12 United States Patent

Rengarajan et al.

US010721104B2

US 10,721,104 B2
*Jul. 21, 2020

(10) Patent No.:
45) Date of Patent:

(54) FEED FORWARD EQUALIZER WITH
POWER-OPTIMIZED DISTRIBUTED
ARITHMETIC ARCHITECTURE AND
METHOD

(71) Applicant: MARVELL INTERNATIONAL LTD.,
Hamilton (BM)

(72) Inventors: Krishnan S. Rengarajan, Bengaluru
(IN); Vaibhav A. Ruparelia, Bengaluru

(IN)
(73) Assignee: Marvell Asia Pte, Ltd., Singapore (SG)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 16/525,723
(22) Filed: Jul. 30, 2019

(65) Prior Publication Data
US 2020/0186401 Al Jun. 11, 2020

Related U.S. Application Data

(63) Continuation of application No. 16/216,248, filed on
Dec. 11, 2018, now Pat. No. 10,432,436.

(51) Int. CL

GO6F 1/3203 (2019.01)
HO4L 25/03 (2006.01)
(Continued)

(52) U.S. CL
CPC ... HO41L 25/03878 (2013.01); GO6F 1/3203
(2013.01); HO3K 19/17728 (2013.01); HO3M
7/42 (2013.01); HO4L 27/01 (2013.01)

300

N

322

(38) Field of Classification Search
CPC HO4L 25/03878; HO4L 27/01; HO3K
19/17728; HO3M 7/42; GO6F 1/3203

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3,579,109 A
5,532,938 A

5/1971 Hatley
7/1996 Kondo et al.

(Continued)

OTHER PUBLICATTONS

Keerthi et al., “FPGA Implementation of Distributed Arithmetic for

FIR Filter,” International Journal of Engineering Research & Tech-
nology (IJERT), vol. 1, Issue 9, 2012, pp. 1-8.

(Continued)

Primary Examiner — Dac V Ha

(57) ABSTRACT

A distributed arithmetic feed forward equalizer (DAFFE)
and method. The DAFFE includes look-up tables (LUTs) 1n
offset binary format. A DA LUT stores sum of partial
products values and an adjustment LUT stores adjustment
values. DA LUT addresses are formed from same-position
bits from all but the most significant bits (IMSBs) of a set of
digital words of taps and an adjustment LUT address 1is
tformed using the MSBs. Sum of partial products values and
an adjustment value are acquired from the DA LUT and the

adjustment LUT using the DA LUT addresses and the
adjustment LUT address, respectively. Reduced complexity
downstream adder(s) (which result in reduced power con-
sumption) compute a total sum of the sum of partial products
values and the adjustment value (which compensates for
using the oflset binary format and dropping of the MSBs
when forming the DA LUT addresses) to correctly solve a
DA equation.

19 Claims, 6 Drawing Sheets

321 323
“' g
N-bit Words Address ,-
From ADCs Retimer G a >(LSB5} —
R enerator
201 {j 7 5 DA LUT
302 310 (inverted next-to-MSBg) m—3
325 326
p "¢
(MSBs3) Adjustment LUT ADDER(s) l——)

/
~’ 350

324

US 10,721,104 B2
Page 2

(51) Int. CL

HO4L 27/01 (2006.01)
HO3K 19/17728 (2020.01)
HO3M 7/42 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,477,203 B1* 11/2002 Poplinco.no. GOOF 17/16
375/240.2

7,107,301 B2 9/2006 Rylov et al.

8,238,467 B2 8/2012 Dally

8311,147 B2 11/2012 Dally

8,750,365 Bl 6/2014 Sarca

9,036,689 B2* 5/2015 Bae HO4L 25/03891

375/232
2003/0091129 Al 5/2003 Zhang et al.
2005/0201457 Al 9/2005 Allred et al.
2008/0279274 Al* 11/2008 Iliev ...ooooevvvvrvvnnnnnn, GOoF 17/147
375/240.2

OTHER PUBLICATIONS

Smruti Santa Swain, “Implementation of FIR Filter using Distrib-
uted Arithmetic Method,” Thesis, National Institute of Technology
Rourkela, Department of Electronics and Communications Engi-

neering, 2015, pp. 1-40.

Hwang et al., “New Distributed Arithmetic Algorithm for Low-
Power FIR Filter Implementation,” IEEE Signal Processing Letters,
vol. 11, No. 5, 2004, pp. 463-466.

Zhou et al., “A Low Power FIR Filter Structure Based on a Modified
Distributed Arithmetic Algorithm,” College of Information Science
and Engineering, Ningbo University, The Key Program of National
Science of China (No. 61131001), pp. 1-4.

Raghunadha Reddy et al., “ASIC Implementation of Distributed
Arithmetic 1n Adaptive FIR Filter,” International Conference on

Circuits Power and Computing Technologies (ICCPCT), 2017, pp.
1-4.

Chen et al., “Power Optimized ADC-Based Serial Link Receiver,”
IEEE Journal of Solid-State Circuits, vol. 47, No. 4, 2012, pp.
938-951.

Bowlyn et al.,, “A Novel Distributed Arithmetic Multiplierless
Approach for Computing Complex Inner Products,” International
Conference on Parallel and Distributed Processing Techniques and
Applications, 2015, pp. 606-612.

Mohammad Al Mandi Eshtawie, “Distributed Arithmetic Technique
Analysis, Design and Applications,” The Second Symposium on
Theories and Applications of Basic and Biosciences, 2015, pp.
56-65.

Hanumolu et al., “Equalizers for High-Speed Serial Links,” Inter-
national Journal of High Speed Electronics and Systems, vol. 15,
No. 2, 2005, pp. 175-204.

