12 United States Patent

Gomes

US010733071B2

US 10,733,071 B2
Aug. 4, 2020

(10) Patent No.:
45) Date of Patent:

(54) TEST PROGRAM DATA KEY GENERATION (58) Field of Classification Search
CPC . GO6F 11/263; GO6F 11/3684; GO6F 11/3688
(71) Applicant: INTERNATIONAL BUSINESS See application file for complete search history.
TACDP}(INI\]TEE ((EI(S))R PORATION. (56) References Cited
rmonk,
(72) Inventor: Louis P. Gomes, Poughkeepsie, NY o5 PATENT DOCUMERTS
(US) 6,490,721 B1 12/2002 Gorshkov et al.
6,728,654 B2 4/2004 Boehm
(73) Assignee: INTERNATIONAL BUSINESS (Continued)
MACHINES CORPORATION,
Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Bayerri, Grammar and model extraction for security applications
patent 1s extended or adjusted under 35 using dynamic program binary analysis. Diss. Carnegie Mellon
U.S.C. 154(b) by 175 days. University, 2010.
(21) Appl. No.: 16/059,322 (Continued)
Primary Examiner — Charles Ehne
(22) Filed: Aug. 9, 2018 (74) Attorney, Agent, or Firm — Cantor Colburn LLP;
Teddi Maranzano
(65) Prior Publication Data (57) ABRSTRACT
US 2020/0019481 Al Jan. 16, 2020 Systems, methods, and computer-readable media are dis-
closed for providing a test program with the capability to
build and execute instructions and their functions (test
Related U.S. Application Data streams) that have experienced failure so as to reproduce
(60) Provisional application No. 62/697,822, filed on Jul. output errors as desired and 1mprove the chances of deter-
13. 2018 mining the cause of the output errors. The test program
’ allows a user to provide a data key seed that was used during
(51) Int. CL a prior pass of the test program that produced an error output
GO6F 11/00 (2006.01) and a data key generation frequency value (N) that would be
GOGF 117263 (2006.01) used to generate new program and data seeds every N passes
GO6F 11736 (2006.01) of the test program. The user-provided key seed can be used
GO6F 7/58 (2006.01) to regenerate the same data keys that were generated 1n the
(52) U.S. CL prior test program pass that produced the error output. This
CPC GO6F 11/263 (2013.01); GO6F 11/3684 mechanism enables the test program to recreate the same test

(2013.01); GO6F 11/3688 (2013.01); GO6F
11/3692 (2013.01); GO6F 7/552 (2013.01)

stream of the error output from the prior pass.

20 Claims, 6 Drawing Sheets

/— i04

Tesl Program

[116G

Lisior

102 \

Tost Stream Generator

/ 116
/- 106 PGM SEED /——»
—7/ KEY SEED /——n DATA SEED >
/ 1 112 \ 118
Ia 1720

/ Data Keyl(s) H
122

f: USED DATA_SEE D{, ol

124
PREV PG M_sgg_zi__,

126

? A \ —Z MOD _PASS L—;

7/ KEY PASS L,
k 108

Datastore{s)

Test Case Generator

128

-
/ USED PASS j;—
i

/ MOD_PASS

US 10,733,071 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2002/0154769 Al* 10/2002 Petersen GO6F 7/586
380/42
2004/0078402 Al1* 4/2004 Butler GO6F 7/588
708/252
2004/0086117 Al* 5/2004 Petersen HO041L. 9/001
380/44

OTHER PUBLICATIONS

Beebe. “Random numbers.” The Mathematical-Function Computa-

tion Handbook. Springer, Cham, 2017. 157-214.

Christopher J. Thompson et al. “Randomness Exposed—An Attack
on Hosted Virtual Machines.” Dept. of Computer Science, Univer-
sity of Minnesota (date not available).

Keren Tan et al, “From Map to Dist: the evolution of a large-scale
WLAN monitoring system.” IEEE Transactions on Mobile Com-
puting 13.1 (2014): 216-229.

Leo Dorrendort et al., “Cryptanalysis of the random number gen-
erator of the windows operating system.” ACM Transactions on

Information and System Security (TISSEC) 13.1 (2009): 10.

* cited by examiner

US 10,733,071 B2

Sheet 1 of 6

Aug. 4, 2020

U.S. Patent

(s)}au0315B1RQ

rii

Ll

Oc1

SSYd QOIN
SSvd @3Isn

d33S WODd A3Jdd

a33S viva aisn

(S)AS) BleQ

a33s viva
a33S INDd

I OId

A01BJgllan) 9587) 159]

Cll

40]EBlaU-gL) LlEaJ]l]5c |

OTl1

LIRIB0Id 159]

{8}

K

4

T

80T

901

SSVd AT

SSYd dOW

m_mmm A

=

[40))
J3sN

U.S. Patent Aug. 4, 2020 Sheet 2 of 6 US 10,733,071 B2

A— 200

Initialize KEY SEED: KEY PASS; MOD PASS;
USED PASS; PGM PASS; PREV PGM SEED; and
USED DATA SEED to respective default values

202

|

Receive a user-specified KEY SEED value, a user- |

specified MOD PASS value, and/or a user- | 504
specified KEY PASS value and set KEY SEED, F

|
|
|
|
| MOD PASS, and/or KEY PASS to the user- !
: specified values l
\

Generate new PGM SEED and increment 206

PGM _PASS (PGM _PASS = PGM_PASS + 1)

F1G. 2

U.S. Patent Aug. 4, 2020 Sheet 3 of 6 US 10,733,071 B2

A— 300

Generate DATA SEED and save DATA SEED as 302
SAVE DATA SEED

(SAVE_DATA_SEED = DATA_SEED)

No ' ' 304

FIG. 3B,
KEY SEED Entered?

Operation 312

Yes

Store KEY SEED as USED DATA SEED 306
(USED DATA SEED = KEY SEED)

Store KEY SEED as DATA SEED (DATA SEED = 308
KEY SEED) and reset KEY SEED to the default
value

Store KEY PASS as USED_PASS 310
(USED_PASS = KEY_PASS)

FIG. 3B,
Operation 320

FIG. 3A

U.S. Patent Aug. 4, 2020 Sheet 4 of 6 US 10,733,071 B2

4 300
USED _PASS = {USED_PASS + 1) mod 312
MOD PASS
316
(PGM_PASS = 1) 314
Store USED DATA SEED as NG OR [(USED PASS = 1) AND
DATA SEED | (PGM SEED #
(DATA_SEED = USED_DATA_SEED) PREV PGM SEED)]?
Yes
Store DATA_SEED as USED DATA SEED 318

(USED DATA SEED = DATA SEED)

320
Generate one or more data keys based on From FIG. 3A,
DATA SEED Cperation 310
Store PGM_SEED as PREV_PGM SEED 322
(PREV_PGM SEED = PGM _SEED)
Restore DATA SEED 324

(DATA SEED = SAVE DATA SEED)

F1G. 5B

U.S. Patent Aug. 4, 2020 Sheet 5 of 6 US 10,733,071 B2

A— 400

402

Yes

Error output requested?

404 NG

Trace outiput reguested?

