12 United States Patent

Dean et al.

US010733172B2

US 10,733,172 B2
*Aug. 4, 2020

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND COMPUTING DEVICE FOR
MINIMIZING ACCESSES TO DATA
STORAGE IN CONJUNCTION WITH
MAINTAINING A B-TREE

(71) Applicant: WORKIVA INC., Ames, 1A (US)

(72) Inventors: Timothy Dean, Belgrade, MT (US);
Houston King, Bozeman, MT (US);
Ryan Heimbuch, Belgrade, MT (US)

(73) Assignee: WORKIVA INC., Ames, 1A (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 307 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 15/834,876

(22) Filed: Dec. 7, 2017

(65) Prior Publication Data
US 2018/0096017 Al Apr. 5, 2018
Related U.S. Application Data

(63) Continuation of application No. 15/4935,261, filed on
Apr. 24, 2017, now Pat. No. 9,928,266.

(Continued)
(51) Int. CL
GO6I’ 16/23 (2019.01)
HO4L 12/861 (2013.01)
(Continued)

(52) U.S. CL
CPC ... GOGF 16/235 (2019.01); GO6F 16/2246
(2019.01); HO4L 49/9084 (2013.01); HO4L
67/1097 (2013.01); HO4L 67/10 (2013.01)

(38) Field of Classification Search

CPC e, GO6F 16/2246
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,920,857 A 7/1999 Rishe et al.
6,026,406 A * 2/2000 Huang GO6F 16/2343
(Continued)

OTHER PUBLICATTONS

Achakeev et al., “Eflicient bulk updates on multiversion b-trees.”
Proceedings of the VLDB Endowment 6.14, 2013, pp. 1834-1845.

(Continued)

Primary Examiner — William Spieler

(74) Attorney, Agent, or Firm — Faegre Drinker Biddle &
Reath LLP

(57) ABSTRACT

Methods for modifying a B-tree are disclosed. According to
an implementation, a computing device receives requests for
updates to a B-tree, groups two or more of the requests into
a batch that are destined for a particular node on the B-tree,
but refrains from modifying the node until a buller of a node
above 1t 1s Tull (or will be full with this batch of requests).
Once the bufler 1s full, the computing device provides the
requests to that particular node. The techniques described
herein may result 1n the computing device carrying out
fewer of reads from and writes to storage than existing
B-tree maintenance techniques, thereby saving time and
bandwidth. Reducing the number of reads and writes also
saves money, particularly when the storage 1s controlled by
a third party SaaS provider that charges according to the
number of transactions.

20 Claims, 15 Drawing Sheets

Node 7

Map: {27, UPPER]

Node 3
Map: [15, UPPER]
Buffer:
INode 1: insert 2]

Node 2
15, 16, 23]

Bufter: { }

Node &
Map: [44, UPPER]
Buffer:
INode 4: Insert 106]

Node 4
44, 45, 50

Mode 5
(27, 28, 31, 40}

US 10,733,172 B2
Page 2

Related U.S. Application Data
(60) Provisional application No. 62/345,241, filed on Jun.

3, 2016.
(51) Int. CIL.
GO6l 16/22 (2019.01)
HO4L 29/08 (2006.01)
(56) References Cited
U.S. PATENT DOCUMENTS
6,148,342 A 11/2000 Ho
6,381,605 B1* 4/2002 Kothurt GOG6F 16/2264
7,716,189 Bl 5/2010 Panchbudhe et al.
8,121,921 B2 2/2012 LaQunta et al.
8,145,686 B2 3/2012 Raman et al.
8,185,551 B2* 5/2012 Kuszmaul GO6F 11/1471
707/790
8,364,648 Bl 1/2013 Sim-Tang
8,423,575 Bl 4/2013 Alcorn et al.
8,478,765 B2 7/2013 Barton et al.
8,489,638 B2* 7/2013 Kuszmaul GO6F 11/1471
707/790
8,606,671 B2 12/2013 Lee et al.
8,781,936 B2 7/2014 Riley
8,996,563 B2* 3/2015 Bender GOO6F 9/546
707/769
9,081,501 B2* 7/2015 Asaad GOO6F 15/76
2008/0307181 Al* 12/2008 Kuszmaul GO6F 11/1471
711/164
2010/0037161 Al 2/2010 Stading et al.
2011/0246503 Al1* 10/2011 Bender GOO6F 9/546
707/769
2012/0254253 Al* 10/2012 Kuszmaul GOO6F 11/1471
707/797
2014/0006244 Al 1/2014 Crowley et al.
2014/0188790 Al 7/2014 Hunter
2015/0347477 Al* 12/2015 Esmet GO6F 16/13
707/744
2015/0370860 Al* 12/2015 Bender GO6F 9/546
707/609
OTHER PUBLICATTIONS
Arge, “The Bufler Tree: A New Technique for Optimal I'O Algo-

rithms,” Basic Research i Computer Science, BRICS Report
Series, RS-96-28, Aug. 1996, 37 pages.

Arge, “The Buffer Tree: A Technique for Designing Batched Exter-
nal Data Structures,” Algorithmica, Springer-Verlag New York, Inc.,
2003, vol. 37, pp. 1-24.

Blelloch, “Algorithms 1n the Real World,” 2010, accessed Jun. 28,

2017 at http://www.cs.emu.edu/-guyb/realworld/slidesS12/
localityAssign.pdf, 3 pages.

Bender et al., “Streaming Cache-Oblivious B-Trees,” MIT CSAIL
Research Abstracts, 2007, retrieved from mternet at http://publications.
csaill.mit.edu/abstractsO07/jfineman/jfineman.html on Sep. 29, 2017,
3 pages.

Brodal et al., “Lower Bounds for External Memory Dictionaries,”
Alcom-FT Technical Report Series, ALCOMFT-TR-03-75, Aarhus,
Nov. 2003, pp. 1-13.

Dillabaugh, “Buflered R-Tree, Apr. 26, 2007,” accessed Jun. 27,
2017 at http://cglab.ca/-cdillaba/comp5409_project/Buffered R
Tree_html, 3 pages.

Hedenfalk, “how the append-only btree works,” accessed Jun. 28,
2017 at http://www.bzero.se/ldapd/btree html, 2 pages.

Github, “Persistent Sorted Maps and Sets with Log-Time Rank
Quertes,” retrieved from internet at https://github.com/clojure/data/
avl. on Sep. 29, 2017, 2013-2016, 4 pages.

Holte, “Insertion Into a B-Tree,” accessed Jun. 28, 2017 at https://
webdocs.cs.ualberta.ca/-holte/ T26/1ns-b-tree.html, 4 pages.
Jannink, “Implementing Deletion in B+ — Trees,” ACM SIGMOD
Newsletter, ACM New York, NY, US, Mar. 1995, vol. 24(1), pp.
33-38.

Kuszmaul et al., “Write-Optimization 1n B-Trees,” Tokutek, Sep.
23, 20135, 22 pages.

Pendleton, “A nice short explanation of how a copy-on-write Blree
works,” Aug. 24, 2012, accessed Jun. 28, 2017 at http://bryanpendleton.
blogspot.com/2012/08/a-nice-short-explanation-of-how-copy-on.
html; 2 pages.

Okasaki, “Purely Functional Data Structures,” Thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA,
Sep. 1996, 162 pages.

Stack Overtlow, “Clojure: immutability and persistence,” retrieved
from internet at https://stackoverflow.com/questions/27152555/
clojure-immunability-and-persistence on Sep. 29, 2017, Nov. 2014,
2 pages.

Todd, “GUIDs as fast primary keys under multiple databases,”
retrieved from internet at http:// www.codeproject.com/Articles/
388157/GUIDs-astast-primary-leys-under-multiple-database, Mar. 135,
2013, 11 pages.

Twigg et al., “Stratified B-trees and Versioned Dictionaries.” HotStor-
age, 2011, 8 pages.

* cited by examiner

U.S. Patent Aug. 4, 2020 Sheet 1 of 15 US 10,733,172 B2

07 101

Productivity
Software

\
\
108 \

1
SaasS Platform
Software

|
\
\

104

- 102

FIG. 1

US 10,733,172 B2

Sheet 2 of 15

Aug. 4, 2020

U.S. Patent

90l
01 001

EE W s P AR WA R W R S_WW_E_W oW oE_mw

= 1,T, T, 1.1 T 1t T nt T T 1T T

T_E R T_=_ W W __m_m omom_m 7

a2 sl
Jasn jeolydeio

-.l. L] J..rd ll h J..r J.‘.l ﬁl h J.‘ N F.- J.l..-. H.r a.'i L] H.r J.‘.J ﬁ.‘] J..r J.-li L] l..r J..r

AIOWBIN

]
;
leua1X3 :
i

?giiiﬂ; b2 .

\ 40074

PR L N B e Ry Sl Ly Bl Bl L R L Rl R Tl Rl e B ey Tl L R R Tl Rl Tl i e U Pl Sl By Tl

-
..‘
l.a.
T.-
L
J..r
3
n
-
J.‘
l.ﬂ
li
l.-l
T
y
:
7
L
+
:
T
li
J..r
J.‘
:
-."J
-.-
L]
T,
;
L)
h L™
Ly
L
Ly
-
¥
Ly
L
Ly
;
L=
L)
L
Ly
;
*
;
. L
Y L
= bk wmw hwwhdwddw = ko d w4 - add = e d w4 - w ow -~ = = hwowowrdw
h |
L
Ll
L
T
L
L
Ly
*
Ly
v
L,
;
L
1
L
L
Ly
Ir.
Ly
Ly
+
:
-
LE
L
T
L
L
-
LE
L
T
+
LT
L
L
L
Ly
*
.
L
:
L
Ly
* L
- L
b | 3 L
-
1
.
T
L)
*
L.
-
L
T
L
Ly
L=
¥
Ly
L=
L=
L
+
T

b ad AL dd FLdla L kA AFdAF A A F
ar ndmraddrdesrggddeasasdea

aoeolu|
MIOMIEN

F* 2" W AT EWETETWEFIETAEETEIEYAYEEUEEUAYEWAEEWSFSIERTAEEALLEEAEERTE

4wl ok chod hh ko Ak okl ko d h ok w ok h kol ok ko h ko h okl b Ak h ok bk chd kAl b

s EmorE R W F W W FFEEALTERFEEFEYFLTE WAL N - rwArrEER - moem -

0w kLA
LIV L T I T T L O DL B,

L NNt

L4

ol oA A
d F

I."Ji- - ol
- wr s dmen

F dAd ¥ d BT
d m e s mrasdd ra

rd A by e m e d A

E]

inar
-

¢ Old

S92IAS(]

1Indul Jesn

F Il F " FFTAF AP TFAFFATAA "

=T r s wmT " m e R WL EELTETE R m L EmLoE.E =T .

