12 United States Patent

Gamliel et al.

US010721791B1

US 10,721,791 B1
Jul. 21, 2020

(10) Patent No.:
45) Date of Patent:

(54) RECOMMENDING THE REFACTORING OF

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

MICROSERVICES

Applicant: EMC IP Holding Company LLC,
Hopkinton, MA (US)

Inventors:

Roi Gamliel, Tkuma (IL); Amihai

Savir, Sansana (IL); Avitan Gefen,
Lehavim (IL)

Assignee:

EMC IP HOLDING COMPANY

LLC, Hopkinton, MA (US)

Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

Appl. No.: 16/386,524

Filed: Apr. 17, 2019

Int. CIL.

GO6F 9/44 (2018.01
HO4W 76/36 (2018.01
GO6F 8/72 (2018.01
HO4W 28/02 (2009.01
GO6F 8/41 (2018.01
GO6F 9/50 (2006.01
HO4W 48/06 (2009.01
HO4W 72/12 (2009.01
HO4W 268/16 (2009.01
HO4L 12/26 (2006.01
U.S. CL

CPC ...

[N e L L S N L e

HO4W 76/36 (2018.02); GO6F 8/433

(2013.01); GOGF 8/72 (2013.01); GO6F
9/5033 (2013.01); HO4W 28/0231 (2013.01);
HO4W 48/06 (2013.01); HO4W 72/1226
(2013.01); GO6F 9/5066 (2013.01); HO4L
43/0876 (2013.01); HO4W 28/16 (2013.01)

Field of Classification Search

CPC

GO6F 16/24578; GO6F 16/9024; GOG6F

8/443; GO6F 9/5044; GO6F 11/302; GO6F

9/5033; GO6F 9/5066; HO4L 45/44;
HO4W 72/10, HO4W 76/36; HO4W
28/0231; HO4W 72/1226; HO4W 28/16
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,292,350 B1* 3/2016 Pendharkar GO6F 9/5044
10,198,250 B1* 2/2019 Sharma GO6F 16/9024
2003/0226133 Al* 12/2003 Grover GOG6F 8/443
717/140

2018/0136931 Al1* 5/2018 Hendrich GO6F 11/302
2019/0339965 Al* 11/2019 Garvey GO6F 16/24578
2020/0068440 Al1* 2/2020 Talbert HO4W 72/10

* cited by examiner

Primary Examiner — Tuan A Vu
(74) Attorney, Agent, or Firm — Dergosits & Noah LLP;

Todd A. Noah

(57) ABSTRACT

A system recommends the refactoring of microservices. The
system generates a graph of connected nodes including a
first node, which represents a first atomic part of code 1n a
microservice 1n an application, and a second node, which
represents a second atomic part of code 1n the microservice.
The system determines a nodes connection score based on
any connections between the first node and the second node.
It the nodes connection score satisfies a nodes connection
threshold, the system determines a relative code size based
on comparing a size associated with the first atomic part of
code against a size of the microservice. If the relative code
s1ize satisfies a code size threshold, the system outputs a
recommendation to disconnect the first atomic part of code
from the microservice, create another microservice in the
application, and connect the first atomic part of code to the
other microservice.

20 Claims, 7 Drawing Sheets

0} - agsiaated with Brsi oncrosenviLe ar app!

ot '
:‘} . j.l.":i. :'_F-!
----------------------------------- f - ——

,_..-.-r—"'"" e
e

DiapeTroune sefnrenlys sanisry soome based on

r pomnaTline 1t code sepenoemis,

wation, acabsl secmid vude

SN N N SN NN N SN NN NN SN NN SN SN NN SN NN SN N N SN N SN S s

- T -
-—-I-""""""TF oot . .' M +'--."-'"'-—\--..
i acpinents simiaioe seore aobistnos e

30 eI T . i
T e SSRGS EETILY Desh YT 15
e ——— . = -
fig % [FIG.3B
PRERNIE IOs s vices shrlartly scores hased va cumpar g sze ol simatlar
306 _~dcode segnienis it frst code segmants anil second code sepinents apainst sixes
ot Brst mWroseovies amd seong microservios

T T

- 3 -1 e Y Ty “gor i - v e
205 q_q::“"—_—_-—‘ = U CROECTVILGS = INANTY SU0 S SaRNCE e e e,
e e NCTRSErVICES shutanty thresnohil? ___________,..,....—-"-'-'-"-' ,
i T T :
T N1 |
L Y
s ¢ :
I
"'_ gl grenrmgy - Py - . 1L R oy .a -gily '
310 At FeCOMIMCRARiIo? 10 Ioree TIrst MICIoEcivice Wi second :
d - - :)
FLCPINEY Y ICE :
--- .
‘F .
I
\)
{ FlG.38) :
ol ¥
e L L,
— - T e
—_— T T vy -
347. e e T Qe of stmilar code segments T T = L
T e —— PR . . a gar -~ AT 4T s b
= e SRR sogmenind g1 thresholdl ae o |
T [| — h!':']
e . =T i
Yos jr !
rﬁ . e ke - r -.:ﬁ =~ b wh — -—— '-.F.- e, mh e - ul . Lh'l b — - -.*.- - e wh — hh-"_l -l wlr .-*ﬁ b e w ke nh II I
32 Ohapad recommendation w pove simitlar cooa segments Yo zecond)
. . . - - F
r Ltput recommeiidaiion o crorle thard 1picroservice bnd B move siodar A
36 e coe Fogments et coda segmenta sang seoond codz segmants 1o thiog I
L TECTOECTL IS {

US 10,721,791 Bl

Sheet 1 of 7

Jul. 21, 2020

U.S. Patent

B8ET SSPON
T T

g¢T ydein

T ..r+l..r+l+l...l..r+l...l+l...l..r..r+l+l..r..r..r+l+l...larm *

PET 00) UCRRHUDIILLCIDY
Braognesy

Q€T SHIBRIESS PO €

P

Q77 3MIBSOUSIA &

put-

RET ARO) JO 83483 JnU0NY ¢

GZ 1 SWBUSTRS Bpe) 7

R B S g R U S U S W g G L G S B g G S U g G T S U W W W S G L G S D g G S D G W I D G U I G S U S G wger wgr)

e e e e e ok e e e e ke i e e e A e g A e i e e i A e A i v i v i A i vl A A e v i e i v e vl e,

T g i g P Pl il Pl Pl Pl Pl gl P g Pl g il Pl Pl g il gl il gl Pl P il gl Pl Pl il Pl Pl Pl Pl Pl i gl Pl gl Pl P Pl gl PipF Pl i gl Pipl T Fip PP Tt

PET 9PCT JO S1ieg MUWOW T

%%%%L

277 SVWFDS BPOD Y

g1 @UALSOINA T

¥17T uoneriddy anAI3S

B g g U R R A R R e S U S e S U R R U R R U R R R R R R R R R R R R S g N R g

2171 SOMIBN

Q01

US 10,721,791 Bl

Sheet 2 of 7

Jul. 21, 2020

U.S. Patent

Ore
SOy 10
3 1ed
JMEE 7

L vmﬁﬁch,«
O] PUINOBLT
SISULIBS

| TEC mmmﬁ&i
SOUION

?mewm
3D0O7Y 3O
m A LB |
ﬁﬁﬁﬁw 7

REL X
BTy JO§ P07 30
WHOTY § 13 WY

L PO PUMRIOHY
i 10} puayory
SISULIE 4

[CCT pusiuoiy
iS00S

O C - R{C

opoTy 0F 19p0Y O

Z ﬁ.«m | ﬁ ﬁﬁm

G7T PUSIIOL] |
10} puayoesy |

pappoquiy

b7 T \mmﬁﬂ 03]

U
203107 PO 30
e £y g

rve ﬁaﬁxﬁ 4
101 puayoey
@Jﬁnm,ﬁ?ﬂ

TC PUREcig
L 99Mm

PGy $0
E woly

POy IOE 2POTY IO
RGN O B

g4 HEH

o_.wm. e Q17 - 8PT i
2107y $0
,.M H\muﬂm. ;

b pUSu0NIY 107
it ém a2, %.

IO} puayoey
JES&

[F7C posiion]
L

702 Eég]

vV Dl i
§oD9,) 10

L D ueg

LY

” Sm |
SO i me
4 mmm. m
OV 3; v §

0L

P07y JO

m MEJ |
LU0

o

@umﬂ.. MWQA.\

PO} 3O

e ol

IR AT SN 3 23
il larl ot ed

= ool |

\I.I.I-IFLI.I.I-I.I.“.I.I.I.I‘

| FiC PUSIIOI 4 M GOE, PRISIUOD m

0] ﬁmié

ﬁﬁog

com PUSIUOLT

10§ puoyorq |

20T

MI2IUDI g SO

US 10,721,791 Bl

Sheet 3 of 7

Jul. 21, 2020

U.S. Patent

 OFC
3P0 40

_ ﬂSE

§9PC 1 30
§ O i
§ UMY |

X
ESUMQ

56 mb_
(g |
m LY |

PO mn_,

RN
ﬁﬁﬁrr. o m_

RERrCES
m_ ,...MEE _

 C 7 PUIOT, M @Nv naﬁmﬁm
103 puazoey - I0] pUSYoRY §
E Mjﬂ.m_m_wn P @ﬁwﬂﬁu

7{7 PUARIOEY me.m DUDIOI S ¢

G2 AN

SCHIIDS

L OYT
m%aJEm

mm%ﬁm
 DH0TY |

Op0TY 10 apoygol fepoy ol

1Py §0;

8 [Med 11f | HE H ﬁf S Ped |
LJiHioly § H21uosy IO} | 21Oy |

wvm DUSIBOL] |
10} puayoey |
SI3UIE g

§ 977 PUSILOL]
i 0] puayoeg

pappoquiy

N T PUSItiog 4 ﬁN < ﬁﬂJu\mSp]
SOUI0, 3 AA

{9P0oTy 30
”m uw_ﬂ_mﬂ 7

Ppen 0

az "ol

G

RUYSE
LaPO7Y JO]
Bal ..m.& m
ﬁEﬁ _

75¢

opoy 1oi fopony o

(3 b

o, dwﬂ.ﬁ_@m '

| 3Eg
ﬁmg 7

E Q17 |
$ POy FO
{1 1ibd
..ﬁEE _

@mm

m wwa |
erwrw w_,‘.....
Jped

m mmm
FOp0Y
i)

m ?“
mﬁm

i3 uey
L2tiuony

0
d |
1

___________ v
U0 140§ |
@m é%m G2

| 90T PUSIOL]

