency of access 218
to fields 220 1n objects 202 for application 204 running in
virtual machine 206. For example, object manager 212 can
identily a frequency of access to each type of field for fields
220 1 objects 202. In 1dentifying the frequency of access to
fields, the access 1s counted for all of the same type of field
across the diflerent objects in objects 202. Object manager
212 does not distinguish between different instances of the
class 1n objects 202 1n the illustrative example. For example,
object manager 212 identifies access 1s to all double size
ficlds 1n all other objects 202 rather than on a per object
basis.

In this illustrative example, fields 220 of interest are
non-static fields. In the illustrative example, a static field
belongs to a class and not nstances of the class. Non-static
fields are copied into the object, which are the instances of
the class. Frequency of access 218 1s also referred to as
access Irequency in the illustrative examples.

In other words, the access 1s 1dentified on a per class basis.
As result, all fields for all instances of the class 1n objects
202 are counted in determining hotness of fields 220.

Information 216 1s analyzed by object manager 212 to
identily a number of new layouts 222 for objects 202. In the
illustrative example, new layouts 222 identity an order of
fields 1n an object as well as what fields are contained 1n the
object. These new layouts can be used to split objects 202 to
form split objects 224. As depicted, split objects 224 are hot
objects 226 and cold objects 228, which are generated by
splitting one or more of objects 202.

In the 1llustrative example, cold objects 228 can be cold
semi-objects 230. Cold semi-objects 230 are cold objects
228 that do not have headers. As depicted, hot objects 226
have pointers 232 to cold semi-objects 230. Hot objects have
object headers while cold semi-objects 230 do not have
object headers 1n the 1llustrative example.

As depicted, object manager 212 splits object 234 1n
objects 202 into hot object 236 and cold semi-object 238.
Hot object 236 has pointer 235 to cold semi-object 238. Cold
semi-object 238 does not have a header. As depicted, object
manager 212 performs the splitting of object 234 based on
frequency of access 218 to fields 220 in object 234 as

identified while application 204 runs 1n virtual machine 206.
In other words, some fields 1n fields 220 are considered hot
and are used to form hot object 236. Other fields 1n fields 220
are considered cold and used to form cold semi-object 238.
The selection of hot fields in fields 220 and cold fields 1n
fields 220 can be based on, for example, a threshold value
for the number of accesses to a field that 1s considered hot.
In this illustrative example, application 204 has com-
pleted running. Object manager 212 begins the process for
splitting objects 202 1n response to receiving information
216 for application 204. Information 216 1s about particular
classes and associated non-static fields including names,
types and modifiers, and the frequency of access to the
ficlds. In response to receiving information 216, object
manager 212 analyzes information 216 received according,
to predetermined criteria 246 to create analyzed data 248
identifying frequency of access 218 to each of fields 220.
In the illustrative example, predetermined criteria 246 can
be selected to determine the hotness of each field. Further,
the hotness of fields 1s selected to identity how to split
objects within memory. Predetermined criteria 246 can

10

15

20

25

30

35

40

45

50

55

60

65

10

include thresholds for the total number of access to each
class 1n each field to determine the hotness of the class and

field.

Object manager 212 saves analyzed data 248 about the
non-static fields in a memory to 1dentity, new layouts 222 for
objects 202 of application 204. New layouts 222 are used to
split objects 202 on a subsequent running of application 204.

In this illustrative example, 1n creating a new layout 1n
new layouts 222, object manager 212 reorders the non-static
fields 1n fields 220 including fields of super classes nside
objects 202 into a hot portion contaiming hot fields and a cold
portion containing cold fields using frequency of access 218
to fields 220. In creating the new layout, object manager 212
adds a field, after and adjacent to the hot portion, to maintain
an address of a first cold field 1n the cold portion of the object
as pointer to the cold portion when objects are created for the
hot portions and cold portions as hot objects 226 and cold
semi-objects 230, respectively.

For example, object manager 212 splits object 234 with
the new layout using a selected object splitting technique to
create hot-object 236 and cold semi-object 238 during an
object allocation. Object manager 212 can perform the
splitting of object 234 using a number of different object
splitting techniques. For example, at least one of a region-
based object splitting technique, allocation context-based
object splitting technique, or some other object splitting
technique can be used.

In this 1llustrative example, a region-based object splitting,
technique 1s one 1n which separation 1s at a region level. An
allocation context-based object splitting technique 1s one
which the separation 1s at an allocation context level which
can be a non-uniform memory access architecture node.

As a result, running application 204 in virtual machine
206 with split objects 224 occurs with reduced cache misses
occurring from splitting objects 202 based of the frequency
of access to fields 220 in objects 202. The process of
identifying imnformation 216 in object manager 212 can be
performed during at least one of an object allocation that
allocates objects 202 for application 204 or running of the
application 204. Also, the process of splitting objects 202 1n
object manager 212 can be performed during at least one of
an object allocation that allocates objects 202 for application
204 or running of application 204.

In the 1llustrative example, object manager 212 can split
an allocation of hot portions and cold portions of the objects
202 1nto respective different portions of heap memory 240.
The hot portions form hot objects 226 and the cold portions
for cold semi-objects 228. The portions are fields 220 1n
objects 202.

In the illustrative example, when a region-based object
splitting technique 1s used, object manager 212 can allocate
hot objects 226 only in non-cold regions 242 in heap
memory 240; and can allocate cold semi-objects 230 only 1n
cold regions 244 1n heap memory 240. Further, when an
allocation context-based object splitting technique 1s used,
cold regions 244 can be seclected only from a specific
allocation context using non-uniform memory access archi-
tecture nodes.

As depicted, object manager 212 can perform a garbage
collection for cold regions 244 in heap memory 240 1n which
cold regions 244 having age zero are collected on each
partial garbage collection. In this example, age zero means
that those cold regions contain objects that have not yet
survived any collections. Further, object manager 212 can
perform the garbage collection for remaining cold regions in
cold regions 244 when a number of cold regions exceeds a

US 10,747,515 B2

11

predetermined threshold. For example, the threshold can be
selected based on how much heap memory 240 1s used by
the number of cold regions.

Object manager 212 can be implemented 1n software,
hardware, firmware or a combination thereof. When soft-
ware 1s used, the operations performed by object manager
212 can be implemented in program code configured to run
on hardware, such as a processor unit. When firmware 1s
used, the operations performed by object manager 212 can
be implemented 1n program code and data and stored in
persistent memory to run on a processor unit. When hard-
ware 1s employed, the hardware may include circuits that
operate to perform the operations in object manager 212.

In the 1llustrative examples, the hardware may take a form
selected from at least one of a circuit system, an integrated
circuit, an application specific integrated circuit (ASIC), a
programmable logic device, or some other suitable type of
hardware configured to perform a number ol operations.
With a programmable logic device, the device can be
configured to perform the number of operations. The device
can be reconfigured at a later time or can be permanently
configured to perform the number of operations. Program-
mable logic devices include, for example, a programmable
logic array, a programmable array logic, a field program-
mable logic array, a field programmable gate array, and other
suitable hardware devices. Additionally, the processes can
be implemented in organic components integrated with
inorganic components and can be comprised enftirely of
organic components excluding a human being. For example,
the processes can be mmplemented as circuits in organic
semiconductors.