+~ hw s wrEw " " w1 kT w"E "W TYTETELEEW

AT HLTHYY TN FANE]FTNET N R AITNETTENYASTNTTN YT RN TNE AN TR N
- - k = T mEw R ET

]
-l

s p & = & = a4 a R

== oo

US 10,733,172 B2

Sheet 3 of 15

Aug. 4, 2020

U.S. Patent

90¢

ssa00ld piyl |

¢ Old

$S800.d
pU0OB8S

g

cOt

8

O

!
/
0LE /
/
— — - 3Seqeie(
\ <>
\
v \ cle
\
\
\
welbold
SRIVEIS
80¢€

U.S. Patent Aug. 4, 2020 Sheet 4 of 15 US 10,733,172 B2

FIG. 4A

Node 1

11, 4,15, 27]

FIG. 4B

Node 3
Map: [15, UPPER]

Buffer: {}

Node 1 Node 2
[-7, 1, 4] 115, 27, 45]

FIG. 4C

U.S. Patent Aug. 4, 2020 Sheet 5 of 15 US 10,733,172 B2

Node 3
Map: [15, UPPER]

Buffer:
Node 1: [Insert 2]
Node 2: [Insert 28, Insert 50]

Node 1 Node 2
-7, 1, 4] 115, 27, 45]

FIG. 4D

Node 3
Map: [15, UPPER]

Buffer:
Node 1: [insert 2]

Node 2: [insert 28, Insert 50, Insert 31,
insert 44]

Node 2

(15, 27, 45]

FIG. 4E

U.S. Patent

=afc

Node 1
-7,1, 4]

Aug. 4, 2020

Sheet 6 of 15 US 10,733,172 B2

Buffer:

Node 1: [Insert 2]

Node 3
Map: [15, 44, UPPER]

Node 2
15, 27, 28, 31}

Node 4
144, 45, 50]

FIG. 4F

Buffer:

Map: [15, 44, UPPER]

Node 1:

Node 2:
Node 4:

Node 3

Insert 2]
Insert 16, Insert 23, Insert 40]
Insert 106]

-

Node 2
(15, 27, 28, 31]

Node 4
144, 45, 50]

FIG. 4G

U.S. Patent Aug. 4, 2020 Sheet 7 of 15 US 10,733,172 B2

Node 7
Map: {27, UPPER]

Buffer: { }

Node 3 Node 6

Map: {15, UPPER] Map: [44, UPPER]
Buffer: Buffer:

INode 1: Insert 2] [Node 4: Insert 106}

Node 2 Node 5 Node 4
'15, 16, 23] 127, 28, 31, 40} [44, 45, 50]

FIG. 4H

US 10,733,172 B2

Sheet 8 of 15

Aug. 4, 2020

U.S. Patent

cC 9PON

¢ 9PON

1 ¢ 9PON

o6l 9PON

0C 2PON

81 9PON

L1 9PON

91 9PON

VS Dld

G1 29PON

71 °PON

el 9PON

(} uayng

v 9PON

(} uoyng

L 9PON

-

¢l 2PON

L1 9pPON

01 9PON

(} oyng

¢ 9PON

6 @PON

8 9PON

L °PON

{}:.484ng

¢ 9PON

US 10,733,172 B2

Sheet 9 of 15

Aug. 4, 2020

U.S. Patent

o

¢ 9PON

CC 9PCON

-

L ¢ 2PON

0C 9PON

{} u9yng

9 9pPON

61 9PON

81 9PON

L1 9PON

91 2PON

{ } 18yng

S 9PON

d5 9l

S1 9PON

V1 2PON

el 9PON

{ } 18png

¥ @PON

[¢ 1sonbay ‘7 1senbay ‘T 15anbay] & 9pON

1 @PON

1apng

¢l 9PON

L1 2PON

U1 9PON

{} uoyng

€ 9PON

6 JPON

8 JPON

£ 2PON

(} uoyng

¢ °PON

JS Ol

¢ °PON 61 9PON
¢C 9PON 81 9PON

1 9PON L1 9PON
0c 9PON 91 9PON ”

US 10,733,172 B2

Sheet 10 of 15

ST 9PON ¢1 9PON

71l 9PON L1 9PON

el 2PON O1 9PON

(— ?
= N
— |
e {}eyng {}reyng - {}19yng {}1e4ng | {}9yng
.4
al 9 9PON G 9PON | 7 °PON ¢ 9PON ¢ °PON
u ;
< _ |
A
= 4 J d v

_ [9 1s9nbay ‘G 15anbay] :g apoN
| [€ 159nbay ‘7 1s9nbay ‘T 159nbay] :y 3poN |

[1sanbay] (¢ apON
Jayng

1 °PON

U.S. Patent

US 10,733,172 B2

Sheet 11 of 15

Aug. 4, 2020

U.S. Patent

0Z 9PON 9T 9pON

1T ®pON LT 9pON

¢ @PON 81 °PON

£l 9PON 6T @PON

__J

{}iapng {}aapng

9 9PON G IPON

as 9id

¢l 9PON

1 9PON |

S1 9PON

{} 1oyng

¥ 2PON

J

(g 158nbay ‘g 159nbay] g epoN

[€ 15anbay ‘7 15anbay ‘T 1senbay
‘g 159nbay ‘/ 1sanbay] 1y SPON
[1s9nbay] :¢ spoN

dayng
1 9PON

O1 9PON

11 9PON

C1 9PON

{}eyng

€ °PON

£ 9PON

8 9PON

™~
_

{}48yng

¢ 9PON

US 10,733,172 B2

Sheet 12 of 15

Aug. 4, 2020

U.S. Patent

-

cC 9PON

¢C 9PON

1 ¢ 9PON

-

0¢ 2PON

{} 4ayng

9 9PON

15 'Old

61 °PON

8T 9PON T 9PON

L1 9PON v1 9pPON

91 9PON el 9PON

H

anboay 7 1sonbayl (ST 8po
ssanby "L 1sanbou] SRERON

{} :1ayng
1sanbay ‘1 1sonbay] ($T IPON
5 9PON SEIL:
7 @PON
A
ad J

[15anbay ‘¢ 15anbay] :¢ apoN

[159nbay] :€ SpON

1apng

1 9PON

(1 2PON

11 9PON

Ol 9PON

6 2PON

8 9PCN

L 9PON

{} Heynd

¢ 9PON

(} Joyng

¢ °PON

A

V9 DId

US 10,733,172 B2

{}484ing | {}:18§yng {}18yng {}u8yng

9 9PON 5 9PON ¢ 9PON ¢ 9PON

Sheet 13 of 15

Aug. 4, 2020
v
o~

[€ 1sanbay ‘7 1sanbay ‘T 1sanbay] & 3pON
Jayng

AGHSOH -0l

{}34ng

AV Ui

[9PON 1 9PON

U.S. Patent

d9 Old

US 10,733,172 B2

{}ayng {1 deyng {1 spyng {1:194ng £1as8png
9 I9PON 4 9PON vV °PON | ¢ °PON | ¢ 9PON
W N \ \ /
- ™ \ \ | /
~
— \ | /
) N \ \
Y ~ | /
e U N\ \
r | /
e
= N \ | /
- \ | /
N \ | /
— \ | /
2 N /
= |
S | .~ /
. _
-t /
b B
> |
< /
[15enbay ‘G 159nbay] 5 spoN
[€ 15anbay ‘7 1sanbay ‘T 1sanbay] 1y spop | [¢ 1sanbay ‘7 1senbay ‘T 1sonbay] 7 SpoON
it 1senboy] £ IpoON 1ayng
rang 499904 (i
939044 Qi
al @PON 1 9PON

U.S. Patent

US 10,733,172 B2

Sheet 15 of 15

Aug. 4, 2020

U.S. Patent

{} usyng

9 9PON

J9 DI

{} :48ynd

06S0V# a1
7 °PON

{} H9lng

G 9PON

[g 15anbay 7 1sanbay] :ST 9pON
(£ 159nbay ‘¢ 1sanbay ‘T 1sonbay] (T SPON

Layng
Va4 Qi
7 9PON
(} oyng
¢ @PON

(g 159nbay ‘g 15onbay] :¢ 3pON
[7 1sanbay] ;€ @poN

1R4Nng

1497Z# -

hﬂmH wtﬂuz

(g 1sanbay ‘g 15anbay] g 3poN

[¢ 1sanbay ‘z 1senbay ‘T 1senbay| & SPON
|7 1s8nbay] :¢ spoN

iayng

o3d04# -l

al @PON

(} uayng

¢ 9PON

US 10,733,172 B2

1

METHOD AND COMPUTING DEVICE FOR
MINIMIZING ACCESSES TO DATA
STORAGE IN CONJUNCTION WITH
MAINTAINING A B-TREE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/495,261, filed Apr. 24, 2017, which claims
the priority benefit of U.S. Provisional Patent Application
62/345,241 filed Jun. 3, 2016. Both documents are incorpo-

rated herein by reference 1n their entirety.

TECHNICAL FIELD

The disclosure relates generally to data storage access
and, more particularly, to a method and computing device
for mimmimizing accesses to data storage 1n conjunction with
maintaining a B-tree.

BACKGROUND

Software architects often have to deal with problems
associated with the cost (in terms of both time and process-
ing resources) of accessing electronic data storage. This 1s
particularly true with high-latency (and typically high vol-
ume) storage media, such as magnetic hard disk memory. In
general, the more times a processor 1s required to access
high-latency electronic data storage 1n carrying out an
operation, the more time and processing resources the opera-
tion will consume.

With the widespread adoption of cloud-based storage, the
time cost of accessing electronic data storage has risen
considerably. This 1s because cloud-based storage adds the
additional delay of distance and intervening networks (like
networks that make up the internet). Furthermore, some
cloud-based storage providers charge customers based on
the number of accesses, thereby adding yet another, more
direct cost.

DRAWINGS

While the appended claims set forth the features of the
present techniques with particulanty, these techniques may
be best understood from the following detailed description
taken 1n conjunction with the accompanying drawings of
which:

FIG. 1 1s a block diagram illustrating an example net-
working environment in which various embodiments of the
disclosure may be employed.

FIG. 2 1s a block diagram of a computing device, accord-
ing to an embodiment.

FIG. 3 1s a block diagram of a network environment used
to 1llustrate various techniques described herein.

FIGS. 4A-4H 1llustrate how a B-tree 1s maintained in a

way that minimizes the number of nodes read from and
written to data storage, according to an embodiment.

FIGS. SA-5E illustrate how a B-tree 1s maintained 1n the
context of an example database system, according to an
embodiment.

FIGS. 6A-6C illustrate a B-tree that 1s maintained in the
context of the example given in FIGS. SA-SE, but with the
nodes being stored as immutable entities, according to an
embodiment.

DESCRIPTION

Methods for modifying a B-tree are disclosed. According
to an 1mplementation, a computing device receives requests

10

15

20

25

30

35

40

45

50

55

60

65

2

for updates to a B-tree, groups two or more of the requests
into a batch that 1s destined for a particular node on the
B-tree, but refrains from modifying that node until a bufler
ol a node above 1t 1s full (or will be full with this batch of
requests). Once the bufler 1s full, the computing device
provides the requests to that particular node. The techniques
described herein result 1n the computing device carrying out
fewer reads from and writes to storage than existing B-tree
maintenance techniques, thereby saving time and band-
width. Reducing the number of reads and writes also saves
money, particularly when the storage 1s controlled by a third
party SaaS provider that charges according to the number of
transactions.