30} pusyoey
Egmmdﬂ\

f PUANI0I] |
0j puasoeg |

> @

vw N ﬁ_mgﬁﬁu m %QN wum@\wﬁam.m
99 i pioipuy

Nau |
o DUNUOLY GO §
00¢

}.wﬁmﬁw

IR osz 1 oot
PO y 30} _pd)) Jo %Fu 40
WD Ny NI | g Ll
m@aﬁ __....n_”

WExJ (.E”
Q Eum

ﬁq

woi5io|] b
REZR

2P IO .uwcu o
m_\,....wr'_ﬁ.w_ | N ._.ﬂﬂ._ .. | Z wwmm

SpOTY 10|

H Hid
JUBOTY

@Qw UL Rﬁw
0] PUS¥IEL |

m.m GO §

US 10,721,791 Bl

Sheet 4 of 7

Jul. 21, 2020

U.S. Patent

@.m.‘,_.,u,w@

£E<T mmﬁ.mi 41

w& PSRy |
wsﬁwﬁ

€T pusjuo, 1
SOWOE

e

ﬁw.mmuﬁ.._
S0} 10
s yeg |
< WES :

REZ 111 9¢C

2p05 g0} Hopo'y 1o}

{ B84 g8 | W4

 SRUOLY § 1 ONB0iY |

Elxquibitining

10} pusyoryg |
SIUEG

&l

POy JO

1) Mg

o

BRIt

 pI7 PUSILOT,
. A

3LC

000,y 10/
O 17 |

| DO

O7 7 PUSIUOL] |
.§. mm@.m%m _

CET PUIIUDIY]
SOWIOG

epe

{577 PUottol] |
A _

PO JO1 8 ...EJ 30

RN

fopG-y 30!
mm SO}y |

%] [t

3¢ Dl

AP0y 40

.r.l..._ [

d Mg

E..J

q

Jwau wﬁ,mm
| 4 MEd

%4 . _Q__M_.m_ T ver |
apo Yy 3ot opoy Jof opoTy Jof
Al gt || o
_ . Jmﬁwmﬁ . m.

cm¢ Pl SIT v T s

spoy 30f fopoy 1o
YV HEB] ¢ 1 N HEd
ooy | {otwoy

2P0 u

m iy

3 a@m (1 M .
| Loy MJWEE 7.

90T puauoLy | um DUNHOL |
0} PUONOEY 0] puayony |
zsﬁz m m .qu

AR E,m
PUINIBG GO

RCT PUAIOT]

vom wm&;@ { m .NQ_N
. 12{Ue] S

mopuy | |pusworg soi

2&3 71

] Q%N._ m
WP} JO5
BeRLLNE
”uﬂﬁﬁ.\w Y, “m

“m QMN b § PST
LopoD 10) fopoD 1o
rguegt 10 E&
RIILAATS I RIS

d HEd

ﬁn.) E_
. M.w w.m“.m

A B

omsb 30
N L

S
1

CRC 3 B B8 Kol

NGO

-t
E PUDRICH JO§ |
FDUONOBH GO

YOL EQEPE m GC7 PUSIUOLY |
ME mmﬁuﬁm m 10 pusyorg |

mOm

157 ﬁmﬁmoﬁ
| 10 w mmm...,ﬁu@m

FQCT pudIiGsy
IBge] SO

wa«x ;
DUOIGOT] Gt |

517 DUoInoL, | W K wmg% ¥
i A 007 |

U.S. Patent Jul. 21, 2020 Sheet 5 of 7 US 10,721,791 B1

N 300

Determine segments suntarity score based on comparing hirst code segments,
33— associated with first microservice 1n application, aganst second code
' segments, associated with second microservice i apphication

30 T Segments similarity score satisties .
N o Segments similarity threshold? sweee==="""

| Determuine mucroservices similarity scores based on comparing size of sumlar|
3o cude segments in imt cude scgments di“d Se cund mdt, &eﬁmuﬂs against sizesf

208 R iCTOSCTVICES SEtlarity score satisfies —
T e JHCTOSETVICES STNilarity threshold? """

Output reconumendation to merge first microservice with second
NUCTOSSYVICE

319 I buﬁz of similar cedc &gments T e

Yes @

mmmmmmmmmm

314 - "~ Output recommendafion to move similar code segments from second
E - nucroservice 1o first nucroservice E:

rargs

e 00 EEEEEF 0 R0 EECEEEE 0 CEEREE 0 EUEECED 00 UEECEGRE, 0 EUREGEECE EmCEc mmmmmmmmmm

" Dutput recommendation to create third microservice and to move similar
316 — code segments in fivst code segments and second code segments to third |
| mzamserme f

FIG. 3A

U.S. Patent Jul. 21, 2020 Sheet 6 of 7 US 10,721,791 B1

Generate graph of connected nodes comprising first node, which represents |
318 - tirst atomic part of code in microservice in application, and second node, ;
ﬂ which represents second atomic part of code 1 microservice E

LELRC L SR RCRC L ARLRCRC O L LA LRSI SRR L SRR L L ey WL S U R FURCRC L R L LA Lo LR, LS, SR LR SRR

| Determine nodes connection score based on any connections between first |

320 T node and second node 3

322 =" “Nodes connection score satisfies nodes connection thzfesh@i# o i

E Determine relative code size based on comparing size assoctated with first |
atone part of code agamst size of nucroservice

memmmwmmwgmmmmmmmmwmﬁ

324

326 e 07 Relative code size satisfies code size threshold? 7 o
o = No

|

328 —— microservice, create other microservice in application, and connect first |

atomic part of code to other microservice ﬁ

Soalaiaialn RORERCR nEnCninCnl sCACRORCREN: CnimCminCnt - alaaininly Walsiaia(s - m((eCelels CACRERCRENCy OalaiRieiRl: aDmOmCmOm . SCROMN wOnCmininie: RCaialaine ainlnininl aCainCain Wninlninn SCCaImOnn WCRCRCRIN BOaCaininin ICRCRCRCRC

330 wwmﬁ“:“géﬂgﬂwa code size satisfies minimal code size threshold? ez
ves ¥
332 w2 “Tirst atomic part of code is called by additional microservice? o
- g NG

_ J Qutpot recommendation to move first atomic part of code to additional |
334, » MICTOSETVICE E

~1G, 38

US 10,721,791 Bl

Sheet 7 of 7

Jul. 21, 2020

U.S. Patent

suonesddy

sgonRotddy
/SADIAD(Y
JEIPON
0wy
WOL/0],

QO ~»

A1k
S ' et
¥ :
“ . . Q7P Seinpo
. Otp Aauz m 87 S2Inpony
PN :
. £18([BUIIX m U0
L 0} 90PLISTU] : 5
§ i :
57y B
. wesSoig
OF Aiug ezeQ G0F @8ei01g

G SWegodd
uoneonddy

FIL S0BLI33U]
UOIRIIUNLUWIOD)

O

VEY Avisig
IRUIINT J0J
arepis1ug Aeidsig

r“mwmmmwmmwwmm
A e m'e et e e e e e e ‘e e

01 4o1depy

AgjdsiC

e " "l " " " e e "o " "o "o "o " e e e "l e e "o "o o "o "o "l "l "

11111111111111111111111111

7ir WIDISAG

" " e " " "o e " " "o " "l " e "l e e "ol "o "o "o "o "l "o "l e i

gutzesado
gty (N VvY) L L
e M VI

- OiF sois

oty UAOY)

US 10,721,791 Bl

1

RECOMMENDING THE REFACTORING OF
MICROSERVICES

BACKGROUND

Microservices are a soltware development technique, and
a variant of the service-oriented architecture style that
structures a software application as a collection of loosely
coupled services. In a microservices architecture, the loosely
coupled services are fine-grained services and their commu-
nication protocols are lightweight. Decomposing an appli-
cation ito smaller services improves modularity, which
makes the application easier to understand, develop, and
test. This application decomposition parallelizes develop-
ment by enabling small autonomous teams to develop,
deploy, and scale their respective services independently.

Whether a software developer 1s building a new product
or decomposing an existing monolithic application, one of
the most dificult problems 1n adopting a microservices
architecture 1s defining the granularnity of each microservice.
Defiming the correct boundaries, both from the business and
the technological aspect, 1s an error prone process that 1s
extremely dithicult to accomplish correctly. This tedious and
iterative process can require significant amounts of time and
money. As much as a microservices architecture allows
agility and quick response to business needs, an evolving
microservices architecture requires rethinking, changing the
boundaries of existing components, and a process known as
refactoring.

Refactoring 1s the process of restructuring existing com-
puter code—changing the factoring—without changing the
computer code’s external behavior. Refactoring 1s intended
to 1improve non-functional attributes of the computer code.
Advantages of refactoring include reduced complexity and
improved source-code maintainability. Typically, refactor-
ing applies a series of standardized basic micro-refactorings,
cach of which 1s usually a tiny change in a computer
program’s source code that either preserves the behavior of
the computer code, or at least does not modily the source
code’s conformance to functional requirements. Many sofit-
ware development environments provide automated support
for performing the mechanical aspects of these basic refac-
torings. If done well, the refactoring of computer code may
help software developers discover and correct hidden bugs
or vulnerabilities by simplifying the underlying logic and
climinating unnecessary levels of complexity.

Moreover, when a developer wants to introduce a new
concept 1nto an existing system composed of several micros-
ervices, the developer needs to decide how to divide the new
concept to different parts appropriate for each of the current
microservices or conduct a refactoring of the system. The
refactoring can generate new microservices which will
include computer code for the new concept.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example system
for recommending the refactoring of microservices, under
an embodiment;

FIGS. 2A-F illustrate example graphs for recommending,
the refactoring of microservices, under an embodiment

FIGS. 3A-B depict a flowchart that 1llustrates a method
for recommending the refactoring ol microservices, under
an embodiment; and

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a block diagram illustrating an example hard-
ware device in which the subject matter may be i1mple-
mented.