In one 1illustrative example, one or more technical solu-
tions are present that can overcome a technical problem with
reducing cache misses 1n a manner that avoids having to
modily source code or bytecode. As a result, one or more
technical solutions can provide a technical effect of allowing,
a virtual machine to split objects in to hot objects and cold
objects without moditying source code or bytecode. One or
more technical solutions can provide a technical effect of
reducing cache misses by selective placement of the hot
objects and cold objects into different regions of memory.

Computer system 208 can be configured to perform at
least one of the steps, operations, or actions described in the
different illustrative examples using software, hardware,
firmware or a combination thereof. As a result, computer
system 208 operates as a special purpose computer system
in which object manager 212 in computer system 208
cnables splitting objects without at least one of splitting
classes, modilying source code, or moditying bytecode. In
particular, object manager 212 transforms computer system
208 1nto a special purpose computer system as compared to
currently available general computer systems that do not
have object manager 212.

In the i1llustrative example, the use of object manager 212
running on computer system 208 integrates processes into a
practical application of managing objects in a virtual
machine 1n a manner that increases the performance of
computer system 208. In other words, object manager 212
running on computer system 208 1s directed to a practical
application of processes integrated into object manager 212
that 1dentily a frequency of access to fields 1n objects in
which the frequency of access 1s utilized to split the objects
into hot objects and cold objects. In this illustrative example,
object manager 212 can place the hot objects and cold
objects into memory such as a heap memory 240 1n a manner
that reduces cache misses during the running of application
in a virtual machine on the computer system. In this manner,

10

15

20

25

30

35

40

45

50

55

60

65

12

object manager 212 provides a practical application of
managing the objects such that the functioning of computer
system 208 1s improved. The improvement 1n the function-
ing of computer system 208 includes at least one of reduced
cache misses and reduce use of memory resulting from cold
semi-objects not having a header.

With reference next to FIG. 3, a block diagram of a data
processing system including an enhanced Java virtual
machine 1s depicted in accordance with an 1illustrative
embodiment. Data processing system 300 1s an example of
a data processing system that can be found in computer
system 208 1n FIG. 2.

As depicted, object manager 301 1s an example of one
implementation for object manager 212 1n FIG. 2. In this
illustrative example, object manager 301 includes profiler
302, analyzer 304, object splitter 305, and garbage collector
307. As depicted, object splitter 305 and garbage collector
307 are located within enhanced Java virtual machine 308.

As depicted, profiler 302 and analyzer 304 are located
outside of enhanced Java virtual machine 308. Enhanced
Java virtual machine 308 1s an example of virtual machine
206 1n FIG. 2 and enhanced Java virtual machines 116 1n
FIG. 1.

Profiler 302 provides a capability to obtain information
resulting from running an application. The information 1s
associated with particular classes and respective non-static
fields. For example, profiler 302 can gather information such
as different classes and their fields like their names, types,
and the number of accesses to the fields. Hash table 306
provides a capability to store information about field access
frequency also referred to as field hotness.

Analyzer 304 provides a capability to filter the informa-
tion derived from profiler 302 based on predetermined
criteria. For example, analyzer 304 determines a number of
times as particular field 1s accessed. Analyzer 304 can
identify the hotness of fields based on the number of times
the fields are accessed. Whether field 1s considered sufli-
ciently hot for inclusion in a hot object can be determined
using predetermined criteria such as a threshold number of
accesses. Additionally, analyzer 304 can also determine a
new layout for object based on the hotness of fields 1denti-
fied for the object during running of the application.

In this illustrative example, the analysis performed by
analyzer 304 1s a static analysis performed after running of
the application. In other illustrative examples, analyzer 304
can perform dynamic analysis in which the analysis 1s
performed while the application 1s run. Further, with
dynamic analysis, the splitting of objects, by object splitter
303, can also occur dynamically during the running of the
application.

In this 1illustrative example, enhanced Java virtual
machine 308 1s a modified version of a conventional Java
virtual machine providing a capability including an
enhanced garbage collection and object splitting through
object manager 301 as will be described in sections that
tollow. Class specific information 310 provides a capability
of storing and maintaining information previously obtained
using profiler 302 and analyzer 304. Class specific informa-
tion 310 can be used to i1dentily new layouts for objects
associated with the application 1n which the new layouts can
be used to split objects on subsequent executions of the
application.

In the illustrative examples, a selected application of
interest 1s run and information about particular classes and
respective associated non-static fields used 1n the application
1s gathered by profiler 302 1n FIG. 3. In this illustrative
example, non-static fields are tracked since each object has

US 10,747,515 B2

13

its own copy of non-static fields. Information about static
class mformation comprising class name, the number of
non-static fields and all required information about the
non-static fields of a class, including their names, types and
modifiers can be obtained by profiler 302 using access
barriers 1n the Java virtual machine to capture and record the
activity of objects.

In addition, information about field access frequency, also
referred to as field hotness, 1s stored 1n hash table 306. Upon
completion of the gathering of the mformation about the
particular classes and respective associated non-static fields
used 1n the application, the information about the particular
classes and respective associated non-static fields 1s saved as
class specific information 310 1n a file. The information
contained in the file 1s used with subsequent executions of
the application to determine new layouts for the objects of
the application. The learning phase typically employs a
profiling technique 1n which statistics are obtained and later
used 1n the identification of “hotness” and “aflinity.” The
profiling performed by profiler 302 profiling can be occur
during an 1nitial run of an application. The profiling does not
need to be performed each time the application 1s run.

In currently used class splitting approaches, the source
code of classes or the bytecode for the classes 1s changed to
split the classes mto two or more sub-classes. However, 1n
the illustrative examples, no such change 1s needed to the
source code. The objects are split and classes are not split in
the illustrative examples. Illustrative examples introduce a
novel approach in which objects can be split at allocation
time based on a “hotness” of fields within the objects.
Moreover, this technique may be implemented for other
managed runtimes other than a Java virtual machine. The
following description uses an example embodiment of the
disclosed method with respect to a Java virtual machine to
perform an object layout optimization process inside the
Java virtual machine. In contrast with a conventional class
splitting approach, when field reordering optimization 1s
done as a part of the Java virtual machine, the illustrative
example reduces overhead by exploiting the role of the Java
virtual machine 1n laying out fields iside objects.

The 1llustrative examples include a method for splitting
Java objects at allocation time that improves cache pertor-
mance by preventing the cache from being polluted by cold
ficlds of objects. Unlike previous techniques in which
classes are split, objects are split into distinct hot parts and
cold parts linked by a pointer placed at the end of the hot part
in an 1llustrative embodiment.

In illustrative examples, objects can be split at allocation
time, after gathering mformation about the objects, into hot
parts and cold parts 1n which the hot parts and cold parts are
allocated imto their respective specific arecas of a heap
memory. Using the object splitting technique divides
instance fields into hot and cold groups and also divides
super class fields as well. In this example, the hot parts are
hot objects and the cold parts are code semi-objects.