Various embodiments of the disclosure are implemented
in a computer networking environment. Turning to FIG. 1,
an example of such an environment 1s shown. A first
computing device 100 (e.g., a hardware server or a cluster of
hardware servers) 1s communicatively linked to a network
102. Possible implementations of the network 102 include a
local-area network, a wide-area network, a private network,
a public network (e.g., the internet), or any combination of
these. The network 102 may 1include both wired and wireless
components. Also commumicatively linked to the network
102 are a second computing device 104 (e.g., a client device)
and a third computing device 106 (e.g., a hardware server or
a cluster of hardware servers). It 1s to be understood that the
various embodiments may be carried out on the first com-
puting device 100, the second computing device 104, or
other computing devices not depicted, with the second
computing device 104 accessing the first computing device
100 via a thin, web-based client. In an embodiment, the first
computing device 100 executes productivity software 101
(e.g., a document editing application, a spreadsheet appli-
cation, etc.) and the third computing device 106 executes
soltware as a service (“SaaS”) platform software 107. The
first computing device 101 and the third computing device
106 are communicatively linked to a media storage device
108 (e.g., a memory or a redundant array of independent
disks). Although FIG. 1 depicts the media storage device
108 as a single device, 1n fact, the media storage device 108
may represent a cloud storage service including multiple
storage devices. In general, the media storage device 108
may be implemented as a single computing device or as
multiple computing devices working together.

In another embodiment, the productivity software 101 and
the SaaS platform software 107 are executed on the same
computing device (e.g., the first computing device 100 or the
third computing device 106). For example, the productivity
software 101 resides on one partition of the first computing
device 100 while the SaaS platform software 107 resides on
another partition of the first computing device 100. In other
embodiments, portions of the productivity software 101 may
be executed on both the first computing device 100 and the
third computing device 106, and/or portions of the SaaS
platform software 107 may be executed on both the first
computing device 100 and the third computing device 106.
With such network configurations, the second computing
device 104 1s configured to access the computing device or
devices on which the productivity software 101 resides.

In one implementation, one or more of the computing
devices of FIG. 1 (including the media storage device 108)
have the general architecture shown 1n FIG. 2. The comput-
ing device includes processor hardware 202 (e.g., a micro-
processor, controller, or application-specific itegrated cir-
cuit) (hereinafter “processor 202”°), a primary memory 204
(e.g., volatile memory, random-access memory), a second-
ary memory 206 (e.g., non-volatile memory), user put

US 10,733,172 B2

3

devices 208 (e.g., a keyboard, mouse, or touchscreen), a
display device 210 (e.g., an organic, light-emitting diode
display), and a network interface 212 (which may be wired
or wireless). Each of the elements of FIG. 2 1s communi-
catively linked to one or more other elements via one or
more data pathways 213. Possible implementations of the
data pathways 213 include wires, conductive pathways on a
microchip, and wireless connections. In an embodiment, the
processor 202 1s one of multiple processors 1n the computing,
device, each of which 1s capable of executing a separate
thread. In an embodiment, the processor 202 communicates
with other processors external to the computing device in
order to 1imitiate the execution of different threads on those
other processors.

The memories 204 and 206 store mstructions executable

by the processor 202 and data. The term “local memory™ as
used herein refers to one or both the memories 204 and 206
(1.e., memory accessible by the processor 202 within the
computing device). In some embodiments, the secondary
memory 206 1s implemented as, or supplemented by, an
external memory 206A. The media storage device 108 1s a
possible implementation of the external memory 206A. The
processor 202 executes the istructions and uses the data to
carry out various procedures including, in some embodi-
ments, the methods described herein, including displaying a
graphical user interface 219. The graphical user interface
219 1s, according to one embodiment, software that the
processor 202 executes to display a report on the display
device 210, and which permits a user to make inputs into the
report via the user mput devices 208.

As discussed above, the disclosure 1s generally directed to
methods and devices for maintaining a B-tree. As used
herein, a “B-tree” 1s a tree data structure that describes
relationships among data, and can be searched and modified
by a computing device having the appropriate set ol per-
missions. Examples of B-trees include B+ trees, B* trees,
and BC-trees. A node of a B-tree may have no children (1n
which case the node 1s said to be a “leat node™), or may have
any number of child nodes (in which case the node 1s said
to be a “branch node”). A node that has no parent 1s said to
be a “root node.” Each branch node may include metadata
that the computing device uses to route any sort of interac-
tion with the B-tree and, ultimately, with the leaf nodes.
Possible types of interactions between the B-tree (or a
process tasked to maintain the B-tree) and other entities
(e.g., 1n response to requests or instructions from other
entities) include node and data retrieval, node and data
insertion, node and data deletion, and node and data restruc-
turing (e.g., so that structural changes to the way data 1s
stored would propagate gradually as data 1s used, rather than
requiring a complete rewrite of a tree all at once). “Data™ in
this context refers to anything stored in a node, such as
clement 1dentifiers (“I1Ds”), attributes of the node, and values
stored 1n the node.

Each branch node includes information (e.g., a maximum
value and a minimum value) that may help a computing
device optimize the routing of requests for interaction with
the B-tree. A branch node may also include information
about 1ts child nodes/branches, such as a map referred to
herein as a “cap-key map” or “map.” The cap-key map
includes a set of entries, in which each entry maps a key to
a value. The entries are ordered from the lowest to the
highest key. A computing device uses the map to determine
the branch down which it will send incoming data. A branch
node also includes a bufler (or pointer thereto) for holding
interaction instructions. In an embodiment, the computing

10

15

20

25

30

35

40

45

50

55

60

65

4

device groups interaction requests within the bufler accord-
ing to which branch should receive the requests when the
buffer 1s tlushed.

In order to make changes to the B-tree, a computing
device (such as one or more of the computing devices shown
in FIG. 1) retrieves (reads) the appropriate nodes from a
media storage device (such as the media storage device 108),
makes the appropriate updates (changes) to the node or
nodes, and stores the updated node or nodes in the media
storage device (1.e., writes the updated node or nodes to the
media storage device). However, 1n many cases the node or
nodes that need to be changed are located multiple layers
down the B-tree. The computing device 1s generally required
to access the B-tree by the root node and then successively
retrieve further nodes (e.g., by successively retrieving ref-
erences (such as pointers) to such further nodes). As a result,
in order to make a change to a node in the B-tree, the
computing device may need to perform multiple read and
write operations.

Turning to FIG. 3, an example network configuration 1s
shown. This network configuration will be referred to
throughout this disclosure in order to illustrate various
embodiments. In this network configuration, processor hard-
ware of the first computing device 100 executes a first
process 302, a second process 304, and a third process 306.
Each of these processes may be executed by the same
processor hardware on the first computing device 100 or by
separate processor hardware on the first computing device
100. The first process 302 communicates with a service
program 308 that the media storage device 108 executes.
Thus, when the present disclosure refers to the first process
302 communicating or otherwise interacting with the service
program 308, 1t 1s, 1n fact, processor hardware on the first
computing device 100 that communicates (e.g., via the
internet) with processor hardware on the media storage
device 108. Residing on the media storage device 108 (in
long-term memory, for example) 1s a B-tree 310. The first
process 302 1s responsible for maintaining the B-tree 310.
Also residing on the media storage device 108 (1n long-term
memory, for example) 1s a database 312. The service pro-
gram 308 1s responsible for maintaining the database 312. In
doing so, the service program 308 handles incoming
requests for reads from and writes to the database 312. The
second process 304 and the third process 306 are each
“clients” of the first process 302 with respect to maintenance
of the B-tree 310 1n the sense that the second process 304
and third process 306 send requests for the first process 302
to make updates to the B-tree 310. Such update requests may
be 1n the form of ‘mnsert” and ‘delete’ messages. It 1s to be
understood, however, that such updates might be requested
by multiple diflerent processes, one or more of which might
be executing on the first computing device 1tself or on other,
separate computing devices. The depictions of the second
and third processes in FIG. 3 are intended for illustrative
purposes only.

Turmning to FIGS. 4A-4H, an example of how the first
computing device 100 (“computing device 100””) maintains
the B-tree 310 according to an embodiment will now be
described. For this example, assume that 1n the B-tree 310:
(a) each non-leal node has a bufler, (b) the maximum
number of requests (“MaxRequests™) that can be stored in
cach branch node’s bufler 1s four, (¢) the maximum number
of values (“MaxValues™) permitted to be stored in each leaf
node 1s four, and (d) the maximum number of children
(“MaxChildren™) each branch node i1s permitted to have 1s
three. It 1s to be understood that these values are merely
illustrative. For example, the values could be derived via

US 10,733,172 B2

S

algorithm, e¢.g., MaxChildren=SQRT(Count(tree size)). Fur-
ther assume that each branch node includes a map that
contains references (e.g., pointers or umque identifiers) to
that branch node’s children as well as the ranges assigned to
the children, so that by analyzing the node while a copy of
the node resides 1n the memory of the computmg device 100
(also referred to herein as “local memory™), the first process
302 can determine which child node should be updated and
use the appropriate reference (obtained from the branch
node’s map) to request the child node from the service
program 308.

In FIG. 4A, the B-tree 310 starts with a node that will be
referred to as ‘Node 1.” Node 1 at this point 1n time 1s both
a root node and a leat node. Node 1 holds the values 1, 4,
and 27. The first process 302 receives an update request of
‘insert 15 from the second process 304. The computing
device 100 responds by requesting Node 1 from the service
program 308 (e.g., by transmitting a “read” request to the
service program 308). Under the direction of the service
program 308, the media storage device 108 responds by
transmitting Node 1 to the computing device 100. The
computing device 100 stores Node 1 1n its local memory.
Because adding 15 to Node 1 would not cause the number
of values (“Values™) to exceed MaxValue, the computing
device 100 adds 15 to Node 1 (within the local memory) and
sends the modified Node 1 to the media storage device 108
(e.g., by transmitting a “write” request to the media storage
device 108 via the service program 308). The media storage
device 108 responds by moditying the B-tree 310 with the
modified Node 1. After the media storage device 108 modi-
fies the B-tree 310, the B-tree 310 1s structured as shown 1n
FIG. 4B. For ease of description, it will be assumed that the
service program 308 controls the actions of the media
storage device (either directly or indirectly e.g., via com-
mands to an application programming interface provided by
a cloud-based storage service) and the process will simply
be referred to as the service program 308 carrying out
retrieval and storage activities.

Next, the first process 302 receives two update requests
from the second process 304: ‘insert =7 and ‘insert 45.” In
response, the first process 302 requests Node 1 from the
service program 308. The service program 308 responds by
transmitting Node 1 to the first process 302. The first process
302 determines that adding these two values to Node 1
would cause Values to exceed MaxValues. Accordingly, the
first process 302 creates two additional nodes within the
local memory—Node 2 and Node 3—and makes Node 1 and
Node 2 children of Node 3. Node 3 1n this case 1s both a root
node and a branch node. The first process 302 assigns a
range to each of Node 1 and Node 2 based on the values
against which the insert instructions are directed. In this
example, the first process 302 will assign Node 1 any value
less than 15 to Node 1 and any value greater than or equal
to 15 and less than an upper bound. In this example, the
upper bound 1s infinity, which 1s represented by the term
“UPPER” (eflectively any value greater than or equal to 15)
to Node 2. These parameters are retlected in the map of
Node 3, which the first process 302 creates upon determin-
ing that Node 3 1s a branch node. The first process 302
therefore removes 15 and 27 from Node 1, inserts -7 into
Node 1, and inserts 135, 27, and 45 ito Node 2 (1n local
memory). The first process 302 then sends the modified
Node 1, as well as the newly-created Nodes 2 and 3 to the
service program 308 (e.g., by transmitting a “write” request
to the service program 308). The service program 308
responds by modifying the B-tree 310 with the modified
Node 1, the new Node 2, and the new Node 3. After the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

service program 308 modifies the B-tree 310, the B-tree 310
1s structured as shown 1n FIG. 4C.

