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1
DATA PROCESSING SYSTEMS

BACKGROUND

The technology described herein relates to data process-
ing systems, and in particular to the operation of graphics
processing systems that include one or more programmable
processing stages (“‘shaders”).

Graphics processing 1s typically carried out 1n a pipelined
tashion, with one or more pipeline stages operating on the
data to generate the final render output, e.g. frame that is
displayed. Many graphics processing pipelines now include
one or more programmable processing stages, commonly
referred to as “shaders”. For example, a graphics processing,
pipeline may include one or more of, and typically all of, a
geometry shader, a vertex shader and a fragment (pixel)
shader. These shaders are programmable processing stages
that execute shader programs on 1put data values to gen-
crate a desired set of output data (e.g. appropriately trans-
formed and lit vertex data in the case of a vertex shader) for
processing by the rest of the graphics pipeline and/or for
output. The shaders of the graphics processing pipeline may
share programmable processing circuitry, or they may each
be distinct programmable processing units.

A graphics processing unit (GPU) shader core 1s thus a
processing unit that performs graphics processing by run-
ning small programs for each graphics item 1n a graphics
output to be generated such as a render target, ¢.g. frame (an
“item” 1n this regard 1s usually a vertex or a fragment
(pixel)). This generally enables a high degree of parallelism,
in that a typical render output, ¢.g. frame, features a rather
large number of vertices and fragments, each of which can
be processed independently.

A shader program to be executed by a given “shader” of
a graphics processing pipeline will be provided by the
application that requires the graphics processing using a
high level shader programming language, such as GLSL,
HLSL, OpenCL C, etc. This shader program will consist of
“expressions’ indicating desired programming steps defined
in the relevant language standards (specifications). The high
level shader program 1s then translated by a shader language
compiler to binary code for the target graphics processing
pipeline. This binary code will consist of “instructions™
which are specified 1n the istruction set specification for the
given target graphics processing pipeline. The compilation
process lor converting the shader language expressions to
binary code instructions may take place via a number of
intermediate representations of the program within the com-
piler. Thus the program written 1n the high level shader
language may be translated into a compiler specific inter-
mediate representation (and there may be several successive
intermediate representations within the compiler), with the
final intermediate representation being translated into the
binary code instructions for the target graphics processing
pipeline.

A known way to improve shader execution efliciency 1s to
group execution threads (where each thread corresponds,
¢.g., to one vertex or one fragment (pixel)) mto “groups™ or
“bundles” of threads, where the threads of one group are run
in lockstep, one instruction at a time, 1.¢. each thread in the
group executes the same single mnstruction before moving
onto the next instruction. This way, 1t 1s possible to share
instruction fetch and scheduling resources between all the
threads 1n the group. (Other terms used for such thread
groups include “sub-groups”, “warps” and “wavelronts”.
For convenience the term thread group will be used herein,
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2

but this 1s intended to encompass all equivalent terms and
arrangements, unless otherwise indicated.)

In such thread groups, the shared instructions are
executed for each thread and when memory access (e.g. for
loads, stores and atomics) 1s required by a particular thread,
a “lock” 1s obtained by the thread to ensure exclusive access
to the data 1n memory being accessed by the thread, 1.e.
excluding the other threads from accessing the memory
location, with each thread obtaining independent locks.
However, because the threads cannot guarantee independent
forward progress 1n all circumstances (because some steps
executed by one thread may depend on other steps executed
by other threads), a lock obtained by one thread may cause
a deadlock for the whole thread group. This then causes one
or more of the threads to spin indefinitely waiting for the
lock to become available.

For example, the simple code sequence

while( !mtx_lock = mtx.trylock( ) )
{

/! critical section

h

can deadlock non-intuitively.

i

T'his 1s because the sequence requires that the flow of code
1s divergent and so threads from the divergent path (i.e. with
a different program counter) must be masked out from
execution. In a system having a “lowest program counter
first” scheduling policy, threads which did not obtain the
lock would therefore be favoured, but these would then spin
indefinitely waiting for the lock.

One solution to this problem is to re-order the code to suit
the scheduling behaviour of the specific system being used,
¢.g. using the following code sequence:

if{ _ my_warp_lane == 0 )

{
while( !mtx.try_lock( ) );

h

/I execute locked work
if{ _ my_warp_lane == 0 )

1

mtx.unlock( );

h

However, this requires that the compiler does not optimise
the 1instruction sequences, or has support for ordering
semantics on the instructions.

The Applicants believe therefore that there remains scope
for improvements to the handling of thread groups, for
example 1n graphics processing pipelines that include one or
more shader stages.

BRIEF DESCRIPTION OF THE DRAWINGS

A number of embodiments of the technology described
herein will now be described by way of example only and
with reference to the accompanying drawings, in which:

FIG. 1 shows schematically an exemplary computer
graphics processing system;

FIG. 2 shows schematically a graphics processing pipe-
line that can be operated 1n the manner of the technology
described herein;

FIG. 3 shows schematically a group of execution threads;

FIG. 4 shows a tlow chart of the operation of the group of
execution threads shown in FIG. 2;
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FIG. 5 shows schematically the architectural layout of a
shader core that that can be operated 1n the manner of the
technology described herein;

FIG. 6 shows a tlow chart of the operation of a compiler
that that can be operated in the manner of the technology
described herein;

FIGS. 7a, 7b and 7c¢ show schematically the execution
operation of various embodiments of the technology
described herein;

FIGS. 8a and 856 show schematically the result handling
of various embodiments of the technology described herein;
and

FI1G. 9 shows a flow chart of the operation of an embodi-
ment of the technology described herein.

DETAILED DESCRIPTION

One embodiment of the technology described herein
comprises a method of operating a data processing system
comprising an execution pipeline that comprises one or
more programmable execution stages which execute mnstruc-
tions to perform data processing operations, and in which
execution threads are grouped together into thread groups 1n
which the threads of the thread group are executed in
lockstep, one instruction at a time, the method comprising:

for an operation to be executed for a thread group by an
execution stage of the execution pipeline of the data pro-
cessing system that comprises a memory transaction:

issuing to the execution stage an instruction or set of
istructions to cause the execution stage to:
perform the operation for a thread group as a whole;
and
to provide the result of the operation to all the active
threads of the thread group; and

the execution stage of the execution pipeline in response

to the mnstruction or set of instructions:

performing the operation for a thread group as a whole;
and

providing the result of the operation to all the active
threads of the thread group.

Another embodiment of the technology described herein
comprises a data processing system comprising:

an execution pipeline that includes one or more program-
mable execution stages which execute instructions to per-
form data processing operations and i which execution
threads are grouped together into thread groups 1in which the
threads of the group are executed 1n lockstep, one 1nstruction
at a time; and

a compiler that compiles programs for the execution
pipeline to generate 1nstructions for execution stages of the
execution pipeline;

wherein the compiler 1s configured to, for an operation to
be executed for a thread group by an execution stage of the
execution pipeline that comprises a memory transaction:

issue to the execution stage an instruction or set of

instructions to cause the execution stage to:

perform the operation for a thread group as a whole;
and

to provide the result of the operation to all the active
threads of the thread group; and

wherein at least one execution stage of the execution
pipeline 1s configured to, 1n response to the instruction or set
ol 1nstructions:

perform the operation for a thread group as a whole; and

provide the result of the operation to all the active threads

of the thread group.
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4

The technology described herein relates to the execution
ol operations 1n data processing pipelines in which execu-
tion threads are grouped together into thread groups
(“warps”), with the threads 1n a thread group being executed
together 1n lockstep, one instruction at a time, 1.e. e€ach
thread 1n the group executes the same single instruction
before moving onto the next istruction. A thread group may
contain any suitable and desired number of threads. In an
embodiment, a thread group 1s made up of four individual
threads.