The 1llustrative examples difler from previous class split-
ting techniques by placing cold semi-objects 1n an area of
memory called a “cold area” which leads to fewer cache
misses. For example, a 100 byte object may not {it into a
single CPU cache line. As result, to CPU cache finds may be
required to hold this object. As result, one access time and
space are required. By splitting the object based on how
often fields are accessed within the object, a hot object
created from splitting the 100 byte object can {it 1n the single
CPU cache line. The object can be placed in another location
such as a cold area.

10

15

20

25

30

35

40

45

50

55

60

65

14

In contrast with conventional techniques, changes to the
bytecode or the source code of associated objects 1s needed
when using an illustrative example. Moreover, in the illus-
trative example, the cold semi-objects have no header and
therefore require a reduced memory footprint when com-
pared to the conventional class splitting techmiques. Further-
more, because one class 1s present, only one lock 1s used to
lock objects 1n the illustrative examples.

At a bytecode level, there 1s no access to the code for Java
classes, for example, “string” therefore, only application
classes can be optimized when using the conventional class
splitting techniques. However, 1n the 1llustrative examples,
Java class instances can also be optimized when they are
heavily used by the application.

Objects are currently allocated in contiguous memory
locations. Illustrative examples can split some objects into
distinct hot parts and cold parts 1n which these parts form
objects, hot objects and cold semi-objects, that are allocated

in respective different memory locations as shown later 1n
FIG. 7. These hot parts 1n a hot object and cold parts 1n a cold
object are also linked to each other using a new pointer in the
hot object that points to the location of the cold semi-object.

The illustration of object management environment 100
and the different components in FIG. 2 and FIG. 3 15 not
meant to 1mply physical or architectural limitations to the
manner in which an 1illustrative embodiment can be imple-
mented. Other components 1n addition to or 1n place of the
ones 1illustrated may be used. Some components may be
unnecessary. Also, the blocks are presented to illustrate
some functional components. One or more of these blocks
may be combined, divided, or combined and divided into
different blocks when mmplemented 1 an illustrative
embodiment.

For example, the hotness of classes can also be deter-
mined by object manager 212 1n FIG. 2 and object manager
301 mn FIG. 3. The hotness of classes can also be used to
determine which classes are not optimized because of the
overhead optimization. As another example, at least one of
profiler 302 or analyzer 304 can be located inside of
enhanced Java virtual machine 308.

FIGS. 4-7 depict a process for splitting an object 1n
accordance with an 1illustrative example. FIG. 4 illustrates
layout of an object. FIGS. 5-6 show intermediate layouts
that can be created as part of the process for creating a new
layout for the object from the layout of the object depicted
in FIG. 4 1n accordance with an illustrative example. FI1G. 7
shows an object split into a hot object and a cold semi-object
during object allocation using the new layout 1n accordance
with an 1illustrative example.

In this depicted example, the layout scheme for objects 1s
specific to a Java virtual machine implementation and 1s
optimized with respect to memory footprint. Fields are laid
out inside objects 1n different groups according to respective
s1ze and to minimize the total size of corresponding objects.
With reference to FIG. 4 a block diagram of layout of an
object 1s depicted 1n accordance with an illustrative embodi-
ment. Object layout 400 represents a layout of field for an
object used 1n association with an application that runs 1n a
virtual machine such as a Java virtual machine. Object
layout 400 1s an example of a layout for object 234 1n FIG.
2. Object fields 402 represent fields used within the object.
Instance ficlds 404 represent a set of variables 1n the object
and 1s a subset of all fields defined by object fields 402. As
used here, “a set of”’, when used with reference to items, 1s
one or more 1tems. For example, a set of variables 1s one or
more variables. Elements of instance fields 404 are placed

US 10,747,515 B2

15

by the Java virtual machine inside the structure of the object
according to the size of the field to decrease requirements for
memory.

Turning next to FIG. 5, a block diagram of an interme-
diate object layout 1s depicted 1n accordance with an 1llus-
trative embodiment. Object layout 500 1s an intermediate
layout for the object and represents a modified arrangement
of fields shown previously 1n FIG. 4. Object layout 500 can
be created by analyzer 304 1n FIG. 3.

Object fields 502 represents all fields used within the
object. In this example, hot fields 504 represents a set of
ficlds 1n the object that have a higher frequency of access
relative to the set of fields defined as cold fields 506. Hot
fields 504 and cold fields 506 are ordered according to
hotness of the particular field within a respective grouping.

In the illustrative examples, objects are split based on
hotness as determined by access frequency of the fields in
the objects. A predefined rule set can be used to identify
objects as candidates for splitting. For example, fields 1n an
object can be ranked from high to low using a computed
hotness. In this 1llustrative example, the computed hotness 1s
the frequency of access to the different fields. In another
illustrative example, a threshold may be set in the form of a
count of a number of objects, or a percentage of total objects.

As depicted 1n this figure, fields mside objects selected for
splitting are reordered into hot fields 504 and cold fields 506.
Fields of super classes are also reordered because all cold
fields are to be placed 1n the cold area.

With reference to FIG. 6, a block diagram of a new object
layout 1s depicted 1n accordance with an 1llustrative embodi-
ment. Object layout 600 represents a further modified
arrangement of fields shown previously 1 FIG. 5 that forms
a new layout that can be used to split objects. Object layout
600 can be created by analyzer 304 in FIG. 3.

As depicted, the hot part 602 of the object 1s a set of fields
as 1n hot fields 504 1n FIG. 5. The cold part 604 of the object
1s a set of fields as 1n cold fields 506 i FIG. 3.

In this illustrative example, pointer 606 1s a newly added
field to object layout 600. Pointer 606 referred to as coldPTR
1s added after hot part of the object 602, adjacent to the set
ol hot fields and provides an address of the first cold field 1n
the set of cold fields 1n the previously defined cold area of
the object, cold part 604 of the object. Pointer 606 1s a
pointer that will point to the hot object when object 1s split
into hot object and; object. Object layout 600 can be used by
object splitter 305 1n FIG. 3 to split an object mto a hot
object and a cold semi-object.

With reference to FIG. 7, a block diagram of an object
split into hot object and a cold semi-object 1s depicted 1n
accordance with an 1llustrative embodiment. Hot object 702
and cold semi-object 704 are created by splitting an object
using object layout 600 in FIG. 6. This splitting of the object
can be performed by object splitter 305 1n FIG. 3.

Hot object 702 includes elements of the object comprising,
the hot part of the object 1n hot part 602 1n object layout 600,
which also contains pointer 606 1n FIG. 6. However, cold
semi-object 704, which contains the cold part of the object
in cold part 604 1n object layout 600 in FIG. 6. Hot object
702 may be located 1n a different memory location than cold
semi-object 704 1n which the location 1s selected to increase
cache performance.