Print USED DATA_SEED in the output to be used 406

as KEY SEED for future error reproduction
Print MOD_ PASS in the output to be used as 403

MOD PASS for future error reproduction

410
NO
USED PASS =07
412
USED PASS = MOD_PASS

414

Print USED PASS in the output to be used as
KEY PASS for future error reproduction

F1G. 4

US 10,733,071 B2

Sheet 6 of 6

Aug. 4, 2020

U.S. Patent

9¢S

(S)2401581RQ

S OIA

(S)ooe)ia1u]
}JOMIDN

J01BJI2UD) 015
95k 159
7S (S)ooea1u| O/
806
J01BeJ2Ud0)
weoaJls 1sa 1 (S)@31A0Q
77C AJOWD|N
904S
welgold 1s9
07C d 1s°o1
rrwm%m e [i
L |
718
\ 8TS o
\ yd
N X 919 y
< 218 id
4
d
921A(J
sunndwo)
0S

US 10,733,071 B2

1
TEST PROGRAM DATA KEY GENERATION

DOMESTIC PRIORITY

This application claims priority and benefit to U.S. Pro- >
visional Application No. 62/697,822, entitled “TEST PRO-
GRAM DATA KEY GENERATION”, filed Jul. 13, 2018,
the content of which 1s incorporated herein by reference in
its entirety.

10
BACKGROUND

The present imvention relates generally to software test-
ing, and more specifically, to data key generation during
execution of a test program.

Software testing involves the execution of a software
component or a system component to evaluate one or more
properties of interest. In general, these properties indicate
the extent to which the component under test meets the ,,
requirements that guided 1ts design and development;
responds correctly to all kinds of iputs; performs its func-
tions within an acceptable timeframe; 1s suiliciently usable;
can be installed and run 1n 1ts intended environments; and
achieves the general result 1ts stakeholders desire. 25

All software testing uses some type of strategy to select
tests that are feasible for the available time and resources. As
a result, software testing typically (but not exclusively)
attempts to execute a program or application with the intent
of finding software bugs (errors or other defects). 30

15

SUMMARY

In one or more example embodiments, a method for data
key generation during execution of a test program 1s dis-
closed. The method first includes mnitializing, 1n connection
with an 1nitial pass of the test program, a key seed to a first
default value. The method further includes generating, dur-

ing a current pass of the test program, a data seed having a
data seed value and storing the data seed value. The method
additionally includes receiving, during the current pass of
the test program, a user-specified key seed value and setting
the key seed to the user-specified key seed value. The
method additionally includes setting, during the current pass 45
of the test program, the data seed to the user-specified key
seed value; generating one or more data keys based at least
in part on the data seed having the user-specified key seed
value; and resetting the data seed to the stored data seed
value. 50
In one or more other example embodiments, a system for
data key generation during execution of a test program 1s
disclosed. The system includes at least one memory storing
computer-executable mnstructions and at least one processor
configured to access the at least one memory and execute the 55
computer-executable nstructions to perform a set of opera-
tions. The operations first include 1nitializing, 1n connection
with an 1nitial pass of the test program, a key seed to a first
default value. The operations further include generating,
during a current pass of the test program, a data seed having 60
a data seed value and storing the data seed value. The
operations additionally 1include recerving, during the current
pass of the test program, a user-specified key seed value and
setting the key seed to the user-specified key seed value. The
operations additionally include setting, during the current 65
pass of the test program, the data seed to the user-specified
key seed value; generating one or more data keys based at

35

40

2

least 1n part on the data seed having the user-specified key
seed value; and resetting the data seed to the stored data seed
value.

In one or more other example embodiments, a computer
program product for data key generation during execution of
a test program 1s disclosed. The computer program product
includes a non-transitory storage medium readable by a
processing circuit, the storage medium storing instructions
executable by the processing circuit to cause a method to be
performed. The method includes mitializing, in connection
with an 1nitial pass of the test program, a key seed to a first
default value. The method further includes generating, dur-
ing a current pass of the test program, a data seed having a
data seed value and storing the data seed value. The method
additionally 1ncludes receiving, during the current pass of
the test program, a user-specified key seed value and setting
the key seed to the user-specified key seed value. The
method additionally includes setting, during the current pass
ol the test program, the data seed to the user-specified key
seed value; generating one or more data keys based at least
in part on the data seed having the user-specified key seed
value; and resetting the data seed to the stored data seed
value.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description 1s set forth with reference to the
accompanying drawings. The drawings are provided for
purposes of illustration only and merely depict example
embodiments of the disclosure. The drawings are provided
to facilitate understanding of the disclosure and shall not be
deemed to limit the breadth, scope, or applicability of the
disclosure. In the drawings, the left-most digit(s) of a
reference numeral 1dentifies the drawing 1n which the ref-
erence numeral first appears. The use of the same reference
numerals idicates similar, but not necessarily the same or
identical components. However, diflerent reference numer-
als may be used to identily similar components as well.
Various embodiments may utilize elements or components
other than those illustrated in the drawings, and some
clements and/or components may not be present in various
embodiments. The use of singular terminology to describe a
component or element may, depending on the context,
encompass a plural number of such components or elements
and vice versa.

FIG. 1 1s a schematic hybrid data flow/block diagram
illustrating data key generation during execution of a test
program 1n accordance with example embodiments.

FIG. 2 1s a process flow diagram of an illustrative method
for mitializing a set of data key generation variables for a
particular pass of a test program 1n accordance with example
embodiments.

FIGS. 3A and 3B are process flow diagrams of an
illustrative method for data key generation during execution
of a test program 1n accordance with one or more example
embodiments.

FIG. 4 15 a process flow diagram of an illustrative method
for outputting data key generation variables for future error
reproduction i1n accordance with one or more example
embodiments.

FIG. 5 1s a schematic diagram of an 1llustrative computing
device configured to implement one or more example
embodiments.

DETAILED DESCRIPTION

Example embodiments relate to, among other things,
systems, methods, computer-readable media, techniques,

US 10,733,071 B2

3

and methodologies for providing a test program with the
capability to build and execute instructions and their func-
tions (test streams) that have experienced failure so as to
reproduce output errors as desired and improve the likeli-
hood of determining the cause of the output errors. Example
embodiments of the invention thus provide an enhanced data
key generation process for detecting, for example, the
destruction of output data of cryptographic encrypted key
operations.

In example embodiments, a test program 1s provided that
allows a user to provide a data key seed that was used 1n
connection with a prior pass of the test program that pro-
duced an error output and a data key generation frequency
value (N) that would be used to generate new program and
data seeds every N passes of the test program. A pass of a
test program, as used herein, refers to execution of a test
stream that includes one or more test cases. During a pass of
the test program, new random number program and data
seeds are generated, and the generated random program and
data seeds are saved. After the data key generation process
completes, the saved random data seed 1s restored as the data
seed and 1s used by subsequent random number data gen-
eration of the test program.

In accordance with example embodiments, 1f, during a
current pass of the test program, a user enters a data key seed
value that was used to produce an error output in connection
with a prior pass of the test program, then this user-specified
data key seed value 1s used (in lieu of the random data seed
generated during the current pass) to regenerate the same
data keys that were generated in the prior test program pass
that produced the error output. This mechanism enables the
test program to recreate the same test stream of the error
output from the prior pass. Also, the user-specified data seed
value that 1s passed to the test program during the current
pass 1s saved as a used data seed and can be reused for one
or more subsequent test program passes.