In the technology described herein, for one or more
operations (that involve a memory transaction) to be
executed, an i1nstruction or set of instructions that are
executed by the threads of a thread group for the operation
are 1ssued to a programmable execution stage of the execu-
tion pipeline, where they are executed. The 1nstruction or set
of mstructions are executed for the thread group as a whole
and the result of this thread group (warp)-wide operation 1s
delivered to all active threads in the thread group. (An active
thread 1s one which 1s currently executing an instruction or
waiting to execute an instruction, 1.€. as opposed to mactive
threads which have diverged or terminated their execution.)

Thus, rather than executing the instruction or set of
instructions for the operation for each thread in the group,
the instruction or set of instructions 1s executed by the
execution stage for the thread group as a whole.

By performing the operation for the thread group as a
whole, 1.e. for all the active threads which are being
executed 1n lockstep, this helps to prevent the threads from
deadlocking. This 1s because the operation 1s being per-
formed for all the active threads in the thread group together,
so no thread must wait for the operation to complete for
another thread, e.g. while accessing the memory using a
lock, before that thread can perform the operation.

Furthermore, because the operation 1s being performed
for the thread group as a whole and thus, e.g., making 1t
redundant for each thread to perform the operation individu-
ally, the processing involved, bandwidth required, data
transierred and thus power consumed 1s reduced.

The operation may comprise any suitable and desired data
processing operation that mvolves a memory transaction.

In an embodiment the operation comprises an atomic
operation. An “atomic” memory operation 1S an operation
sequence that reads a memory location, performs an arith-
metic operation between the memory value and a register
value, and then writes the result of the arithmetic operation
back to the same memory location. This sequence of opera-
tions 1s carried out so that to every observer, 1t looks as 11 the
sequence has either not been performed at all, or been
performed 1n 1ts entirety. It 1s executed as one indivisible
unit, hence the name “atomic”.

The atomic operation, performed for the thread group as
a whole, may comprise any suitable and desired atomic
operation. For example, the atomic operation may comprise
a permute operation, €.g. containing shuille instructions to
change the order of a set of data, a similar low level
instruction or nstructions, €.g. a reduction operation, a basic
arithmetic 1nstruction or instructions, e.g. addition, subtrac-
tion, division, etc., or a compare or exchange instruction or
instructions, etc.

In an embodiment the atomic operation, performed for the
thread group as a whole, comprises a lock operation. A
“lock™ operation 1s an operation to reserve access to storage,
¢.g. memory, exclusively for an execution thread obtaining
the lock, such that the data 1n storage 1t 1s accessing cannot
be accessed, and thus potentially changed, by another execu-
tion thread while the lock 1s 1n place. Thus generally while
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the lock 1s 1n place a further operation, e.g. an arithmetic
operation, 1s performed using the data that the execution
thread has access to, with this being the result that 1s then
provided to the active threads 1n the thread group.

It will be appreciated that this particular type of atomic
operation, 1.€. a lock operation, 1s particularly suited to the
technology described herein as 1t helps to solve the problem
of deadlocking threads in a thread group when one or more
threads are waiting for a lock which 1s currently held by
another thread. By obtaining and using the lock for the
thread group as a whole, 1.e. such that the thread group as a
whole has exclusive access to the data 1n memory being
accessed by the thread group, this helps to prevent the
threads from deadlocking because independent locks for
cach individual thread are not required.

The instruction or set of instructions to perform the
operation for the thread group as a whole and to provide the
result of the operation to all the active threads of the thread
group may be provided in any suitable and desired way. In
an embodiment the compiler for execution stage 1n question
includes the instruction(s) in the set of instructions that are
issued to the execution pipeline, as will be described below.

In one embodiment, the instructions for performing the
operation for the thread group as a whole are visible to the
application program interface and thus a programmer may
explicitly include the instructions 1n the application program
code for the operation to be performed (with the compiler
then generating an 1instruction or set of structions to
perform the operation for the thread group as a whole and to
provide the result of the operation to all the active threads of
the thread group, 1n response thereto).

In an embodiment, the compiler 1s configured also or
instead to (be able to) automatically (of 1ts own volition)
provide the instruction or set of instructions to perform the
operation for the thread group as a whole and to provide the
result of the operation to all the active threads of the thread
group, 1.. without the instruction or set ol instructions
having been included explicitly, e.g. by a programmer, in the
application program code. Thus, in an embodiment, the
method further comprises the step of (and the compiler 1s
configured to): automatically inserting an instruction or set
ol instructions for performing the operation for the thread
group as a whole and providing the result of the operation to
all the active threads of the thread group in the compiled
application program code for the operation.

The compiler may automatically provide the instruction
or set ol mstructions in any suitable and desired way. For
example, the compiler may be configured to 1dentily oppor-
tunities to insert an instruction or set of instructions for
performing an operation for a thread group as a whole when
compiling the application program code, €.g. by recognising
one or more particular steps 1n the program code.

(Of course, the compiler may not 1dentify an opportunity
to 1ssue to an execution stage an instruction or set of
instructions for executing an operation for the thread group
as a whole, 1n which case the compiler will not 1ssue an
instruction or set of mstructions for executing an operation
for a thread group as a whole, e.g. when it 1s not determined
to be beneficial for the operation’s execution.)

The nstruction or set of instructions for performing the
operation for the thread group as a whole and providing the
result of the operation to all the active threads of the thread
group could be configured to apply only to a single thread
group, with other thread groups not encountering this
istruction or set of instructions when they perform the
operation. However, in an embodiment, the instruction or set
of instructions for performing the operation for the thread
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group as a whole and providing the result of the operation to
all the active threads of the thread group i1s provided for and
encountered by all the thread groups performing the opera-
tion.

In an embodiment, the compiler 1s configured to (be able
to) re-order the steps in the program code, e¢.g. to improve
the efliciency of 1ts execution for a thread group. For
operations, €.g. atomic operations, that may be performed
individually for each thread in a thread group, e.g. per-thread
locking operations, as these operations may naturally
diverge, that can make them diflicult for a compiler to
optimise, €.g. because re-ordering the steps in the program
code may mtroduce deadlocks. However, when, in the
technology described herein, the operation 1s performed for
the thread group as a whole, that makes 1t easier to re-order
with respect to the rest of the other steps 1n the program code
because there 1s less risk of deadlocking. This means that the
compiler can more safely re-order the steps 1n the program
code or re-schedule the operation performed for the thread
group as a whole, with reduced risk of deadlocking.

Therefore, 1n an embodiment, the method comprises the
step of (and the compiler 1s configured to): re-ordering (the
issuing of) an mnstruction or set of instructions that perform
an operation for a thread group as a whole relative to other
instructions in the shader program in question. Thus the
compiler may bring forward or move back the mstruction or
set of mstructions for executing an operation for a thread
group as a whole. Such re-ordering may help to optimise
(OpenCL) dniver software implementation.

In an embodiment the operation 1s performed, 1.e. the
istruction(s) are executed, only once for a thread group as
a whole. Thus once the operation has been performed for a
thread group as a whole, ¢.g. when encountered 1nitially by
one of the threads 1n a thread group, and the result of the
operation provided to all of the active threads 1n the thread
group, 1n this embodiment the operation 1s not performed
again when, ¢.g., another thread of the thread group encoun-
ters the operation subsequently. This 1s because the result of
the operation has already been provided to all of the active
threads i1n the thread group, so threads encountering the
operation can simply refer to the result, e.g. by reading from
a register, rather than performing it themselves.

The operation may be performed for the thread group as
a whole, and the result of the operation may be provided to
all the active threads of the thread group, 1n any suitable and
desired way.

In one embodiment the mstruction or set of mstructions 1s
executed by the execution stage for one of the threads 1n the
thread group on behall of the other threads in the thread
group, such that the operation 1s performed for the thread
group as a whole and the result of the operation 1s provided
to all the active threads of the thread group. Thus, when one
of the threads encounters (e.g. by reaching the necessary
program counter) the instruction or set ol instructions
(which 1s, e.g., the first thread to encounter the instruction)
the mstruction or set of instructions 1s executed by the
execution stage for that thread only (but on behalf the thread
group as a whole).