Patil et al., “An Analysis on FIR Filter-Efliciency (FFE),” Interna-
tional Journal of Electrical, Electronics and Computer Systems
(IJEECS), 2016, Abstract.

Naik et al., “An Efficient Reconfigurable FIR Digital Filter Using
Modified Distribute Arithmetic Technique,” International Journal of
Emerging Technology and Advanced Engineering, vol. 5, Issue 6,
2015, pp. 152-156.

Sridharan et al., “Introduction to Distributed Arithmetic,” www.ee.
utm.ac.in/vlsy/_media/iep2010/da.pdf, Accessed on Oct. 30, 2018,
pp. 1-24.

Stanley A. White, “Applications of Distributed Arithmetic to Digital
Signal Processing: A Tutorial Review,” IEEE ASSP Magazine,
1989, pp. 4-19.

Yazhini et al., “FIR Filter Implementation using Modified Distrib-
uted Arithmetic Architecture,” Indian Journal of Science and Tech-
nology, vol. 6, Issue 5, 2013, 4485-4491 .

Zhang et al., “PAMA4 Signaling for 56G Serial Link Applica-
tions—A Tutorial,” UBM Design Con, 2016, pp. 1-91.

U.S. Appl. No. 16/216,248, Notice of Allowance dated Jun. 26,
2019, pp. 1-10.

* cited by examiner

U.S. Patent

Jul. 21, 2020 Sheet 1 of 6

RX PAM-4 Input Signal

TX PAM-4 Output Signal

o R R R N R R N N N

'
F

LA B L A LB B L LA B I A ¥ ¥ ¥F¥FEFEFEFSEFa """" """"
T T T T 4 T T T T T T TN T T TTTTTrTTrTT T rr*roTrTrrTrr® T *rTrTTTrTrTrT T T T T TTT T+ T T T T T T

.J.....J..‘"

.

‘ﬂ'.l'.I'.I'.I"'.I-J"':'.I'.I'.I'.I'.I'J-.I"'J-‘"'J-J"'J'J"'J'Jf

A EEEEEEEESE

o rrrrrer
L
L]
4
4
L]
4
1
4
4
4
L]
4
4
4
4
4
L]
4
4
L]
4
1
4
4
4
L]
4
4
L]
4
1
L]
4
4
L]
4
4
4
4
4
L]
4
4
L]
4
1
L]
4
4
L]
4
4
L]
4
4
L]
4
4
L]
4
4
4
4
4
L]
4
4
.I"‘..J..J...

A A N N I I e e A A e R N N E R R E e e E e

a

I At ettty at et al alal et ar ot

n
n
n
n
n
n
n
n
n
"
n
n
n
n
n
n
n
n
n
"
n
n
n
n
n
n
n
n

e

+

B N N Ry Ry

r
[
[
r

+,
+
L
4

r
F
-
[]

.
]

+*

+

+
4
+
a
+

1
r -
- “HENE 1 A =TT + . T v 4 T] T LI = E]
LI | "N EEEEN "N EEEN nE R N R "R NN EE NN L |
LI e Bl TR I R I N e I N e e B R I R R e e M R I R R I e e R I I I I e B B I A I R e N W]

+

FIG. 1B

FIG. 1A

US 10,721,104 B2

U.S. Patent Jul. 21, 2020 Sheet 2 of 6 US 10,721,104 B2

Nﬁ
S
= <
S
3 5 =
£ <
% T © 5
o o \ |/ =)
e~ N
@
! prmmy
g . [1,
g <

e

¢ DId

US 10,721,104 B2

{43

06¢

Sheet 3 of 6
-

(SNHAAY LN usunsnlpy (SGSIN)

(43 GCL

e———— (SgSJA-01-1X3U PIISAUT)
’ 101va m

01¢ cOt

/

JoUll]a ¥

10¢

Jul. 21, 2020

J01BISUAN)
SSAIPPY

SOAY WoL]
SPIOA QN

¢Ct 17§ 1/

00¢

U.S. Patent

US 10,721,104 B2

Sheet 4 of 6

Jul. 21, 2020

U.S. Patent

081

PAOMYO

7 DIA
N oz T !
(+) ”$ LT usunsnipy (Tgo- Tigo- "6 -0 m
Poer sy A ”
" P S— Amfvu L:._uu nm_ﬂu nﬁ.wquv ”
i i
i '. Am—mu n._u.—mu ﬁm_mu nﬂ_mUv I
SO .] ' A%Vﬁm—w ¢ ﬁm_Nu ,H.EN nTNu nﬁmuv !
POM 9L % N\ Urrvapiemal A.m: o Wlgn Elyy Tlysyy ST-CT SPIOM QF 'f
_ & [O I 0 o)
T Sigo oo €lgo Tl &
. " . <« (*'00 "o Flgo Tl M w -
; (P)ETh ey A TowIeuan \.
d4U44dV S8SIPPY
| G COv
T.IIIIII. A:OU LHZQU amau anUv '
(1T (10" 12712710) ”
i ﬁ & (N7 V70070 %) 1o iy &
SPIOM 4L °C 10T VA PIom 9. € (1€ 7080 0 Be0) 11-8 mwlﬁm? qF v >
“ Oy) | s
_ 1.0 wweunsnlpy (oo Ve Teo- T 4~ z
. | — Oy 10¥
MAAAVY ooty A N ——— s 7
] T gttt T R R N N T N T TS T EEE ™"
, Rver ey S S M Y
at ™ mo o e
¢Sy “ Y L7 ueunsnlpy (6076076076 & (ST SOAY € JO 91
(0T < e DI woig papdures spiom 99 ‘91
“ , oo
“ > R R S 2
Aﬁavﬂm.ﬁu £ 33 S L ¥ . -y
(LT | =
LT VA PIOM 48 G (L7097 570 77 0) L7 SPIOM QF b | S
J < (L0 %00 02 *To) j w
I I
o
(1ETy = | IojRIBURN
d4ddy (2)TTY | ssoIppy
_“))
= (*09 (02 “'02 *(9)
: BN (DY o e , |
ﬂ N mz 120 @5 -0 SPIOA Qb ‘b
o LNT VA PIOM 46 SRR ARy a i) B
SPIOAA 46 ¢ I (E¢0 T *len Oeo) m
m ' T Am‘_wm wm.wﬂu nm‘_ﬂu hﬁ.ww“uv m
" A LY ”
- (Deey b7+ (DT |
! N c (*¢o- ‘6o~ *1¢o- *U¢o-) M]
m__) LT JWLSUISNIPY w | o
161 " 1 (D97 (Dsey s