DETAILED DESCRIPTION

Embodiments herein recommend the refactoring of
microservices. A system generates a graph of connected
nodes including a first node, which represents a first atomic
part ol code 1n a microservice 1n an application, and a second
node, which represents a second atomic part of code in the
micro service. The system determines a nodes connection
score based on any connections between the first node and
the second node. If the nodes connection score satisfies a
nodes connection threshold, the system determines a relative
code size based on comparing a size associated with the first
atomic part of code against a size of the micro service. If the
relative code size satisfies a code size threshold, the system
outputs a recommendation to disconnect the first atomic part
of code from the microservice, create another microservice
in the application, and connect the first atomic part of code
to the other microservice.

For example, a refactoring recommendation tool uses
unified modeling language to generate a graph of connected
nodes which include nodes that represent an atomic part A
of code, an atomic part B of code, an atomic part C of code,
an atomic part L. of code, an atomic part M of code, an
atomic part N of code, and an atomic part O of code for a
mobile Backend for Frontend. The refactoring recommen-
dation tool calculates a nodes connection score of 1.00 for
the connection between the atomic part L of code and the
atomic part M of code, a nodes connection score of 0.50 for
the connection between the atomic part L of code and the
atomic part C of code, and a nodes connection score of 0.00
for each of the connections between the atomic part L of
code and the atomic part N of code, and the atomic part O
of code. Since the nodes connection score of 0.00 for each
of the connections between the atomic part L of code and the
atomic part N of code, and the atomic part O of code do not
satisty a nodes connection threshold of 0.1235, the refactor-
ing recommendation tool compares the size of the atomic
part N of code and 1ts directly connected atomic part O of
code against the size of the mobile Backend for Frontend,
which results 1in a relative code size of 29%. %. Since the
relative code size of 29% for the atomic part N of code and
its directly connected atomic part O of code 1s greater than
a code size threshold of 20%, the refactoring recommenda-
tion tool outputs a recommendation to disconnect the atomic
part N of code and 1ts directly connected atomic part O of
code from the mobile Backend for Frontend, create a new
10S Backend for Frontend, connect the atomic part N of
code and its directly connected atomic part O of code to the
new 10S Backend for Frontend, and rename the mobile
Backend for Frontend as the Android Backend for Frontend.
Splitting the microservice 1nto two microservices can reduce
complexity, 1mprove source-code maintainability, and
enable software developers to develop code more quickly
and efliciently by discovering and correcting hidden bugs or
vulnerabilities through simplifying the underlying logic and
climinating unnecessary levels of complexity.

FIG. 1 illustrates a block diagram of a system that
implements recommending the refactoring of microservices,
under an embodiment. As shown in FIG. 1, system 100 may
illustrate a cloud computing environment in which data,
applications, services, and other resources are stored and
delivered through shared data-centers and appear as a single
pomnt of access for the users. The system 100 may also

US 10,721,791 Bl

3

represent any other type of distributed computer network
environment in which servers control the storage and dis-
tribution of resources and services for different client users.

In an embodiment, the system 100 represents a cloud
computing system that includes a first client 102, a second
client 104, and a third client 106; and a first server 108 and
a second server 110 that may be provided by a hosting
company. Although FIG. 1 depicts the first client 102 as a
laptop computer 102, the second client 104 as a personal
computer 104, and the third client 106 as an Apple®
Macintosh computer 106, each of the clients 102-106 may
be any type ol computer, such as a server. The clients
102-106 and the servers 108-110 communicate via a net-
work 112. Any combination of the servers 108-110 may be
any combination of physical computers and virtual
machines, or virtual servers. Although FIG. 1 depicts the
system 100 with three clients 102-106, two servers 108-110,
and one network 112, the system 100 may include any
number of clients 102-106, any number of servers 108-110,
and any number of networks 112. The clients 102-106 and
the servers 108-110 may each be substantially similar to the
system 400 depicted in FIG. 4 and described below 1n
reference to FIG. 4.

The first server 108 1includes a service application 114 that
includes a first microservice 116, a second microservice 118,
and a third microservice 120. The first microservice 116
includes first codes segments 122 that include a first atomic
part of code 124, the second microservice 118 includes
second codes segments 126 that include a second atomic
part of code 128, and the third microservice 120 includes
third codes segments 130 that include a third atomic part of
code 132. The first server 108 also includes a refactoring
recommendation tool 134 and a graph 136 that includes
connected nodes 138. FIG. 1 depicts the service application
114 and the refactoring recommendation tool 134 residing
completely on the first server 108, but the service application
114 and/or the refactoring recommendation tool 134 may
reside completely on any of the clients 102-106, completely
on the second server 110, or 1n any combination of partially
on the first server 108, partially on the clients 102-106, and
partially on the second server 110. The service application
114 and/or the refactoring recommendation tool 134 may
provide a plug-in to any of the clients 102-106 and/or the
servers 108-110 that enables any of the clients 102-106
and/or the servers 108-110 to execute the service application
114 and/or the refactoring recommendation tool 134.

FIGS. 2A-F 1llustrate example graphs for recommending
the refactoring ol microservices, under an embodiment. FIG.
2A depicts a graph 200 of the service application 114 that
includes an 108 frontend 202, an Android frontend 204, and
their corresponding first microservice 116, which i1s a mobile
Backend for Frontend 206. The mobile Backend for Fron-
tend 206 contains the first code segments 122 that include
the corresponding first atomic part of code 124, such as an
atomic part A of code 208, an atomic part B of code 210, and
an atomic part C of code 212. The graph 200 also includes
a web frontend 214 and its corresponding second microser-
vice 118, which 1s a web Backend for Frontend 216. The
web Backend for Frontend 216 contains the corresponding
second code segments 126 that include the second atomic
part of code 128, such as an atomic part D of code 218, an
atomic part E of code 220, and an atomic part F of code 222.

The graph 200 further includes a web frontend 224 and its
corresponding third microservice 120, which 1s an embed-
ded Backend for Frontend 226. The embedded Backend for
Frontend 226 contains the corresponding third code seg-
ments 130 that include the third atomic part of code 132,

10

15

20

25

30

35

40

45

50

55

60

65

4

such as an atomic part G of code 228 and an atomic part H
of code 230. The graph 200 additionally includes a Somos
frontend 232 and 1ts corresponding microservice, which 1s a
partners Backend for Frontend 234. The partners Backend
for Frontend 234 contains code segments that include an
atomic part ol code, such as an atomic part I of code 236, an
atomic part J of code 238, and an atomic part K of code 240.
The graph 200 can also include an atomic part C of code 242
for the web Backend for Frontend 216, a part C Backend for
Frontend 244, and an atomic part C of code 246 for the part
C Backend for Frontend 244.

Microservices can sometimes split due to historical rea-
sons which can change after a while. Additionally, many
copy and paste iterations can produce similar microservices.
Therefore, 11 some microservices share enough similar code,
these microservices can be merged 1nto one microservice.
For example, after the software developer adds the code for
the atomic part C of code 242 for the web Backend for
Frontend 216, the refactoring recommendation tool 134 uses
a diff utality, which 1s a line-oriented data comparison tool,
to 1dentily similarities in large amounts of code that evolved
during development cycles. Similar to the Levenshtein-
distance algorithm, the diff utility determines the smallest set
of deletions and insertions to create one file that 1s being
compared from another file that 1s being compared. There-
fore, the refactoring recommendation tool 134 uses a diff
utility to compare code segments for the mobile Backend for
Frontend 206 against code segments for the web Backend
for Frontend 216. The difl utility’s comparison of the code
segments that include the atomic part A of code 208, the
atomic part B of code 210, the atomic part D of code 218,
the atomic part E of code 220, and the atomic part F of code
222 resulted 1n very low similarity scores that are close to
0.00. However, the difl utility’s comparison of the code
segments that include the atomic part C of code 212 for the
mobile Backend for Frontend 206 against the code segments
that include the atomic part C of code 242 for the web
Backend for Frontend 216 resulted 1n a segments similarity
score of 0.98. Although these examples use segments simi-
larity scores i the range from 0.00 to 1.00, any range and
type of segments similarity score may be used.

An application can be a computer program or piece of
soltware designed and written to fulfill a particular purpose
ol a user. A microservice can be a loosely coupled service 1n
a software application. A code segment can be a portion of
a computer program that contains executable 1nstructions. A
segments similarity score can be a number that expresses the
resemblance between portions of executable computer
instructions.

If none of the segments similarity scores for compared
code segments satisly a segments similarity threshold, the
refactoring recommendation tool 134 will not recommend
the merging of the microservices that include the compared
code segments. A segments similarity threshold can be the
magnitude that must be satisfied by a number, which
expresses the resemblance between portions of executable
computer instructions, for a specific result to occur. Since
the segments similarity score of 0.98 for the atomic part C
of code 212 and the atomic part C of code 242 satisfies the
segments similarity threshold of 0.75, the refactoring rec-
ommendation tool 134 determines whether the mobile Back-
end for Frontend 206 and the web Backend for Frontend 216
share enough similar code segments to justily being merged
into a single microservice. Although this example uses a
segments similarity threshold 1n the range from 0.00 to 1.00,
any range and type of segments similarity threshold may be
used.

US 10,721,791 Bl

S

Continuing the example, the refactoring recommendation
tool 134 compares the size of the identified similar code
segments 1 the mobile Backend for Frontend 206 and the
web Backend for Frontend 216 against the sizes of mobile
Backend for Frontend 206 and the web Backend for Fron-
tend 216 to determine whether the mobile backend for
frontend 206 and the web Backend for Frontend 216 share
enough similar code segments to justily being merged into
a single microservice. This comparison of the size of the
similar code segments to the sizes of their microservices
results 1n microservices similarity scores of 0.33 for the
mobile Backend for Frontend 206 and 0.25 for the web
Backend for Frontend 216, which indicates that the similar
code segments are only 33% of one microservice and 25%
of the other microservice. Although these examples use
microservices similarity scores 1n the range from 0.00 to
1.00, any range and type of microservices similarity scores
may be used. A size can be the overall dimensions or
magnitude of a thing. A microservices similarity score can
be a number that expresses the resemblance between loosely
coupled services in a soltware application.