The 1nstruction or set of 1mstructions may be executed for
one thread on behalf of the other threads in the thread group
in any suitable and desired way. In an embodiment all the
threads 1n the thread group, e.g. those which encounter the
instruction or set of nstructions, apart from the thread for
which the instruction or set of instructions is being executed,
are masked off, thus making these masked threads tempo-
rarily 1active. Masking off the other threads in the thread
group prevents these threads from encountering the mstruc-

-
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tion while the struction or set of instructions 1s executed by
the one thread, such that operation 1s performed for the
thread group as a whole. The mask may be removed when
the 1nstruction or set of mstructions has been executed and
t
t

ne result of the operation has been provided to all the active
areads of the thread group.

Therefore 1n one embodiment, the method comprises the
step of (and the execution stage 1s configured to): when the
instruction or set of mstructions 1s received by the execution
stage, the instruction or set of instructions having been
tetched for a thread in the thread group: the execution stage
masking all the (e.g. active) threads 1n the thread group apart
from the thread that fetched the instruction or set of mstruc-
tions; and the execution stage executing the instruction or set
ol 1nstructions for the thread to perform the operation for the
thread group as a whole and to provide the result of the
operation to all the active threads of the thread group.

In another embodiment each of the execution threads in
the thread group 1s arranged to check the status of the other
threads 1n the thread group when they encounter the mnstruc-
tion or set ol instructions, e.g. to check 11 another thread
already has executed, or started to execute, the istruction or
set of mstructions. This helps to ensure that the 1nstruction
or set of nstructions 1s only executed once, otherwise this
may cause the thread and/or thread group to deadlock. In this
case the threads will not execute in lockstep.

In another embodiment, in response to the instruction or
set of instructions, the operation 1s performed collectively
tor the thread group by the execution stage, 1.e. compared to
the above described embodiment 1n which the instruction or
set of 1structions 1s executed for one thread on behalt of the
thread group. Therefore, 1n an embodiment, the method
comprises the steps of (and the execution stage 1s configured
to): when the instruction or set of mstructions 1s received by
the execution stage, the execution stage executing the
instruction or set of instructions collectively for the thread
group.

The 1nstruction or set of instructions may be executed
collectively for the thread group 1n any suitable and desired
way. In one embodiment the instruction or set of instructions
1s executed by the execution stage for the thread group (i.e.
the execution stage which 1s configured to execute all the
other instructions for the, e.g. shader, program being
executed for the thread group).

In another embodiment the instruction or set of instruc-
tions are executed by a separate execution stage from the
execution stage that 1s being used to execute operations for
the threads, 1.e. such that they are not carrnied out for a
particular thread, e.g. on behall of the thread group, but
rather separately for the thread group as a whole. In an
embodiment the separate execution stage comprises a scalar
engine, e.g. which 1s arranged alongside the execution stage
tor the thread group. The separate execution stage, e.g. the
scalar engine, 1s then configured to return the result of the
operation to the active threads of the thread group.

Once the operation has been performed by the execution
stage of the execution pipeline, the result of the operation 1s
provided to all of the active threads in the thread group, 1.c.
a uniform (the same) result 1s provided to all the active
threads. (Any 1nactive threads in the thread group are
assumed not to require the result of the operation. ) The result
may be provided to the active threads in the thread group in
any suitable and desired way.

In an embodiment the result 1s provided to one or more
storage arrangements, €.g. memory or registers, that can be
read by the active threads 1n the thread group. The storage
arrangement may comprise a shared storage arrangement,
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¢.g. a shared memory or register, that can be read by all the
active threads in the thread group. This 1s particularly
convenient because there may be other reasons to use a
storage arrangement, €.g. a register, for the thread group as
a whole, e.g. to store other data used with the execution of
operations for the thread group. In another embodiment the
storage arrangements may comprise a separate storage
arrangement, €.g. a separate (e.g. private) memory or reg-
ister, for each of the active threads in the thread group.

In one embodiment the result of the operation 1s broadcast
to all the active threads in the thread group, e.g. the
execution stage sends a message to all the active threads to
let them know that the result 1s available to be read, e.g. from
a storage arrangement.

The execution stage may be associated with a particular
storage arrangement or arrangements to which the result of
the operation 1s provided, e.g. the register for a thread, and
thus the execution stage may already know in advance
where to return the result of the operation. In another
embodiment the 1nstruction or set of 1nstructions to provide
the result of the operation to all of the active threads in the
thread group contains an indication of the location of the
storage arrangement(s), e.g. the registers, to provide the
result of the operation to. This 1s then used by the execution
stage to determine where to provide the result of the opera-
tion.

To allow the result of the operation to be provided to the
active threads in the thread group, e.g. by broadcasting a
message to the active threads 1n the thread group and/or by
providing the result to separate storage arrangements for
cach of the active threads 1n the thread group, 1n an embodi-
ment the execution stage knows which threads in the thread
group are active (this 1s particularly the case when the
execution stage comprises a scalar engine). This may be
achieved 1n any suitable and desired way. In an embodiment
the mstruction or set of instructions to provide the result of
the operation to all of the active threads in the thread group
comprises an indication of the active threads in the thread
group.

In another embodiment, e¢.g. 1n which the result of the
operation 1s provided to a separate storage arrangement for
cach of the active threads in the thread group, the write to
the, e.g. registers, for the mactive threads 1s masked out to
prevent the result being provided to these threads.

The method and the data processing system of the tech-
nology described herein may be arranged to work with
program code which 1s divergent when executed. The diver-
gence of the execution may happen before and/or after the
operation 1s performed for the thread group as a whole.
When the threads diverge belfore the operation 1s performed
for the thread group as a whole then the divergent, e.g.
inactive, threads may be masked to help prevent any poten-
tial deadlocking.

Thus the operation may only be performed for those
threads who are convergent (e.g. naturally convergent, as
much as 1s approprate) at the time of the instruction or set
ol 1nstructions being executed by the execution stage. The
divergent threads, 1.¢. those which are not convergent at the
time of the mstruction or set of 1nstructions being executed,
¢.g. owing to having taken a diflerent condition 1n an “if,
then, else” statement, may be masked out, e.g. stalled, and
do not execute the operation. In an embodiment the diver-
gent threads also include any 1nactive threads. This allows
the operation to be performed for, and 1ts result provided to,
only the active threads.

The technology described herein also extends to the
compiler itself. Thus, another embodiment of the technology
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described herein comprises a compiler that compiles pro-
grams 1o generate instructions for execution stages of an
execution pipeline that includes one or more programmable
execution stages that execute instructions to perform data
processing operations, and in which execution threads are
grouped together 1nto thread groups 1n which the threads of
the group are executed 1n lockstep, one 1nstruction at a time,
wherein the compiler 1s configured to, for an operation to be
executed for a thread group by an execution stage of the
execution pipeline that comprises a memory transaction:
issue to the execution stage an 1instruction or set of
instructions to:
perform the operation for the thread group as a whole;
and
to provide the result of the operation to all the active

threads of the thread group.

Another embodiment of the technology described herein
comprises a method of compiling a program to generate
instructions for an execution stage of an execution pipeline
that includes one or more programmable execution stages
that execute instructions to perform data processing opera-
tions, and 1 which execution threads are grouped together
into thread groups in which the threads of the group are
executed 1n lockstep, one instruction at a time, the method
comprising:

for an operation to be executed for a thread group by an
execution stage of the execution pipeline of the data pro-
cessing system that comprises a memory transaction:

issuing to the execution stage an instruction or set of

instructions to:

perform the operation for the thread group as a whole;
and

to provide the result of the operation to all the active
threads of the thread group.

The technology described herein also extends to an execu-
tion pipeline having one or more execution stages that can
perform processing in response to (and using) the mnstruc-
tions of the technology described herein.