In accordance with example embodiments, ii the user
does not provide a key seed value, the test program checks
to see 1 a new data seed generated for the current test
program pass or a data seed from the previous test program
pass should be used for the current pass. If this 1s an 1nitial
pass of the test program, or the current test program pass 1s
one more than a multiple of the data key generation ire-
quency value N and the test program 1s not looping on a
particular test program pass, then the random data seed
generated during the current test program pass 1s used to
generate one or more new random number data keys for the
current test program pass. Also, the generated random data
seed 1s saved as a used data seed to allow for reuse 1n a
subsequent program pass. I, on the other hand, none of the
above conditions are satisfied, the data seed from the pre-
vious program pass 1s used as the data seed to regenerate, for
the current program pass, the same data keys that were
generated 1n the previous pass.

As such, 1n example embodiments, there are three ditler-
ent paths for selecting the data seed to be used for generating
one or more data keys during a particular program pass. A
first selection path would utilize a key seed value provided
by a user as the data seed for a current pass of the test
program; a second selection path would utilize the random
data seed that 1s generated during the current pass; and a
third selection path would utilize the data seed from the
previous program pass. Regardless of which selection path
1s taken, which 1n turn, determines the value that 1s used as
the data seed for a current test program pass (e.g., a
user-specified key seed value, a random generated data seed,
or a data seed from the previous program pass), the random

10

15

20

25

30

35

40

45

50

55

60

65

4

data seed generated for the current pass 1s stored and
restored as the data seed to allow for its reuse 1n a subsequent
program pass.

Example embodiments described herein provide a num-
ber of technical eflects, benefits, and 1mprovements to
conventional test stream generation processes, 1n particular,
test stream generation processes associated with the detec-
tion ol output errors of cryptographic encrypted key opera-
tions. Example embodiments enable a test program to repro-
duce the error output associated with execution of a test
stream by utilizing a same data seed that produced the error
output. In particular, according to example embodiments,
the used data seed value of a current program pass 1s printed
in the program error output (1f an error occurs in this
program pass) such that the used data seed value can be
extracted from the error output and used to reproduce the
same error with the same data key in the future. Via this
mechanism, a test stream that produced an error output can
be repeatedly executed to reproduce the error and increase
the likelithood of detecting the cause of the error output.
Conventional test stream generation processes lack this
technical capability of example embodiments to reproduce
error output by reusing a used data seed value from a prior
program pass. This technical capability of example embodi-
ments produces a technical benefit over conventional test
stream generation processes because 1t 1s more efficient (e.g.,
requires less amount of time and/or less processing
resources) at identifying the cause of failure than such
conventional processes.

In addition, the generation of a random data seed, the save
and restore mechanism for the data seed, and the selection
of one of the three distinct selection paths according to
example embodiments ensures that the data key generation
process utilizes the appropriate data seed value and that any
random data generation that occurs before and after the data
key generation process utilizes the appropriate data seed
value (these values may be different depending on the
selection path). This ensures that the error reproducibility
capability can be provided without altering the random data
generation that may occur during execution of a test stream
and prior to or after the data key generation. For instance, the
save and restore mechamism for the data seed ensures that
the correct random data 1s generated prior to and after the
data key generation even 1f a different data seed 1s used for
the data key generation. This also represents a technical
benelflt and eflect over conventional test stream generation
processes because such conventional processes lack the
reproducibility capability with respect to test cases that
require data key generation (e.g., cryptographic instruc-
tions), and thus, necessarily lack a save and restore mecha-
nism that ensures that random data generation that occurs
betore and after the data key generation utilizes the appro-
priate data seed.

The technical benefits, technical eflects, and technical
improvements of example embodiments described above
together constitute an 1mprovement to computer technol-
ogy—specifically an improvement to computer-based test
stream generation technology. In particular, the error output
reproducibility capability and the save and restore mecha-
nism for the random generated data seed, for instance,
improve the functioning of a computer that i1s configured to
execute a test program that includes multiple test streams,
one or more of which include test case(s) with cryptographic
instructions.

Various 1illustrative methods and corresponding data
structures associated therewith will now be described. It
should be noted that any given operation of any of the

US 10,733,071 B2

S

methods 200-400 may be performed by one or more of the
program modules or the like depicted 1n FIG. 1 or 5, whose
operation will be described 1n more detail hereinafter. These
program modules may be implemented 1n any combination
of hardware, soiftware, and/or firmware. In certain example
embodiments, one or more of these program modules may
be implemented, at least 1n part, as software and/or firmware
modules that include computer-executable 1nstructions that
when executed by a processing circuit cause one or more
operations to be performed. A system or device described
herein as being configured to implement example embodi-
ments may include one or more processing circuits, each of
which may include one or more processing units or nodes.
Computer-executable instructions may include computer-
executable program code that when executed by a process-
ing unit may cause input data contained in or referenced by
the computer-executable program code to be accessed and
processed to yield output data.

FIG. 1 1s a schematic hybrnid data flow/block diagram
illustrating data key generation during execution of a test
program 1n accordance with example embodiments. FIG. 2
1s a process flow diagram of an 1llustrative method 200 for
mitializing a set of data key generation variables for a
particular pass of a test program 1n accordance with example
embodiments. FIGS. 3A and 3B are process flow diagrams
of an 1llustrative method 300 for data key generation during
execution of a test program 1n accordance with one or more
example embodiments. FIG. 4 1s a process flow diagram of
an 1llustrative method 400 for outputting data key generation
variables for future error reproduction in accordance with
one or more example embodiments. Fach of FIGS. 2, 3A,
3B, and 4 will be described in conjunction with FIG. 1
herelnafter

Referring first to FIG. 2 in conjunction with FIG. 1, in
accordance with example embodiments, at block 202 of the
method 200, various data key generation variables are
initialized to respective default values. For instance, a data
key seed (KEY_SEED 106) 1s mitialized to a default value
of zero. A data key generation frequency value (MOD_PASS
128)—which would be used to generate a new program seed
every MOD_PASS 108 value number of passes (e.g., test
streams) of a test program 104—is 1nitialized to a default
positive non-zero mteger value in example embodiments. In
addition, a parameter (KEY_PASS 108) indicative of a
current pass of the test program 104 1s also 1mitialized to a
default positive non-zero nteger value 1n example embodi-
ments. In certain example embodiments, KEY_PASS 108
may indicate the particular pass of the test program 104 that
1s being looped through.

Further, in example embodiments, additional data key
generation variables are mitialized at block 202 including a
program pass counter/test stream counter (PGM_PASS) that
keeps track of the number of passes of the test program 104
that have been executed; a parameter (USED PASS 126)
that ensures that a new program seed 1s generated every
MOD_PASS 128 number of passes of the test program 104
starting from an initial pass regardless of which pass of the
test program 104 an error output may occur at; a parameter
indicative of a program seed associated with a prior program
pass (PREV_PGM_SEED 124); and a parameter indicative
of a data seed used during the previous program pass
(USED_DATA_SEED 122). In example embodiments,
PGM_PASS, USED_PASS 126, PREV_PGM_SFEED 124,
and USED DATA SEED 122 are each imtialized to a
default value of zero.