Then, the first process 302 receives three update requests
from the third process 306: ‘1nsert 2,” “insert 28,” and ‘insert
50.” In response, the first process 302 requests the root node
(Node 3 now) from the service program 308. The service
program 308 responds by transmitting Node 3 to the first
process 302. The first process 302 determines that the value
2 falls within the range assigned to Node 1 and that the
values 28 and 50 belong to range assigned to Node 2. The
first process 302 also determines that storing these requests
in the buller for Node 3 would not cause it to be overtull
(1.e., BullerValues=<MaxBuller). As noted above, this deter-
mination may be made before or after the requests are stored
in the bufler. Accordingly, the first process 302 groups the
two values destined for Node 2 1nto a batch and stores these
two values 1n the bufler of Node 3 so that they are associated
with Node 2. For example, the first process 302 may insert
the element ID of Node 2 into Node 3’s buller as a sort of
‘header’ and insert the requests ‘msert 28 and ‘insert 50” in
a location contiguous with the header. The first process 302

also stores the request destined for Node 1 (1.e., ‘insert 27)
in Node 3’s bufler so that 1t 1s associated with Node 1.
Having finished modifying Node 3, the first process 302 then
sends the modified Node 3 to the service program 308 (e.g.,
by transmitting a “write” request to the service program
308). The service program 308 responds by modifying the
B-tree 310 with the modified Node 3. After the service
program 308 modifies the B-tree 310, the B-tree 310 1s
structured as shown 1n FIG. 4D.

Then, the first process 302 receives one update request
from the second process 304: ‘insert 31,” and one update
request from the third process 306: ‘insert 44.” In response,
the first process 302 requests the root node (Node 3) from
the service program 308. The service program 308 responds
by transmitting Node 3 to the first process 302. The first
process 302 determines that both of the values 31 and 44 {all
within the range assigned to Node 2, and adds the corre-
sponding insertion requests, ‘insert 31° and ‘insert 44, to the
builer for Node 3 (associated with Node 2) 1n local memory.
In local memory, the nodes of the B-tree being processed by
the first computing device 100 would be structured as shown
in FIG. 4E. The first process 302 determines that Node 3’s
bufler 1s overtull (i.e., BuflerValues>MaxBuliler). Based on
this determination, the first process 302 flushes the bufler of
Node 3. Alternatively, the first process 302 may make the
overfull determination prior to iserting the latest requests
into Node 3’s bufler, eflectively eliminating the need to
“overfill” the bufler before determining that overtlow will
OCCUL.

To flush Node 3’s bufler 1n this example, the first process
302 will flush the largest batch which, 1n this case, 1s the
batch for Node 2—the ‘insert 28’ request, the ‘imsert 50°
request, the ‘insert 31° request, and the ‘1nsert 44” request. In
order to carry out this flushing operation, the first process
302 requests Node 2 from the service program 308. The
service program 308 responds by transmitting Node 2 to the
first process 302. The first process 302 (a) removes the
requests (those of the Node 2 batch) from Node 3’s bufler,
(b) creates a new node—Node 4—since having 4 additional
values 1n Node 2 would cause Values to exceed MaxValues,
(c) modifies the map of Node 3 to indicate that Node 2 waill
be assigned all values that are less than 44 and greater than
or equal to 15, (d) removes 45 from Node 2, (¢) mserts 28
and 31 into Node 2, and (1) mnserts 44, 45, and 50 into Node
4. The first process 302 then sends the modified Node 3, the
modified Node 2, and the newly-created Node 4 to the

US 10,733,172 B2

7

service program 308 (e.g., by transmitting a “write” request
to the service program 308). The service program 308
responds by modilying the B-tree 310 with the modified
Node 3, the modified Node 2, and the new Node 4 within the
media storage device 108. After the service program 308
modifies the B-tree 310, Nodes 1-4 of the B-tree 310 are
structured as shown 1n FIG. 4F.

Then, the first process 302 recerves four requests from the
second process 304: ‘imnsert 16, “insert 23,” isert 40,” and
‘msert 106.” In response, the first process 302 requests the
root node (Node 3) from the service program 308. The
service program 308 responds by transmitting Node 3 to the
first process 302. The first process 302 determines that the
value 106 falls within the range assigned to Node 4, and that
the values 16, 23, and 40 fall within the range assigned to
Node 2. The first process 302 batches the requests for Node
2 and adds the corresponding insertion requests (for both
Node 2 and Node 4) to the buller for Node 3 (associated with
the appropriate nodes). In local memory, Nodes 1-4 of the
B-tree would be structured as shown in FIG. 4G once the
first process adds the insertion requests to Nodes 2 and 4.
The first process 302 determines that Node 3’s bufler is
overfull (BuflerValues>MaxBultler). Based on this determi-
nation, the first process 302 tlushes the bufler of Node 3. As
discussed previously, the first process 302 may make the
overfull determination prior to inserting the latest requests
into Node 3’s bufler, effectively eliminating the need to
“overtill” the butfler before determining that overtlow will
OCCUL.

To flush Node 3’s bufler, 1n this example, the first process
302 will flush the largest batch which, 1n this case, 1s the
batch for Node 2. In order to carry out this flushing opera-
tion, the first process 302 requests Node 2 from the service
program 308. The service program 308 responds by trans-
mitting Node 2 to the first process 302.

The first process 302 determines that Node 2 cannot
accommodate all of the values of the batch that i1s being
flushed (the values 16, 23, and 40) because inserting the
values into Node 2 would cause Values to exceed MaxVal-
ues. Furthermore, Node 3 already has three children (which
1s MaxChildren). The first process 302 therefore creates
three additional nodes—Node 5, Node 6, and Node 7—and
reorganizes the B-tree 310 as shown 1 FI1G. 4H. In doing so,
the first process 302 effectively splits Node 2 mto Node 2
and Node 5 so that Node 3 would (if permitted) have four
children—Node 1, Node 2, Node 5, and Node 4—thereby
exceeding the limit specified by MaxChildren. After Node 3
exceeds 1ts allowed number of children (or before, since the
first process 302 could, 1n some embodiments, determine the
outcome 1n advance), the first process 302 splits Node 3 into
Node 3 and Node 6 so that Node 3 becomes the parent only
to Node 1 and Node 2 and Node 6 becomes the parent of
Node 4 and Node 5. In other words, the first process 302: (a)
makes Node 4 and Node 5 children of Node 6, (b) makes
Node 3 and Node 6 children of Node 7, (¢) indicates, in the
map of Node 7, that (1) Node 3 1s to be assigned all values
of less than 27, and (11) Node 6 1s to be assigned all values
of 277 or greater, (d) indicates, 1n the map of Node 3, that (1)
Node 1 1s to be assigned all values of less than 13, and (11)
Node 2 1s to be assigned all values of 15 or greater, and (¢)
indicates, 1 the map of Node 6, that (1) Node 5 1s to be
assigned all values of less than 44, and (11) Node 4 1s to be
assigned all values of 44 or greater. The first process 302
removes 27, 28, and 31 from Node 2; inserts 16 and 23 into
Node 2:; inserts 27, 28, 31, and 40 into Node 5. The first
process 302 also removes, from Node 3, the contents of the
buffer for Node 4, and adds, to the bufler for Node 6, the

10

15

20

25

30

35

40

45

50

55

60

65

8

contents of the butler for Node 4. The first process 302 then
sends the modified Node 3, the modified Node 2, and the
newly-created Node 5, Node 6, and Node 7 to the service
program 308 (e.g., by transmitting a “write” request to the
service program 308). The service program 308 responds by

moditying the B-tree 310 with the modified Node 3, the
modified Node 2, the new Node 5, the new Node 6, and the
new Node 7 within the media storage device 108. After the

service program 308 modifies the B-tree 310, the B-tree 310
1s structured as shown 1n FIG. 4H.

In an embodiment, the techmques described herein result
in the computing device 100 carrying out fewer of reads
from and writes to the media storage device 108 than
existing B-tree maintenance techniques, thereby saving time
and bandwidth. Reducing the number of reads and writes
also saves money, particularly when the media storage
device 108 1s controlled by a third party SaaS provider that
charges according to the number of transactions (e.g., reads
and writes). Table 1 below shows a comparison between the
techniques described herein (using the example scenario
above) and using a simple B-tree maintenance scheme
(which does not use bull

ering or batching within the tree).

TABLE 1

Techniques Described Herein Simple Maintenance Scheme

Max size of 4 1n bufler. Max size of 8 values per node.
Max size of 4 1n values.
Initial root:
Node 1

Root: true; leat: true

Values: [1, 4, 27]

Initial root:
Node 1
Root: true; leaf: true
Values: [1, 4, 27]
Requests: INSERT 15

Read Node 1

Modify Node 1
Root: true; leaf: true
Values: [1, 4, 15, 27]

Read Node 1
Modify Node 1
Root: true; leaf: true
Values: [1, 4, 15, 27]
Write Node 1 Write Node 1

1 node read, 1 node written 1 node read, 1 node written
Requests: INSERT -7, INSERT 45

Read Node 1

Modify Node 1
Root: false; branch: false; leaf: true
Values: [-7, 1, 4, 15, 27]

Write Node 1

Read Node 1

Modify Node 1
Root: false; branch: false; leaf: true
Values: [-7, 1, 4, 15, 27, 45]

Write Node 1

Read Node 1
Modity Node 1
Root: false; leaf: true
Values: [-7, 1, 4]
Create Node 3
Root: true; leaf: false
Values: [15, UPPER]
Create Node 2
Root: false; leaf: true
Values: [15, 27, 45]
Write Node 1, Node 2,
and Node 3

1 node read, 3 nodes written 2 nodes read, 2 nodes written
INSERT 2, INSERT 28, INSERT 50

Read Node 1
Modify Node 1
Root: false; branch: false; leaf: true
Values: [-7, 1, 2, 4, 15, 27, 45]
Write Node 1
Read Node 1
Modify Node 1
Root: false; branch: false; leaf: true
Values: [-7, 1, 2, 4]
Create Node 2
Root: false; branch: false; leaf: true
Values: [15, 27, 28, 45]
Create Node 3
Root: true; branch: true; leaf: false
Map: [15, UPPER]
Write Node 1, Node 2, and Node 3
Read Node 3
Read Node 2

Read Node 3
Modity Node 3
Root: true; leaf: false
Map: [15, UPPER]
Buffer: {Node 1: insert 2 |
Node 2: insert 28, insert 50}
Write Node 3

US 10,733,172 B2

9
TABLE 1-continued

Techniques Described Herein Simple Maintenance Scheme

Modify Node 2
Root: false; branch: false; leaf: true
Values: [15, 27, 28, 45, 50]

Write Node 2

1 node read, 1 node written 4 nodes read, 5 nodes written
INSERT 31, INSERT 44

Read Node 3

Read Node 2

Modify Node 2
Root: false; branch: false; leaf: true
Values: [15, 27, 28, 31, 45, 50]