US 10,721,104 B2

¢ DIA
sde]. IopI() JQUSIY sde], IOpIQ TomoT]
O A 01 6 8 L 9 G % 9 Z I 0 I- - ¢
cm ! 1 " I I I I I _ “ I I “
\r, _ | ! ! | “ !
.H | I I | I
D I I I I
h | | I I
¥’ | | I I
I I |
| I I
| I I
S
2 o
f— ! l
~ !
— |
e |
— | opmdury
= _
J |
|
I
|
|
|

U.S. Patent

US 10,721,104 B2

Sheet 6 of 6

Jul. 21, 2020

U.S. Patent

uonenby YV v 2A[0S O], an[e A juaunisnipy 2y
PUy S9NBA 51oNpOld [BLIE] 94, JO Wy 94],
R79 | 3O Wng [810], V D130 Joppy weansumo(Y[, Ag ‘ndwo)

AN A Juaunsnipy uy

($)¥9aayv 2yl ol 1N ueunsn(py oyp Ag
‘Sumpnding ‘ssaIppVv LT weunsnlpy oy, 01 2suodsay] uj

puy
‘SUOLIBD0] POsSIPPV QUL 1V PaI0I§ San[RA S10NpoI]
719 [ented JO wng "JJ4d VA 4L JO
D130 I8ppy weansumo o1, LT Vd
UL Ag ‘umndinQ ‘sassaIppVv LLYT VA QUL O], asuodsay] uf

ATRATIDAdSY ‘1.1 w_ausnipy a4,
pPUVY L1071 VA YL 01 SSaIppy L] Wwsunsnlpy 2yl puy
779 [S9SSAIPPY LNT V{ QY ‘10JBISUSL) SSAIPPY Y], Ag ‘pIeMIO,]

9 "DId

SPIO A\ TEISI(T JO QwWeS oY, JO (SSIN) S eSS
JSOJAl 94, SUIS() PAULIO,] SSAIPPY (1] jusunsnipy uy (7)
puy
SOSSAIPPY 1L.NT V(I Surpuodsarron) oy 1, SUTULIO] UoU A
QWIS AU, UIRLIOY SI¢ YO [V PUY SSQIPPVY
1.0 vV durpuodsorio)) 9yl SUIiiIo,] UdY A, PolIsAU]
ATV SHSIN-O.L-1XON U], 9I9YM ‘SPIOA B3I JO 309
IDquInN pautuLapald 9y, JO (SASIN-01-1XoN) sug
JURDIIUSIS ISON-OL-1XON 9Y [, 0L (4ST) $31g JURIYIUSIS
1SBT QU], SUlS() pauLio,] sassaIppy 1NT VA (1)
:3uIpnyou] 1BULIO,] Areuly plepuel§ U

SOSSQIPPY L1171 ‘I0IRIDURL) SSQIPPY SY I, Ag “Q1RIouon

I

PIOM [BIISIQ JO JoquinN pautuIalepald v “d1] VA 4L J
I0IRIOURL) SSAIPPY UY O] JOWINSY oY, AY ‘PIBMIO]

1BUILIO,] ATeuly 19SIJ() U] 21V
UOTYA ‘ATPATI0RdSaY ‘1)1 wwaunsnipy
YL pue N1 VA YL YPIM 28] 10, ‘Jewio,] Areurg
019 | PIBpPuElS U] oIV YOIYA\ ‘SSRIPPY LT Juouwisnipy o4, puy
SOSSAIPPY LT V(I QY] ‘I01BIUSL) SSAAPPY YL A ‘552001]

909
S[eAIO] J1U[) IV (SDAV)
SIOLIDAUO) RIS O], 30TeUY WOL] SPIOAA [R1131(]
‘Hdd VA SYL JO IPWIY 1V "9AIY 709
LNT weunsnlpy uy

‘LN VA yoed 1o ‘puy (LN Slqe], dn-joo]
V(] QU 1SB] 1V “1BWLIO.] ATeUly 10SH() U “Suipnjouf
puy uoneznund() emod 10, pom3yuo)) (7.1.]) mzifenbsy 700

PIEMIO] P9, (V) dHSWYILY PaINGLusI(] V 9p1A0id

US 10,721,104 B2

1

FEED FORWARD EQUALIZER WITH

POWER-OPTIMIZED DISTRIBUTED

ARITHMETIC ARCHITECTURE AND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present mnvention claims the benefit under 35 U.S.C.

§ 120 as a continuation of presently pending U.S. patent
application Ser. No. 16/216,248 filed on Dec. 11, 2018, the

entire teachings of which are incorporated herein by refer-
ence.

BACKGROUND

Field of the Invention

The present invention relates to feed forward equalizers
(FFEs) for data link receivers and, more particularly, to a
FFE with a novel distributed arithmetic architecture for
reduced power consumption and a corresponding feed for-
ward equalization method.