Thus, another embodiment of the technology described
herein comprises an execution pipeline for a data processing,
system that includes one or more programmable execution
stages which execute instructions to perform data processing
operations, and 1n which execution threads may be grouped
together into thread groups in which the threads of the group
are executed 1n lockstep, one instruction at a time, wherein:

at least one execution stage of the execution pipeline 1s
configured to, when executing 1nstructions 1n an instruction
stream, 1n response to an instruction or set of instructions 1n
the mstruction stream for executing an operation for a thread
group:

perform the operation for the thread group as a whole; and

provide the result of the operation to all the active threads

of the thread group.

Another embodiment of the technology described herein
comprises a method of operating an execution pipeline for a
data processing system that includes one or more program-
mable execution stages which execute instructions to per-
form data processing operations, and i which execution
threads are grouped together into thread groups 1in which the
threads of the group are executed 1n lockstep, one 1nstruction
at a time, the method comprising:

at least one execution stage of the execution pipeline,
when executing instructions in an instruction stream, in
response to an 1instruction or set of instructions in the
instruction stream for executing an operation for a thread

group:
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performing the operation for the thread group as a whole;

and

providing the result of the operation to all the active

threads of the thread group.

As will be appreciated by those skilled in the art, these
embodiments of the technology described herein can include
any one or more or all of the optional features of the
technology described herein, as appropriate.

In an embodiment all the execution stages (each execution
stage) of the execution pipeline can and do operate 1n the
manner of the technology described herein.

Each programmable processing stage (execution unit)
may comprise any suitable programmable hardware element
such as programmable processing circuitry. Each program-
mable processing stage may be provided as a separate circuit
clement to other programmable stages of the processing
pipeline or the programmable processing stages may share
some or all of their programmable processing circuitry (that
1s then differently programmed to serve as the desired
programmable processing stage).

As described above, 1n an embodiment the data process-
ing system of the technology described herein comprises a
graphics processing system comprising a graphics process-
ing pipeline. The graphics processing pipeline may in this
case be used to perform graphics processing (1n which case
cach thread 1n a group of threads may correspond to one
vertex or one fragment (pixel) and/or sampling point) but 1t
could also be operated as a compute shader pipeline (e.g. 1n
accordance with OpenCL) (in which case each thread will,
¢.g., correspond to an appropriate compute shader work
item).

Thus, the execution pipeline may be a graphics processing
pipeline, a compute shader pipeline, etc.

In these arrangements, the graphics (or other) processing
pipeline may comprise a sequence of different processing
stages, which each perform, e.g., a diflerent operation to
provide the output of the processing pipeline. In an embodi-
ment the processing pipeline comprises one or more, €.g. a
plurality of, processing stages, ¢.g. which work together to
implement the operation of the technology described herein.

In the case of a graphics and/or compute shader process-
ing pipeline, the execution umts (stages) may comprise
programmable, shading stages of the processing pipeline
such as the vertex shader, fragment shader, etc. These stages
can be implemented as desired and 1n any suitable manner,
and can perform any desired and suitable shading, e.g.
vertex shading, fragment shading, etc., functions, respec-
tively and as appropnate. In the case of a fragment shader,
for example, the fragment shader may render a primitive or
primitives to generate a set of render output values, e.g.
representing a frame for display. These output values may
then be exported to external memory for storage and use,
such as to a frame bufler for a display.

As well as the programmable processing (shader) stages,
the graphics processing pipeline may also contain any other
suitable and desired processing stages that a graphics pro-
cessing pipeline may contain such as a rasteriser, an early
depth (or an early depth and stencil) tester, a late depth (or
depth and stencil) tester, a blender, a tile bufler, a write out
unit, etc.

The technology described herein can be used for all forms
of output that a graphics (or other) processing pipeline may
be used to generate, such as frames for display, render to
texture outputs, compute shader outputs, etc. In an embodi-
ment the output, e.g. fragment shaded, data values from the
processing 1s exported to external, e.g. main, memory, for
storage and use, such as to a frame bufler for a display.
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In an embodiment the execution pipeline also comprises,
and/or 1s 1n communication with, one or more memories
and/or memory devices that store the data described herein,
and/or that store software for performing the processes
described herein. The execution pipeline may also be 1n
communication with a host microprocessor, and/or with a
display for displaying images based on the data generated by
the execution pipeline.

The technology described herein 1s applicable to any
suitable form or configuration of graphics processor. It 1s
particularly applicable to tile based graphics processors and
graphics processing systems. Thus in an embodiment, the
graphics processing system and graphics processing pipeline
are a tile-based system and pipeline, respectively.

In an embodiment, the various functions of the technol-
ogy described herein are carried out on a single graphics
processing platform that generates and outputs the rendered
fragment data that 1s, e.g., written to the frame bufler for the
display device.

The technology described herein can be implemented in
any suitable system, such as a suitably configured micro-
processor based system. In an embodiment, the technology
described herein 1s implemented 1 a computer and/or
micro-processor based system.

The various functions of the technology described herein
can be carried out in any desired and suitable manner. For
example, the functions of the technology described herein
can be mmplemented in hardware or software, as desired.
Thus, for example, unless otherwise indicated, the various
functional elements, stages and “means” of the technology
described herein may comprise a suitable processor or
processors, controller or controllers, functional units, cir-
cuitry, processing logic, microprocessor arrangements, etc.,
that are operable to perform the various functions, etc., such
as appropriately dedicated hardware elements and/or pro-
grammable hardware elements that can be programmed to
operate 1n the desired manner.

It should also be noted here that, as will be appreciated by
those skilled 1n the art, the various functions, stages, etc., of
the technology described herein may be duplicated and/or
carried out in parallel on a given processor. Equally, the
various processing stages may share processing circuitry,
etc., 1 desired.

Subject to any hardware necessary to carry out the spe-
cific Tunctions discussed above, the data processing system
and pipeline can otherwise imnclude any one or more or all of
the usual functional units, etc., that data processing pipelines
include.

It will also be appreciated by those skilled 1n the art that
all of the described embodiments of the technology
described herein can include, as appropriate, any one or
more or all of the optional features described herein.

The methods of the technology described herein may be
implemented at least partially using software e.g. computer
programs. It will thus be seen that in further embodiments
the technology described herein comprises computer soft-
ware specifically adapted to carry out the methods herein
described when installed on a data processor, a computer
program element comprising computer soitware code por-
tions for performing the methods herein described when the
program element 1s run on a data processor, and a computer
program comprising code adapted to perform all the steps of
a method or of the methods herein described when the
program 1s run on a data processing system. The data
processor may be a microprocessor system, a programmable
FPGA (field programmable gate array), etc.

12

The technology described herein also extends to a com-
puter software carrier comprising such software which when
used to operate a graphics processor, renderer or miCropro-
cessor system comprising a data processor causes 1n con-
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system to carry out the steps of the methods of the technol-
ogy described herein. Such a computer software carrier
could be a physical storage medium such as a ROM chip,
CD ROM, RAM, flash memory, or disk.

It will further be appreciated that not all steps of the
methods of the technology described herein need be carried
out by computer software and thus 1n a further embodiment
the technology described herein comprises computer soft-
ware and such software installed on a computer software
carrier for carrying out at least one of the steps of the
methods set out herein.

The technology described herein may suitably be embod-
ied as a computer program product for use with a computer
system. Such an implementation may comprise a series of
computer readable instructions either fixed on a tangible,
non-transitory medium, such as a computer readable
medium, for example, diskette, CD ROM, ROM, RAM,
flash memory, or hard disk. The series of computer readable
instructions embodies all or part of the functionality previ-
ously described herein.

Those skilled i the art will appreciate that such computer
readable instructions can be written 1n a number of pro-
gramming languages for use with many computer architec-
tures or operating systems. Further, such instructions may be
stored using any memory technology, present or future,
including but not limited to, semiconductor, magnetic, or
optical, or transmitted using any communications technol-
ogy, present or future, including but not limited to optical,
inirared, or microwave. It 1s contemplated that such a
computer program product may be distributed as a remov-
able medium with accompanying printed or electronic docu-
mentation, for example, shrink wrapped software, pre-
loaded with a computer system, for example, on a system
ROM or fixed disk, or distributed from a server or electronic
bulletin board over a network, for example, the Internet or
World Wide Web.