In example embodiments, during a current pass of the test
program 104, a user 102 optionally passes a KEY_SEED

10

15

20

25

30

35

40

45

50

55

60

65

6

value to the test program 104 from the error output of a prior
pass of the test program 104. This user-spec:1ﬁed KEY
SEED value 1s received and KEY_SEED 106 1s set to this
user-specified value at block 204 of the method 200. In
example embodiments, the user-specified KEY _SEED value
was used to generate data keys during a prior pass of the test
program 104. In addition, in example embodiments, the user
102 optionally passes a data key generation frequency
(MOD_PASS) value—which would be used to generate a
new program seed every MOD_PASS value number of
passes of the test program 104 from the 1nitial pass—and/or
a KEY_PASS value which may be the value of USED_PASS
126 extracted from the error output of a prior pass of the test
program 104. In example embodiments, these values are
received at block 204 as well and the corresponding param-
eters MOD PASS 128 and KEY PASS 108 are set to these
respective values. If, for example, a MOD_PASS value o1 10
1s received, then a new random number program seed would
be generated every 10 passes (test streams) ol the test
program 104 from the 1mitial pass. If, for example, a KEY _
PASS wvalue of 4 1s received, this would indicate that the
error output of pass 4 of the test program 104 1s being
reproduced. As previously noted, the default values and
ranges of KEY_PASS 108 and MOD_PASS 128 fall within
the set of positive non-zero imtegers. In example embodi-
ments, 1f the user 102 attempts to pass zero or negative
MOD_PASS and/or KEY_PASS values to the test program
104, an error message 1s displayed and the user 102 1s
prompted to provide appropriate values.

At block 206 of the method 200, the test program 104
generates a new random number program seed PGM_SEED
116 and increments PGM_PASS by one
(PGM_PASS=PGM_PASS+1) to indicate a new pass of the
test program 104 has been imtiated. The new PGM_SEED
116 generated for each pass of the test program 104 1s stored
in one or more datastores 114. In example embodiments, for
cach program pass, the test program 104 generates a new test
stream with one or more test cases, executes the test stream
on the target machine, simulates the test stream results,
compares the test stream results of the machine and the
simulator, and prints detailed error output if the results
comparison fails. More specifically, for each program pass,
a test stream generator 110 of the test program 104 generates
a new test stream containing one or more test cases gener-
ated by a test case generator 112 of the test program 104.

Referring now to FIG. 3A 1n conjunction with FIG. 1, at
block 302 of the method 300, the test program 104 gener-
ates, for a current pass of the test program 104, a random
DATA_SEED 118 and saves the random generated data seed
value n a SAVE_DATA_SEED parameter
(SAVE_DATA_SEED=DATA_SEED). Saving the data seed
value generated for the current program pass i SAVE_
DATA SEED allows for this value to be restored at the end
of the data key generation process. This save and restore
mechanism 1s needed 1n order for the random data genera-
tion based on the current data seed (DATA_SEED 118) that
comes aiter this data key generation process to work prop-

erly 1f regeneration of the same random data 1s needed 1n the
future.

At block 304 of the method 300, the test program 104
determines whether a user has entered as KEY SEED value.

In certain example embodiments, a positive determination 1s
made at block 304 it KEY SEED 106 i1s non-zero. In

response to a positive determination at block 304, that 1s, 1f

the user 102 has entered, in the current program pass, the
data key seed value (KEY_SEED 106) from an error output
of a prior program pass, then the user-specified data key seed

US 10,733,071 B2

7

value (KEY_SEED 106) 1s saved as USED_DATA_SEED
122 (USED_DATA_SEED=KEY_SEED) at block 306 of
the method 300 for possible use 1n the next program pass.

At block 308 of the method 300, DATA_SEED 118 1s set
to the user-specified data key seed value (KEY_SEED 106)
for the current program pass (DATA_SEED=KEY_SEED)
to enable generation of one or more data keys 120 from
KEY_SEED 106 for the current program pass. Further, at
block 308, the user-specified data key seed value (KEY_
SEED 106) 1s reset to zero to prevent reuse of this data key
seed 1n the next program pass. At block 310 of the method
300, USED_PASS 126 1s set to the KEY_PASS 108 value.
As previously noted, in certain example embodiments,
KEY_ PASS 108 1s the value of USED_PASS 126 extracted
from the error output of a prior pass of the test program 104.
If, for example, a KEY_PASS 108 value of 4 1s received by
the test program 104, this would indicate that the error

output of pass 4 of the test program 104 1s being reproduced,

and USED_PASS 126 would be set to the value 4. From
block 310, the method 300 proceeds to block 320, where
DATA_S] *;D 118 (which has been set to the user-speelﬁed
key seed value KEY_SEED 106) 1s used to generate the one
or more data keys 120, which would be the same data keys
generated during a prior program pass that utilized KEY _
SEED 106 and produced an error output.

Referring again to block 304, if, on the other hand, the
user 102 has not passed a KEY_SEED value to the test
program 104 from a prior program pass, the method 300
proceeds to block 312. Referring now to FIG. 3B, at block
312 of the method 300, USED_PASS 126 1s incremented by
one and the modulus of this incremented value with respect
to MOD PASS 128 1s determined and stored in USED
PASS 128 (USED_PASS=(USED_PASS+1) mod MOD
PASS).

At block 314 of the method 300, the test program 104

performs a check to determine 11 the new data seed (DATA_
SEED 118) needs to be generated for the current program
pass or the data seed from the previous program pass
(USED_DATA_SEED 122) should be used to generate the
one or more data keys 120 for the current program pass. In
particular, at block 314, the test program 104 determines
whether the current pass 1s the 1nitial pass of the test program
104 (PGM_PASS=1) or the current pass 1s a multiple of the
MOD_PASS 128 value plus one (USED_PASS=1) and the
test program 1s not looping on the current program seed, that
1s, the PGM_SEED 116 value 1s different from the PRE-
V PGM_SEED 124 value (PGM_SEED=PREV_PGM_
SEED). It PGM_PASS=1 OR [(USED_PASS=1) AND
(PGM SEED=PREV_PGM_SEED)], a positive determina-
tion 1s made at block 314, and the current random data seed
(DATA_SEED 118) 1s saved as USED_DATA_SEED 122
(USED_DATA_SEED=DATA_SEED) and used, at block
320 of the method 300, to generate the data key(s) 120 for
the current program pass. Saving DATA_SEED 118 as
USED_DATA_SEED 122 allows for reuse of the DATA_
SEED 118 to generate the same data key(s) 1n a subsequent
program pass.

If, on the other hand, any of the following conditions are
satisfied: 1) the current pass 1s not the mnitial pass (PGM_
PASS=1), 11) the current pass 1s not a multiple of the
MOD_PASS 128 value plus one (USED_PASS=1), or i11)
the test program 104 1s looping on the current program seed
(PGM_SEED=PREV_PGM_SEED), then a negative deter-
mination 1s made at block 314 and new data keys are not

generated. Rather, the data seed from the previous program
pass (USED_DATA_SEED) 1s loaded mto DATA_SEED

118 at block 316 of the method 300 and used, at block 320,

10

15

20

25

30

35

40

45

50

55

60

65

8

as the data key seed to regenerate, for the current program
pass, the same data keys that were generated in the previous
program pass (DATA_SEED=USED_DATA_SFEED). This
reuse mechanism ensures regeneration, in the current pro-
gram pass, of the same data keys that were generated in the
previous program pass.