Description of Related Art

A feed forward equalizer (FFE) 1s often incorporated into
a data link receiver (RX), such as a level-4 pulse amplitude
modulation (PAM-4) data receiver, to correct for signal
degradation. Specifically, those skilled 1n the art will recog-
nize that a PAM-4 signal includes four distinct pulse ampli-
tudes at diflerent levels and used to convey information.
Each of the four different amplitude levels corresponds to a
different pair of bits (i.e., 00, 01, 11, and 10, respectively).
Transmission, by a data link transmitter (1X), of a signal
with one of the four amplitudes in a given period effectively
represents the transmission of two data bits, 1n parallel, such
that the data transmission rate 1s doubled relative to PAM-2
(also called Non-Return to Zero or NRZ transmission). FIG.
1A 1llustrates an exemplary PAM-4 signal transmitted by a
TX. Of note 1s the distinctive “eye pattern™ of this PAM-4
signal. Such a PAM-4 signal 1s, however, particularly sus-
ceptible to noise degradation during transmission. FIG. 1B
illustrates signal loss at the RX, as evidenced by the closing
of the eye pattern. Within the RX, the PAM-4 signal is
processed firstly by an Analog Front End (AFE), which can
include, but 1s not limited to, an amplifier and a Continuous
Time Linear Equalizer (CTLE). The output of the AFE 1s
turther equalized significantly by an FFE to correct for
signal loss before undergoing any further processing.

An analog FFE, as illustrated 1n FIG. 2, employs a finite
impulse response (FIR) filter. The FIR filter incorporates an
n-stage delay line 210 that passes a recerved analog signal
successively through delay elements 201, _ . Taps 202,_, ., on
the delay line 210 betfore and after each delay element 201, _
feed into corresponding multipliers 203, . Each of the
multipliers 203,_, multiplies the received data by a corre-
sponding tap weight A,_, (also known as a filter coeflicient
or tap coeilicient) to obtain partial products. The taps
welghts are predetermined to compensate for the impulse
response and, by duality, the frequency response. The prod-
ucts are then fed into downstream adder logic (including one
or more adders 204) and the output of the FIR filter 1s a sum
of the products. In other words, the output of the FIR filter
(1.e., the FFE) 1s the result of a series of n+1 multiply and
accumulate (MAC) operations.

10

15

20

25

30

35

40

45

50

55

60

65

2

A digital FFE (e.g., a distributed arithmetic (DA) FFE)
can perform this same FIR filter function, but can do so 1n
a more time ethicient manner by converting the signal from
analog to digital and then processing the signal digitally. In
a receiver that employs a DAFFE, the received analog signal
1s processed by the AFE and then digitized by an Analog to
Digital Converter (ADC). The digital output of the ADC 1s
then equalized significantly by the DA FEE to correct for
signal loss before undergoing any further processing in the
digital domain. In the DA FEE, the MAC operations are not
performed real time. Instead all possible outcomes of the
MAC operations (1.e., pre-computed sums of partial prod-
ucts values) are stored 1n look-up-tables (LUT) and accessed
using LUT addresses generated using the ADC digital out-
puts. More specifically, the ADC digital outputs (also
referred to herein as signal taps) and the filter coeflicients are
in binary arithmetic format and hence every product of a
signal tap and a filter coetlicient 1s a binary arithmetic
multiplication. Distributed arithmetic reorganizes the mul-
tiplication math across multiple signal taps by the weight of
the position of a digit in the binary number and by using the
combination of these same-position digits as an index (also
referred to herein as an LUT address). Each LUT address 1s
used to fetch a pre-computed sum of partial products value
from a LUT, which store all possible sum of partial products
values of the tap signals’ digitized with their respective tap
coellicients 1 binary form. While currently available
DAFFE architectures are suitable for performing the
required equalization process within receivers, 1mprove-
ments and/or modifications that enable device size scaling,
power optimization and faster operating speeds are generally
considered desirable.

SUMMARY

In view of the foregoing, disclosed herein are embodi-
ments of a feed forward equalizer with a power-optimized
distributed arithmetic (DA) architecture. The DAFFE can
receive digital words, each having an equal number of bits
(e.g., N-bit words) from, for example, multiple analog-to-
digital converters (ADCs).

The DAFFE can turther include at least one set of look-up
tables (LUTs) 1n binary oflset format and an address gen-
erator for generating addresses to acquire data from these
LUTs.

Specifically, the set of LUTs can include at least one
distributed arithmetic (DA) look-up table (LUT) and an
adjustment LUT for each DA LUT. The DA LUT can store
pre-calculated possible outcomes for sum of partial products
computations. The adjustment LUT can store pre-calculated
possible outcomes for correction plus offset computations.

For a predetermined number of digital words that are
received by DAFFE at successive unit intervals, the address
generator can generate multiple DA LUT addresses and an
adjustment LUT address. Specifically, the address generator
can generate DA LUT addresses from a group of least
significant bits (LSBs) of the predetermined number of
digital words through a group of next-to-most significant
bits (next-to-MSBs) of those same digital words, respec-
tively. Specifically, a group of bits made up of the LSBs of
the predetermined number of digital words are combined by
the address generator to form one DA LUT address for
accessing a sum of partial products value for that LSB
position, a group of bits made up of the next-to-LSBs of the
same digital words are combined by the address generator to
form another DA LUT address for accessing another sum of
partial products value for that next-to-LSB position, and so

US 10,721,104 B2

3

on until a group of bits made up of the next-to-MSBs of the
same digital words are modified and then combined by the
address generator to form a DA LUT address for accessing
another sum of partial products value for that next-to-MSB
position. As mentioned above, in the present invention, the
most significant bits (IMSBs), which represent signal polarity
only (i.e. not signal magnitude), are dropped when forming
the DA LUT addresses. To compensate for a magmtude
reduction in the final output, due to this dropping of the
MSBs when generating the DA LUT addresses, the next-
to-MSBs are specifically modified to their mverted value
betfore being combined to form the corresponding DA LUT
address for the next-to-MSB position.