With next reference to FIG. 8, a block diagram of a heap
memory 1s depicted 1n accordance with an 1illustrative
embodiment. The 1illustrative examples employ a balanced
garbage collection (BGC) policy to manage objects 1n heap
memory 800. Balanced garbage collection divides memory
into regions with allocation performed in these regions.

10

15

20

25

30

35

40

45

50

55

60

65

16

Although balanced garbage collection 1s used 1n the 1llus-
trative examples other types of different garbage collection
(GC) policies can be used.

In one illustrative example, some regions of heap memory
800 are hot regions 802. Hot regions 802 can be designated
in heap memory 800 base an access frequency. Other regions
in heap memory 800 are cold regions 804.

Hot parts of the objects are allocated in hot regions as hot
objects and cold parts of the objects are allocated 1n cold
regions as cold semi-objects using a region-based object
splitting approach 1n this example. As depicted in this
example, cold regions 804 are distributed throughout the
heap memory 800.

Turming to FIG. 9, a block diagram of types memory
access architectures 1s depicted 1n accordance with an 1llus-
trative embodiment. As depicted, uniform memory access
(UMA) node 900 and non-uniform memory access (NUMA)
node 902 i1s shown 1n FIG. 9. Memory access using non-
uniform memory access node 902 differs from that of
uniform memory access node 900. These are just examples
nodes and other illustrative examples can include other
numbers of CPUs and memories using the architectures
shown 1n this figure.

In the illustrative example, non-uniform memory access 1s
a computer memory architecture for multiprocessing. With
this type of architecture, memory access time depends on the
memory location relative to the processor. Under non-
uniform memory access architecture, a processor can access
its own local memory faster than nonlocal memory. A
number of non-uniform memory access properties are used
in the illustrative examples including a non-uniform
memory access (NUMA) node.

In the i1llustrative example, a non-uniform memory access
node comprises a group of resources including central
processing units (CPUs), memory, and other hardware;
connection links including connection bus, bus interconnect,
and interconnect; and a virtual address space shared across
the nodes. Diflering access latency characteristics of
memory of non-uniform memory access nodes can be used
in a placement of hot parts and cold parts of the objects when
split to form hot objects and cold semi-objects.

With reference to FIG. 10, a block diagram of non-
umiform memory access nodes 1s depicted 1in accordance
with an illustrative embodiment. As depicted, a set of
non-uniform memory access (NUMA) nodes 1000 comprise
node 1 1102, node 2 1104, node 3 1106, and node 4 1108.
The non-uniform memory access nodes are initially capable
of commumcating directly with each other. Non-uniform
memory access node 902 1n FIG. 9 1s an example a node that
can be used to implement these nodes.

In the 1illustrative example, an object splitting technique
(OST) can be implemented using either of two different
approaches. A first approach 1s referred to as Region based
object splitting technique, which distributes cold regions 1n
memory next to non-cold regions. Cold regions are the
regions from which cold allocation 1s performed. Non-cold
regions are those regions from which non-cold allocation 1s
performed. In a second approach, allocation takes advantage
of the non-uniform memory access architecture.

Turning to FIG. 11, a block diagram of a heap memory 1s
depicted 1n accordance with an illustrative embodiment. In
an illustrative example using a Java virtual machine, each
non-uniform memory access node 1s represented by an
allocation context (AC) under a balanced garbage collection
model having a non-uniform memory access option enabled.
Each allocation context contains sets of regions of memory
and threads that exist on a respective owner node. In

US 10,747,515 B2

17

addition to one allocation context per node i1n balanced
garbage collection, a common allocation context 1s present
for a main thread and regions that reach a respective
maximum age. This technique 1s referred to as an allocation
context-based object splitting approach. The allocation con-
text-based object splitting approach reduces a work load of
nodes by placing cold semi-objects from the cold parts on a
separate node. Since all regions belonging to one allocation
context are physically adjacent 1n heap memory 1100, heap
memory 1100 1s split into areas of hot regions 1102 and cold
regions 1104. Therefore, when using allocation context-
based object splitting, heap splitting 1s performed at the
allocation context level. A number of these allocation con-
texts are considered to be hot regions 1102 while a number
of different allocation context are considered to be cold
regions 1104. Furthermore, cold regions 1104 are centralized
in an area of heap memory 1100 when using the allocation
context-based object splitting approach.

With reference next to FIG. 12, a block diagram of
non-uniform memory access (NUMA) nodes 1s depicted in
accordance with an illustrative embodiment. As illustrated,
non-uniform memory access (NUMA) nodes 1200 com-
prises node 1 1202, node 2 1204, node 3 1206, and node 4
1208. In this illustrative example, non-uniform memory
access (NUMA) nodes 1200 are not capable of communi-

cating directly with each other. As depicted, node 4 1208
contains cold allocation context 1210.

By default, threads are allocated from native allocation
contexts as long as there are free regions. When there are no
free regions in a native allocation context, a region 1s
borrowed from another allocation context. Eventually, when
borrowed regions become free, those borrowed regions are
returned to an original owning allocation context. In this
example, the regions can migrate, although temporarily,
from one allocation context to another allocation context,
but the threads do not migrate.

In the illustrative examples, this relationship can be
changed at the initialization step. For example, an appro-
priation allocation context can be modified such that threads
from hot contexts can only appropriate regions from hot
contexts and threads from cold contexts can only appropriate
regions from cold contexts. With minimal runtime overhead,
a thread from one of the hot allocation contexts cannot
appropriate regions from the cold allocation contexts and
vice versa. In addition, the common allocation context
cannot access regions belonging to cold contexts. As a
result, threads from hot contexts cannot appropriate regions
from cold ones and vice versa.

To accelerate object allocation by threads, each thread has
a thread local heap (TLH), which 1s part of the heap memory
from which a thread can allocate without using any lock. In
the illustrative example, two thread local heaps are used for

il

cach thread in which one thread local heap i1s used for
regular allocation and the other thread local heap 1s used for
cold allocation. A hot thread local heap i1s allocated from the
hot regions and a cold thread local heap 1s allocated from the
cold regions.

The illustrative example does not perform object splitting
on 1nstances of all classes. Only some classes are selected as
hot classes and i1dentified as candidates for splitting all
associated 1nstances. To distinguish these candidate classes,
a bit 1n classFlags 1s set. The classFlags 1s a 32-bit flag 1n a
Java virtual machine class data structure from which only
the first five bits are currently used. In the illustrative
example, an eighth bit 1s used as a coldFlag to indicate

whether respective instances of the class are split.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

In FIG. 13, a block diagram of a memory data structure 1s
depicted 1n accordance with an illustrative embodiment. The
memory data structure 1s a heap memory. From a garbage
collection perspective, cold regions, for example, cold
region 1 1306 1s treated differently because cold semi-
objects 1308 1n these regions have no headers. As a result,
the conventional garbage collection 1s modified to process
these cold regions. Using the modified garbage collection,
cold eden regions, those regions with age zero, are garbage
collected at every partial garbage collection (PGC). Remain-
ing cold regions are garbage collected when a number of
cold regions exceeds a predetermined threshold.