Thus, at block 320, the test program 104 generates one or
more random number data keys 120 for the current program
pass using the data seed that was selected by one of the three
alternative selection paths described above and that i1s cur-
rently stored in DATA_SEED 118 for the current program
pass. In particular, the data seed used at block 320 may be
a KEY_SEED 106 passed to the test program 104 by the
user 102; the USED_DATA_SEED from the previous pro-
gram pass; or the random data seed generated for the current
program pass.

At block 322 of the method 300, the test program 104
saves the current program seed (PGM_SEED 116) into the
PREV PGM SEED 124 parameter
(PREV_PGM_SEED=PGM_SFEED). In example embodi-
ments, PREV_PGM_SEED 124 is used 1n the next program
pass to determine 1i the test program 104 1s looping on the
same program seed. In addition, at block 324 of the method
300, the test program restores the generated random data

seed that was saved at the beginming of the data key
generation process (SAVE_DATA_SEED) as the current

data seed (DATA_SEED 118)
(DATA_SEED=SAVE_DATA_SEED). This save and
restore mechanism ensures that random data generation
based on the current data seed that comes after this data key
generation process continues to work properly 1f regenera-
tion of the same random data 1s needed 1n the future.

In example embodiments, if an error 1s later detected by
the test program 104, the USED_DATA_SEED 122 value
for the current program pass will be printed 1n the program
error output (if an error occurred in this program pass). The
user 102 can then extract the USED DATA SEED 122
value from the error output and use 1t to reproduce the same
error with the same data key 1n the future (i.e., by entering
the USED_DATA_SEED 122 value as the KJY SEED
106). This process will be described 1n more detail herein-
alter in reference to FIG. 4.

At block 402 of the method 400, the test program 104
determines 11 an error output has been requested. In response
to a negative determination at block 402, the method 400
proceeds to block 404, where the test program 104 deter-
mines 1f a trace output has been requested. In response to
negative determination at block 404 as well, the method 400
ends. On the other hand, 1n response to a positive determi-
nation at block 402 or block 404, the method 400 proceeds
to block 406, where the test program 104 prints the USED _
DATA_SEED 122 value in the output for the current pro-
gram pass to enable 1ts use as KEY_SEED 106 for error
reproduction 1n a future program pass.

From block 406, the method 400 proceeds to block 408,
where the test program 104 also prints the MOD_PASS 128
value 1n the error output to allow for i1ts use as MOD_PASS
128 for error reproduction in a future program pass. At block
410 of the method 400, the test program 104 determines
whether USED_PASS 122 is equal to zero. In response to a
positive determination at block 410, USED_PASS 122 1s set
the value of MOD_PASS 128. The operation at block 412 1s
performed to ensure that a meaningtul value 1s printed to

identify the program pass that produced the error output. In
particular, in the example of FIG. 4, the USED_PASS 122
parameter ranges from O to 9, but a value of 0 for USED_

PASS 122 actually represents the value of the data key

US 10,733,071 B2

9

generation frequency parameter MOD_PASS 128. Thus,
USED_PASS 122 1s set to MOD_PASS 128 at block 412 so
that the correct program pass 1s 1dentified. From block 412,
as well as 1n response to a negative determination at block
410, the method 400 proceeds to block 414, where the test
program 104 prints USED_PASS 122 1n the output so that
the user 102, for example, can provide the USED_PASS 122
value as the KEY_PASS 106 value for error reproduction in
a future program pass.

One or more illustrative embodiments of the disclosure
are described heremn. Such embodiments are merely 1llus-
trative of the scope of this disclosure and are not intended to
be limiting 1n any way. Accordingly, variations, modifica-
tions, and equivalents of embodiments disclosed herein are
also within the scope of this disclosure. For example, the
data key generation process described herein 1n accordance
with example embodiments can be expanded to use multiple
data seeds to produce one set of unique and reproducible
data for each data seed.

FIG. 5 1s a schematic diagram of an 1llustrative computing
device 502 configured to implement one or more example
embodiments of the disclosure. The computing device 502
may be any suitable device including, without limitation, a
server, a personal computer (PC), a tablet, a smartphone, a
wearable device, a voice-enabled device, or the like. While
any particular component of the computing device 502 may
be described herein 1n the singular, 1t should be appreciated
that multiple instances of any such component may be
provided, and functionality described in connection with a
particular component may be distributed across multiple
ones of such a component.

Although not depicted 1n FIG. 5, the computing device
502 may be configured to communicate with one or more
other devices, systems, datastores, or the like via one or
more networks. Such network(s) may include, but are not
limited to, any one or more diflerent types ol communica-
tions networks such as, for example, cable networks, public
networks (e.g., the Internet), private networks (e.g., frame-
relay networks), wireless networks, cellular networks, tele-
phone networks (e.g., a public switched telephone network),
or any other suitable private or public packet-switched or
circuit-switched networks. Such network(s) may have any
suitable communication range associated therewith and may
include, for example, global networks (e.g., the Internet),
metropolitan area networks (MANs), wide area networks
(WANSs), local area networks (LLANs), or personal area
networks (PANs). In addition, such network(s) may include
communication links and associated networking devices
(e.g., link-layer switches, routers, etc.) for transmitting net-
work traflic over any suitable type of medium including, but
not limited to, coaxial cable, twisted-pair wire (e.g., twisted-
pair copper wire), optical fiber, a hybnd fiber-coaxial (HFC)
medium, a microwave medium, a radio frequency commu-
nication medium, a satellite communication medium, or any
combination thereof.

In an 1llustrative configuration, the computing device 502
may include one or more processors (processor(s)) 504, one
or more memory devices 506 (generically referred to herein
as memory 506), one or more mput/output (*1/O”)
interface(s) 508, one or more network interfaces 510, and
data storage 514. The computing device 502 may further
include one or more buses 512 that functionally couple
various components of the computing device 502.

The bus(es) 312 may include at least one of a system bus,
a memory bus, an address bus, or a message bus, and may
permit the exchange of information (e.g., data (including
computer-executable code), signaling, etc.) between various

10

15

20

25

30

35

40

45

50

55

60

65

10

components of the computing device 502. The bus(es) 512
may include, without limitation, a memory bus or a memory
controller, a peripheral bus, an accelerated graphics port, and
so forth. The bus(es) 512 may be associated with any
suitable bus architecture including, without limitation, an
Industry Standard Architecture (ISA), a Micro Channel
Architecture (MCA), an Enhanced ISA (EISA), a Video
Electronics Standards Association (VESA) architecture, an
Accelerated Graphics Port (AGP) architecture, a Peripheral
Component Interconnects (PCI) architecture, a PCI-Express
architecture, a Personal Computer Memory Card Interna-
tional Association (PCMCIA) architecture, a Universal
Serial Bus (USB) architecture, and so forth.