Write Node 2

Read Node 3

Read Node 2

Modify Node 2
Root: false; branch: false; leaf: true
Values: [15, 27, 28, 31, 44, 45, 50]

Read Node 3
Modity Node 3
Root: true; leaf: false
Map: [15, 44, UPPER]
Buffer: {Node 1: insert 2}
Modify Node 2
Root: false; leaf: true
Values: [13, 27, 28, 31]
Create Node 4
Root: false; leaf: true
Values: [44, 45, 50]
Write Node 2, Node 3, Node 4 Write Node 2

2 nodes read, 3 nodes written 4 nodes read, 2 nodes written
INSERT 16, INSERT 23, INSERT 40, INSERT 106

Read Node 3

Read Node 2

Modify Node 2
Root: true; branch: false; leaf: true
Values: [15, 16, 27, 28] Create Node 4
Root: false; branch: false; leaf: true
Values: [31, 44, 45, 50]

Modify Node 3
Root: true; branch: false; leaf: true
Map: [15, 31, UPPER]

Write Node 2, Node 3, Node 4

Read Node 3

Read Node 2

Modify Node 2
Root: false; branch: false; leaf: true
Values: [15, 16, 23, 27, 28]

Write Node 2

Read Node 3

Read Node 4

Modify Node 4
Root: false; branch: false; leaf: true
Values: [31, 40, 44, 45, 50]

Write Node 4

Read Node 3

Read Node 4

Modify Node 4
Root: false; branch: false; leaf: true
Values: [31, 40, 44, 45, 50, 106]

Write Node 4

8 nodes read, 6 nodes written

Total reads: 19

Total writes: 16

Read Node 3
Read Node 2
Create Node 5
Root: false; leaf: true
Values: [27, 28, 31, 40]
Create Node 6
Root: false; leaf: false
Map: [44, UPPER]
Buffer: [Node 4: insert 106]
Modify Node 2
Root: false; leaf: true
Values: [15, 16, 23]
Modity Node 3
Root: true; leaf: false
Map: [15, 44, UPPER]
Buffer: [Node 1: insert 2]
Create Node 7
Root: false; leaf: false
Map: [27, UPPER]
Buffer: { }
Write Node 2, Node 3,
Node 5, Node 6, Node 7

2 nodes read, 5 nodes written
Total reads: 7
Total writes: 13

As can be seen from Table 1, using the techniques
described herein for the above-described scenario results 1n
12 (63%) fewer nodes being read from the media storage
device 108 and 3 (19%) fewer nodes being written to the
media storage device 108.

Turning to FIGS. 5A-SE, an example of how a computing
device maintains a B-tree according to an embodiment will
be described 1n the context of the system shown in FIG. 3.
For illustrative purposes, 1t 1s assumed that the database
program 308 1s used by a public library system. In this
example, the B-tree 310 includes a root Node 1 and branch
nodes 1, 2, 3, 4, 5, and 6. Underneath the various branch
nodes are leal nodes 7-23. The relationships between the
various nodes of the B-tree are indicated by the lead lines.

For ease of reference, each node will be referred to by its
respective label (“Node 1,” “Node 2,” etc.) shown 1n FIGS.

5A-SE. The B-tree 310 1s shown as being small for the
purpose of facilitating the description of various embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ments. It 1s to be understood, however, that the techniques
described herein may be employed on much larger B-trees.

Each node of the B-tree 310 1s a data structure that 1s
stored 1n one or more locations accessible by the computing
device 100. Each node of the B-tree 310 includes the
following metadata: a root node indicator (“root-node™) that
indicates whether or not the node 1s a root node, and a leaf
node indicator (“leat-node”) that indicates whether or not
the node 1s a leafl node.

Each leaf node may additionally include content (“node
content”). In an embodiment, the node content may include
one or more tuples. An example of a tuple 1s an entity-
attribute-value (“EAV”) that corresponds to a datum or to
data in the database 312 (e.g., corresponds to a “fact™ in the
database 312). If the node 1s a branch node, then 1t also
includes the following metadata: a minmimum value indicator

“min-val”) that indicates the lower limit of values that

should be routed to 1t and a maximum value indicator
“max-val”) that indicates the upper limit of values that
should be routed to 1t. Note that “value” in the context of
“min-val” and “max-val” refers to the ordering of the node
content (e.g., 1n alphanumerical order, such that [100: . . .]
1s less than, for example, [130: . . .]) and not to the *“value”
in the EAV sense.

In an embodiment, each branch node also includes a
cap-key map, which includes one or more cap-key entries.
Each cap-key entry associates a child node (of the branch
node) with a maximum value assigned to the child node. The
cap-key entries are ordered from the alphanumerically low-
est to the alphanumerically highest. The highest cap-key
entry 1s designated and, 1n this embodiment, has a value of
infinity (which 1s signified by the name “UPPER”). The first
process 302 uses the cap-key map to determine the branch
down which new data will go.

In an embodiment, the min-val and a max-val of a branch
node do not directly indicate what the limits of node content
that are to be routed to the branch are, but rather are indirect
indicators. In one implementation, for example, a min-key 1s
calculated (e.g., by the computing device 100) as follows: a
leat node has a min-val that represents the smallest value (of
node content) the leaf node contains. A branch node knows
what the smallest value contained in any insert message
within its own bufler 1s (referred to MinlnsertMessage for
the sake of discussion). A branch node can “ask™ (via query)
its left-most (smallest-most) child what the child’s min-val
1s (referred to as LeltmostMinVal for the sake of discussion).
The branch node’s min-val 1s calculated to be the minimum
of these two numbers, MinlnsertMessage and LeftmostM -
inVal. This 1s recursive process. In other words, the min-val
for a node 1s used to determine, in that node’s parent, the
cap-key for the node’s nearest neighbor to the left (af 1t
exists). In that way, the min-val indirectly impacts the limaits
on values routed to the node. The max-value 1s updated 1n an
analogous manner to the min-value, but 1t 1s not used to
influence routing in the same way as does the min-value—
hence the “UPPER” key at the top of a map.

In an embodiment, each branch node includes a buller for
holding an update request. The update requests are grouped
into batches according to the node (or path to the node) that
should receive the instruction (when the bufler 1s flushed).
The bufler may include one or more indicators (e.g., labels
or headers) to indicate the node to which each batch 1is
destined. In the example of FIGS. 5A-5E, the maximum
bufler size 1s s1x. Note that an update request may end up
residing 1n a builer without group mates (e.g., if 1t ends up
being the only request destined for a particular node or path
to a node by the time a bufler 1s flushed).

US 10,733,172 B2

11

To 1llustrate the notation used in this example, refer to
Table 2, which shows a sample of metadata and a node
content. The node content has three entries, each 1n the EAV
form. In long form, the enfity 1dentified by an entity 1D of
100 (the Bozeman Public Library, in this example) has an
attribute of “:ownsbook™ and a value of 1024; the enfity
identified by an entity ID of 100 has an attribute of “:owns-
book™ and a value of 1025; and the entity identified by entity

ID of 100 has an attribute of “:ownsbook™ and a value of
1137,

TABLE 2

Metadata: :root-node false,
:leat-node true

100 :ownsBook 1024],
100 :ownsBook 1025],

100 :ownsBook 1137

Node Content:

It 15 to be understood for the purposes of this example that
“entity ID” 1s not an ID of the node but rather a unique ID
of an entity (the Bozeman Public Library) recognized within
the database 312. In the example above, 100 1s an ID of
entity that already exists 1n the B-tree 310 of “:type/Library.”
The node content of the above node indicates that the library
with the entity ID of 100 owns books with the entity ID of
1024, 10235, and 1137.

Initially (1.e., at some point prior to the detailed example,
such as when the database 312 was origmally set up),
another process (e.g., the second process 304) transmits the
requests shown 1n Tables 3, 4, and 5 to the first process 302.
These requests, when carried out by the first process 302
(which stores the results 1n the media storage device 108),
create the appropriate nodes 1n the B-tree 310. For ease of
explanation, the nodes representing the facts that these
requests represent are not depicted in FIGS. SA-SE.

The following requests assert facts regarding the entity

types 1n the database 312:

TABLE 3

:1dent :type/Book]

:1dent :type/Library]
:1dent :type/Person]
:1dent :type/Author]

WK = O

The following requests assert facts regarding the exis-
tence of the Bozeman Public Library (“BPL”) (which has an

clement ID of 100) and the existence of three library books:

TABLE 4

100 dent 11
1024 :dent 1
1025 :dent 1
(1137 :dent 1

Sog—

The following requests assert facts regarding a relation-
ship between each of the library books and the BPL (spe-
cifically that each of these books 1s owned by the BPL):

TABLE 5

100 :ownsBook 1024
100 :ownsBook 1025
100 :ownsBook 1137]

To 1llustrate the notation shown 1n Tables 3-3, an example
of how the facts shown in Table 3 are asserted, in an

5

10

15

20

25

30

35

40

45

50

55

60

65

12

embodiment, will now be described. When the database 1s
initialized, a schema will be transacted, which establishes a
set of valid attribute and value types: [3 3 :dent], [4 3
attributeType], [7 3 :keyword], [3 4 7]. The first of these
establishes an entity 3, which has itself as an attribute,
pointing to the value :1dent. In other words, the attribute
ident has the attribute 1dent of ident. The second can be read
as [4 :1dent :attribute’Type]. It means that the entity 4 has an
:1dent attribute of :valuelype. The third can be read as [7
:1dent :keyword]. It means that the entity 7 has an :1dent
attribute of :valueType. The fourth can be read as [3 :attribu-
telype :keyword]. It means that the entity 3 (:1dent) has an
attributeType of :keyword. These are the kinds of relation-
ships that may encoded in the database at its very first
initialization step. This allows the user to transact their
domain-specific schema on top by, for example, asserting
values such as the following:

[10 adent :type/Book]

[11 :1dent :type/Library]

[12 adent :type/Person]

[13 adent :type/ Author]

These will get encoded, respectively, as, for example:

[10 3 :type/Book]

[11 3 :type/Library]

[12 3 :type/Person]

[13 3 :type/Author]

This now establishes 10, 11, 12, and 13 as new entities
with their respective keyword 1dentities. These would be
paired with other elements of the schema to tag new entities
as books, libraries, persons, or authors.

Put still another way:

Entity 10 has the 1dentity :type/Book

Entity 11 has the identity :type/Library

Entity 12 has the identity :type/Person

Entity 13 has the identity :type/ Author.

In an embodiment, these notations have meaning given
other portions of the domain-specific schema, such that new
entities can be tagged as being one of these types. The
keywords become, in a sense, user-friendly handles for
numbers, because they are more ellicient for a computer to
pProcess.

Turning to FIG. 5A, the B-tree 310 has three layers. In the
first layer 1s Node 1, whose characteristics are shown 1n
Table 6.