The address generator can further generate an adjustment
LUT address from a group of bits made up of the most
significant bits (MSBs) of the same digital words used to
form the DA LUT addresses, discussed above, for accessing
an adjustment value (1.€., a correction plus oflset value) from
the adjustment LUT.

The address generator can further process the above-
mentioned LUT addresses, which are in standard binary
formation, to enable use with the DA and adjustment LUTs,
which are in the offset binary format. That 1s, the address
generator can convert or map the above-mentioned LUT
addresses from the standard binary to the oflset binary
format 1n order to acquire data from the LUTs, which are 1n
the oflset binary format. Specifically, standard binary DA
LUT addresses can be converted or mapped by the address
generator to offset binary DA LUT addresses. The oflset
binary DA LUT addresses can be received, as mputs, by the
DA LUT and, i response, the DA LUT can output sum of
partial products values that were stored at the addressed
locations. Similarly, the standard binary adjustment LUT
address can be converted or mapped by the address genera-
tor to an offset binary adjustment LUT address. The oflset
binary adjustment LUT address can be received, as an input,
by the adjustment LUT and, in response, the adjustment
LUT can output an adjustment value that was stored at the
addressed location. Thus, all accessed sums of partial prod-
ucts values and the adjustment value will be associated with
the same digital words.

The DAFFE can further include at least one adder that can
add together (1.e., compute the total sum of) the sum of
partial products Values acquired from the DA LUT and the
adjustment value acquired from the adjustment LUT to solve
a DA equation.

It should be noted that the adjustment value 1s included in
the DA equation and 1ncorporates both a correction compo-
nent and an oflset component 1n order to compensate for
reduction in size of the DA LUT due to the dropping of the
MSBs and the use of the offset binary format, respectively.
Additionally, 1t should be noted that, as a result of this
DAFFE configuration and, particularly, the reduced number
of sum of partial products values acquired from the DA LUT
due to the dropping of the MSBs when generating the DA
LUT addresses, there 1s a corresponding reduction in the
downstream adder logic complexity required to solve the
DA equation and, thereby a corresponding reduction in
power consumption when processing the data from the DA
LUT.

Embodiments of the DAFFE can include multiple
DAFFE slices (as described above) that operate 1n parallel to
process different groups of digital inputs (e.g., from sub-
stantially overlapping sub-sets of analog-to-digital convert-
ers (ADCs) within a larger set of ADCs). Additionally,
embodiments of the DAFFE can include multiple sets of the
above-described LUTs 1n a single DAFFE slice to allow for

10

15

20

25

30

35

40

45

50

55

60

65

4

parallel processing of relatively small groups of digital
inputs, which have been sampled from a given sub-set of the
larger set of ADCs.

For example, a particular embodiment of the DAFFE can
include sixteen DAFFE slices that operate in parallel to
process sixteen different groups of digital words (e.g., from
sixteen substantially overlapping sub-sets of ADCs within a
larger set of thirty-two ADCs 0-32). For example, one slice
can receive and process digital words from ADCs 0-15,
another can receive and process digital words from ADCs
1-16, another can receive and process digital words from

ADCs 2-17, and so on.

Each DAFFE slice can further include multiple sets of the
above-described LUTs to allow for parallel processing of
smaller groups of the sixteen digital words. More specifi-
cally, in this embodiment, each DAFFE slice can receives
sixteen 6-bit (6b) digital words, which are sampled at
successive unit intervals from sixteen of thirty-two ADCs
and which correspond to the sampling of analog signals at
sixteen diflerent taps.

Each DAFFE slice can further include multiple sets of
look-up tables (LUTs) 1n binary oflset format and address
generators for each set. Specifically, each DAFFE slice can
include a lower order set of LUTs for lower order taps, a
lower order address generator, a higher order set of LUTs for
higher order taps and a higher order address generator.

The lower order set of LUTs can include four different

LUTs 1n offset binary format including: a first DA LUT, a
first adjustment LUT, a second DA LUT and a second
adjustment LUT. The first DA LUT can store pre-calculated
first possible outcomes for first sum of partial products
computations. The first adjustment LUT can store first
pre-calculated possible outcomes for first correction plus
oflset computations. The second DA LUT can store pre-
calculated second possible outcomes for second sum of
partial products computations. The second adjustment LUT
can store pre-calculated second possible outcomes for sec-
ond correction computations only.
The lower order address generator can generate LUT
addresses for acquiring data from the lower order set of
LUTs using the first eight of sixteen digital words received
by the DAFFE slice. Specifically, the lower order address
generator can generate five first DA LUT addresses from a
group of least signmificant bits (LSBs) of a first group of four
of the eight 6b digital words through a group of next-to-most
significant bits (next-to-MSBs) of the first group, respec-
tively, and can further convert or map these addresses from
standard binary to oflset binary format in order to acquire
five first sum of partial products values from the first DA
LUT. The lower order address generator can generate a {irst
adjustment LUT address from a group of MSBs of the first
group and can further convert or map that address from
standard binary to offset binary format 1n order to acquire a
first adjustment value from the first adjustment LUT. The
lower order address generator can also generate five second
DA LUT addresses from a group of LSBs of a second group
of four of the eight 6b digital words through a group of
next-to-MSBs of the second group, respectively, and can
further convert or map these addresses from standard binary
to ollset binary format to acquire five second sum of partial
products values from the second DA LUT. The lower order
address generator can further generate a second adjustment
LUT address from a group of MSBs of the second group and
can convert or map that address from standard binary to
oflset binary format to acquire a second adjustment value
from the second adjustment LUT.