The memory 506 may include volatile memory (memory
that maintains 1ts state when supplied with power) such as
random access memory (RAM) and/or non-volatile memory
(memory that maintains 1ts state even when not supplied
with power) such as read-only memory (ROM), flash
memory, ferroelectric RAM (FRAM), and so forth. Persis-
tent data storage, as that term 1s used herein, may include
non-volatile memory. In certain example embodiments,
volatile memory may enable faster read/write access than
non-volatile memory. However, 1n certain other example
embodiments, certain types of non-volatile memory (e.g.,
FRAM) may enable faster read/write access than certain
types of volatile memory.

In various implementations, the memory 506 may include
multiple different types of memory such as various types of
static random access memory (SRAM), various types of
dynamic random access memory (DRAM), various types of
unalterable ROM, and/or writeable variants of ROM such as
clectrically erasable programmable read-only memory (EE-
PROM), flash memory, and so forth. The memory 506 may
include main memory as well as various forms of cache
memory such as instruction cache(s), data cache(s), trans-
lation lookaside bufler(s) (ILBs), and so forth. Further,
cache memory such as a data cache may be a multi-level
cache organized as a hierarchy of one or more cache levels
(L1, L2, etc.).

The data storage 514 may include removable storage
and/or non-removable storage including, but not limited to,
magnetic storage, optical disk storage, and/or tape storage.
The data storage 514 may provide non-volatile storage of
computer-executable instructions and other data. The
memory 306 and the data storage 514, removable and/or
non-removable, are examples of computer-readable storage
media (CRSM) as that term 1s used herein.

The data storage 314 may store computer-executable
code, instructions, or the like that may be loadable into the
memory 506 and executable by the processor(s) 504 to cause
the processor(s) 504 to perform or initiate various opera-
tions. The data storage 514 may additionally store data that
may be copied to memory 506 for use by the processor(s)
504 during the execution of the computer-executable
istructions. Moreover, output data generated as a result of
execution of the computer-executable instructions by the
processor(s) 504 may be stored mitially in memory 506 and
may ultimately be copied to data storage 514 for non-
volatile storage.

More specifically, the data storage 514 may store one or
more operating systems (O/S) 516; one or more database
management systems (DBMS) 518 configured to access the
memory 506 and/or one or more external datastores 526; and
one or more program modules, applications, engines, man-
agers, computer-executable code, scripts, or the like such as,
for example, a test stream generator 520, a test case gen-
erator 522, and an exception test case generator 524. Any of

US 10,733,071 B2

11

the components depicted as being stored 1n data storage 514
may include any combination of software, firmware, and/or
hardware. The software and/or firmware may include com-
puter-executable 1nstructions (e.g., computer-executable
program code) that may be loaded into the memory 506 for
execution by one or more of the processor(s) 504 to perform
any of the operations described earlier 1n connection with
correspondingly named modules.

Although not depicted 1n FIG. 5, the data storage 514 may
turther store various types of data utilized by components of
the computing device 502 (e.g., data stored in the
datastore(s) 526). Any data stored in the data storage 514
may be loaded imto the memory 506 for use by the
processor(s) 304 in executing computer-executable 1nstruc-
tions. In addition, any data stored in the data storage 514
may potentially be stored in the external datastore(s) 526
and may be accessed via the DBMS 518 and loaded 1n the
memory 506 for use by the processor(s) 5304 in executing
computer-executable instructions.

The processor(s) 504 may be configured to access the
memory 506 and execute computer-executable mnstructions
loaded therein. For example, the processor(s) 504 may be
configured to execute computer-executable instructions of
the various program modules, applications, engines, man-
agers, or the like of the computing device 502 to cause or
facilitate various operations to be performed in accordance
with one or more embodiments of the disclosure. The
processor(s) 304 may include any suitable processing unit
capable of accepting data as input, processing the input data
in accordance with stored computer-executable instructions,
and generating output data. The processor(s) 504 may
include any type of suitable processing unit including, but
not limited to, a central processing unit, a microprocessor, a
Reduced Instruction Set Computer (RISC) microprocessor,
a Complex Instruction Set Computer (CISC) microproces-
sor, a microcontroller, an Application Specific Integrated
Circuit (ASIC), a Field-Programmable Gate Array (FPGA),
a System-on-a-Chip (SoC), a digital signal processor (DSP),
and so forth. Further, the processor(s) 304 may have any
suitable microarchitecture design that includes any number
ol constituent components such as, for example, registers,
multiplexers, arthmetic logic units, cache controllers for
controlling read/write operations to cache memory, branch
predictors, or the like. The microarchitecture design of the
processor(s) 504 may be capable of supporting any of a
variety of instruction sets.

Referring now to other illustrative components depicted
as being stored 1n the data storage 514, the O/S 516 may be
loaded from the data storage 514 into the memory 506 and
may provide an interface between other application software
executing on the computing device 502 and hardware
resources of the computing device 502. More specifically,
the O/S 516 may include a set of computer-executable
instructions for managing hardware resources of the com-
puting device 502 and for providing common services to
other application programs. In certain example embodi-
ments, the O/S 516 may include or otherwise control the
execution of one or more of the program modules, engines,
managers, or the like depicted as being stored 1n the data
storage 514. The O/S 516 may include any operating system
now known or which may be developed in the future
including, but not limited to, any server operating system,
any mainirame operating system, or any other proprietary or
non-proprietary operating system.

The DBMS 3518 may be loaded into the memory 506 and
may support functionality for accessing, retrieving, storing,
and/or manipulating data stored in the memory 506, data

10

15

20

25

30

35

40

45

50

55

60

65

12

stored 1n the data storage 514, and/or data stored 1n external
datastore(s) 526. The DBMS 3518 may use any of a variety
of database models (e.g., relational model, object model,
etc.) and may support any of a variety of query languages.
The DBMS 518 may access data represented 1n one or more
data schemas and stored in any suitable data repository. The
datastore(s) 326 may include datastore(s) 114. As such, data
stored 1n the datastore(s) 526 may include, for example, the
instructions 116, VALID_FC_ARRAYs 118 corresponding
to the 1nstructions 116, BYPASS FC_ARRAYs, BYPASS
FC_MASKSs, test cases, exception test cases, and so forth.
External datastore(s) 526 that may be accessible by the
computing device 502 via the DBMS 518 may include, but
are not limited to, databases (e.g., relational, object-oriented,
etc.), file systems, flat files, distributed datastores 1n which
data 1s stored on more than one node of a computer network,
peer-to-peer network datastores, or the like.

Referring now to other illustrative components of the
computing device 502, the input/output (I/O) nterface(s)
508 may {facilitate the receipt of mnput information by the
computing device 502 from one or more 1/O devices as well
as the output of information from the computing device 502
to the one or more I/0 devices. The I/O devices may include
any of a variety of components such as a display or display
screen having a touch surface or touchscreen; an audio
output device for producing sound, such as a speaker; an
audio capture device, such as a microphone; an 1image and/or
video capture device, such as a camera; a haptic unit; and so
forth. Any of these components may be integrated into the
computing device 502 or may be separate. The I/O devices
may further include, for example, any number of peripheral
devices such as data storage devices, printing devices, and
so forth.