TABLE 6

Node 1

Node ID:
Metadata:

HALF24C

:root-node true,

:leat-node false,

:mun-val [10 :dent :type/Book],
:max-val [11002 :wroteBook 1021]
Cap-key map:

[100 :ownsBook 1290] POINTER: 1d
-node-size 3,
:leat-node false,
-root-node false,
:min-val [10 :adent :type/Book],

:max-val [100 :ownsBook 1137]
POINTER: 1d #F99A0,

-node-size 3,

:leat-node false,

:root-node false,

:min-val [100 :ownsBook 1290],

:max-val [569 :name “Miguel Torres™]
[1023 :name “The Fellowship of the Ring”] POINTER: 1d #FE2A2,
:node-size 3,

leaf-node false,

:root-node false,

#8A001

569 :type 12]

US 10,733,172 B2

13
TABLE 6-continued

Node 1

:min-val [569 :type 12],
:max-val [1023 :1sOverdue? 0]
[10104 :type 13] POINTER: 1d #FC5BD,
-node-size 4,
:leat-node false,
:root-node false,
:min-val [1023 :name “The Fellowship of the
Ring™],
:max-val [10104 mmame “J.R.R. Tolkien™]
UPPER POINTER: 1d #41D4D
-node-size 4,
leaf-node false,
:root-node false,
:min-val [10104 :type 13],
:max-val [11002 :wroteBook 1021]
Buffer: { |

Layer 2:

In the second layer are Nodes 2, 3, 4, 5, and 6, whose
characteristics, respectively, are as follows:

TABLE 7

Node 2

Node ID: #8A001
Metadata: :root-node false,
leat-node false,
:min-val [10 :1dent :type/Book],
:max-val [100 :ownsBook 1137]
Cap-key map:
[100 :name "Bozeman Public"] POINTER:1d #49D2D,
:node-size 4,
:leaf-node true,
:root-node false,
:min-val [10 :dent :type/Book],
:max-val [13 :adent :type/Author]
[100 :ownsBook 1024] POINTER: 1d #66873,
:node-size 4,
:leat-node true,
:root-node false,
:min-val [100 :name “Bozeman Public],
:max-val [100 :ownsBook 1023]
UPPER POINTER: 1d #7DE3D,
:node-size 3,
:leaf-node true,
:root-node false,
:min-val [100 :ownsBook 1024],
:max-val [100 :ownsBook 1137]
Buffer: { }

TABLE 8

Node 3

Node ID: #F99A0
Metadata: :root-node false,
leat-node false,
:min-val [100 :ownsBook 1290],
:max-val [569 mame “Miguel Torres™]
Cap-key map:
[560 :name “Maria Ashby”] POINTER: 1d #30B2E,
-node-size 4,
leat-node true,
:root-node false,
:min-val [100 :ownsBook 1290],
:max-val [560 :hasBook 1024]
[567 :type 12] POINTER: 1d #7FC56,
:node-size 4,
leat-node true,
:root-node false,
:min-val [560 :name "Maria Ashby"],
:max-val [567 :name "Frank Klemn"]

5

10

15

20

25

30

35

40

45

50

55

60

65

14
TABLE 8-continued

Node 3

UPPER POINTER: 1d #2A5D2,
-node-size 3,
:leat-node true,
:root-node false,
:min-val [567 :type 12],
:max-val [569 :name "Miguel Torres"]
Buffer: { }

TABLE 9

Node 4

Node ID: #FE2A2
Metadata: :root-node false,
:leaf-node false,
:mun-val [569 :type 12],
:max-val [1023 :1sOverdue? 0]
Cap-key map:
[573 :type 12] POINTER: id #26813,
:node-size 3,
:leat-node true,
:root-node false,
:min-val [569 :type 12],
:max-val [573 :name “Margaret Haynes”]
[1021 :1sOverdue? O] POINTER: id #AEE3FL,
-node-size 4,
leat-node true,
:root-node false,
:min-val [573 :type 12],
:max-val [1020 :type 10]
UPPER POINTER: 1d #E2DFE,
-node-size 4,
:leat-node true,
-root-node false,
:min-val [1021 :1sOverdue? 0],
:max-val [1023 :1sOverdue? O]

Buffer: { }

TABL

L1

10

Node 5

Node ID: #FC5BD

Metadata: :root-node false,
:leaf-node false,
:mun-val [1023 :name “The Fellowship of the Ring™],
:max-val [10104 :mame “J.R.R. Tolkien™]

Cap-key map:
[1024 :name “The Two Towers”] POINTER: 1d #AAOG4A,
:node-size 3,
leat-node true,
:root-node false,
:min-val [1023 :name “The Fellowship of the
Rimg™],

:max-val [1024 :1sOverdue? O]
[1137 :1sOverdue? 1] POINTER :1d #CR009,
:node-size 3,
leat-node true,
:root-node false,
:min-val [1024 :name “The Two Towers™],
:max-val [1025 :type 10]
[1290 :name “De Pudicitia”] POINTER :1d #003B2,
:node-size 4,
leat-node true,
:root-node false,
:min-val [1137 :1sOverdue? 1],
:max-val [1290 :1sOverdue? 0]
UPPER POINTER :1d #EI1EAC,
:node-size 3,
leat-node true,
:root-node false,

15
TABLE 10-continued

Node 5

US 10,733,172 B2

min-val [1290 mame “De Pudicitia™],
:max-val [10104 :name “J.R.R. Tolkien”]

Buffer: { }

TABLE 11

Node 6

Node ID: #41D4D

Metadata: :root-node false,
leaf-node false,
:min-val [10104 :type 13],
:max-val [11002 :wroteBook 1021]
Cap-key map:

[10104 :wroteBook 1025] POINTER: i1d

:node-size 3,
:leat-node true,

:root-node false,

:mun-val [10104 :type 13],

:max-val [10104 :wroteBook 1024]
POINTER: 1d

(10188 :type 13]

-node-size 3,
:leaf-node true,
:root-node false,

:mun-val [10104 :wroteBook 1023],
:max-val [1018%8 mame “Quintus

Tertullianus’
[11002 :type 13]

]

POINTER: 1d

:node-size 3,
:leaf-node true,

:root-node false,

:mun-val [10188 :type 13],

:max-val [11002 :name “Albert Camus]

UPPER POINTER: 1d #CS5FEA,
:node-size 3,
:leaf-node true,
:root-node false,
:mun-val [11002 :type 13],
:max-val [11002 :wroteBook 1021]
Buffer: { }
Layer 3:

In the third layer are nodes 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, and 23 whose characteristics,

#44DF2,

#3CF70,

#EADDO,

respectively, are shown 1n Tables 12-28:

TABL.

L1l

12

Node 7

Node ID: #49D2D
Metadata:

Node Content:

TABL.

:root-node false,
leat-node true

10 :1c
11 :1d

ent :type/Book],

ent :type/Library],
ent :type/Person],

11 :
12 :1c
13 :1d

(L]

13

Node &

Node ID: #66875

ent :type/Author]

:root-node false,

‘leaf-node true

Metadata:

Node Content: 100
100
100
100

:name “Bozeman Public™],

OWI1S
OWI1S
OWIIS

Book 1020],
Book 1021],
Book 1023]

10

15

20

25

30

35

40

45

50

55

60

65

Node ID: #7DE3D

Metadata:

Node Content:

Node ID: #30B2E

Metadata:

Node Content:

Node ID: #7FC56
Metadata:

Node Content:

Node ID: #2A5D?2
Metadata:

Node Content:

Node ID: #26813
Metadata:

Node Content:

Node ID: #AEE3F
Metadata:

Node Content:

16
TABL.

(Ll

14

Node 9

:root-node false,
:leaf-node true

100 :ownsBook 1024],
100 :ownsBook 1025],
100 :ownsBook 1137

TABL.

L1l

15

Node 10

root-node false,
:leat-node true

100 :ownsBook 1290],
100 :type 11],

560 :hasBook 1021],
560 :hasBook 1024]

TABL.

L1l

16

Node 11

root-node false,

:leaf-node true

560 :name “Maria Ashby™],
560 :type 12],

567 :hasBook 1023],

567 :name “Frank Klemn”]

TABLE 17

Node 12

:root-node false,

:leaf-node true

567 type 12],

569 :hasBook 1290],

569 :name “Miguel Torres™]

TABLE 18

L1

Node 13

:root-node false,

:leaf-node true

569 :type 12],

573 :hasBook 1137],

573 :name “Margaret Haynes™]

TABL.

(L]

19

Node 14

:root-node false,

:leaf-node true

573 itype 12],

1020 :1sOverdue? 0],

1020 :mame “The Stranger™],
11020 :type 10]

TABLE

Node ID: #E2DFE
Metadata:

Node Content:

TABLE 21
Node 16
Node ID: #AA64A
Metadata: :root-node false,
:leaf-node true
Node Content: 1023 :name “The Fellowship of the Ring™],

17

Node 1

US 10,733,172 B2

20

5

:root-node false,
leaf-node true

1021
1021
1021
1021

1023 :type 10],
1023 :1sOverdue? 1]

:1sOverdue? 0],
:name “The Stranger”],

:type 10],
:1sOverdue? O]

TABLE 22
Node 17
Node ID: #C8009
Metadata: -root-node false,

:leaf-node true

Node Content: 1024
1024
1025
1025
1025

TABL.

Node ID: #003B2
Metadata:

Node Content:

TABL.

Node ID: #E1EAC
Metadata:

Node Content:

TABL

Node ID: #44DF?2
Metadata:

Node Content:

name ‘“The Fellowship of the Ring™],

type 10],

1sOverdue? 0],

name ‘““The Return of the King”],

type 10]

-, 23

Node 18

root-node false,
:leat-node true

1137
1137
1137
1290

:1sOverdue? 1],
:name ““The Hobbit™],

type 10],
:1sOverdue? 0]

-, 24

Node 19

:root-node false,
:leat-node true

1290
1290

:name “De Pudicitia™],
type 10],

10104 :mame “J.R.R. Tolkien™]

=, 25

Node 20

:root-node false,
leat-node true

10
10
10

104 :type 13]
104 :wroteBook 1023],

104 :wroteBook 1024]

10

15

20

25

30

35

40

45

50

55

60

65

18

TABLE 26
Node 21
Node ID: #3CF70
Metadata: :root-node false,
leaf-node true
Node Content: 10104 :wroteBook 1023,

10104 :wroteBook 1137],
(10188 mame “Quintus Tertullianus™]

TABLE 27
Node 22
Node ID: #E4DDO
Metadata: -root-node false,
:leaf-node true
Node Content: 10188 :type 13],

10188 :wroteBook 1290],
10188 :name “Albert Camus”]

TABLE 28
Node 23
Node ID: #CSFEA
Metadata: :root-node false,
:leaf-node true
Node Content: 11002 :type 13],

11002 :wroteBook 1020],
11002 :wroteBook 1021]

The following example will be described 1n the context of
a series of events occurring with respect to the BPL, with
approprate reference to the Figures and the Tables.
First Set of Events

The first set of events are as follows: (1) Samuel Orser
walks into the BPL, gets a new card, and (2) puts a hold on
the book “The Fellowship of the Ring.” The second process
304 generates new facts based on these events. For each of
these new facts, the second process 304 transmits requests to
the first process 302 to update the B-tree 310 accordingly. In
this example, assume that the new facts are those shown
below 1n Table 29. To simplily the explanation, each request
will be given the shorthand label shown in Table 29.

Additionally, the meaning of each request 1s also shown 1n
Table 29.

TABLE 29
Label Request Meaning
Request 1 [5374 :type 12] There 1s an entity 374 of type 12 (a
person)
Request 2 [574 :name The name of the entity 574 is “Samuel
“Samuel Orser™] Orser.”