As a result, at each global marking phase (GMP), which
occurs before sweeping, a cold remembered-set 1s created
for each of the cold regions that contain pointers to live split
objects, for example, active split objects 1314, with a cold
part residing at that region. In other words, illustrative
example 11 a hot object 1s marked, the cold semi-object
pointed to by the hot object 1s also marked.

The structure of a cold remembered-set 1s shown 1n the
form of cold region 1 remembered-set 1316. This cold
remembered-set 1s used 1n subsequent partial garbage col-
lections to locate the cold portions of the live objects, for
example objects in Region 1 1300, Region 2 1302 and
Region 3 1304, and to update hot objects 1310 after moving
an associated cold part. In the illustrative example, increased
elliciency 1s present each cold remembered-set keeps infor-
mation of only those cold semi-objects 1n the region that
survived global marking. In the illustrative example, few of
these objects are present. However, when the cold remem-
bered-set exceeds a predetermined threshold during the
global marking, this region can be overflowed. The over-
flowed region 1s 1gnored for the rest of global marking, and
then, re-tried on the next global marking phase. Thus,
processing ol the cold remembered-sets used 1 embodi-
ments of the disclosed method 1s very similar to a process
used by a conventional Java virtual machine with the regular
remembered-sets.

With reference now to FIG. 14, a block diagram dataflow
in updating a memory data structure 1s depicted 1n accor-
dance with an 1illustrative embodiment. While cold regions
are excluded from direct marking, some of the fields in these
regions are references to other objects, for example, objects
allocated 1n the hot regions. As a result, references 1n the
cold regions are updated during every time garbage collec-
tion 1s performed to point to the correct object.

Hot area 1400 includes a data structure containing objects
1404 turther comprising header 1406, field 1408 and field

1410. Field 1410 contains coldPTR, which points to a first
clement of cold semi-objects 1412 within cold area 1402.
One element of cold semi-objects 1412 contains old pointer
1414 1n field 1413 which points to object 2 1416 at a location
prior to moving due to garbage collection. Old pointer 1414
in field 1413 1s updated as new pointer 1418 to point to
object 2 1420 at a new location after moving due to garbage
collection (GC). The references from cold fields 1n the cold
arca 1402 are updated during garbage collection to point to
the correct object in hot area 1400.

In the illustrative example, object splitting can reduce the
number of cache misses as compared to a conventional Java
virtual machine with a disabled Just In (JIT) compiler.
However, implementation of embodiments of the disclosed
method 1ncur tradeofls when compared with conventional
Java virtual machine processing. Distinguishing and access-
ing cold fields requires allocation of negative oflsets to the
cold fields. This action conflicts with JIT implementations

US 10,747,515 B2

19

causing disabling the JIT. Turning off JIT, along with
implementation overhead slows execution time of the appli-
cation.

With reference to FIG. 15, a block diagram of a memory
data structure 1s depicted 1n accordance with an illustrative
embodiment. Because of the importance of garbage collec-
tion, the illustrative examples can implement a new cold
garbage collection cycle that takes advantage of the object
splitting. Reclaiming memory of objects 1s one responsibil-
ity ol a garbage collection process. During the collection
process, live objects are found and typically moved to
reduce fragmentation. Once an object 1s moved, all other
objects that have a reference to the moved object are
updated. Because the only reference to each of the cold
semi-objects 1n the cold regions 1s the reference from an
associated hot object, the pointer in the hot object 1s updated
alter moving the cold semi-object.

However, there could be some references from cold
semi-objects to other hot objects 1n the non-cold regions.
Also, using the header of an object, useful information about
the object, for example, an associated type and size, can be
obtained. This information 1s used by garbage collection
processes to handle the object especially during the garbage
collection. To reduce a memory footprint, headers are not
placed 1 the cold regions. Therefore, the cold regions
cannot be collected by a detault garbage collection process.

As a result, a conventional garbage collector can be
modified to handle the split objects, for example, live split
objects 1502, live split objects 1504 and live split objects
1506, particularly the cold semi-objects 1n the cold region.
For example, some fields 1n the cold regions, for example,
cold region 1, cold region 5, cold region 6, cold region n,
contained 1 live cold regions list 1500 are references to
other objects, for example, objects allocated in the hot
regions. As a result, these fields have to be updated during
garbage collection, as required, to point to a valid object as
shown 1n FIG. 14.

In performing a cold garbage collection, the illustrative
example takes 1nto account that the partial garbage collec-
tion collects non-cold eden regions, and those are the only
hot regions that may have references to the eden cold
regions. In the illustrative example, the eden regions 1n the
heat 1s the pool from which memory 1s 1mitially allocated for
most objects. Thus, during each cold partial garbage collec-
tion (cPGC) only eden cold regions are collected. The local
garbage collection collects all (non-cold) regions, so during
cach cold global garbage collection (¢cGGC) all cold regions
are collected. However, postponing collection of non-eden
cold regions, until a next global garbage collection 1s miss-
ing an opportumty to free up space earlier. However, the cold
regions typically occupy a relatively small number of
regions therefore the cold regions have a lower priority,
relative to the hot regions, to be collected.

Approaches to find live objects 1n partial garbage collec-
tion and global garbage collection are different. While an
application 1s running between two partial garbage collec-
tions, liveness information 1s not present for objects in the
eden regions. During a partial garbage collection cycle, this
information 1s built for the eden regions, and 1s rebuilt for
any other regions 1n the collection set. Live objects 1n all
regions 1n the collection set (eden and non-eden) are found
based on recursive tracing starting from the roots. Once the
object 1s marked or moved, an associated mark bit 1s set.
However, global garbage collection includes a global mark-
ing operation. Marking in global garbage collection runs 1n
stop-the-world (STW) mode, which also includes sweep and
compact operations during the same stop-the-world period.

10

15

20

25

30

35

40

45

50

55

60

65

20

To perform garbage collections on cold regions, the cold
regions are excluded from being marked by a collector of a
conventional virtualization. As a result, the Balanced gar-
bage collection only collects the non-cold regions and
updates references in the cold regions aiter moving non-cold
objects.

To implement cold partial garbage collection, at the end of
cach partial garbage collection cycle, all live objects 1n the
non-cold eden regions are examined to find split objects and
to move a respective cold part to a group of cold regions
called tenured cold regions. Tenured cold regions are gar-
bage collected only during the cold global garbage collec-
tion cycles.

To perform the cold global garbage collection, which
examines all cold regions including tenured ones, remem-
bered-sets are simulated. By default, each region has a data
structure called a remembered-set, which includes a list of
all other objects outside of the region that have a reference
to objects residing 1n the region. To implement cold global
garbage collection, each cold region 1s given a semi-remem-
bered-set that contains pointers to live split objects that have
a cold part residing 1n that region. The semi-remembered-set
for each cold region 1s built during global marking as a part
of either global marking phase or level garbage collection.
The structure of the semi-remembered-set 1s shown 1n cold
region 1 remembered-set 1316 in FIG. 13.