US 10,721,104 B2

S

The higher order set of LUTs can similarly include four
different LUTs 1n offset binary format including: a third DA

LUT, a third adjustment LU, a fourth DA LUT and a fourth
adjustment LUT. The third DA LUT can store pre-calculated
third possible outcomes for third sum of partial products
computations. The third adjustment LUT can store pre-

calculated third possible outcomes for third correction plus
oflset computations. The fourth DA LUT can store pre-
calculated fourth possible outcomes for fourth sum of partial
products computations. The fourth adjustment LUT can
store pre-calculated fourth possible outcomes for fourth
correction computations only.

The higher order address generator can generate LUT
addresses for acquiring data from the higher order set of
LUTs using the next eight of the sixteen digital words
received by the DAFFE slice. Specifically, the higher order
address generator can generate five third DA LUT addresses
from a group of least signmificant bits (LLSBs) of a third group
of four of the eight 6b digital words through a group of
next-to-most significant bits (next-to-MSBs) of the third
group, respectively, and can further convert or map these
addresses from standard binary to offset binary format in
order to acquire five third sum of partial products values
from the third DA LUT. The higher order address generator
can further generate a third adjustment LUT address from a
group of MSBs of the third group and can further convert or
map that address from standard binary to oflset binary
format 1n order to acquire a third adjustment value from the
third adjustment LUT. The higher order address generator
can further generate five fourth DA LUT addresses from a
group ol LSBs of a fourth group of four of the eight 6b
digital words through a group of next-to-MSBs of the fourth
group, respectively, and can further convert or map these
addresses from standard binary to offset binary format to
acquire five fourth sum of partial products values from the
tfourth DA LUT. The higher order address generator can
turther generate a fourth adjustment LUT address from a
group of MSBs of the fourth group and can convert or map
that address from standard binary to offset binary format to
acquire a fourth adjustment value from the fourth adjustment
LUT.

As mentioned above, in the present invention, the most
significant bits (MSBs), which represent signal polarity only
(1.e. not signal magnitude), are dropped when forming the
DA LUT addresses used to acquire data from each of the
above-mentioned DA LUTs. To compensate for a magnitude
reduction in the final output, due to this dropping of the
MSBs when generating the DA LUT addresses, the next-
to-MSBs of any given group of digital words will specifi-
cally be modified to their inverted value belfore being
combined to form the corresponding DA LUT address for
the next-to-MSB position.

In any case, the DAFFE can further include downstream
adder logic including, but not limited to, multiple adders,
which 1n combination compute a total sum of the first sum
ol partial products values acquired from the first DA LUT,
the first adjustment value acquired from the first adjustment
LUT, the second sum of partial products values acquired
from the second DA LUT, the second adjustment value
acquired from the second adjustment LUT, the third sum of
partial products values acquired from the third DA LUT, the
third adjustment value acquired from the third adjustment
LUT, the fourth sum of partial products values acquired
from the fourth DA LUT, and, finally, the fourth adjustment
value acquired from the fourth adjustment LUT to solve a
DA equation.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

It should be understood that the various adjustment values
mentioned-above can incorporate both a correction compo-
nent and an offset component in order to compensate for the
reduction in size of the associated DA LUT due to dropping
of the MSBs and the use of the oflset binary format,
respectively. Additionally, 1t should be noted that as a result
of this DAFFE configuration and, particularly, the reduced
number of sum of partial products values acquired from each
DA LUT due to the dropping of the MSBs when generating
the DA LUT addresses, there 1s a corresponding reduction in
the downstream adder logic complexity required to solve the
DA equation and, thereby a corresponding reduction 1in
power consumption when processing the data from the DA
LUTs.

Also disclosed herein are corresponding feed forward
equalization methods employing such a power-optimized
distributed arithmetic (DA) architecture.

The methods can provide a distributed arithmetic (DA)
teed forward equalizer, as described 1n greater detail above,
which 1s configured as described above for power optimi-
zation and which includes at least one a set of look-up tables
(LUTs) 1n offset binary format. Specifically, the LUTs can
include at least one DA LUT and an adjustment LUT for
cach DA LUT. Pre-calculated possible outcomes for sum of
partial products computations can be stored within the DA
LUT. Pre-calculated possible outcomes for correction plus
oflset computations can be stored within the adjustment
LUT.

The methods can include receiving, at a retimer of the
DAFFE, digital words each with an equal number of bits
(e.g., N-bit words). The digital words can be received, for
example, at successive unit itervals from multiple analog-
to-digital converters (ADCs).

The method can further include forwarding, by the retimer
to an address generator of the DAFFE, a predetermined
number of the digital words. That 1s, as the digital words are
received, they can be captured and held. When a predeter-
mined number of those words have been captured and held,
they can be forwarded by the retimer to the address genera-
tor for further processing.

The method can further include using, by an address
generator of the DAFFE, the predetermined number of
received digital words to generate LUT address in the
standard binary format. The addresses can include both DA
LUT addresses for acquiring sum of partial products values
from the DA LUT and an adjustment LUT address for
acquiring an adjustment value from the adjustment LUT.

The DA LUT addresses can be generated by the address
generator from a group of least significant bits (LSBs) of the
predetermined number of digital words through a group of
next-to-most significant bits (next-to-MSBs) of those same
digital words, respectively. Specifically, a group of bits made
up of the LSBs of a set number of digital words are
combined by the address generator to form one DA LUT
address, a group of bits made up of the next-to-LSBs of the
same digital words are combined by the address generator to
form another DA LUT address, and so on until a group of
bits made up of the next-to-MSBs of the same digital words
are modified and combined by the address generator to form
the last DA LUT address associated with that set number of
digital words. As mentioned above, 1n the present invention,
the most significant bits (MSBs), which represent signal
polarity alone (1.e., not magnitude), are dropped when
forming DA LUT addresses. To compensate for a magnitude
reduction 1n the final output, due to this dropping of the
MSBs when generating the DA LUT addresses, the next-

to-MSBs are specifically modified to their inverted value

US 10,721,104 B2

7

before being combined to form the corresponding DA LUT
address for the next-to-MSB position.