If any of the microservices Similarity scores for the
microservices satisty a microservices similarity threshold,
the refactormg recommendation tool 134 will recommend
the merging of the microservices that include the compared
code segments. A microservices similarity threshold can be
the magnitude that must be satisfied by a number, which
expresses the resemblance between loosely coupled services
in a software application, for a specific result to occur. Since
neither the microservices similarity score of 0.33 for the
mobile Backend for Frontend 206 nor the microservices
similarity score of 0.25 for the web Backend for Frontend
216 satisfies the microservices similarity threshold of 0.80,
these microservices do not share enough similar code seg-
ments to justily being merged mto a single microservice.
Consequently, the refactoring recommendation tool 134
determines 11 the similar code segments are suihiciently large
to justily being moved by determining whether the size of
the similar code segments in the atomic part C of code 212
and the atomic part C of code 242 satisly a segments size
threshold. A segments size threshold can be the magnitude
that must be satisfied by a number, which 1s the overall
dimensions or magnitude ol a portion of a computer pro-
gram that contains executable instructions, for a specific
result to occur.

If the size of the similar code segments does not satisty
the segments size threshold, the similar segments are too
small to justily being moved, and the refactoring recom-
mendation tool 134 can evaluate whether sizes of other
similar code segments satisiy the segments size threshold. It
the size of the similar code segments satisfies the segments
s1ze threshold, the refactoring recommendation tool 134 can
output a recommendation to move one set of the similar code
segments from one microservice to the other microservice
that includes the other set of similar code segments. For
example, the refactoring recommendation tool 134 outputs a
recommendation to move the atomic part C of code 242
from the web Backend for Frontend 216 to the atomic part
C of code 212 for the mobile Backend for Frontend 206 by
linking the atomic part D of code 218 to the merged atomic
part C of code 212 and deleting the atomic part C of code
242, as depicted by FIG. 2A. A recommendation can be a
proposal as to the best course of action.

Alternatively, if the size of the similar code segments
satisiies the segments size threshold, the refactoring recom-
mendation tool 134 can output a recommendation to create
a new microservice and to move the similar code segments

10

15

20

25

30

35

40

45

50

55

60

65

6

to the new microservice. For example, since the refactoring
recommendation tool 134 calculates that only 14% of the
code for the mobile Backend for Frontend 206 1s dedicated
to the atomic part C of code 212, and only 25% of the code
for the web Backend for Frontend 216 1s dedicated to the
atomic part C of code 242, none of the existing microser-
vices 1s sulliciently dedicated to the similar code segments.
Theretore, the refactoring recommendation tool 134 outputs
a recommendation to create the part C Backend for Frontend
244, and to move the atomic part C of code 212 from the
mobile Backend for Frontend 206 and the atomic part C of
code 242 from the web Backend for Frontend 216 to become
the atomic part C of code 246 for the part C Backend for
Frontend 244. In this situation, the Android frontend 206 and
the web frontend 214 would both be linked to the part C
Backend for Frontend 244.

FIG. 2B depicts the graph 200, which indicates that a
soltware developer added an atomic part L of code 248 and
an atomic part M of code 250 to the mobile Backend for
Frontend 206 to provide additional functionality exclusively
for the Android frontend 204. FI1G. 2C depicts the graph 200,
which indicates that a software developer added an atomic
part N of code 252 and an atomic part O of code 254 to the
mobile Backend for Frontend 206 to provide additional
functionality exclusively for the 10S frontend 202. These
example additions of code demonstrate that during the
evolution of a microservice, part of the microservice may
grow large and complex while other parts of the microser-
vice may remain small or just separate from the large part of
the microservice. When two or more parts of a microservice
are not strongly connected anymore, splitting the microser-
vice mto smaller parts may reduce complexity, improve
source-code maintainability, and enable software developers
to discover and correct hidden bugs or vulnerabilities by
simplitying the underlying logic and eliminating unneces-
sary levels of complexity. For example, the code that the
soltware developer added to the mobile Backend for Fron-
tend 206 to provide added functionality exclusively for the
10S frontend 202 1s very different from the code that the
soltware developer added to the mobile Backend for Fron-
tend 206 to provide added functionality exclusively for the
Android frontend 204.

The refactoring recommendation tool 134 can identify
such differing code in the mobile Backend for Frontend 206
by using unified modeling language to generate the graph
200 of connected nodes depicted by FIG. 2C, which include
nodes that represent the atomic part A of code 208, the
atomic part B of code 210, the atomic part C of code 212,
the atomic part L of code 248, the atomic part M of code 250,
the atomic part N of code 252, and the atomic part O of code
254. A graph can be a diagram representing a system of
connections among things. A node can be a point at which
lines or pathways intersect or branch. A connected node can
be a point at which lines or pathways intersect or branch. An
atomic part of code can be a functionally 1rreducible portion
ol a computer program that contains executable 1nstructions.

If some parts of a microservice have evolved differently
from other parts, an analysis of a graph that represents the
parts of the microservice can determine the parts that are
disconnected. Alternatively, algorithms such as the Girvan-
Newman algorithm can find groups of parts in a graph that
are more densely connected, which may be referred to as
graph communities, while other groups of parts are sparsely
connected. For example, the refactoring recommendation
tool 134 uses graph analysis to determine that the flow of the
mobile Backend for Frontend 206 which executes the atomic
part L of code 248 can subsequently execute the atomic part

US 10,721,791 Bl

7

M of code 250, the atomic part B of code 210, and the atomic
part C of code 212, but can never subsequently execute the
atomic part A of code 208, the atomic part N of code 252,
or the atomic part O of code 254. This graph analysis
determines that the atomic part L of code 248 i1s directly
connected to the atomic part M of code 250 and the atomic
part B of code 210, 1s indirectly connected to the atomic part
C of code 212, and 1s disconnected from the atomic part A
of code 208, the atomic part N of code 252, and the atomic
part O of code 254. Therefore, the refactoring recommen-
dation tool 134 calculates a nodes connection score of 1.00
for the connection between the atomic part L of code 248
and the atomic part M of code 250, calculates a nodes
connection score of 0.50 for the connection between the
atomic part L of code 248 and the atomic part C of code 212,

and calculates a nodes connection score of 0.00 for each of
the connections between the atomic part L of code 248 and
the atomic part A of code 208, the atomic part N of code 252,

and the atomic part O of code 254,

The graph analysis also determines that the flow of the
mobile Backend for Frontend 206 which executes the atomic
part N of code 252 can subsequently execute the atomic part
O of code 254 and the atomic part C of code 212, but can
never subsequently execute the atomic part A of code 208,
the atomic part L of code 248, or the atomic part M of code
250. This graph analysis determines that the atomic part N
of code 252 1s directly connected to the atomic part O of
code 254 and the atomic part B of code 210, 1s indirectly
connected to the atomic part C of code 212, and 1s discon-
nected from the atomic part A of code 208, the atomic part
L. of code 248, and the atomic part M of code 250. Therelore,
the refactoring recommendation tool 134 calculates a nodes
connection score ol 1.00 for each of the connections
between the atomic part N of code 252 and the atomic part
O of code 254, and the atomic part B of code 210, calculates
a nodes connection score of 0.50 for the connection between
the atomic part N of code 252 and the atomic part C of code
212, and calculates a nodes connection score of 0.00 for each
of the connections between the atomic part N of code 252
and the atomic part A of code 208, the atomic part L of code
248, and the atomic part M of code 250.

Collectively, the nodes connection scores identify the
disconnected parts of a microservice, which indicate that the
atomic part A of code 208, the atomic part L of code 248, and
the atomic part N of code 252 are the beginmings of three
alternative flows for the mobile Backend for Frontend 206,
and that the atomic part L of code 248 and the atomic part
M of code 250 are disconnected from the atomic part N of
code 252 and the atomic part O of code 254. The graph
analysis produces nodes connection scores which reflect that
the mobile Backend for Frontend 206 executes the atomic
part L of code 248 and the atomic part M of code 2350
exclusively for the Android frontend 204, and also executes
the atomic part N of code 252 and the atomic part O of code
254 exclusively for the 10S frontend 202. A connection can
be the way in which multiple objects are linked. A nodes
connection score can be a number that expresses the way 1n
which multiple objects are linked. Although these examples
use nodes connection scores 1n the range from 0.00 to 1.00,
any range and type of nodes connection scores may be used.

Then the refactoring recommendation tool 134 deter-
mines whether each atomic part of code in the mobile
Backend for Frontend 206 is sufliciently connected by
determining whether each of the nodes connection scores
satisfies a nodes connection threshold of 0.125. A nodes
connection threshold can be the magnitude that must be
satisfied by a number, which expresses the way in which

10

15

20

25

30

35

40

45

50

55

60

65

8

multiple objects are linked, for a specific result to occur. I
a nodes connection score satisfies the nodes connection
threshold, the corresponding nodes are sufliciently con-
nected, and the refactoring recommendation tool 134 can
cvaluate whether other nodes connection scores satisiy the
nodes connection threshold. However, 1f a nodes connection
score does not satisty the nodes connection threshold, the
corresponding nodes are insuiliciently connected, so the
refactoring recommendation tool 134 calculates the relative
s1zes of insuiliciently connected nodes to determine whether
the insufliciently connected nodes are suiliciently large to
justily a split 1n their microservice.

For example, since each of the atomic part L of code 248
and its directly connected atomic part M of code 250 have
an 1nsuflicient nodes connection score of 0.0 to each of the
atomic part N of code 252 and 1ts directly connected atomic
part O of code 254, the refactoring recommendation tool 134
compares the size of the atomic part L of code 248 and 1ts
directly connected atomic part M of code 250 against the
size of the mobile Backend for Frontend 206, which results
in a relative code size of 28%. In another example, since
cach of the atomic part N of code 252 and 1its dlrectly
connected atomic part O of code 254 have an insuflicient
nodes connection score of 0.0 to each of the atomic part L
of code 248 and 1ts directly connected atomic part M of code
2350, the refactoring recommendation tool 134 compares the
size of the atomic part N of code 252 and 1its directly
connected atomic part O of code 254 against the size of the
mobile Backend for Frontend 206, which results in a relative
code size of 29%. A relative code size can be a number that
expresses the proportional dimensions or magnitude of a
portion of a computer program that contains executable
istructions compared to dimensions or magnitude of
another portion of the computer program that contains
executable instructions. Although these examples use rela-
tive code sizes 1n the range from 0% to 100%, any range and
type of relative code sizes may be used.