The cold global garbage collection 1s performed within a
global garbage collection and just after the sweep 1s com-
pleted, following completion of global marking because this
1s when a maximum amount iree memory 1s present and a
need to evacuate cold semi-objects to new memory locations
1s present. There 1s no need to wait past that garbage
collection completion, because hot parts of split objects will
move making a semi-remembered-set invalid.

Therefore, during the global marking, live cold regions
list 1500 1s created containing all live cold regions, 1n which
the cold regions have at least the cold semi-object of one live
object. Each entry has a pointer to a corresponding semi-
remembered-set containing pointers to live split objects
corresponding to that cold region. This list 1s removed after
a cold garbage collection. Each entry in this semi-remem-
bered-set 1s used in the cold global garbage function to
update the hot objects after moving corresponding cold
parts.

Turning next to FIG. 16, a flowchart of a process for
managing objects 1 a virtual machine 1s depicted 1n accor-
dance with an 1illustrative embodiment. The process in FIG.
16 can be mmplemented in hardware, software, or both.
When implemented 1n soitware, the process can take the
form of program code that 1s run by one of more processor
units located 1n one or more hardware devices 1n one or more
computer systems. For example, the process can be imple-
mented 1n object manager 212 1n computer system 208 in
FIG. 2.

The process begins by identifying a frequency of access
to fields 1n objects for an application while the application
runs 1n the virtual machine (step 1600). The process splits an
object into a hot object and a cold semi-object based on the
frequency of access to the fields 1n the object as i1dentified
while the application runs 1n the virtual machine (step 1602).
The process terminates thereafter. With thus process, cache
misses can be reduced from splitting objects based of the
frequency of access.

With reference next to FIG. 17, a flowchart of a process
for splitting objects 1s depicted 1 accordance with an
illustrative embodiment. The process 1n this figure can be
implemented in object manager 212 in for splitting objects

US 10,747,515 B2

21

202 1n virtual machine 206 1n FIG. 2. This process can be an
example of one implementation for step 1602 in FIG. 16.

The process begins by analyzing the information recerved
according to predetermined criteria to created analyzed data
(step 1704). As depicted, step 1704 15 mnitiated 1n response
to recerving information, for an executed application, about
particular classes and associated non-static fields including,
names, types and modifiers, and field access frequency
collected 1n a hash table.

The process saves the analyzed data about the non-static
fields 1in a memory to 1dentily, on subsequent executions,
new layouts for objects of the executed application (step
1706). The process reorders, using the field access ire-
quency, of the non-static fields including fields of super
classes 1nside the objects mto a hot portion containing hot
fields and a cold portion containing cold fields (step 1708).

The process adds a field, after and adjacent to the hot
portion, to maintain an address of a first cold field in the cold
portion ol the object as a cold pointer (step 1710). The
process splits the object using a selected object splitting
technique (OST) to create a hot-object and a cold semi-
object during object allocation (step 1712) with terminating
thereatter.

With reference to FIG. 18, a flowchart of a process for
splitting objects 1s depicted 1n accordance with an illustra-
tive embodiment. Process illustrated in FIG. 18 i1s an
example of a process for object splitting in virtual machine
and can be performed using object manager 212 i FIG. 2.
The process 1n this flowchart 1s an example of the splitting
operation described 1n step 1712 1n FIG. 17.

The process begins by splitting allocation of hot portions
and cold portions of the objects into respective different
portions of heap memory (step 1804). The process uses one
path 1n which the selected object splitting technique 1s
configured to perform a region-based object splitting tech-
nique for which separation 1s at a region level (step 1806).
Because region-based object splitting technique 1s selected,
the process 1s configured so that hot objects are only
allocated 1n non-cold regions and cold semi-objects are only
allocated 1n cold regions (step 1808) with the process
terminating thereatter.

The process using another path in which the selected
object splitting technique 1s configured to perform an allo-
cation context-based object splitting technique for which the
separation 1s at an allocation context level which 1s a
non-uniform memory access (NUMA) node (step 1810).
Because allocation context-based object splitting technique
1s selected, the process 1s configured so that cold regions are
only selected from a specific allocation context using non-
uniform memory access nodes (step 1812) with the process
terminating thereafter.

Thus, one illustrative example includes a computer-
implemented method for object splitting 1n a managed
runtime. In response to receiving information, for an
executed application, about particular classes and associated
non-static fields including names, types and modifiers, and
field access frequency collected 1n a hash table, the com-
puter-implemented method analyzes the information
received according to predetermined criteria to created ana-
lyzed data. The analyzed data about the non-static fields 1s
saved 1n a memory to identify, on subsequent executions,
new layouts for objects of the executed application. The
non-static fields including fields of super classes 1nside the
objects are reordered, using the field access frequency, into
a hot portion containing hot fields and a cold portion
containing cold fields. A field 1s added, after and adjacent to
the hot portion, to maintain an address of a first cold field in

10

15

20

25

30

35

40

45

50

55

60

65

22

the cold portion of the object as a cold pointer. The object 1s
split using a selected object splitting technique to create a
hot-object and a cold semi-object during object allocation.

The flowcharts and block diagrams i the different
depicted embodiments 1llustrate the architecture, function-
ality, and operation of some possible implementations of
apparatuses and methods 1n an 1illustrative embodiment. In
this regard, each block 1n the flowcharts or block diagrams
may represent at least one of a module, a segment, a
function, or a portion of an operation or step. For example,
one or more of the blocks can be implemented as program
code, hardware, or a combination of the program code and
hardware. When implemented in hardware, the hardware
may, for example, take the form of integrated circuits that
are manufactured or configured to perform one or more
operations in the flowcharts or block diagrams. When imple-
mented as a combination of program code and hardware, the
implementation may take the form of firmware. Each block
in the flowcharts or the block diagrams can be implemented
using special purpose hardware systems that perform the
different operations or combinations ol special purpose
hardware and program code run by the special purpose
hardware.

In some alternative implementations of an 1illustrative
embodiment, the function or functions noted in the blocks
may occur out of the order noted 1n the figures. For example,
in some cases, two blocks shown in succession can be
performed substantially concurrently, or the blocks may
sometimes be performed in the reverse order, depending
upon the functionality involved. Also, other blocks can be
added 1n addition to the illustrated blocks 1n a flowchart or
block diagram.

Turning now to FIG. 19, a block diagram of a data
processing system 1s depicted 1n accordance with an illus-
trative embodiment. Data processing system 1900 can be
used to implement server computer 104, server computer
106, client devices 110, 1n FIG. 1. Data processing system
1900 can also be used to implement one or more data
processing systems in computer system 208 and data pro-
cessing system 300 in FIG. 3. In this illustrative example,
data processing system 1900 includes communications
framework 1902, which provides communications between
processor unit 1904, memory 1906, persistent storage 1908,
communications unit 1910, input/output (I/O) unit 1912, and
display 1914. In this example, commumnications framework
1902 takes the form of a bus system.