The I/O mterface(s) 508 may also include an interface for
an external peripheral device connection such as universal
serial bus (USB), FireWire, Thunderbolt, Ethernet port or
other connection protocol that may connect to one or more
networks. The I/O interface(s) 308 may also include a
connection to one or more antennas to connect to one or
more networks via a wireless local area network (WLAN)
(such as Wi-F1) radio, Bluetooth, and/or a wireless network
radio, such as a radio capable of communication with a
wireless communication network such as a Long Term
Evolution (LTE) network, WiMAX network, 3G network,
etc.

The computing device 502 may further include one or
more network interfaces 3510 via which the computing
device 502 may communicate with any of a variety of other
systems, platforms, networks, devices, and so forth. The
network interface(s) 310 may enable communication, for
example, with one or more other devices via one or more of
the network(s).

It should be appreciated that the program modules/en-
gines depicted 1in FIG. 5 as being stored 1n the data storage
514 are merely illustrative and not exhaustive and that
processing described as being supported by any particular
module may alternatively be distributed across multiple
modules, engines, or the like, or performed by a different
module, engine, or the like. In addition, various program
module(s), script(s), plug-in(s), Application Programming
Interface(s) (API(s)), or any other suitable computer-execut-
able code hosted locally on the computing device 502 and/or
other computing devices accessible via one or more net-
works, may be provided to support functionality provided by
the modules depicted 1n FIG. 5 and/or additional or alternate
functionality. Further, functionality may be modularized 1n
any suitable manner such that processing described as being

US 10,733,071 B2

13

performed by a particular module may be performed by a
collection of any number of program modules, or function-
ality described as being supported by any particular module
may be supported, at least in part, by another module. In
addition, program modules that support the functionality
described herein may be executable across any number of
cluster members 1n accordance with any suitable computing
model such as, for example, a client-server model, a peer-
to-peer model, and so forth. In addition, any of the func-
tionality described as being supported by any of the modules
depicted 1n FIG. 5 may be implemented, at least partially, 1n
hardware and/or firmware across any number of devices.

It should further be appreciated that the computing device
502 may include alternate and/or additional hardware, sofit-
ware, or firmware components beyond those described or
depicted without departing from the scope of the disclosure.
More particularly, 1t should be appreciated that software,
firmware, or hardware components depicted as forming part
of the computing device 502 are merely illustrative and that
some components may not be present or additional compo-
nents may be provided in various embodiments. While
vartous 1llustrative modules have been depicted and
described as software modules stored 1n data storage 514, 1t
should be appreciated that functionality described as being
supported by the modules may be enabled by any combi-
nation ol hardware, software, and/or firmware. It should
turther be appreciated that each of the above-mentioned
modules may, 1n various embodiments, represent a logical
partitioning of supported functionality. This logical parti-
tioming 1s depicted for ease of explanation of the function-
ality and may not be representative of the structure of
software, hardware, and/or firmware for implementing the
functionality. Accordingly, 1t should be appreciated that
functionality described as being provided by a particular
module may, in various embodiments, be provided at least in
part by one or more other modules. Further, one or more
depicted modules may not be present in certain embodi-
ments, while 1n other embodiments, additional program
modules and/or engines not depicted may be present and
may support at least a portion of the described functionality
and/or additional functionality.

One or more operations of any of the methods 200-400
may be performed by a computing device 502 having the
illustrative configuration depicted in FIG. 5, or more spe-
cifically, by one or more program modules, engines, appli-
cations, or the like executable on such a device. It should be
appreciated, however, that such operations may be imple-
mented 1n connection with numerous other device configu-
rations.

The operations described and depicted in the 1llustrative
methods of FIGS. 2-4 may be carried out or performed in
any suitable order as desired in various example embodi-
ments of the disclosure. Additionally, 1n certain example
embodiments, at least a portion of the operations may be
carried out in parallel. Furthermore, 1n certain example
embodiments, less, more, or different operations than those
depicted 1n FIGS. 2-4 may be performed.

Although specific embodiments of the disclosure have
been described, one of ordinary skill in the art will recognize
that numerous other modifications and alternative embodi-
ments are within the scope of the disclosure. For example,
any ol the functionality and/or processing capabilities
described with respect to a particular system, system com-
ponent, device, or device component may be performed by
any other system, device, or component. Further, while
various 1illustrative implementations and architectures have
been described in accordance with embodiments of the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

disclosure, one of ordinary skill in the art will appreciate that
numerous other modifications to the illustrative implemen-
tations and architectures described herein are also within the
scope of this disclosure. In addition, 1t should be appreciated
that any operation, element, component, data, or the like
described herein as being based on another operation, ele-
ment, component, data, or the like may be additionally based
on one or more other operations, elements, components,
data, or the like. Accordingly, the phrase “based on,” or
variants thereof, should be interpreted as “based at least in
part on.”

The present disclosure may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present disclosure.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present disclosure may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program

US 10,733,071 B2

15

instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1in order to perform aspects of the
present disclosure.

Aspects of the present disclosure are described herein
with reference to tlowchart illustrations and/or block dia-
grams ol methods, apparatus (systems), and computer pro-
gram products according to embodiments of the mvention.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart

5

10

15

20

25

30

35

40

45

50

55

60

65

16

illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What 1s claimed 1s:

1. A computer-implemented method for data key genera-
tion during execution of a test program, the method com-
prising:

initializing, 1n connection with an mitial pass of the test

program, a key seed to a first default value; and

during a current pass of the test program:

generating a data seed having a data seed value;

storing the data seed value;

receiving a user-specified key seed value;

setting the key seed to the user-specified key seed
value;

setting the data seed to the user-specified key seed
value;

generating one or more data keys based at least 1n part
on the data seed having the user-specified key seed
value; and

resetting the data seed to the stored data seed value.

2. The computer-implemented method of claim 1,
wherein the current pass of the test program comprises
executing a particular test stream of the test program, the
method further comprising storing, during the current pass
of the test program, the user-specified key seed value as a
used data seed value for use 1n connection with repeated
execution of the particular test stream or execution of one or
more subsequent test streams.

3. The computer-implemented method of claim 2, further
comprising;

initializing, in connection with the initial pass of the test

program, a mod pass parameter to a first value, a key
pass parameter to a second value, and a used pass
parameter to a third value;

imitializing, in connection with the 1nitial pass of the test

program, a program pass counter to zero; and

during the current pass of the test program:

incrementing the program pass counter by one;

generating a program seed having a program seed
value; and

storing the program seed value.

4. The computer-implemented method of claim 3,
wherein the one or more data keys 1s a first one or more data
keys, and wherein the user-specified key seed value 1s used
to generate a second one or more data keys during a pass of
the test program that 1s prior to the current pass and that
resulted 1 an error output, the method turther comprising,
during the current pass of the test program:

setting the key pass parameter to a value of the used pass

parameter from the prior pass of the test program; and
setting the used pass parameter to the value of the key
pass parameter.

5. The computer-implemented method of claim 4,
wherein the data seed 1s a first data seed, the data seed value
1s a first data seed value, and the current pass 1s a first pass
of the test program, the method further comprising during a
second pass of the test program:

generating a second data seed having a second data seed

value;

overwriting the stored first data seed value from the first

pass of the test program with the second data seed
value;

determining that no user-specified key seed value has

been provided;

US 10,733,071 B2

17

determining a new value for the used pass parameter,
wherein the new value for the used pass parameter 1s a
modular value of the value of the used pass parameter
incremented by one with respect to the first value of the
mod pass parameter; and

setting the used pass parameter to the new value.