Request 3 [574 :hasHold 1023] Entity 574 has a hold on entity 1023
(which 1s the book “Fellowship of the

Ring”

The first process 302 inserts the three messages into the
(previously empty) bufler of Node 1, keyed by the same
cap-key (# AC390) as the child to which these messages are
to be assigned. In this case, all three requests fall within the
range assigned to Node 4, and are thus inserted into Node 1°s
bufler associated with Node 4. The changes to Node 1 are
shown 1n Table 30 with underlined text, and the state of the
B-tree 310 after the first process 302 writes Node 1 back to
the service program 308 and after the service program 308
updates the B-tree 310 1n the media storage device 108 1s
shown 1n FIG. 5B.

US 10,733,172 B2

19
TABL.

(Ll
(L
-

Node 1

Node ID: AF24C
Metadata: :root-node true,
:leat-node false,
:min-val [10 :dent :type/Book],
:max-val [11002 :wroteBook 1021]
Cap-key map:
[100 :ownsBook 1290] POINTER: id #8AO001,
-node-size 3,
:leat-node false,
:root-node false,
:min-val [10 :adent :type/Book],
:max-val [100 :ownsBook 1137]
POINTER: 1d #F99A0,
-node-size 3,
:leaf-node false,
:root-node false,
:min-val [100 :ownsBook 1290],
:max-val [569 :name “Miguel Torres™]
[1023 :name ““The Fellowship of the Ring”] POINTER: 1d #AC590,
:node-size 3,
:leat-node false,
-root-node false,
:min-val [569 :type 12],
:max-val [1023 :1sOverdue? 1]
POINTER: 1d #FC3BD,
-node-size 4,
:leat-node false,
:root-node false,
:min-val [1023 :name “The Fellowship of the
Ring”],
:max-val [10104 :name “J.R.R. Tolkien™]
POINTER: 1d #41D4D
-node-size 4,
:leat-node false,
:root-node false,
:min-val [10104 :type 13],
:max-val [11002 :wroteBook 1021]

[569 :type 12]

(10104 :type 13]

UPPER

Buffer:

[1023 :name “The Fellowship of the Ring”’]
message/insert 574 :type 12]
message/mmsert 574 :name “Samuel Orser”™]

message/insert 574 :hasHold 1023]

Second Set of Events

The second set of events includes the following: Mara
Ashby returns “The Two Towers.” The second process 304
generates new facts based on these events. For each of these
new facts, the second process 304 transmits the requests
shown 1n Table 31 to the first process 302 to update the
B-tree 310 accordingly. The fact that the book was overdue
1s reflected 1n these requests.

Put another way, before this set of events, the database
stored the fact that Maria Ashby (entity 560) was in pos-
session (chasBook) of “The Two Towers” (entity 1024).
When Maria Ashby returns the book, this 1s no longer true,
so Request 4 1s iserted 1n order to delete that previous
assertion. The system 1n this example presupposes that 11 no
entity has a book, then the book 1s 1n the possession of the
owner. Requests 5 and 6 show an alternate and more explicit
representation for facts (such as 1 an EAV system), where
the database always stores for a given book exactly one
statement concerning its being overdue. Before Maria Ashby
returned the book, it was overdue (the database contained
[1024 :1sOverdue? 1]). After this set of events, this statement
1s no longer true, so the system deletes the statement that 1t
1s overdue, and inserts an explicit statement saying it 1s not
overdue.

10

15

20

25

30

35

40

45

50

55

60

65

20

TABLE 31
Label Request Meaning
Request 4 [:message/delete Entity 560 1s no longer 1n possession
560 :hasBook 1024] of entity 1024
Request 5 [:message/insert It 1s now true that entity 1024 has an
1024 :1sOverdue? 0] overdue status of “false.”
Request 6 [:message/delete It 1s no longer true that entity 1024

1024 :1sOverdue? 1] has an overdue status of “true.”

The first process 302 updates the bufler of Node 1 by
iserting Request 4 into the bufler associated with Node 3
and iserting Request 5 and Request 6 into the bufler 1n
association with Node 5, as shown in underlined text in

Table 32. The state of the B-tree 310 after this update 1s
shown 1n FIG. 5C.

TABL.

L1l

32

Node 1

Node ID: AF24C
Metadata: :root-node true,
:leaf-node false,
:mun-val [10 :adent :type/Book],
:max-val [11002 :wroteBook 1021]
[100 :ownsBook 1290] POINTER: 1d #8AO001,
-node-size 3,
:leat-node false,
-root-node false,
:min-val [10 :dent :type/Book],
:max-val [100 :ownsBook 1137]
POINTER: 1d #F99A0,
:node-size 3,
:leaf-node false,

:root-node false,
:min-val [100 :ownsBook 1290],

:max-val [569 :name “Miguel Torres™]

[1023 :name “The Fellowship of the Ring”] POINTER: i1d #AC590,

:node-size 3,

:leat-node false,

:root-node false,

:min-val [569 :type 12],

:max-val [1023 IsOverdue? 1]
POINTER: 1d #FC3BD,

-node-size 4,

:leat-node false,

:root-node false,

:min-val [1023 :name “The Fellowship of the

569 :type 12]

(10104 :type 13]

Ring”],

:max-val [10104 :name “J.R.R. Tolkien™]
POINTER: 1d #41D4D

-node-size 4,

:leat-node false,

:root-node false,

:min-val [10104 :type 13],

:max-val [11002 :wroteBook 1021]

UPPER

Bufler:

[569 :type 12]
:message/delete 560 :hasBook 1024]
[1023 :name “The Fellowship of the Ring™]
:message/insert 574 :type 12]
:message/insert 574 name “Samuel Orser™]
:message/insert 374 :hasHold 1023]
[10104 :type 13]
'message/insert 1024 :1sOverdue? O]
:message/delete 1024 :1sOverdue? 11]]

Third Set of Events

The third set of events includes the following: Frank
Klein’s book becomes overdue. The second process 304

il

sends update requests to the first process 302 to that effect
to the first process 302, as shown in Table 33.

US 10,733,172 B2
21 22

TARBI E 33 “The Fellowship of the Ring™’] but not less than or equal to
[569 :type 12]), which maps to the pointer # AC590.
Label — Request Meaning Accordingly, the first process 302 updates two nodes: Node
Request [:message/insert 560 :isOverdue? 1] It is now true that entity 4, to which the requests were flushed, and Node 1, whose
7 560 has an overdue status > buffer was flushed. The updates to Node 4 are shown in
| of “true. Table 35 and the updates to Node 1 are shown in Table 36.
Request [:message/delete 1023 :1sOverdue? 0] It 1s no longer true that
8 entity 560 has an overdue
status of “false.” TABLE 35
10 Node 4

The first process 302 inserts the requests 1n a portion of
Node 1’s buller associated with Node 3 in such a manner as

Node ID: #AC590

Metadata: :root-node false,

to ensure the requests do not get out of order as they leaf-node false,

propagate down the B-tree 310. For example, if the requests ‘min-val [569 :type 12],

are to be processed from rear of the bufler associated with 5 ok ‘max-val [1023 :1sOverdue? 1]

: ap-key map:

Node 3, th’e first process 302 inserts the requesj[s at the front 573 stype 12] POINTER: id #26813.

of Node 3’s portion of the bufler. The changes 1n Node 1 are -node-size 3,

shown 1n underlined text in Table 34. The state of Nodes leaf-node true,

1-23 1n local memory after this update 1s shown 1n FIG. 5D. root-node false,

min-val [569 :type 12],
. 20 :max-val [573 :name “Margaret
TABLE 34 Haynes™]
[1021 :1sOverdue? O] POINTER: 1d #AEE3F,
Node 1 -node-size 4,

e ———————————————————— :leaf-node true,

Node ID: AF24C -root-node false,

Metadata: :root-node true, 95 :min-val [573 :type 12],
:lE:::Lf—IlDdE falsle, :max-val [1020 :type 10]
mun-val [10 :1dent :type/Book], UPPER POINTER: id #E2DFE,
:max-val [11002 :wroteBook 1021] node-size 4,

[100 :ownsBook 1290] POINTER: 1d #8A001, leaf-node true,
-node-size 3, :root-node false,
:leat-node false, 30 :min-val [1021 :isOverdue? 0],
:root-node false, max-val [1023 :1sOverdue? 0]
:min-val [10 :dent :type/Book], Bufler:
:max-val [100 :ownsBook 1137] (1021 :isOverdue? 0]
[569 :type 12] POINTER: i.d #L99A0, :message/insert 574 :type 12]
mode-size 3, :message/insert 574 :name “Samuel Orser”]
:leat-node false, :message/insert 574 :hasHold 1023]
-root-node false, 33 UPPER
min-val [100 :GWHSBGWI‘F 1290], § :message/insert 560 :1sOverdue? 1]
max-val [569 :name “Miguel Torres™] :message/delete 1023 :1sOverdue? 0]
[1023 :name “The Fellowship of the Ring”] POINTER: 1d #AC590,
:node-size 3,
:leaf-node false,
:root-node false, 40 -
TABLE 36

:min-val [569 :type 12],
:max-val [1023 :1sOverdue? 1]
[10104 :type 13] POINTER: 1d #FC5BD, Node 1

-node-size 4, Node ID: #AF24C

leaf-node false
’ Metadata: :root-node true,

:root-node false, 45 daatf
:mm-val [1023 mame “The Fellowship of the :Ei-iZ??lﬁli?ent :type/Book]

:max-val [11002 :wroteBook 1021] }
Cap-key map:
[100 :ownsBook 1290] POINTER: 1d #3A001,

-node-size 3,

50 :leat-node false,
:root-node false,
:min-val [10 :dent :type/Book],
:max-val [100 :ownsBook 1137]

Ring™],
:max-val [10104 mmame “J.R.R. Tolkien™]
UPPER POINTER: id #41D4D
:node-size 4,
:leaf-node false,
:root-node false,
:min-val [10104 :type 13],
:max-val [11002 :wroteBook 1021]

BUffe[I;éQ type 12] [569 :type 12] POINTER: id #F99A0,
[:message/delete 560 :hasBook 1024] 511'3"515'512'3 3,
55 :leat-node false,

[1023 :name “The Fellowship of the Ring”]
message/insert 560 :1sOverdue? 1]
message/delete 1023 :1sOverdue? O]
:message/immsert 574 :type 12]
:message/insert 574 :name “Samuel Orser’”]
:message/imnsert 574 :hasHold 1023]
[10104 :type 13] 60
[:message/insert 1024 :1sOverdue? 0]
[:message/delete 1024 :1sOverdue? 1]

:root-node false,
:min-val [100 :ownsBook 1290],
:max-val [569 name “Miguel Torres™]
[1023 :name “The Fellowship of the Ring”] POINTER:
1d #ACS590

-node-size 3,

:leaf-node false,

:root-node false,

:min-val [569 :type 12],
‘max-val [1023: 1sOverdue? 1]

’ - - 10104 : 13 POINTER: 1d #FC3BD,
But now Node 1’s bufler contains eight requests, so the [type 1] e 812614

first process 302 needs to flush it. The first process 302 65 leaf-node false,
flushes all of the requests that fall in the range handled by root-node false,

Node 4 (1.e., all requests less than or equal to [1023 :name

US 10,733,172 B2

23
TABLE 36-continued

Node 1

:min-val [1023 :name “The
Fellowship of the Ring™],
:max-val [10104 :name “J.R.R.
Tolkien™]

UPPER POINTER: 1d #41D4D
:node-size 4,
leaf-node false,
:root-node false,
:min-val [10104 :type 13],
:max-val [11002 :wroteBook 1021]

Bufler:
[569 :type 12]
[:message/delete 560 :hasBook 1024]
[10104 :type 13]

[message/insert 1024 :1sOverdue? O]
[message/delete 1024 :1sOverdue? 1]

According to an embodiment, the first process 302 inserts
new requests 1nto the bufler of the appropriate node within
the local memory of the first computing device 100. It then
determines whether the bufler will overflow as a result of the
insertions. It so, the first process 302 carries out the flushing

process within the local memory so that only the conclusions
get sent back to the media storage device 108 (and persisted
in the database 312).