The refactoring recommendation tool 134 determines
whether the msufliciently connected nodes are sufliciently
large to justify a split in their microservice by determining
whether their relative code size satisfies a code size thresh-
old. In another example, the refactoring recommendation
tool 134 compares the relative code size of 28% for the
atomic part L of code 248 and its directly connected atomic
part M of code 250 against the code size threshold of 20%.
In another example, the refactoring recommendation tool
134 compares the relative code size of 29% for the atomic
part N of code 252 and its directly connected atomic part O
of code 254 against the code size threshold of 20%. A code
s1ze threshold can be the magmitude that must be satisfied by
a number, which expresses the relative dimensions or mag-
nitude of a portion of a computer program that contains
executable instructions, for a specific result to occur. If a
relative code size does not satisty the code size threshold,
the refactoring recommendation tool 134 can evaluate
whether other relative code sizes satisty the code size
threshold required for recommending a Split 1N a mMICroser-
vice. Although these examples use code size thresholds in
the range from 0% to 100%, any range and type of code size
thresholds may be used.

It a relative code si1ze satisfies the code size threshold, the
refactoring recommendation tool 134 can output a recom-
mendation to split a microservice by disconnecting any
insuiliciently connected atomic parts of code from the
microservice, creating another microservice in the applica-
tion, and connecting any disconnected atomic parts of code
to the other microservice. For example, since the relative

US 10,721,791 Bl

9

code size of 29% for the atomic part N of code 252 and 1ts
directly connected atomic part O of code 254 satisty the
code size threshold of 20%, the refactoring recommendation
tool 134 outputs a recommendation to refactor a microser-
vice by splitting the microservice. The recommendation 1s to
disconnect the atomic part N of code 252 and 1ts directly
connected atomic part O of code 254 from the mobile
Backend for Frontend 206, create a new 10S Backend {for
Frontend 256, connect the atomic part N of code 252 and 1ts
directly connected atomic part O of code 254 to the new 10S
Backend for Frontend 256, and rename the mobile Backend
tor Frontend 206 as the Android Backend for Frontend 206.
The recommendation also includes linking the new 108
Backend for Frontend 256 to the atomic part A of code 208,
which creates indirect connections to the atomic part B of
code 210 and the atomic part C of code 212, as depicted 1n
FIG. 2D. Splitting the microservice into two microservices
can reduce complexity, improve source-code maintainabil-
ity, and enable software developers to develop code more
quickly and ethiciently by discovering and correcting hidden
bugs or vulnerabilities through simplifying the underlying
logic and eliminating unnecessary levels of complexity.

FIG. 2D depicts that the Android Backend for Frontend
206 includes the atomic part A of code 208, the atomic part
B of code 210, and the atomic part C of code 212 along with
the atomic part L of code 248 and the atomic part M of code
250, which are densely connected for the Android frontend
204. Similarly, the new 10S Backend for Frontend 256
includes the atomic part A of code 208, the atomic part B of
code 210, and the atomic part C of code 212 along with the
atomic part N of code 252 and the atomic part O of code 254,
which are densely connected for the 10S frontend 202.

In an alternative example, the graph 200 depicted by FIG.
2C indicates that a software developer added the atomic part
N of code 252, the atomic part O of code 254, and the atomic
part L of code 248 to the mobile Backend for Frontend 206
to provide additional functionality for both the 10S frontend
202 and the Android frontend 204. The graph 200 depicted
by FIG. 2C also indicates that a software developer added
the atomic part M of code 250 to the mobile Backend for
Frontend 206 to provide additional functionality exclusively
for the Android frontend 204 and the web frontend 214.
Therefore, the refactoring recommendation tool 134 calcu-
lates a nodes connection score of 1.00 for the connection
between the atomic part L of code 248 and the atomic part
M of code 250, a nodes connection score of 0.00 for the
connection between the atomic part N of code 252 and the
atomic part M of code 250, and a nodes connection score of
0.00 for the connection between the atomic part O of code
254 and the atomic part M of code 250. The atomic part N
of code 252 and 1ts directly connected atomic part O of code
254 each have a nodes connection score of 0.00 for the
atomic part M of code 250, which 1s less than the nodes
connection threshold of 0.125.

Therefore, the refactoring recommendation tool 134
determines whether the atomic part M of code 250 1s large
enough to justily splitting the mobile Backend for Frontend
206 by comparing the size of the atomic part M of code 250
against the size of the mobile Backend for Frontend 206,
which results in a relative code size of 14%. Since the
relative code size of 14% does not satisfy the code size
threshold of 20%, the atomic part M of code 250 is not large
enough to justily splitting the mobile Backend for Frontend
206. Consequently, the refactoring recommendation tool
134 determines 1f the atomic part M of code 2350 1s suili-
ciently large to justity being moved by determining whether
the relative code size of 14% satisties the minimal code size

10

15

20

25

30

35

40

45

50

55

60

65

10

threshold of 10%. Since the relative code size of 14%
satisfies the minimal code size threshold of 10%, the refac-
toring recommendation tool 134 determines whether the
atomic part M of code 250 i1s called by an additional
microservice.

Since the atomic part M of code 250 1s called by the web
Backend for Frontend 216, the refactoring recommendation
tool 134 determines whether to move the loosely connected
atomic part M of code 250 from the mobile Backend for
Frontend 206 to the calling web Backend for Frontend 216.
The refactoring recommendation tool 134 can determine
whether such a move 1s justified by evaluating whether the
mobile Backend for Frontend 206 1s more dedicated to the
loosely connected atomic part M of code 250 than the calling
web Backend for Frontend 216 would be dedicated to a
moved version of the connected atomic part M of code 250.
The refactoring recommendation tool 134 evaluates each
microservice’s dedication to the code that may be moved by
calculating the dedication of the mobile Backend for Fron-
tend 206 to the loosely connected atomic part M of code 250
as the relative code size of 0.14, and calculating the dedi-
cation of the web Backend for Frontend 216 to a moved
version of the atomic part M of code 250 as the relative code
s1ze of 0.25. Since a significantly greater percentage of the
web Backend for Frontend 216 would be dedicated to a
moved version of the atomic part M of code 250 than the
percentage of the mobile Backend for Frontend 206 that 1s
currently dedicated to the atomic part M of code 250, the
move of the atomic part M of code 250 to the web Backend
for Frontend 216 1s justified.

Therefore, the refactoring recommendation tool 134 out-
puts a recommendation to move the atomic part M of code
250 to the web Backend for Frontend 216, thereby becoming
the moved atomic part M of code 255, and to add a link that
cnables the mobile Backend for Frontend 206 to call the
moved atomic part M of code 255. A minimal code size
threshold can be the magnitude that must be satisfied by a
number, which expresses the relative dimensions or magni-
tude of a portion of a computer program that, contains
executable instructions, for a specific result to occur.
Although these examples use a minimal code size threshold
in the range from 0% to 100%, any range and type of
minimal code size threshold may be used.

FIG. 2E depicts the graph 200, which indicates that a
soltware developer received a new request to support the
10S tablet 1n addition to supporting the 10S mobile device.
From past experience the software developer decides to add
an 10S tablet frontend 258 and code that 1s structured as 1ts
corresponding microservice, an 10S tablet Backend {for
Frontend 260. The 10S tablet Backend for Frontend 260
contains code segments that include at least one correspond-
ing atomic part of code, such as an atomic part A of code
262, an atomic part B of code 264, an atomic part C of code
266, an atomic part N of code 268, and an atomic part O of
code 270.

After the software developer adds the code for an 108
tablet, the refactoring recommendation tool 134 uses a difl
utility to compare all code segments for all microservices,
including the code segments for the 10S Tablet Backend for
Frontend 260 against code segments for the application’s
10S Backend for Frontend 256, which results in a segments
similarity score of 0.98. If the segments similarity score of
does not satisly a segments similarity threshold, the refac-
toring recommendation tool 134 will not recommend the
merging of the microservices that include the compared
code segments. Since the segments similarity score of 0.98
satisfies the segments similarity threshold o1 0.75, the refac-

US 10,721,791 Bl

11

toring recommendation tool 134 determines whether the 10S
Tablet Backend for Frontend 260 and the 10S Backend for
Frontend 256 share enough similar code segments to be
merged 1nto a single microservice. For example, the refac-
toring recommendation tool 134 compares the size of the

similar code segments 1n the 10S Tablet Backend for Fron-
tend 260 and the 10S Backend for Frontend 256 against the

sizes of the 10S Tablet Backend for Frontend 260 and the
10S Backend for Frontend 256, which results in microser-
vices similarity scores of 1.00 for the 10S Tablet Backend
for Frontend 260 and 1.00 for the 10S Backend for Frontend
256.

Although this example describes calculating the same
microservices similarity scores for each microservice, the
refactoring recommendation tool 134 can calculate different
microservices similarity scores for each microservice, and
then use the different scores to determine how the micros-
ervices are merged. In an alternative example, the refactor-
ing recommendation tool 134 compares the size of similar
code 1n the 10S Tablet Backend for Frontend 260 and the
mobile Backend for Frontend 206 against the sizes of the
10S Tablet Backend for Frontend 260 and the mobile
Backend for Frontend 206 to calculate a microservices
similarity score of 1.00 for the 10S Tablet Backend for
Frontend 260 and calculate a microservices similarity score
of 0.71 for the mobile Backend for Frontend 206. Continu-
ing this alternative example, the refactoring recommenda-
tion tool 134 recommends merging the 10S Tablet Backend
for Frontend 260 into the mobile Backend for Frontend 206
because the similar code segments comprise all of the code
in the 10S Tablet Backend for Frontend 260 but comprise
only a portion of the code in the mobile Backend for
Frontend 206.