The adjustment LUT address can be generated by the
address generator from a group of bits made up of the most
significant bits (MSBs) of the same digital words used to
form the DA LUT addresses, discussed above. That is, a
group ol bits made up of the MSBs of the same digital words
can be combined by the address generator to form an
adjustment LUT address.

The method can further include processing of the above-
mentioned LUT addresses, which are in standard binary
format, by the address generator for use 1n acquiring data
from the LUTs, which are in oflset binary format. Specifi-
cally, standard binary DA LUT addresses can be converted
or mapped by the address generator to oflset binary LUT
addresses and then forwarded to the appropniate LUT {for
processing. The oflset binary DA LUT addresses can be
received, as iputs, by the DA LUT from the address
generator and, 1n response, the DA LUT can output the sum
ol partial products values that were stored at the addressed
locations. Similarly, the standard binary adjustment LUT
address can be converted or mapped by the address genera-
tor to an offset binary adjustment LUT address. The oflset
binary adjustment LUT address can be received, as an input,
by the adjustment LUT from the address generator and, in
response, the adjustment LUT can output an adjustment
value that was stored at the addressed location.

The methods can further include receiving, by at least one
adder, the sum of the partial products values acquired from
the DA LUT and the adjustment value acquired from the
adjustment LUT. The method can further imnclude comput-
ing, by the adder(s), the total sum of the sum of partial
products values and the adjustment value 1n order to solve a
DA equation.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present invention will be better understood from the
following detailed description with reference to the draw-
ings, which are not necessarily drawn to scale and 1n which:

FIGS. 1A-1B are diagrams 1llustrating exemplary PAM-4
signals upon being transmitted by a transmitter (1X) and
upon being received by a receiver (RX), respectively;

FIG. 2 1s a schematic diagram 1llustrating an exemplary
analog feed forward equalizer;

FI1G. 3 1s a diagram 1llustrating an embodiment of a digital
teed forward equalizer with a power-optimized distributed
arithmetic (DA) architecture;

FIG. 4 1s a diagram 1illustrating another embodiment of a
digital feed forward equalizer with a power-optimized dis-
tributed arithmetic (DA) architecture;

FIG. 5 1s a graph illustrating taps on an exemplary
impulse response; and

FIG. 6 15 a flow diagram 1illustrating an embodiment of an
associated equalization method.

DETAILED DESCRIPTION

As mentioned above, while currently available distributed
arithmetic feed forward equalizer (FFE) architectures are
suitable for performing the required equalization process in
receivers, improvements and/or modifications that enable
device size scaling, power optimization and faster operating
speeds are generally desirable. For example, recent improve-
ments to the basic DAFFE architecture have included: LUT
partitioning to reduce memory size and, thereby the memory

10

15

20

25

30

35

40

45

50

55

60

65

8

access time; use of the ofiset binary format for LUTs as
opposed to the standard, two’s complement, binary format;
and use of parallel processing as opposed to serial process-
ing of digital inputs for faster outputs. Still, with continued
advances 1n technology and consumer reliance on portable
battery-operated devices, 1t would be advantageous to pro-
vide additional improvements and/or modifications particu-
larly to reduced power consumption.

In view of the foregoing, disclosed herein are embodi-

ments of a feed forward equalizer (FFE) with a power-
optimized distributed arithmetic (DA) architecture and a

[T 1

corresponding equalization method. The disclosed DAFFE,

like a conventional DAFFE, includes at least one DA

look-up table (LUT), which 1s 1n offset binary format and

which stores pre-calculated possible outcomes for sum of
partial products computations for a given bit position across
taps within a DA equation. Those skilled in the art wall

recognize that the use of the oflset binary format for a DA
LUT allows the size of that DA LUT to be reduced by half
due to the properties of symmetry and inversion in the oifset
binary format (as discussed in greater detail below). Unlike
a conventional DAFFE, which 1s accessed using DA LUT
addresses formed from groups of same-position bits of all
the bits 1n a set of digital words from a set of taps. The DA
LUT of the DAFEE disclosed herein can be accessed using
a lesser number of DA LUT addresses, which formed from
groups ol same-position bits from all but the most significant
bits (MSBs) of the set of digital words of taps. As a result,
the size of the DA LUT 1s further reduced. The disclosed
DAFFE can also include an adjustment LUT for each DA
LUT. The adjustment LUT can store pre-calculated adjust-
ment values and can be accessed using an adjustment LUT
address, which 1s formed using the MSBs from the same set
of digital words. The disclosed DA FEE can also include
adder(s) that compute the total sum of sum of partial
products values acquired from the DA LUT using the DA
LUT addresses and the adjustment value acquired from the
adjustment LUT using the adjustment LUT address in order
to correctly solve a DA equation. As discussed in greater
detail below, the adjustment value 1s included 1n the DA
equation and incorporates both a correction component and
an oilset component to compensate for dropping the MSBs
when forming DA LUT addresses (1.e., the reduced number
of sum of partial products values acquired) and the use of the
oflset binary format. As a result of this DAFFE configuration
and, particularly, the reduced number of sum of partial
products values acquired from the DA LUT(s) due to the
dropping of the MSBs when generating the DA LUT
addresses, there 1s a corresponding reduction in the down-
stream adder logic complexity required to solve the DA
equation and, thereby a corresponding reduction 1 power
consumption when processing the data from the DA LUT.