A number of embodiments of the technology described
herein will now be described 1n the context of the processing
ol computer graphics for display.

FIG. 1 shows schematically a typical computer graphics
processing system.

An application 2, such as a game, executing on a host
processor 1 will require graphics processing operations to be
performed by an associated graphics processing unit (graph-
ics processing pipeline) 3. To do this, the application will
generate API (Application Programming Interface) calls that
are iterpreted by a driver 4 for the graphics process pipeline
3 that 1s running on the host processor 1 to generate
appropriate commands to the graphics processor 3 to gen-
erate graphics output required by the application 2. To
facilitate this, a set of “commands™ will be provided to the
graphics processor 3 1n response to commands from the
application 2 running on the host system 1 for graphics
output (e.g. to generate a frame to be displayed).

FIG. 2 shows the graphics processing pipeline 3 of the
present embodiment in more detail.

The graphics processing pipeline 3 shown in FIG. 2 15 a
tile based renderer and will thus produce tiles of a render
output data array, such as an output frame to be generated.

(In tile based rendering, rather than the enftire render
output, e.g., frame, eflectively being processed 1n one go as
in immediate mode rendering, the render output, e.g., frame
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to be displayed, 1s divided into a plurality of smaller sub
regions, usually referred to as “tiles”. Each tile (sub region)
1s rendered separately (typically one after another), and the
rendered tiles (sub regions) are then recombined to provide
the complete render output, e.g., frame for display. In such
arrangements, the render output is typically divided into
regularly sized and shaped sub regions (tiles) (which are
usually, e.g., squares or rectangles), but this 1s not essential.)

The render output data array may typically be an output
frame intended for display on a display device, such as a
screen or printer, but may also, for example, comprise
intermediate data intended for use 1n later rendering passes
(also known as a “render to texture” output), efc.

When a computer graphics image 1s to be displayed, it 1s
usually first defined as a series of primitives (polygons),
which primitives are then divided (rasterised) into graphics
fragments for graphics rendering in turn. During a normal
graphics rendering operation, the renderer will modify the
(e.g.) colour (red, green and blue, RGB) and transparency
(alpha, a) data associated with each fragment so that the
fragments can be displayed correctly. Once the fragments
have fully traversed the renderer, then their associated data
values are stored in memory, ready for output, e.g. for
display.

FIG. 2 shows the main elements and pipeline stages of the
graphics processing pipeline 3 that are relevant to the
operation of the present embodiment. As will be appreciated
by those skilled 1n the art there may be other elements of the
graphics processing pipeline that are not illustrated 1in FIG.
2. It should also be noted here that FIG. 2 1s only schematic,
and that, for example, in practice the shown functional units
and pipeline stages may share significant hardware circuits,
even though they are shown schematically as separate stages
in FIG. 2. It will also be appreciated that each of the stages,
clements and units, etc., of the graphics processing pipeline
as shown 1n FIG. 2 may be implemented as desired and will
accordingly comprise, e€.g., appropriate circuitry and/or pro-
cessing logic, etc., for performing the necessary operation
and functions.

As shown m FIG. 2, the graphics processing pipeline 3
includes a number of stages, including vertex shader 20, a
hull shader 21, a tesselator 22, a domain shader 23, a
geometry shader 24, a rasterisation stage 25, an early Z
(depth) and stencil test stage 26, a renderer in the form of a
fragment shading stage 27, a late Z (depth) and stencil test
stage 28, a blending stage 29, a tile bufler 30 and a
downsampling and writeout (multisample resolve) stage 31.

The vertex shader 20 takes the mput data values associ-
ated with the vertices, etc., defined for the output to be
generated, and processes those data values to generate a set
of corresponding “vertex shaded” output data values for use
by subsequent stages of the graphics processing pipeline 3.
The vertex shading, for example, modifies the input data to

take account of the effect of lighting in the image to be
rendered.

The hull shader 21 performs operations on sets of patch
control points and generates additional data known as patch
constants, the tessellation stage 22 subdivides geometry to
create higher order representations of the hull, the domain
shader 23 performs operations on vertices output by the
tessellation stage (similar to a vertex shader), and the
geometry shader 24 processes entire primitives such as a
triangles, points or lines. These stages together with the
vertex shader 21 eflectively perform all the necessary frag-
ment frontend operations, such as transformation and light-
ing operations, and primitive setup, to setup the primitives to
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be rendered, in response to commands and vertex data
provided to the graphics processing pipeline 3.

The rasterisation stage 25 of the graphics processing
pipeline 3 operates to rasterise the primitives making up the
render output (e.g. the image to be displayed) into individual
graphics fragments for processing. To do this, the rasteriser
235 receives graphics primitives for rendering, rasterises the
primitives to sampling points and generates graphics frag-
ments having appropriate positions (representing appropri-
ate sampling positions) for rendering the primitives.

The fragments generated by the rasteriser are then sent
onwards to the rest of the pipeline for processing.

The early Z/stencil stage 26 performs a Z (depth) test on
fragments it receives from the rasteriser 25, to see il any
fragments can be discarded (culled) at this stage. To do this,
it compares the depth values of (associated with) fragments
issuing from the rasteriser 25 with the depth values of
fragments that have already been rendered (these depth
values are stored 1 a depth (Z) bufler that 1s part of the tile
bufler 30) to determine whether the new fragments will be
occluded by fragments that have already been rendered (or
not). At the same time, an early stencil test 1s carried out.

Fragments that pass the fragment early 7Z and stencil test
stage 26 are then sent to the fragment shading stage 27. The
fragment shading stage 27 performs the appropriate frag-
ment processing operations on the fragments that pass the
carly Z and stencil tests, so as to process the fragments to
generate the appropriate rendered fragment data.

This fragment processing may include any suitable and
desired fragment shading processes, such as executing frag-
ment shader programs on the fragments, applying textures to
the fragments, applying fogging or other operations to the
fragments, etc., to generate the appropriate fragment data. In
the present embodiment, the fragment shading stage 27 1s in
the form of a shader pipeline (a programmable fragment
shader).

There 1s then a “late” fragment Z and stencil test stage 28,
which carries out, inter alia, an end of pipeline depth test on
the shaded fragments to determine whether a rendered
fragment will actually be seen 1n the final 1mage. This depth
test uses the Z bufler value for the fragment’s position stored
in the Z-bufler in the tile bufler 30 to determine whether the
fragment data for the new fragments should replace the
fragment data of the fragments that have already been
rendered, by comparing the depth values of (associated
with) fragments 1ssuing from the fragment shading stage 27
with the depth values of fragments that have already been
rendered (as stored in the depth bufler). This late fragment
depth and stencil test stage 28 also carries out any necessary
“late” alpha and/or stencil tests on the fragments.

The fragments that pass the late fragment test stage 28 are
then subjected to, 1f required, any necessary blending opera-
tions with fragments already stored 1n the tile butler 30 1n the
blender 29. Any other remaining operations necessary on the
fragments, such as dither, etc. (not shown) are also carried
out at this stage.

Finally, the (blended) output fragment data (values) are
written to the tile bufler 30 from where they can, for
example, be output to a frame bufler for display. The depth
value for an output fragment 1s also written appropriately to
a 7. buller within the tile butler 30. (The tile bufler will store
colour and depth buflers that store an approprniate colour,
etc., or Z value, respectively, for each sampling point that the
buflers represent (in essence for each sampling point of a tile
that 1s being processed).) These bullers store an array of
fragment data that represents part (a tile) of the overall
render output (e.g. image to be displayed), with respective
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sets of sample values 1n the builers corresponding to respec-
tive pixels of the overall render output (e.g. each 2x2 set of
sample values may correspond to an output pixel, where 4x
multisampling 1s being used).