If each of the microservices similarity scores for the
microservices do not satisly a microservices similarity
threshold, the refactoring recommendation tool 134 will not
recommend the merging of the micro services that include
the compared code segments. Since the microservices simi-
larity score of 1.00 for the 10S Tablet Backend for Frontend
260 satisfies the microservices similarity threshold of 0.80,
the refactoring recommendation tool 134 outputs a recom-
mendation to merge the 10S Tablet Backend for Frontend
260 into the 10S Backend for Frontend 256. Merging
microservices reduces memory requirements for the appli-
cation, which reduces operational expenses. Merging can be
combining to form a single enftity. FIG. 2F depicts the graph
200, which indicates that a software developer merged the
10S Tablet Backend for Frontend 260 into the 10S Backend
for Frontend 256, thereby deleting the duplicated atomic
parts ol code, such as the atomic part A of code 262, the
atomic part B of code 264, the atomic part C of code 266,
the atomic part N of code 268, and the atomic part O of code
270.

FIGS. 3A-B depict a flowchart that 1llustrates a method
for recommending the refactoring ol microservices, under
an embodiment. Flowchart 300 illustrates method acts 1llus-
trated as flowchart blocks for certain steps involved in
and/or between the clients 102-106 and/or the servers 108-
110 of FIG. 1.

A segments similarity score 1s optionally determined
based on comparing first code segments, associated with a
first microservice in an application, against second code
segments, associated with a second microservice in the
application, block 302. The system can search for similar
code segments 1n different microservices. For example, and
without limitation, this can include the refactoring recom-
mendation tool 134 using a diff utility to compare code

10

15

20

25

30

35

40

45

50

55

60

65

12

segments for the 10S Tablet Backend for Frontend 260
against code segments for the application’s 10S Backend for
Frontend 256, which results 1n a segments similarity score of
0.98.

After calculating a segments similarity score, a determi-
nation 1s optionally made whether the segments similarity
score satisfies a segments similarity threshold. block 304.
The system can determine whether code segments are sui-
ficiently similar for merging. By way of example and
without limitation, this can include the refactoring recom-
mendation tool 134 determining whether the segments simi-
larity score of 0.98 satisfies the segments similarity thresh-
old of 0.75. If the segments similarity score satisfies the
segments similarity threshold, then the method 300 contin-
ues to block 304 to evaluate the relative sizes of the similar
code segments. If the segments similarity score does not
satisly the segments similarity threshold, the method 300
proceeds to FIG. 3B to evaluate whether any microservices
should be split.

If a segments similarity score satisiies a segments simi-
larity threshold, microservices similarity scores are option-
ally determined based on comparing a size of similar code
segments 1 the first code segments and the second code
segments against sizes of the first microservice and the
second microservice, block 306. The system can determine
the sizes of the similar code segments relative to the sizes of
their microservices. In embodiments, this can include the
refactoring recommendation tool 134 comparing the sizes of
the similar code segments 1n the 10S Tablet Backend for
Frontend 260 and the 10S Backend for Frontend 256 against
the sizes of the 10S Tablet Backend for Frontend 260 and the
10S Backend for Frontend 256, which results in microser-
vices similarity scores of 1.00 for the 10S Tablet Backend
for Frontend 260 and 1.00 for the 10S Backend for Frontend
256.

Following the calculation of microservices similarity
scores, a determination 1s optionally made whether any
microservices similarity score satisfies a microservice simi-
larity threshold, block 308. The system can determine
whether the similar code segments are large enough for
merging theirr microservices. For example, and without
limitation, this can include the refactoring recommendation
tool 134 determining whether the microservices similarity
score of 1.00 for the 10S Tablet Backend for Frontend 260
satisfies the microservices similarity threshold of 0.80. If
any microservices similarity score satisfies the microser-
vices similarity threshold, then the method 300 continues to
block 310 to recommend the merging of the microservices
with the similar code segments. I no microservices simi-
larity score satisfies the microservices similarity threshold,
the method 300 proceeds to block 312 to evaluate whether
any microservices should be moved.

If any microservices similarity score satisfies the micros-
ervices similarity threshold, a recommendation to merge the
first microservice with the second microservice 1s optionally
output, block 310. The system can recommend merging
microservices with large amounts of similar code. By way of
example and without limitation, this can include the refac-
toring recommendation tool 134 outputting a recommenda-
tion to merge the 10S Tablet Backend for Frontend 260 1nto
the 10S Backend for Frontend 256, because the microser-
vices similarity score of 1.00 for the 10S Tablet Backend for
Frontend 260 satisfies the microservices similarity threshold
of 0.80. Then the method 300 proceeds to FIG. 3B to
evaluate whether any microservices should be split.

If no microservices similarity score satisfies a microser-
vices similarity threshold, a determination 1s optionally

US 10,721,791 Bl

13

made whether the size of similar code segments satisfies a
segments size threshold, block 312. The system can deter-
mine 11 the similar code segments are sufliciently large to be
moved. In embodiments, this can include the refactoring
recommendation tool 134 determining whether the size of
similar code segments 1n the atomic part C of code 212 and
the atomic part C of code 242 satisfies the segments size
threshold.

If the si1ze of similar code segments satisfies a segments
size threshold, a recommendation 1s optionally output to
move the similar code segments from the second microser-
vice to the first microservice, block 314. The system can
recommend moving sufliciently large and similar code seg-
ments. For example, and without limitation, this can include
the refactoring recommendation tool 134 outputting a rec-
ommendation to move the atomic part C of code 242 from
the web Backend for Frontend 216 to the atomic part C of
code 212 for the mobile Backend for Frontend 206, by
linking the atomic part D of code 218 to the merged atomic
part C of code 212 and deleting the atomic part C of code
242, as depicted by FIG. 2C.

If the si1ze of similar code segments satisfies a segments
s1ze threshold, a recommendation 1s optionally output to
create a third microservice and to move the similar code
segments 1 the first code segments and the second code
segments to the third microservice, block 316. The system
can recommend moving sufliciently large and similar code
segments. By way of example and without limitation, this
can include the refactoring recommendation tool 134 out-
putting a recommendation to create the part C Backend for
Frontend 244, and to move the atomic part C of code 212
from the mobile Backend for Frontend 206 and the atomic
part C of code 242 from the web Backend for Frontend 216
to become the atomic part C of code 242 for the part C
Backend for Frontend 244. Then the method 300 proceeds to
FIG. 3B to evaluate whether any microservices should be
split.

In addition to optionally recommending the merging of
microservices that have sufliciently large and similar code
segments, a graph of connected nodes 1s generated, com-
prising a first node, which represents a {irst atomic part of
code 1n a microservice 1n the application, and a second node,
which represents a second atomic part of code in the
microservice, block 318. The system generates graphs to
identify microservices that should be split. In embodiments,
this can include the refactoring recommendation tool 134
using unified modeling language to generate the graph of
connected nodes depicted by FIG. 2C, which include nodes
that represent the atomic part A of code 208, the atomic part
B of code 210, the atomic part C of code 212, the atomic part
L of code 248, the atomic part M of code 250, the atomic part
N of code 252, and the atomic part O of code 254 for the
mobile Backend for Frontend 206.

After a graph 1s generated, a nodes connection score 1s
determined based on any connections between the first node
and the second node, block 320. The system evaluates the
connections between parts of microservices. For example,
and without limitation, this can include the refactoring
recommendation tool 134 calculating a nodes connection
score of 1.00 for the connection between the atomic part L
of code 248 and the atomic part M of code 250, calculating
a nodes connection score of 0.50 for the connection between
the atomic part L of code 248 and the atomic part C of code
212, and calculating a nodes connection score of 0.00 for
cach of the connections between the atomic part L of code
248 and the atomic part A of code 208, the atomic part N of
code 252, and the atomic part O of code 254.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Following the calculation of the nodes connection score,
a determination 1s made whether the nodes connection score
satisfies a nodes connection threshold, block 322. The
system 1dentifies loosely connected parts of microservices.
By way of example and without limitation, this can include
the refactoring recommendation tool 134 determiming
whether each atomic part of code 1n the mobile Backend for
Frontend 206 i1s sufliciently connected by determining
whether each of their nodes connection scores satisfies a
nodes connection threshold of 0.125. If a nodes connection
score does not satisly a nodes connection threshold, the
method 300 continues to block 324 to calculate the relative
s1ze of the corresponding atomic part of the code. If a nodes
connection score satisfies a nodes connection threshold, the
refactoring recommendation tool 134 stops 1f no other nodes
connection scores remain to be evaluated.

If a nodes connection score does not satisfy a nodes
connection threshold, a relative code size 1s determined
based on comparing a size associated with the first atomic
part of code against the size of the microservice, block 324.
The system determines the relative sizes of loosely con-
nected parts of microservices. In embodiments, this can
include the refactoring recommendation tool 134 comparing
the size of the atomic part N of code 252 and its directly
connected atomic part O of code 254 against the size of the
mobile Backend for Frontend 206, which results in a relative
code size of 29%.

Having calculated a relative code size, a determination 1s
made whether the relative code size satisfies a code size
threshold, block 326. The system determines whether the
loosely connected parts of microservices are large enough to
justily splitting a microservice. For example, and without
limitation, this can include the refactoring recommendation
tool 134 comparing the relative code size of 29% {for the
atomic part N of code 252 and 1ts directly connected atomic
part O of code 254 against the code size threshold of 20%.
It the relative code size satisfies the code size threshold, the
method 300 continues to block 328 to recommend the
splitting of a microservice. It the relative code size does not
satisty the code size threshold, the method 300 proceeds to
block 330 to evaluate whether the corresponding atomic part
ol code 1s large enough to be moved.

If a relative code size satisfies a code size threshold, a
recommendation 1s made to disconnect the first atomic part
of code from the microservice, create another microservice
in the application, and connect the first atomic part of code
to the other microservice, block 328. The system recom-
mends the splitting of microservices. By way of example
and without limitation, this can include the refactoring
recommendation tool 134 outputting a recommendation to
disconnect the atomic part N of code 252 and 1ts directly
connected atomic part O of code 254 from the mobile
Backend for Frontend 206, create a new 10S Backend for
Frontend 256, connect the atomic part N of code 252 and 1ts
directly connected atomic part O of code 254 to the new 1085
Backend for Frontend 256, and rename the mobile Backend
for Frontend 206 as the Android Backend for Frontend 206.
Then the method 300 stops. Splitting the microservice nto
two microservices can reduce complexity, improve source-
code maintainability, and enable software developers to
develop code more quickly and efliciently by discovering
and correcting hidden bugs or vulnerabilities through sim-
pliftying the underlying logic and eliminating unnecessary
levels of complexity.