Processor unit 1904 serves to execute instructions for
software that can be loaded mto memory 1906. Processor
unmit 1904 includes one or more processors. For example,
processor unit 1904 can be selected from at least one of a
multicore processor, a central processing unit (CPU), a
graphics processing unit (GPU), a physics processing unit
(PPU), a digital signal processor (DSP), a network proces-
sor, or some other suitable type of processor. For example,
turther, processor unit 1904 can may be implemented using
one or more heterogeneous processor systems in which a
main processor 1s present with secondary processors on a
single chip. As another 1illustrative example, processor unit
1904 can be a symmetric multi-processor system containing
multiple processors of the same type on a single chip.

Memory 1906 and persistent storage 1908 are examples
of storage devices 1916. A storage device 1s any piece of
hardware that 1s capable of storing information, such as, for
example, without limitation, at least one of data, program
code 1n functional form, or other suitable information either
on a temporary basis, a permanent basis, or both on a
temporary basis and a permanent basis. Storage devices

US 10,747,515 B2

23

1916 may also be referred to as computer-readable storage
devices 1n these illustrative examples. Memory 1906, 1n
these examples, can be, for example, a random-access
memory or any other suitable volatile or non-volatile storage
device. Persistent storage 1908 may take various forms,
depending on the particular implementation.

For example, persistent storage 1908 may contain one or
more components or devices. For example, persistent stor-
age 1908 can be a hard drive, a solid-state drive (S5D), a
flash memory, a rewritable optical disk, a rewritable mag-
netic tape, or some combination of the above. The media
used by persistent storage 1908 also can be removable. For
example, a removable hard drive can be used for persistent
storage 1908.

Communications umt 1910, 1n these illustrative examples,
provides for communications with other data processing
systems or devices. In these illustrative examples, commu-
nications unit 1910 1s a network interface card.

Input/output unit 1912 allows for input and output of data
with other devices that can be connected to data processing
system 1900. For example, input/output unit 1912 may
provide a connection for user mput through at least one of
a keyboard, a mouse, or some other suitable mput device.
Further, input/output unit 1912 may send output to a printer.
Display 1914 provides a mechamsm to display information
to a user.

Instructions for at least one of the operating system,
applications, or programs can be located in storage devices
1916, which are in communication with processor unit 1904
through commumnications framework 1902. The processes of
the different embodiments can be performed by processor
unit 1904 using computer-implemented instructions, which
may be located in a memory, such as memory 1906.

These mstructions are referred to as program code, com-
puter usable program code, or computer-readable program
code that can be read and processed by a processor in
processor unit 1904. The program code in the diflerent
embodiments can be embodied on different physical or
computer-readable storage media, such as memory 1906 or
persistent storage 1908.

Program code 1918 i1s located in a functional form on
computer-readable media 1920 that 1s selectively removable
and can be loaded onto or transiferred to data processing
system 1900 for execution by processor unit 1904. Program
code 1918 and computer-readable media 1920 form com-
puter program product 1922 1n these illustrative examples.
In the 1llustrative example, computer-readable media 1920 1s
computer-readable storage media 1924.

In these illustrative examples, computer-readable storage
media 1924 1s a physical or tangible storage device used to
store program code 1918 rather than a medium that propa-
gates or transmits program code 1918.

Alternatively, program code 1918 can be transferred to
data processing system 1900 using a computer-readable
signal media. The computer-readable signal media can be,
for example, a propagated data signal containing program
code 1918. For example, the computer-readable signal
media can be at least one of an electromagnetic signal, an
optical signal, or any other suitable type of signal. These
signals can be transmitted over connections, such as wireless
connections, optical fiber cable, coaxial cable, a wire, or any
other suitable type of connection.

The different components illustrated for data processing
system 1900 are not meant to provide architectural limita-
tions to the manner in which different embodiments can be
implemented. In some illustrative examples, one or more of
the components may be incorporated 1n or otherwise form a

10

15

20

25

30

35

40

45

50

55

60

65

24

portion of, another component. For example, memory 1906,
or portions thereol, may be incorporated 1n processor unit
1904 1n some illustrative examples. The diflerent 1llustrative
embodiments can be implemented 1n a data processing
system 1ncluding components in addition to or 1n place of
those 1illustrated for data processing system 1900. Other
components shown in FIG. 19 can be varied from the
illustrative examples shown. The different embodiments can
be implemented using any hardware device or system
capable of running program code 1918.

Thus, illustrative embodiments of the present invention
provide a computer implemented method, computer system,
and computer program product for managing objects 1n a
virtual machine. A frequency of access to fields 1n objects for
an application 1s 1dentified while the application runs in the
virtual machine. An object 1n the objects 1s split into a hot
object and a cold semi-object based on the frequency of
access to the fields 1n the object as identified while the
application runs in the wvirtual machine, wherein cache
misses are reduced from splitting objects based of the
frequency of access. Additional increases in performance
can include reduce use of memory resulting from cold
semi-objects not having a header. Further, changes to byte-
code and source code are unnecessary.

The 1llustrative examples enable reducing cache misses
by splitting objects 1nto hot objects and cold semi-objects.
The hots objects have a smaller size that allows for more hot
objects to fit in a cache line. Further, cold semi-objects can
be placed in to a cold area in heap memory such that fewer
cache misses occur. Further, changes at least one of classes,
source code, or bytecode can be avoided using the object
splitting 1n the illustrative examples.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiment. The terminology used herein was
chosen to best explain the principles of the embodiment, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed here.

What 1s claimed 1s:

1. Amethod for managing objects 1n a virtual machine, the
method comprising:

identifying, by a computer system, a frequency of access

to fields 1n objects for an application while the appli-
cation runs in the virtual machine;

splitting, by the computer system, an object 1n the objects

into a hot object and a cold semi-object based on the
frequency of access to the fields in the object as
identified while the application runs i the virtual
machine performed during at least one of an object
allocation that allocates objects for the application and
running of the application, wherein cache misses are
reduced from splitting objects based on the frequency
of access;

splitting, by the computer system, an allocation of hot

objects from hot portions and cold semi-objects from
cold portions of the objects into respective different
portions of a heap memory; and

creating, by the computer system at each global marking

phase, a cold remembered-set for each of the cold
portions that contain pointers to live split objects with
a cold part residing at a cold portion.

US 10,747,515 B2

25

2. The method of claim 1, wherein the application has
completed running and wherein splitting the object 1n the
objects 1nto the hot object and the cold semi-object based on
the frequency of access to the fields in the object as
identified while the application runs 1n the virtual machine
COmMprises:

responsive to receiving information, for the application,
about particular classes and associated non-static fields
including names, types and modifiers, and the fre-
quency of access to the fields, analyzing, by the com-
puter system, the information received according to
predetermined criteria to create analyzed data identi-
tying the frequency of access to each of the fields;

saving, by the computer system, the analyzed data about
the non-static fields 1n a memory to 1dentify, on sub-
sequent running of the application, new layouts for the
objects of the application;

reordering, by the computer system, the non-static fields
including fields of super classes iside the objects into
a hot portion containing hot fields and a cold portion
containing cold fields using the frequency of access to
the fields:;

adding, by the computer system, a field, after and adjacent
to the hot portion, to maintain an address of a first cold
field 1n the cold portion of the object as a cold pointer;
and

splitting, by the computer system, the object using a
selected object splitting technique to create a hot-object
and a cold semi-object during an object allocation.