6. The computer-implemented method of claim 5, further
comprising during the second pass of the test program:

determining one of: 1) the program pass counter 1s equal

to one or 11) the new value of the used pass parameter
1s equal to one and the stored program seed value from
the first pass of the test program does not equal a
program seed value associated with the second pass of
the test program; and

generating a third one or more data keys based at least in

part on the second data seed having the second data
seed value 1n lieu of the used data seed value from the
first pass of the test program.

7. The computer-implemented method of claim 5, further
comprising during the second pass of the test program:

determining 1) the program pass counter is not equal to

one and 11) the new value of the used pass parameter 1s
not equal to one or the stored program seed value from
the first pass of the test program equals a program seed
value associated with the second pass of the test
program; and

generating a third one or more data keys based at least in

part on the used data seed value from the first pass of
the test program.

8. A system for data key generation during execution of a
test program, the system comprising:

at least one memory storing computer-executable mnstruc-

tions; and

at least one processor of a sending device, wherein the at

least one processor 1s configured to access the at least
one memory and execute the computer-executable
instructions to:
initialize, 1 connection with an initial pass of the test
program, a key seed to a first default value; and
during a current pass of the test program:
generate a data seed having a data seed value;
store the data seed value;
receive a user-specified key seed value;
set the key seed to the user-specified key seed value;
set the data seed to the user-specified key seed value;
generate one or more data keys based at least 1n part
on the data seed having the user-specified key seed
value; and
reset the data seed to the stored data seed value.

9. The system of claim 8, wherein the current pass of the
test program comprises executing a particular test stream of
the test program, and wherein the at least one processor 1s
turther configured to execute the computer-executable
instructions to store, during the current pass of the test
program, the user-specified key seed value as a used data
seed value for use 1n connection with repeated execution of
the particular test stream or execution of one or more
subsequent test streams.

10. The system of claam 9, wherein the at least one
processor 1s further configured to execute the computer-
executable istructions to:

initialize, 1 connection with the iitial pass of the test

program, a mod pass parameter to a first value, a key
pass parameter to a second value, and a used pass
parameter to a third value;

initialize, 1 connection with the iitial pass of the test

program, a program pass counter to zero; and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

during the current pass of the test program:
increment the program pass counter by one;
generate a program seed having a program seed value;
and
store the program seed value.

11. The system of claim 10, wherein the one or more data
keys 1s a first one or more data keys, wherein the user-
specified key seed value 1s used to generate a second one or
more data keys during a pass of the test program that 1s prior
to the current pass and that resulted 1n an error output, and
wherein the at least one processor 1s further configured to
execute the computer-executable instructions during the
current pass of the test program to:

set the key pass parameter to a value of the used pass

parameter {from the prior pass of the test program; and
set the used pass parameter to the value of the key pass
parameter.

12. The system of claim 11, wherein the data seed 1s a first
data seed, the data seed value 1s a first data seed value, and
the current pass 1s a first pass of the test program, and
wherein the at least one processor 1s further configured to
execute the computer-executable mstructions during a sec-
ond pass of the test program to:

generate a second data seed having a second data seed

value;

overwrite the stored first data seed value from the first

pass ol the test program with the second data seed
value;

determine that no user-specified key seed value has been

provided;

determine a new value for the used pass parameter,

wherein the new value for the used pass parameter 1s a
modular value of the value of the used pass parameter
incremented by one with respect to the first value of the
mod pass parameter; and

set the used pass parameter to the new value.

13. The system of claim 12, wherein the at least one
processor 1s further configured to execute the computer-
executable instructions during the second pass of the test
program to:

determine one of: 1) the program pass counter 1s equal to

one or 11) the new value of the used pass parameter 1s
equal to one and the stored program seed value from the
first pass of the test program does not equal a program
seed value associated with the second pass of the test
program; and

generate a third one or more data keys based at least 1n

part on the second data seed having the second data
seed value 1n lieu of the used data seed value from the
first pass of the test program.

14. The system of claim 12, wherein the at least one
processor 1s further configured to execute the computer-
executable instructions during the second pass of the test
program to:

determine 1) the program pass counter 1s not equal to one

and 11) the new value of the used pass parameter 1s not
equal to one or the stored program seed value from the
first pass of the test program equals a program seed
value associated with the second pass of the test
program; and

generate a third one or more data keys based at least 1n

part on the used data seed value from the first pass of
the test program.

15. A computer program product for data key generation
during execution of a test program, the computer program
product comprising a storage medium readable by a pro-
cessing circuit, the storage medium storing instructions

US 10,733,071 B2

19

executable by the processing circuit to cause a method to be
performed, the method comprising:
initializing, 1n connection with an 1nitial pass of the test
program, a key seed to a first default value; and
during a current pass of the test program:
generating a data seed having a data seed value;
storing the data seed value;
receiving a user-speciiied key seed value;
setting the key seed to the user-specified key seed
value;
setting the data seed to the user-specified key seed
value;
generating one or more data keys based at least 1n part
on the data seed having the user-specified key seed
value; and
resetting the data seed to the stored data seed value.
16. The computer program product of claim 15, wherein
the current pass of the test program comprises executing a
particular test stream of the test program, the method further
comprising storing, during the current pass of the test
program, the user-specified key seed value as a used data
seed value for use 1 connection with repeated execution of
the particular test stream or execution of one or more
subsequent test streams.
17. The computer program product of claim 16, the
method further comprising:
initializing, in connection with the initial pass of the test
program, a mod pass parameter to a first value, a key
pass parameter to a second value, and a used pass
parameter to a third value;
initializing, 1n connection with the initial pass of the test
program, a program pass counter to zero; and
during the current pass of the test program:
incrementing the program pass counter by one;
generating a program seed having a program seed
value; and
storing the program seed value.
18. The computer program product of claim 17, wherein
the one or more data keys 1s a first one or more data keys,
and wherein the user-specified key seed value 1s used to

10

15

20

25

30

35

20

generate a second one or more data keys during a pass of the
test program that 1s prior to the current pass and that resulted
in an error output, the method turther comprising during the
current pass of the test program:

setting the key pass parameter to a value of the used pass

parameter from the prior pass of the test program; and
setting the used pass parameter to the value of the key
pass parameter.

19. The computer program product of claim 18, wherein
the data seed 1s a first data seed, the data seed value 1s a first
data seed value, and the current pass 1s a first pass of the test
program, the method further comprising during a second
pass of the test program:

generating a second data seed having a second data seed

value;

overwriting the stored first data seed value from the first

pass of the test program with the second data seed
value;

determining that no user-specified key seed value has

been provided;

determining a new value for the used pass parameter,

wherein the new value for the used pass parameter 1s a
modular value of the value of the used pass parameter
incremented by one with respect to the first value of the
mod pass parameter; and

setting the used pass parameter to the new value.

20. The computer program product of claim 19, the
method further comprising during the second pass of the test
program:

determiming that the stored program seed value from the

first pass of the test program equals a program seed
value associated with the second pass of the test
program; and

generating a third one or more data keys based at least 1n

part on the used data seed value from the first pass of
the test program,

wherein the second pass of the test program 1s a re-

execution of the first pass of the test program.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