If a relative code size does not satisfy a code size
threshold, a determination 1s optionally made whether the
relative code size satisfies a minimal code size threshold,

US 10,721,791 Bl

15

block 330. The system can determine whether small loosely
connected parts of a microservice are still large enough to be
moved. In embodiments, this can include the refactoring
recommendation tool 134 determining whether the relative
code size of 14% satisfies the minimal code size threshold of
10%. I1 the relative code size satisfies the minimal code size
threshold, the method 300 continues to block 332 to deter-
mine whether the corresponding atomic part of code 1s
called by another microservice. If the relative code size does
not satisty the minimal code size threshold, the method 300
Stops.

If a relative code size satisfies a minimal code size
threshold, a determination 1s optionally made whether the
first atomic part of code 1s called by an additional micros-
ervice, block 332. The system can determine whether
loosely connected parts of a microservice are called by
another microservice. For example, and without limitation,
this can include the refactoring recommendation tool 134
determining whether the atomic part M of code 250 1s called
by an additional microservice. If the first atomic part of code
1s called by an additional microservice, the method 300
continues to block 334 to recommend moving the corre-
sponding atomic part of code. If the first atomic part of code
1s not called by an additional microservice, the method 300
Stops.

If the first atomic part of code 1s called by an additional
microservice, a recommendation 1s optionally output to
move the first atomic part of code to the additional micros-
ervice, block 334. The system can recommend moving
loosely comnected parts of a microservice to a calling
microservice. For example, and without limitation, this can
include the refactoring recommendation tool 134 outputting
a recommendation to move the atomic part M of code 250
to the web Backend for Frontend 216, which calls the atomic
part M of code 250.

Although FIG. 3 depicts the blocks 302-334 occurring 1n
a specific order, the blocks 302-334 may occur 1n another
order. In other implementations, each of the blocks 302-334
may also be executed in combination with other blocks
and/or some blocks may be divided into a different set of
blocks.

Having described the subject matter in detail, an exem-
plary hardware device 1n which the subject matter may be
implemented shall be described. Those of ordinary skill 1n
the art will appreciate that the elements 1llustrated in FIG. 4
may vary depending on the system implementation. With
reference to FIG. 4, an exemplary system for implementing,
the subject matter disclosed herein includes a hardware
device 400, including a processing unit 402, memory 404,
storage 406, data entry module 408, display adapter 410,
communication interface 412, and a bus 414 that couples
clements 404-412 to the processing unit 402.

The bus 414 may comprise any type of bus architecture.
Examples include a memory bus, a peripheral bus, a local
bus, etc. The processing unit 402 1s an instruction execution
machine, apparatus, or device and may comprise a micro-
processor, a digital signal processor, a graphics processing,
unit, an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), etc. The processing unit
402 may be configured to execute program instructions
stored 1n memory 404 and/or storage 406 and/or received via
data entry module 408.

The memory 404 may include read only memory (ROM)
416 and random access memory (RAM) 418. Memory 404
may be configured to store program instructions and data
during operation of device 400. In various embodiments,
memory 404 may include any of a variety of memory

5

10

15

20

25

30

35

40

45

50

55

60

65

16

technologies such as static random access memory (SRAM)
or dynamic RAM (DRAM), including variants such as dual
data rate synchronous DRAM (DDR SDRAM), error cor-
recting code synchronous DRAM (ECC SDRAM), or RAM-
BUS DRAM (RDRAM), for example. Memory 404 may
also 1nclude nonvolatile memory technologies such as non-
volatile flash RAM (NVRAM) or ROM. In some embodi-
ments, 1t 15 contemplated that memory 404 may include a
combination of technologies such as the foregoing, as well
as other technologies not specifically mentioned. When the
subject matter 1s implemented 1n a computer system, a basic
input/output system (BIOS) 420, containing the basic rou-
tines that help to transfer information between elements
within the computer system, such as during start-up, 1s
stored in ROM 416.

The storage 406 may include a flash memory data storage
device for reading from and writing to flash memory, a hard
disk drive for reading from and writing to a hard disk, a
magnetic disk drive for reading from or writing to a remov-
able magnetic disk, and/or an optical disk drive for reading
from or writing to a removable optical disk such as a CD
ROM, DVD or other optical media. The drives and their
associated computer-readable media provide nonvolatile
storage of computer readable instructions, data structures,
program modules and other data for the hardware device
400.

It 1s noted that the methods described herein may be
embodied 1n executable instructions stored 1n a computer
readable medium for use by or in connection with an
instruction execution machine, apparatus, or device, such as
a computer-based or processor-containing machine, appara-
tus, or device. It will be appreciated by those skilled in the
art that for some embodiments, other types of computer
readable media may be used which can store data that 1s
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges,
RAM, ROM, and the like may also be used 1n the exemplary
operating environment. As used here, a “computer-readable
medium™ can 1nclude one or more of any suitable media for
storing the executable instructions of a computer program 1n
one or more ol an electronic, magnetic, optical, and elec-
tromagnetic format, such that the instruction execution
machine, system, apparatus, or device can read (or fetch) the
instructions from the computer readable medium and
execute the mstructions for carrying out the described meth-
ods. A non-exhaustive list of conventional exemplary com-
puter readable medium includes: a portable computer dis-
kette; a RAM; a ROM; an erasable programmable read only
memory (EPROM or flash memory); optical storage
devices, including a portable compact disc (CD), a portable
digital video disc (DVD), a high definition DVD (HD-
DVD™) a BLU-RAY disc; and the like.

A number of program modules may be stored on the
storage 406, ROM 416 or RAM 418, including an operating,
system 422, one or more applications programs 424, pro-
gram data 426, and other program modules 428. A user may
enter commands and information into the hardware device
400 through data entry module 408. Data entry module 408
may include mechanisms such as a keyboard, a touch screen,
a pointing device, etc. Other external input devices (not
shown) are connected to the hardware device 400 via
external data entry interface 430. By way of example and not
limitation, external input devices may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. In
some embodiments, external input devices may include
video or audio mput devices such as a video camera, a still
camera, etc. Data entry module 408 may be configured to

US 10,721,791 Bl

17

receive mput from one or more users of device 400 and to
deliver such iput to processing unit 402 and/or memory 404
via bus 414.

A display 432 1s also connected to the bus 414 via display
adapter 410. Display 432 may be configured to display
output of device 400 to one or more users. In some embodi-
ments, a given device such as a touch screen, for example,
may function as both data entry module 408 and display 432.
External display devices may also be connected to the bus
414 via external display interface 434. Other peripheral
output devices, not shown, such as speakers and printers,
may be connected to the hardware device 400.

The hardware device 400 may operate 1n a networked
environment using logical connections to one or more
remote nodes (not shown) via communication interface 412.
The remote node may be another computer, a server, a
router, a peer device or other common network node, and
typically includes many or all of the elements described
above relative to the hardware device 400. The communi-
cation interface 412 may interface with a wireless network
and/or a wired network. Examples of wireless networks
include, for example, a BLUETOOTH network, a wireless
personal area network, a wireless 802.11 local area network
(LAN), and/or wireless telephony network (e.g., a cellular,
PCS, or GSM network). Examples of wired networks
include, for example, a LAN, a fiber optic network, a wired
personal area network, a telephony network, and/or a wide
area network (WAN). Such networking environments are
commonplace 1 intranets, the Internet, oflices, enterprise-
wide computer networks and the like. In some embodiments,
communication interface 412 may include logic configured
to support direct memory access (DMA) transfers between
memory 404 and other devices.

In a networked environment, program modules depicted
relative to the hardware device 400, or portions thereof, may
be stored 1n a remote storage device, such as, for example,
on a server. It will be appreciated that other hardware and/or
software to establish a communications link between the
hardware device 400 and other devices may be used.

It should be understood that the arrangement of hardware
device 400 1illustrated m FIG. 4 1s but one possible imple-
mentation and that other arrangements are possible. It
should also be understood that the various system compo-
nents (and means) defined by the claims, described below,
and 1illustrated 1n the various block diagrams represent
logical components that are configured to perform the func-
tionality described herein. For example, one or more of these
system components (and means) may be realized, in whole
or in part, by at least some of the components illustrated 1n
the arrangement of hardware device 400.

In addition, while at least one of these components are
implemented at least partially as an electronic hardware
component, and therefore constitutes a machine, the other
components may be implemented in soitware, hardware, or
a combination of software and hardware. More particularly,
at least one component defined by the claims 1s implemented
at least partially as an electronic hardware component, such
as an 1nstruction execution machine (e.g., a processor-based
or processor-containing machine) and/or as specialized cir-
cuits or circuitry (e.g., discrete logic gates interconnected to
perform a specialized function), such as those 1llustrated in
FIG. 4.