The tile bufler 1s provided as part of RAM that 1s located
on (local to) the graphics processing pipeline (chip).

The data from the tile bufler 30 1s mnput to a downsam-
pling (multisample resolve) write out unit 31, and thence
output (written back) to an external memory output bufler,
such as a frame bufler of a display device (not shown). (The
display device could comprise, e.g., a display comprising an
array of pixels, such as a computer monitor or a printer.)

The downsampling and writeout unit 31 downsamples the
fragment data stored 1n the tile bufler 30 to the appropriate
resolution for the output bufller (device) (1.e. such that an
array of pixel data corresponding to the pixels of the output
device 1s generated), to generate output values (pixels) for
output to the output buller.

Once a tile of the render output has been processed and its
data exported to a main memory (e.g. to a frame builer 1n a
main memory (not shown)) for storage, the next tile 1s then
processed, and so on, until suflicient tiles have been pro-
cessed to generate the entire render output (e.g. frame
(1mage) to be displayed). The process 1s then repeated for the
next render output (e.g. frame) and so on.

Other arrangements for the graphics processing pipeline 3
would, of course, be possible.

The above describes certain features of the operation of
the graphics processing system shown in FIG. 1. Further
features of the operation of the graphics processing system
shown 1n FIG. 1 will now be described.

As can be seen from FIG. 2, the graphics processing
pipeline 3 includes a number of programmable processing or
“shader” stages, namely the vertex shader 20, hull shader 21,
domain shader 23, geometry shader 24, and the fragment
shader 27. These programmable shader stages execute
respective shader programs that have one or more input
variables and generate sets of output variables and that are
provided by the application. To do this, the application 2
provides the shader programs implemented using a high-
level shader programming language, such as GLSL, HLSL,
OpenCL, etc. These shader programs are then translated by
a shader language compiler to binary code for the target
graphics processing pipeline 3. This may include the cre-
ation of one or more intermediate representations of the
program within the compiler. (The compiler may, e.g., be
part of the driver 4, with there being a special API call to
cause the compiler to run. The compiler execution can thus
be seen as being part of the draw call preparation done by the
driver 1n response to API calls generated by an application).

Each shader in the graphics processing pipeline, e.g. as
shown 1n the embodiment of FIG. 2, 1s a processing unit that,
based on commands received by the graphics processing
pipeline from the application, performs graphics processing,
by running small programs for each graphics item in a
graphics output to be generated (an “item™ 1n this regard 1s
usually a vertex, a fragment or a pixel). The present embodi-
ments relate to the situation where execution threads to be
executed by a shader (where each thread corresponds to one
graphics 1tem) have been organised into a “group” or
“bundle” of threads that are to be run in lockstep, one
istruction at a time, and are to perform an atomic memory
operation, €.g. a lock operation.

(An “atomic” memory operation 1s an operation sequence
that reads a memory location, performs an arithmetic opera-
tion between the memory value and a register value, and
then writes the result of the arithmetic operation back to the
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same memory location. This sequence of operations 1s
carried out so that to every observer, 1t looks as if the
sequence has either not been performed at all, or been
performed 1n its enftirety. It 1s executed as one 1ndivisible
unit, hence the name “atomic™.)

FIG. 3 shows a schematic of an execution stage 51
(“lockstep unit”) for such a group of threads, comprising
four individual execution lanes 52 (“Lane 17, “Lane 27,
“Lane 37, “Lane 4”) which perform the execution of mstruc-
tions for the individual threads. The results 53 (*“Atomic
MSG #17, “Atomic MSG #27, “Atomic MSG #37, “Atomic
MSG #4”) of an operation executed by the execution lanes
52 (through the execution of an 1nstruction or set of nstruc-
tions) for the threads are provided for each execution thread
52 individually.

FIG. 4 1s a flow chart showing the operation for a group
of threads, e.g. as shown 1 FIG. 3, when performing an
atomic operation. First, the compiled instructions for the
atomic operation are fetched from an instruction cache 54
and decoded, e.g. by an execution stage (step 61, FIG. 4).
The execution threads 1n the thread group each work through
the mstructions, using data accessed from the registers of the
threads (step 62, FIG. 4) to be used 1n the atomic operation,
¢.g. 1n an arithmetic operation. The atomic operation 1s
executed by the execution stage for each thread (step 63,
FIG. 4), which generally involves writing data to a shared
memory area or cache (step 64, FIG. 4).

Once the atomic operation has been executed, the result of
the operation (“Atomic MSG #17, “Atomic MSG #2”,
“Atomic MSG #37, “Atomic MSG #4”) 533), e.g. a modifi-
cation of the register data owing to the arithmetic operation,
1s written back to the registers for each of the threads in the
thread group (step 65, FIG. 4), so that the result can be
accessed by each of the threads in the thread group.

FIGS. 5 to 9 1llustrate various embodiments of the above
operation.

FIG. 5 shows a schematic of a shader core 101, e.g. of the
graphics processing unit (pipeline) 3 shown in FIG. 1. The
shader core 101 includes multiple execution units 102
(““‘warp units”) which each support a group of four execution
threads. Fach execution umt 102 includes four sets of
registers 103 (i1.e. one for each thread, with each set of
registers having, e.g., at least 32 registers), as well as a
shared local memory area 104 (*storage bank™).

Each execution unit 102 1s in data communication with an
interconnect 105 (“message path™). Also 1n data communi-
cation with the interconnect 105 1s a scalar execution unit
106 and a separate “load/store/atomic” pipeline 107 which
handles the load/store and atomic operations, e.g. to an
external system memory or a cache hierarchy.

The operation of a compiler for a shader core will now be
described with reference to the tflow chart of FIG. 6.

As described above, when graphics processing operations
are to be performed for an application by an associated
graphics processing unit (graphics processing pipeline), the
application will generate API (application programming
interface) calls, e.g. as part of a shader program, that are
received by a compiler (not shown) (step 71, FIG. 6). This
enables the compiler to generate appropriate instructions for
the graphics processing unit to generate the graphics output
required by the application. These instructions are common
to each thread group for which the shader program 1s to be
performed, e.g. for a draw call.

The API calls are parsed by the compiler (step 72, FI1G. 6),
with the compiler identitying operations which are to be
performed or could be performed on a thread group wide

basis (step 73, FIG. 6).
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If the API calls explicitly include a step or steps in the
program code for an operation to be performed for the thread
group as a whole, the compiler compiles the API calls into
an appropriate mstruction or set of instructions for 1ssuing to
the graphics processing unit for execution (step 74, FIG. 6).

Additionally or alternatively, when the compiler 1s able to
include an instruction or set of instructions to perform an
operation for the thread group as a whole of i1ts own volition
in a shader program, the compiler will try to identily
appropriate steps 1n the API calls and/or opportunities to
optimise the shader program for a thread group by perform-
ing an operation for the thread group as a whole (step 74,
FIG. 6), and when it 1dentifies such steps/opportunities will
insert the nstruction or set of instructions 1n the compiled
shader program automatically.

The compiled 1nstructions are then issued to the graphics
processing unit (step 75, FI1G. 6), e.g. by writing them to an
istruction cache, from where they can be fetched by the

execution stage for a thread group.

FIGS. 7a, 75, 7c, 8a and 85 each show an execution unit
102 (*“lockstep unit”) to be used for the execution of a group
of execution threads. Similar to as 1s shown 1n FIG. 5, the
execution unit 102 includes four individual execution lanes
110 (“lane 17, “lane 27, “lane 3™, “lane 4”), 1.¢. one lane per
execution thread.

In the execution unit 102 shown 1n FIGS. 7a, 75, 7c and
8a, again similar to as 1s shown in FIG. 5, an individual set
of registers 103 (“R1”) 1s provided for each individual
execution lane 110.

In the execution unit 102 shown in FIG. 85, instead of
individual registers a shared register 111 1s provided which
can be read by each of the execution threads.