In the preceding examples, the messages stored 1in and
propagated down the B-tree 310 have been “insert” and
delete” messages. However, other types of messages are
possible. According to an embodiment, multiple delete mes-
sages may be consolidated into a single delete message. For
example, 1f it was appropriate to delete all of the values of
Node 5 and 1ts leal nodes (FIG. 5D), the first process 302
could 1ssue the appropriate command to node 6 and, once
received, the entity handling the deletion would not need the
“per node” command but would simply delete the nodes.

In an embodiment, the first process 302 distributes
requests 1n a node’s bufler keyed 1n the same manner as the
cap-key map for the node. Furthermore, the first process
may modily the max-val metadatum 11 a request 1nserting a
greater value than the max-val 1s being inserted into the
bufler. The same 1s true of min-value.

According to an embodiment, the nodes of a B-tree are
maintained 1n the media storage device as immutable ele-
ments. That 1s, whenever a node of the B-tree needs to be
updated (e.g., 1n response to an update request), the com-
puting device 100 creates a copy of the node as a separate,
distinct element, updates the copy of the node, and changes
the appropriate pointers of the B-tree so as to reference the
updated copy. In this way, the knowledge of the former state
of the node (and, therefore, the former state of the B-tree) 1s
maintained.

For example, after the first set of events discussed above,
the first process 302 may create a copy of Node 1, shown as
Node 1' 1n FIG. 6A, declare 1t to be the root node, and make
it point to the original children—Nodes 1-6. Node 1' will
have the same content shown in Table 30, except that its
clement ID will be different (# C5B3F 1n this example).
After the second set of events discussed above, the first
process 302 may create a copy of Node 1', shown as Node
1" 1n FIG. 6B, declare 1t to be the root node, and make 1t
point to the original children—Nodes 1-6. Node 1" will have
the same content shown 1n Table 32, except that its element
ID will be different (#5CBEG6 1n thus example). After the
third set of events, the first process 302 creates a copy of
Node 1", shown 1n FIG. 6C as Node 1", and creates a copy
of Node 4, shown 1n FIG. 6C as Node 4'. The content of

10

15

20

25

30

35

40

45

50

55

60

65

24

Node 4' will be the same as that of Table 35, except that its
clement ID will be different (# FE2AZ2 1n this example). The
content of Node 1" will be the same as that of Table 36,
except that the element ID will be diflerent (#225FFE 1n this
example) and the third pointer 1n the cap-key map will be
different 1n that i1t will refer to the element ID of Node 4' (#
FE2A2 instead of # AC590 in this example).

In an embodiment, one or both the first process 302 and
the service program 308 keeps track of each version of each

node of the B-tree 310 by transaction ID. Thus, for example,

the transaction 1D for Node 1" would be higher than that of
Node 1", which would be higher than Node 1', which would
be higher than Node 1. Furthermore, 1n order to retrieve the
B-tree 310 or any version of the B-tree 310, one or both the
first process 302 and service program 308 may retrieve all or
less of the required nodes according to both their element
IDs and the appropriate transaction ID (depending on how
far back 1 “time” (as measured by the incrementing of the
transaction IDs) the required version 1s).

It should be understood that the exemplary embodiments
described herein should be considered 1n a descriptive sense
only and not for purposes of limitation. Descriptions of
features or aspects within each embodiment should typically
be considered as available for other similar features or
aspects 1 other embodiments. It will be understood by those
of ordinary skill 1n the art that various changes in form and
details may be made therein without departing from their
spirit and scope as set forth in the following claims. For
example, the actions described herein can be reordered 1n
ways that will be apparent to those of skill in the art.

What 1s claimed 1s:

1. A method, carned out by processor hardware, of
modilying a B-tree, wherein the B-tree includes a first node,
a second node, and a third node, wherein the first node has
a bufler that includes a portion associated with the second
node and a portion associated with the third node, and
wherein the second node and third node are child nodes of
the first node, the method comprising:

recerving a plurality of update requests for the B-tree;

determiming that two or more of the plurality of update

requests fall into a range assigned to the second node;
inserting the update requests determined to fall into the
range assigned to the second node into the portion of
the bufler associated with the second node;
determining that two or more of the plurality of update
requests fall into a range assigned to the third node;
inserting the update requests determined to fall into the

range assigned to the third node into the portion of the
bufter associated with the third node;
when a bufler limit of the first node has been reached or
exceeded:
flushing the portion of the bu
second node,
modifying the second node with the update requests
determined to fall into the range assigned to the
second node, and
transmitting the modified second node to a media
storage device.
2. The method of claim 1, wherein
the first node includes a map that indicates the range
assigned the second node and the range assigned to the
third node,
determining that two or more of the plurality of update
requests fall into the range assigned to the second node
comprises using the map to determine that two or more
of the plurality of update requests fall into the range
assigned to the second node, and

ter associated with the

US 10,733,172 B2

25

determining that two or more of the plurality of update
requests fall into the range assigned to the third node
comprises using the map to determine that two or more
of the plurality of update requests fall into the range
assigned to the third node.

3. The method of claim 2, wherein the map includes a
reference to the second node and a reference to the third
node.

4. The method of claim 3, wherein the reference to the
second node 1s a pointer to the second node and the reference
to the third node 1s a pointer to the third node.

5. The method of claim 3, wherein the reference to the
second node 1s a unique 1dentifier of the second node and the
reference to the third node 1s a unique 1dentifier of the third
node.

6. The method of claim 1, wherein at least one of the
plurality of update requests 1s a request for an 1nsertion of a
value 1nto the B-tree.

7. The method of claim 1, wherein at least one of the
plurality of update requests 1s a request for a deletion of a
value from the B-tree.

8. The method of claim 1, wherein

the portion of the bufler that 1s associated with the second

node includes a header that 1s associated with the
second node, and

the portion of the bufler that 1s associated with the third

node includes a header that 1s associated with the third
node.

9. The method of claim 8 wherein

the header that 1s associated with the second node 1s an

element identifier of the second node, and

the header that 1s associated with the third node 1s an

clement 1dentifier of the third node.

10. The method of claim 1, further comprising;:

receiving one or more further update requests; and

carrying out the flushing, modifying, and transmitting
steps 1n response to a determination that inserting the
one or more further update requests into the bufler
would cause the bufler to reach or exceed the bufler
limit.

11. The method of claim 1, wherein the processor hard-
ware 1s part of a first computing device, the method further
comprising receiving the plurality of update requests from a
second computing device.

12. The method of claim 1, wherein the processor hard-
ware 1s part of a first computing device, the method further
comprising;

receiving one or more of the plurality of update requests

from a second computing device; and

receiving one or more of the plurality of update requests

from a third computing device,

wherein the update requests from the third computing

device are different from those received from the
second computing device.

13. The method of claim 1, wherein the method 1s carried
out by a first process executing on the processor hardware
and receiving the plurality of update requests comprises the
first process receiving a message from a second process,
wherein the message includes one or more of the plurality of
update requests.

14. The method of claim 13, wherein the first and second
processes both execute on the processor hardware.

15. The method of claim 13, wherein

the first process executes on the processor hardware,

which 1s part of a first computing device,

the second process executes on processor hardware that 1s

part of a second computing device, and

10

15

20

25

30

35

40

45

50

55

60

65

26

the second computing device 1s separate from the first
computing device.

16. The method of claam 1, wherein
the second node 1s a branch node; and

modifying the second node comprises inserting the update
requests determined to fall within the range assigned to
the second node into a bufler of the second node.

17. The method of claim 1, wherein the second node 1s a
leal node and modifying the second node comprises modi-
tying the values in the second node 1n accordance with the
update requests determined to fall within the range assigned
to the second node.

18. A method, carried out by processor hardware, of
modifying a B-tree, wherein the B-tree includes a first node,
a second node, and a third node, wherein the first node has
an eclement identifier and a bull

er, wherein the bufler
includes a portion associated with the second node and a
portion associated with the third node, and wherein the
second node and third node are child nodes ot the first node,
the method comprising:

recetving a plurality of update requests for the B-tree;

determining that two or more of the plurality of update
requests fall mto a range assigned to the second node;

inserting the update requests determined to fall into the
range assigned to the second node into the portion of
the bufler associated with the second node;

determining that two or more of the plurality of update
requests fall into a range assigned to the third node;

inserting the update requests determined to fall into the
range assigned to the third node into the portion of the
buller associated with the third node;

creating a first copy of the first node, wherein the first

CoOpy
includes a reterence to the second node and a reference

to the third node,

has an element i1dentifier that 1s difterent from the
element 1dentifier of the first node, and

has a bufler that includes a portion associated with the
second node and a portion associated with the third
node;

transmitting the first copy to a media storage device;

e

upon determining that a builer limit of the first copy of the
first node has been reached or exceeded:

flushing the portion of the bufller of the first copy of the
first node associated with the second node,

moditying the second node with the update requests
determined to fall into the range assigned to the
second node:

creating a copy of the second node;

creating a second copy of the first node, wherein the
second copy

includes a reference to the third node and a reference to
the copy of the second node,

has an element identifier that 1s difterent from the
clement 1dentifier of the first copy, and

has a builer that includes a portion associated with the

copy of the second node and a portion associated
with the third node; and

transmitting the second copy of the first node and the copy
of the second node to the media storage device.

19. The method of claim 18, wherein the first copy of the
first node has a first transaction identifier and the second
copy of the first node has a second transaction 1dentifier.

US 10,733,172 B2

27

20. A computing device that 1s 1n communication with a
media storage device, the computing device comprising:
local memory;
processor hardware that carries out actions comprising:
receiving a plurality of update requests for a B-tree, °
wherein

the B-tree includes a first node, a second node, and a
third node,

the second node and the third node are child nodes of
the first node, to

the first node has a bufler that includes a portion
associated with the second node and a portion asso-
ciated with the third node,

the B-tree represents relationships among a plurality of
entities of a database maintained by the media stor-
age device;

determining that two or more of the plurality of update
requests fall into a range assigned to the second node;

15

28

inserting the update requests determined to fall into the
range assigned to the second node into the portion of
the bufler associated with the second node;
determiming that two or more of the plurality of update
requests fall into a range assigned to the third node;
inserting the update requests determined to fall into the
range assigned to the third node into the portion of the
buffer associated with the third node;
when a bufler limit of the first node has been reached or
exceeded;
flushing the portion of the bu
second node,
modifying the second node with the update requests
determined to fall into the range assigned to the
second node, and
transmitting the modified second node to a media storage
device.

e

er associated with the

	Front Page
	Drawings
	Specification
	Claims