Other components may be implemented 1n soitware,
hardware, or a combination of software and hardware.
Moreover, some or all of these other components may be
combined, some may be omitted altogether, and additional
components may be added while still achueving the func-

10

15

20

25

30

35

40

45

50

55

60

65

18

tionality described herein. Thus, the subject matter described
herein may be embodied in many different variations, and all
such variations are contemplated to be withuin the scope of
what 1s claimed.
In the preceding description, the subject matter was
described with reference to acts and symbolic representa-
tions ol operations that are performed by one or more
devices, unless i1ndicated otherwise. As such, it will be
understood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of data in a structured form.
This manipulation transforms the data or maintains 1t at
locations 1n the memory system of the computer, which
reconfigures or otherwise alters the operation of the device
in a manner well understood by those skilled 1n the art. The
data structures where data 1s maintained are physical loca-
tions of the memory that have particular properties defined
by the format of the data. However, while the subject matter
1s being described 1n the preceding context, 1t 1s not meant
to be limiting as those of skill 1n the art will appreciate that
various of the acts and operations described hereinafter may
also be implemented 1n hardware.
To facilitate an understanding of the subject matter
described herein, many aspects are described in terms of
sequences of actions. At least one of these aspects defined by
the claims 1s performed by an electronic hardware compo-
nent. For example, 1t will be recognized that the various
actions may be performed by specialized circuits or cir-
cuitry, by program instructions being executed by one or
more processors, or by a combination of both. The descrip-
tion herein ol any sequence of actions 1s not mtended to
imply that the specific order described for performing that
sequence must be followed. All methods described herein
may be performed in any suitable order unless otherwise
indicated herein or otherwise clearly contradicted by con-
text.
While one or more implementations have been described
by way of example and 1n terms of the specific embodi-
ments, 1t 1s to be understood that one or more 1mplementa-
tions are not limited to the disclosed embodiments. To the
contrary, it 1s intended to cover various modifications and
similar arrangements as would be apparent to those skilled
in the art. Therefore, the scope of the appended claims
should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.
What 1s claimed 1s:
1. A system comprising:
one or more processors; and
a non-transitory computer readable medium storing a
plurality of instructions, which when executed, cause
the one or more processors 1o:

generate a graph of connected nodes comprising a first
node, which represents a first atomic part of code 1n a
microservice 1n an application, and a second node,
which represents a second atomic part of code 1n the
miCroservice;

determine a nodes connection score based on any con-

nections between the first node and the second node:;

determine whether the nodes connection score satisfies a

nodes connection threshold;

determine a relative code size based on comparing a size

associated with the first atomic part of code against a
s1ize of the microservice, 1 response to a determination
that the nodes connection score does not satisiy the
nodes connection threshold;

determine whether the relative code size satisfies a code

size threshold; and

US 10,721,791 Bl

19

output a recommendation to disconnect the first atomic
part ol code from the microservice, create another
microservice 1n the application, and connect the first
atomic part of code to the other microservice, 1n
response to a determination that the relative code size
satisfies the code size threshold.
2. The system of claim 1, wherein the plurality of mnstruc-
tions further causes the processor to
determine whether the relative code size satisfies a mini-

mal code size threshold, 1n response to a determination
that the relative code size does not satisty the code size

threshold;

determine whether the first atomic part of code 1s called
by an additional microservice, 1in response to a deter-
mination that the relative code size does not satisiy the
minimal code size threshold; and

output a recommendation to move the first atomic part of

code to the additional microservice, 1 response to a
determination that the first atomic part of code 1s called
by the additional microservice.
3. The system of claim 1, wherein the plurality of nstruc-
tions further causes the processor to:
determine a segments similarity score based on compar-
ing first code segments, associated with a first micros-
ervice in the application, against second code segments,
associated with a second microservice 1n the applica-
tion;
determine whether the segments similarity score satisfies
a segments similarity threshold;

determine microservices similarity scores based on com-
paring a size of similar code segments 1n the first code
segments and the second code segments against sizes of
the first microservice and the second microservice, 1n
response to a determination that the segments similarity
score satisfies the segments similarity threshold:

determine whether any microservices similarity score
satisfies a microservices similarity threshold; and

output a recommendation to merge the first microservice
with the second microservice, 1n response to a deter-
mination that any microservices similarity score satis-
fies the microservices similarity threshold.

4. The system of claim 3, wherein the plurality of 1nstruc-
tions further causes the processor to determine whether the
size of similar code segments satisfies a segments size
threshold, 1n response to a determination that not any
microservices similarity scores satisly the microservices
similarity threshold.

5. The system of claim 4, wherein the plurality of instruc-
tions further causes the processor to output a recommenda-
tion to move the similar code segments from the second
microservice to the first microservice, 1 response to a
determination that the size of similar code segments satisfies
the segments size threshold.

6. The system of claim 5, wherein moving the similar
code segments from the second microservice to the first
microservice comprises linking the second microservice to
the similar code segments 1n the first microservice and
deleting the similar code segments from the second micros-
ervice.

7. The system of claim 4, wherein the plurality of mnstruc-
tions further causes the processor to output a recommenda-
tion to create a third microservice and to move the similar
code segments 1n the first code segments and the second
code segments to the third microservice, in response to a
determination that the size of the similar code segments
satisiies the segments size threshold.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

8. A method comprising:

generating a graph of connected nodes comprising a first
node, which represents a first atomic part of code 1n a
microservice 1n an application, and a second node,
which represents a second atomic part of code 1n the
microservice;

determining a nodes connection score based on any
connections between the first node and the second
node;

determining whether the nodes connection score satisfies
a nodes connection threshold;

determiming a relative code size based on comparing a
s1ze associated with the first atomic part of code against
a size ol the microservice, 1n response to a determina-
tion that the nodes connection score does not satisiy the
nodes connection threshold;

determining whether the relative code size satisfies a code

size threshold; and

outputting a recommendation to disconnect the first
atomic part of code from the microservice, create
another microservice 1n the application, and connect
the first atomic part of code to the other microservice,
in response to a determination that the relative code
size satisfies the code size threshold.

9. The method of claim 8, wherein the computer-imple-
mented method further comprises:

determiming whether the relative code size satisfies a

minimal code size threshold, in response to a determi-
nation that the relative code size does not satisty the
code size threshold;

determining whether the first atomic part of code 1s called

by an additional microservice, 1n response to a deter-
mination that the relative code size does not satisty the
minimal code size threshold; and

outputting a recommendation to move the first atomic part

of code to the additional microservice, in response to a
determination that the first atomic part of code 1s called
by the additional microservice.

10. The method of claim 8, wherein the computer-imple-
mented method further comprises:

determining a segments similarity score based on com-

paring first code segments, associated with a first
microservice 1n the application, against second code
segments, associated with a second microservice in the
application;

determining whether the segments similarity score satis-

fies a segments similarity threshold;

determining microservices similarity scores based on

comparing a size ol similar code segments in the first
code segments and the second code segments against
sizes of the first microservice and the second micros-
ervice, 1 response to a determination that the segments
similarity score satisfies the segments similarity thresh-
old:

determiming whether any microservices similarity score

satisfies a microservices similarity threshold; and
outputting a recommendation to merge the first micros-
ervice with the second microservice, 1n response to a
determination that any microservices similarity score
satisfies the microservices similarity threshold.

11. The method of claim 10, wherein the computer-
implemented method further comprises determining
whether the size of similar code segments satisfies a seg-
ments size threshold, 1n response to a determination that not
any microservices similarity scores satisty the microservices
similarity threshold.

US 10,721,791 Bl

21

12. The method of claim 11, wherein the computer-
implemented method further comprises outputting a recom-
mendation to move the similar code segments from the
second microservice to the first microservice, 1n response to
a determination that the size of similar code segments
satisiies the segments size threshold.

13. The method of claim 12, wherein moving the similar
code segments from the second microservice to the first
microservice comprises linking the second microservice to
the similar code segments 1n the first microservice and
deleting the similar code segments from the second micros-
ervice.

14. The method of claim 11, wherein the computer-
implemented method further comprises outputting a recom-
mendation to create a third microservice and to move the
similar code segments 1n the first code segments and the
second code segments to the third microservice, 1n response
to a determination that the size of the similar code segments
satisiies the segments size threshold.

15. A computer program product, comprising a non-
transitory computer-readable medium having a computer-
readable program code embodied therein to be executed by
one or more processors, the program code including mstruc-
tions to:

generate a graph of connected nodes comprising a first

node, which represents a first atomic part of code 1n a
microservice 1n an application, and a second node,
which represents a second atomic part of code 1n the
microservice;

determine a nodes connection score based on any con-

nections between the first node and the second node:

determine whether the nodes connection score satisiies a

nodes connection threshold;

determine a relative code size based on comparing a size

associated with the first atomic part of code against a
s1ize of the microservice, 1n response to a determination
that the nodes connection score does not satisiy the
nodes connection threshold;

determine whether the relative code size satisfies a code

size threshold; and

output a recommendation to disconnect the first atomic

part of code from the microservice, create another
microservice in the application, and connect the first
atomic part of code to the other microservice, 1n
response to a determination that the relative code size
satisfies the code size threshold.

16. The computer program product of claim 15, wherein
the program code includes further mnstructions to:

determine whether the relative code size satisfies a mini-

mal code size threshold, 1n response to a determination
that the relative code size does not satisty the code size
threshold;

determine whether the first atomic part of code 1s called

by an additional microservice, 1n response to a deter-

10

15

20

25

30

35

40

45

50

22

mination that the relative code size does not satisiy the
minimal code size threshold; and
output a recommendation to move the first atomic part of
code to the additional microservice, in response to a deter-
mination that the first atomic part of code 1s called by the
additional microservice.
17. The computer program product of claim 135, wherein
the program code includes further instructions to:
determine a segments similarity score based on compar-
ing first code segments, associated with a first micros-
ervice 1n the application, against second code segments,
associated with a second microservice in the applica-
tion;
determine whether the segments similarity score satisfies
a segments similarity threshold;

determine microservices similarity scores based on com-
paring a size ol similar code segments 1n the first code
segments and the second code segments against sizes of
the first microservice and the second microservice, 1n
response to a determination that the segments similarity
score satisfies the segments similarity threshold:

determine whether any microservices similarity score
satisfies a microservices similarity threshold; and

output a recommendation to merge the first microservice
with the second microservice, 1n response to a deter-
mination that any microservices similarity score satis-
fies the microservices similarity threshold.

18. The computer program product of claim 17, wherein
the program code includes further 1nstructions to determine
whether the size of similar code segments satisfies a seg-
ments size threshold, in response to a determination that not
any microservices similarity scores satisty the microservices
similarity threshold.

19. The computer program product of claim 18, wherein
the program code includes further mstructions to output a
recommendation to move the similar code segments from
the second microservice to the first microservice, wherein
moving the similar code segments from the second micros-
ervice to the first microservice comprises linking the second
microservice to the similar code segments 1n the first micros-
ervice and deleting the similar code segments from the

second microservice, in response to a determination that the
size ol similar code segments satisfies the segments size
threshold.

20. The computer program product of claim 18, wherein
the program code includes further mstructions to output a
recommendation to create a third microservice and to move
the similar code segments in the first code segments and the
second code segments to the third microservice, 1n response
to a determination that the size of the similar code segments
satisfies the segments size threshold.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