In the system shown in FIG. 7¢, similar to as 1s shown in
FIG. 5, a scalar execution unmit 106 1s provided in data
communication with the execution unit 102 for the group of
execution threads.

Operation of the group of execution threads when execut-
ing an operation for the group of execution threads as a
whole will first be described with reference to FIGS. 5, 7a,
8a and 9.

FIG. 9 shows a flow chart showing the execution steps
taken by a group of execution threads, ¢.g. as shown 1n FIG.
1a.

The compiled instructions, stored in the 1mstruction cache
108, are fetched by the execution unit 102 (step 201, FI1G. 9),
when referred to by a program counter of the execution unit
(the program counter being shared by each of the execution
threads). The execution threads in the thread group each
work through the mstructions in turn, the instructions being,
shared and executed by each of the threads in the thread
group 1n lockstep.

Each instruction or set of instructions 1s assessed as to
whether 1t 1s an atomic operation which 1s to be performed
tor the thread group as a whole (step 202, FIG. 9) until one
of the threads in the thread group encounters such an atomic
operation which 1s to be performed for the thread group as
a whole. (If the instructions encountered by the threads do
not relate to the atomic operation which 1s to be performed
for the thread group as a whole, after the 1nstruction or set
ol instructions have been determined not to relate to such an
operation (step 202, FIG. 9), the execution of the instruc-
tions 1s the same as for the operations described with
reference to FIG. 2.)

In the embodiment 1n which the atomic operation com-
prises a lock operation, the lock operation program code
may take the form:
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While( warp_mtx.try_lock( ) );
// execute locked work for whole warp
warp_mtx.unlock( );

In one embodiment this results 1n the following atomic
exchange 1nstructions (to obtain and release the lock) being
1ssued to the execution stage:

WATOM32.1ock AXCHG 1O, r1, dO // 10 - src addr, rl1 - dst addr, dO
-val,p=20

WATOM32.1ock. AXCHG 10O, dO, d1 // rO - src addr, dO - dst, d1 -
val, p =0

The first instruction exchanges the value (e.g. it expects O
and replaces 1t with 1) to obtain the lock (equivalent to the
“try_lock™ 1nstruction), and the second instruction
exchanges the value (e.g. it expects 1 as the lock 1s held and
replaces 1t with 0) to release the lock.

The 1nstruction takes the following arguments:

atom-opc: Operation to perform

src: address whose value to modily

dst: address where the result 1s written

val: argument to operation

p: Operation mode: (0=lock, 1=generic)

This instruction performs an atomic exchange operation
with a lock across the threads of the thread group. This
operation atomically stores the result of the operation to the
destination (dst) address location for the first thread to
encounter the instruction, using an atomic compare and
exchange operation to skip all the other active threads 1n the
thread group 1f the source (src) location 1s not set. The
operation returns the result 0 when the src location has
already been set and 1 otherwise.

If the operation 1s an atomic add operation, e.g. without
using a lock, 1n one embodiment the instruction takes the
form:

WATOMG64. atom. AADD 10, rl1, dO // 1O - src addr, r1 - dst addr, dO
-val,p=1

This mstruction atomically performs an atomic add opera-
tion on the source (src) address location for the first active
thread to encounter the instruction, with the other active
threads 1n the thread group using the existing result. The old
value 1n the source (src) address location before the opera-
tion 1s returned as the result of the operation.

Returning to FIGS. 5, 7a, 8a and 9, when one of the
threads (e.g. being executed by the “Lane 17 execution lane
110 1n FIG. 7a) 1n the thread group encounters the instruc-
tion (fetched from the instruction cache (step 201, FIG. 9))
for the atomic operation which 1s to be performed for the
thread group as a whole, this 1s recognised by the execution
umt 102 as to be performed for the thread group as a whole
(step 202, FIG. 9). The execution unit 102 then masks ofl the
other threads in the thread group (step 203, FIG. 9), 1.e.
renders them 1nactive, as shown in FIG. 7a.

(At this stage, when the atomic operation which 1s to be
performed for the thread group as a whole comprises a lock
operation, the lock of the data in memory being accessed by
the thread 1s obtained, thus eflectively obtaining the lock for
the thread group as a whole.)

Data from the set of registers 103 of the execution lane
110 corresponding to the thread active in the lockstep unit

102 (“Lane 17, FIG. 7a) 1s then accessed (step 204, FIG. 9)
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to be used 1n the atomic operation, €.g. m an arithmetic
operation. The atomic operation can then be executed by the
execution lane 110 associated with the thread (step 205, FIG.
9), which generally mvolves performing the atomic opera-
tion on, and writing data to, the shared memory area, using
the “load/store/atomic™ pipeline 107 (step 206, FIG. 9).

Once the atomic operation has been executed, the result of
the operation (a uniform result (“Atomic MSG”) 113), e.g.
a modification of the register data owing to the arithmetic
operation, 1s written back to the set of registers 103 of each
of the execution lanes 110 of the execution stage 102 (step
207, FI1G. 9), as shown 1n FIGS. 7aq and 8a (apart from for
any execution lanes which were masked out for the execu-
tion of the operation for the thread group as a whole), so that
the result can be accessed by each of the threads 1n the thread
group when they reach the instruction or set of instructions
for the atomic operation.

After the result of the operation has been written to the set
of registers 103 of the execution lanes 110, the mask on the
execution lanes 110 of the execution stage 102 1s removed
(step 208, FIG. 9). Processing of the commands received by
the graphics processing pipeline from the application 1s then
continued, 1.e. by working through the instructions fetched
from the mstruction cache, with the process described above
with reference to FIGS. 5, 7a, 8a and 9 being repeated
whenever an atomic operation 1s to be performed for the
thread group as a whole.

The operation of the embodiment shown in FIG. 75 1s
very similar to that described for the embodiment shown in
FIG. 7a. The only difference 1s that instead of the execution
lane 110 for the thread that encounters the atomic operation
which 1s to be performed for the thread group as a whole,
¢.g. “Lane 17 as shown 1n FIG. 7a, being used to perform the
atomic operation, the instruction or set of instructions for the
atomic operation 1s executed for the thread group as a whole
by the execution unit 102, thus avoiding any of the execution
lanes 110 having to be masked out. Similar to the embodi-
ment shown 1 FIG. 7q, the result of the atomic operation 1s
written back to each of the set of registers 103 for the
execution lanes 110 of the execution unit 102.

The operation of the embodiment shown 1n FIG. 7c¢ 1s
very similar to that described for the embodiment shown in
FIG. 7b, except that instead of the execution unit 102
executing the 1nstruction or set of instructions, the execution
of the atomic operation 1s performed by a separate scalar
execution umt 106 (as shown in FIG. 5). Similar to the
embodiments shown 1n FIGS. 7a and 75, the result of the
atomic operation 1s written back to each of the set of
registers 103 for the execution lanes 110 of the execution
unit 102.

In another embodiment, as shown 1n FIG. 85, a shared
register 111 1s provided which can be read by each of the
execution lanes 110 1n the execution unit 102. In this
embodiment, the step of providing the result of the atomic
operation to all of the active threads of the thread group (step
207, FIG. 9) comprises writing the result to the shared
register 111, from where 1t can be accessed by the execution
lanes 110 for the individual threads.

It can be seen from the above that performing a warp-wide
operation for a thread group as a whole, 1.e. for all the
threads which are being executed 1n lockstep, helps to avoid
the threads deadlocking. This 1s because the operation 1s
being performed for all the threads in the thread group
together, so no one thread i1s waiting for the operation to
complete for another thread, e.g. while accessing the
memory using a lock, before that thread can perform the
operation.
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Furthermore, because the operation i1s being performed
for the thread group as a whole and thus, e.g., making 1t
redundant for each thread to perform the operation individu-
ally, the processing involved, bandwidth required, data
transierred and thus power consumed 1s reduced.