3. The method of claim 2, wherein the selected object
splitting technique 1s a region-based object splitting tech-
nique in which hot objects are only allocated in non-cold
regions and cold semi-objects are only allocated 1 cold
regions.

4. The method of claam 2, wherein the selected object
splitting technique 1s an allocation context-based object
splitting technique 1n which cold regions are only selected
from a specific allocation context using non-uniform
memory access architecture nodes.

5. The method of claim 2 further comprising:

moditying, by the computer system, an appropriation
allocation context in which threads from hot contexts
can only appropriate regions from hot contexts and
threads from cold contexts can only appropriate regions
from cold contexts.

6. The method of claim 1, wherein the cold semi-object
does not have a header during an object allocation.

7. The method of claim 1 further comprising;:

performing, by the computer system, a garbage collection
for cold regions 1n the heap memory in which cold
regions having age zero are collected on each partial
garbage collection; and

performing, by the computer system, the garbage collec-
tion for remaining cold regions when a number of cold
regions exceeds a predetermined threshold.

8. An object management environment comprising:

a computer system that identifies a frequency of access to
fields 1n objects for an application while the application
runs in a virtual machine; splits an object 1n the objects
into a hot object and a cold semi-object based on the
frequency of access to the fields in the object as
identified while the application runs in the wvirtual
machine performed during at least one of an object
allocation that allocates objects for the application and
running of the application, wherein cache misses are
reduced from splitting objects based on the frequency
of access; splits an allocation of hot objects from hot

10

15

20

25

30

35

40

45

50

55

60

65

26

portions and cold semi-objects from cold portions of
the objects into respective diflerent portions of a heap
memory; and creates, at each global marking phase, a
cold remembered-set for each of the cold portions that
contain pointers to live split objects with a cold part
residing at a cold portion.
9. The object management environment of claim 8,
wherein 1n splitting the object in the objects mto the hot
object and the cold semi-object based on the frequency of
access to the fields i the object as identified when the
application was previously run 1n the virtual machine, the
computer system:
responsive to receiving information, for the application,
about particular classes and associated non-static fields
including names, types and modifiers, and the {fre-
quency of access to the fields, analyzes the information
received according to predetermined criteria to created
analyzed data;
saves the analyzed data about the non-static fields 1n a
memory to identily, when the application 1s subse-
quently run, new layouts for objects of the application;

reorders the non-static fields including fields of super
classes inside the objects into a hot portion containing
hot fields and a cold portion containing cold fields
using the frequency of access to the fields;

adds a field, after and adjacent to the hot portion, to

maintain an address of a first cold field in the cold
portion of the object as a cold pointer; and

splits the object using a selected object splitting technique

to create a hot-object and a cold semi-object during an
object allocation.

10. The object management environment of claim 9,
wherein when the selected object splitting technique 1s a
region-based object splitting technique, a separation 1s at a
region level and when the selected object splitting technique
1s an allocation context-based object splitting technique, the
separation 1s at an allocation context level which 1s a
non-uniform memory access architecture node.

11. The object management environment of claim 10,
wherein when the selected object splitting technique 1s a
region-based object splitting technique, hot objects are only
allocated 1n non-cold regions and cold semi-objects are only
allocated 1 cold regions and when the selected object
splitting technique 1s an allocation context-based object
splitting technique, cold regions are only selected from a
specific allocation context using non-uniform memory
access architecture nodes.

12. The object management environment of claim 10,
wherein the computer system performs a garbage collection
for cold portions when cold portions having age zero are
collected on each partial garbage collection and performs the
garbage collection for remaining cold regions when a num-
ber of cold regions exceeds a predetermined threshold.

13. A computer program product for splitting objects in a
virtual machine, the computer program product comprising;:

a computer-readable storage media;

first program code, stored on the computer-readable stor-

age media, for 1dentifying a frequency of access to
fields 1n objects for an application when the application
runs 1n the virtual machine;

second program code, stored on the computer-readable

storage media, for splitting an object 1n the objects 1nto
a hot object and a cold semi-object based on the
frequency of access to the fields in the object as
identified when the application runs in the virtual
machine performed during at least one of an object
allocation that allocates objects for the application and

US 10,747,515 B2

27

running of the application, wherein cache misses are
reduced from splitting objects based on the frequency
of access;

third program code, stored on the computer-readable
storage media, for splitting an allocation of hot objects
from hot portions and cold semi-objects from cold
portions of the objects 1nto respective diflerent portions
of a heap memory; and

fourth program code, stored on the computer-readable
storage media, for creating, at each global marking
phase, a cold remembered-set for each of the cold
portions that contain pointers to live split objects with
a cold part residing at a cold portion.

14. The computer program product of claim 13, wherein

the second program code comprises:

further program code, stored on the computer-readable
storage media, responsive to recerving information, for
the application, about particular classes and associated
non-static fields including names, types and modifiers,
and frequency of access to the fields collected, for
analyzing the information received according to pre-
determined criteria to created analyzed data;

further program code, stored on the computer-readable
storage media, for saving the analyzed data about the
non-static fields in a memory to identity, when the
application 1s subsequently run, new layouts for objects
of the application;

further program code, stored on the computer-readable
storage media, for reordering, using the frequency of
access to the fields, the non-static fields including fields
of super classes inside the objects into a hot portion
containing hot fields and a cold portion containing cold
fields:

further program code, stored on the computer-readable
storage media, for adding a field, after and adjacent to
the hot portion, to maintain an address of a first cold
field 1n the cold portion of the object as a cold pointer;
and

5

10

15

20

25

30

35

28

turther program code, stored on the computer-readable
storage media, for splitting the object using a selected
object splitting technique to create the hot object and
the cold semi-object during an object allocation.

15. The computer program product of claim 14, wherein
the further program code, stored on the computer-readable
storage media, for splitting the object using a selected object
splitting technique to create the hot object and the cold
semi-object during object allocation comprises:

program code, stored on the computer-readable storage

media, for splitting allocation of hot objects from hot
portions and cold semi-objects from cold portions of
the objects 1nto respective diflerent portions of the heap
memory using the object splitting technique, wherein
when the object splitting technique 1s a region-based
object splitting technique, a separation 1s at a region
level and when the object splitting technique 1s an
allocation context-based object splitting technique, the
separation 1s at an allocation context level which 1s a
non-uniform memory access architecture node.

16. The computer program product of claim 14, wherein
the further program code, stored on the computer-readable
storage media, for splitting the object using a selected object
splitting technique to create the hot object and the cold
semi-object during the object allocation comprises:

program code, stored on the computer-readable storage

media, for allocating hot objects only in non-cold
regions and allocating cold semi-objects only allocated
in cold regions using a first object splitting technique
when the selected object splitting technique 1s a region-
based object splitting technique.

17. The computer program product of claim 14, wherein
when the selected object splitting technique 1s an allocation
context-based object splitting technique, cold regions are
only selected from a specific allocation context using non-
uniform memory access architecture nodes.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