The foregoing detailed description has been presented for
the purposes of illustration and description. It 1s not intended
to be exhaustive or to limit the technology to the precise
form disclosed. Many modifications and variations are pos-
sible in the light of the above teaching. The described
embodiments were chosen in order to best explain the
principles of the technology and 1ts practical application, to
thereby enable others skilled in the art to best utilise the
technology 1n various embodiments and with various modi-
fications as are suited to the particular use contemplated. It
1s intended that the scope be defined by the claims appended
hereto.

What 1s claimed 1s:

1. A method of operating a data processing system com-
prising an execution pipeline that comprises one or more
programmable execution stages which execute instructions
to perform data processing operations, and in which execu-
tion threads are grouped together into thread groups in
which the threads of a thread group are executed 1n lockstep,
one instruction at a time, the method comprising:

identitying, from application programming interface calls

parsed by a compiler, an operation to be executed only

once for the thread group as a whole by an execution

stage of the execution pipeline of the data processing

system,

wherein the operation to be executed only once for the
thread group as a whole comprises an atomic opera-
tion, wherein the atomic operation comprises an
arithmetic operation and a memory transaction;

automatically inserting an instruction or set of instructions

for:

performing the operation only once for the thread group
as a whole, and

providing the result of the operation to all the active
threads of the thread group 1n a compiled application
program code for the operation;

1ssuing to the execution stage the automatically inserted

instruction or set of 1nstructions to cause the execution

stage to:

perform the operation only once for the thread group as
a whole; and

provide the result of the operation to all the active
threads of the thread group; and

the execution stage of the execution pipeline 1n response

to the automatically inserted instruction or set of
instructions:
performing the operation only once for the thread group
as a whole; and
providing the result of the operation to all the active
threads of the thread group;
wherein the steps of performing the operation only
once for the thread group as a whole and providing
the result of the operation to all the active threads of
the thread group comprise:
executing the instruction or set of instructions for
one of the threads of the thread group to perform
the operation for the thread group as a whole,
while masking all of the threads in the thread
group apart from the one thread of the thread
group for which the istruction or set of instruc-
tions 1s being executed, so as to make the masked
threads temporarily 1nactive.
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2. A method as claimed 1n claim 1, wherein the operation
comprises a lock operation.

3. A method as claimed 1n claim 1, wherein the execution
stage performs the operation for the thread group as a whole
and provides the result of the operation to all the active
threads of the thread group by:

performing the operation for the thread group as a whole

in a separate execution unit that i1s associated with the
execution stage.

4. A method as claimed 1n claim 1, wherein the result of
the operation 1s provided to all the active threads of the
thread group by writing the result to respective separate
storage for each of the active threads 1n the thread group.

5. A method as claimed 1n claim 1, wherein the result of
the operation 1s provided to all the active threads of the
thread group by writing the result to shared storage that can
be read by all the active threads 1n the thread group.

6. A method as claimed 1n claim 1, wherein the operation
to be executed for the thread group that comprises the
memory transaction 1s part of a program to be executed by
the execution stage, and the method further comprises:

reordering instructions in the program to be executed by

the execution stage relative to the mstruction or set of
instructions that perform the operation for the thread
group as a whole, belfore 1ssuing the instructions for the
program to the execution stage for execution.

7. A data processing system comprising:

graphics processing circuitry for executing an execution

pipeline that includes one or more programmable
shader stages which execute instructions to perform
data processing operations and in which execution
threads are grouped together into thread groups in
which the threads of a thread group are executed in
lockstep, one instruction at a time; and

a compiler that compiles programs for the execution

pipeline to generate instructions for execution stages of
the execution pipeline;

wherein the compiler 1s capable of:

parsing application programming interface calls;
identifying, from the parsed application programming
interface calls, operations to be executed only once
for the thread group as a whole by an execution stage
of the execution pipeline,
wherein the operation to be executed only once for the
thread group as a whole comprises an atomic opera-
tion, wheremn the atomic operation comprises an
arithmetic operation and a memory transaction; and
for an operation to be executed only once for the thread
group as a whole:
automatically inserting an 1instruction or set of
instructions for:
performing the operation only once for the thread
group as a whole, and
providing the result of the operation to all the
active threads of the thread group 1n a compiled
application program code for the operation;
issuing to the execution stage the automatically
inserted instruction or set of mstructions to cause
the execution stage to:
perform the operation only once for the thread
group as a whole; and
provide the result of the operation to all the active
threads of the thread group; and
wherein at least one execution stage of the execution
pipeline 1s capable of, 1n response to the automatically
inserted nstruction or set of instructions:

10

15

20

25

30

35

40

45

50

55

60

65

22

performing the operation only once for the thread group
as a whole; and

providing the result of the operation to all the active
threads of the thread group;

wherein the execution stage 1s capable of performing
the operation only once for the thread group as a

whole and providing the result of the operation to all

the active threads of the thread group by:

executing the instruction or set of instructions for
one of the threads of the thread group to perform
the operation for the thread group as a whole,
while masking all of the threads in the thread
group apart from the one thread of the thread
group for which the istruction or set of instruc-
tions 1s being executed, so as to make the masked
threads temporarily 1nactive.

8. A data processing system as claimed in claim 7,
wherein the operation comprises a lock operation.

9. A data processing system as claimed in claim 7,
wherein the execution stage performs the operation for the
thread group as a whole and provides the result of the
operation to all the active threads of the thread group by:

performing the operation for the thread group as a whole

in a separate execution unit that 1s associated with the
execution stage.

10. A data processing system as claimed in claim 7,
wherein the result of the operation 1s provided to all the
active threads of the thread group by writing the result to
respective separate storage for each of the active threads in
the thread group.

11. The data processing system as claimed claim 7,
wherein the result of the operation 1s provided to all the
active threads of the thread group by writing the result to
shared storage that can be read by all the active threads 1n the
thread group.

12. A data processing system as claimed in claim 7,
wherein the operation to be executed for the thread group
that comprises the memory transaction 1s part of a program
to be executed by the execution stage, and the compiler 1s
capable of:

reordering instructions in the program to be executed by

the execution stage relative to the instruction or set of
instructions that perform the operation for the thread
group as a whole, before 1ssuing the 1nstructions for the
program to the execution stage for execution.

13. A non-transitory computer readable storage medium
storing computer software code which when executing on a
processor performs a method of operating a data processing,
system comprising an execution pipeline that comprises one
or more programmable execution stages which execute
instructions to perform data processing operations, and 1n
which execution threads are grouped together into thread
groups 1n which the threads of a thread group are executed
in lockstep, one instruction at a time, the method compris-
ng:

identifying, from application programming interface calls

parsed by a compiler, an operation to be executed only

once for the thread group as a whole by an execution

stage of the execution pipeline of the data processing

system,

wherein the operation to be executed only once for the
thread group as a whole comprises an atomic opera-
tion, wherein the atomic operation comprises an
arithmetic operation and a memory transaction;

automatically inserting an instruction or set of istructions
for:




US 10,725,784 B2
23

performing the operation only once for the thread group
as a whole, and
providing the result of the operation to all the active
threads of the thread group 1n a compiled application
program code for the operation; 5
issuing to the execution stage the automatically mserted
instruction or set of mstructions to cause the execution
stage to:
perform the operation only once for the thread group as
a whole:; and 10
provide the result of the operation to all the active
threads of the thread group; and
the execution stage of the execution pipeline 1n response
to the automatically inserted instruction or set of
instructions: 15
performing the operation only once for the thread group
as a whole; and
providing the result of the operation to all the active
threads of the thread group;
wherein the steps of performing the operation only 20
once for the thread group as a whole and providing
the result of the operation to all the active threads of
the thread group comprise:
executing the instruction or set of instructions for
one of the threads of the thread group to perform 25
the operation for the thread group as a whole,
while masking all of the threads in the thread
group apart from the one thread of the thread
group for which the instruction or set of 1nstruc-
tions 1s being executed, so as to make the masked 30
threads temporarily 1mactive.
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