More particularly, referring to FIG. 3, disclosed herein are
embodiments of a feed forward equalizer (FFE) 300 with a
power-optimized distributed arithmetic (DA) architecture.
Such a DAFFE 300 can be incorporated into a receiver
(RX), such as a level-4 pulse amplitude modulation (PAM-
4) data receiver, to correct for signal degradation. Specifi-
cally, the RX can include an Analog Front End (AFE), which
receives an analog signal transmitted from a transmitter
(IX) and which can include, but 1s not limited to, an
amplifier and a Continuous Time Linear Equalizer (CTLE)
that mitially processes the received signal. The RX can
turther include analog-to-digital converters (ADCs), which
convert the recerved signal from analog to digital, and output
digital words 1n standard binary format to the DAFFE 300.

US 10,721,104 B2

9

These digital words can have an equal number of bits. That
1s, they can all be N-bit digital words.

The DAFFE 300 can include a retimer 302 with an input
301, which receives the digital inputs (i.e., the N-bit digital
words) from the ADCs at successive unit intervals (UI). The
retimer 302 can capture and hold the digital words until
some predetermined number of the digital words are
sampled (1.e., held). Once the predetermined number of
digital words have been captured and held, the retimer 302
can forward them as a group for parallel feed forward
equalization processing.

The DAFFE 300 can further include at least one set of
look-up tables (LUTs) that store data 1n oflset binary format.
Those skilled i the art will recognize that in the standard
binary format signal data is represented by a digital word
containing bits of 0’s and 1’s with the most significant bit
(MSB) 1n the digital word 1indicating signal polarity and the
remaining bits (i.e., the least significant bit (LSB) to the
next-to-MSB) indicating magnitude. For example, a 0 MSB
can represent positive signal polarity and a 1 MSB can
represent negative signal polarity. Oflset binary format
instead refers to a digital coding scheme where all-zero
corresponds to the minimal negative value and all-one to the
maximal positive value. For example, the 4-bit (4b) address
of a LUT 1n standard binary format would range from 1000,
the most negative value of -8 to 0111, the most positive
value of +7 which 1s a range of 16 values. A first 4-bit
address 1n standard binary format would be 0000 and 1n

oflset binary 1t would be oilset upward by half the range,
yielding 1000. 1000 1s 000048, where 8 1s half the full range

of 16.

The set of LUTs can include at least one distributed
arithmetic (DA) LUT 321 and at least one adjustment LUT
324 for each DA LUT 321. The DA LUT 321 can store the
pre-calculated results (i1.e., possible outcomes) of a DA
equation’s sum of partial products (1.e., pre-calculated sum
of partial products values) for a bit position across taps with
their respective filter coeflicients. In binary offset format,
this DA LUT table 1s symmetric such that the top half of the
table 1s a retlection of the bottom half of the table about the
center. This helps in reducing the LUT size by half with the
understanding of symmetry in the downstream processing
logic. The corresponding adjustment LUT 324 can store
pre-calculated possible outcomes for correction plus oflset
computations (1.e., pre-calculated adjustment values) also
within this DA equation (also as discussed in greater detail
below).

More specifically, those skilled 1n the art will recognize
that a DAFFE 1s typically configured to solve the following,

basic DA equation:

(1)

Yp = ZS: Ap X Dy_p,

where Y, are the digital outputs of the DAFFE, where n 1s
the number of taps, where k 1s a unit of time, where D, are
the digital words received from the ADCs, and where A are
the corresponding filter coeflicients (also referred herein as
tap weights or tap coeflicients) for each some specific
number n of taps ranging from tap r to tap s. All possible sum
of partial products values, which are pre-calculated and
stored 1n the DA LUT, are derived from the sum of products
of a given position’s value of D, _, across a range of n values
with their respective A values, for this DA equation. The
number of entries in the DA LUT will be a function of the

10

15

20

25

30

35

40

45

50

55

60

65

10

number n of taps used to form DA LUT addresses for
acquiring sum of partial products values across those n taps,
respectively. For example, for a group of X, N-bit digital
words, a total of 2* DA LUT addresses would typically be
generated. The first DA LUT address would be formed from
all of the least-significant-bits (LSBs) of the X digital words,
the second DA LUT address would be formed from all of the
next-to-LSBs of the X digital words, and so on through the
last DA LUT address, which would be formed from all of the
most-significant-bits (MSBs) of the X digital words. Thus,
the DA LUT would contain 2* stored values to solve the
basic DA equation (1). It should be noted that s—r taps may
be divided into (s-r)/X groups for best performance, power
and ease of implementation.

If the DA LUT 1s, 1nstead, 1n offset binary format, the size
of that DA LUT (i.e., the number of stored sum of partial
products values) can be reduced by half (i.e., to 2*). This
1s because conversion from the standard binary to the offset
binary results in the top and bottom halves of the DA LUT
being symmetric except for the signs of the stored content
(1.e., except for stored value polarity). That 1s, the bottom
half of the DA LUT will be the sign-reversed mirror image
of the top half. For example, when a DA LUT with sixteen
stored values 1in rows 0-15 1s converted from the standard
binary to the oflset binary format, rows 0-7 will be sym-
metric to rows 8-135 except for the signs of the stored content
(1.e., except for stored value polarity) so that rows 7 and 8
store the same absolute values with diflerent polarities, the
rows 6 and 9 store the same absolute values with diflerent
polarities, etc. Thus, the bottom half can be eliminated form
the DA LUT.

To account for the reduced LUT size (1.e., to account for
the compressed range of sum of partial products values
stored 1n an offset binary DA LUT), prior art DAFFEs have
been configured to implement the following modified DA
equation that adds a constant offset value to the sum of the
partial products:

S | (2)
Yy = Z Qi X270 + Qpsers

where Q, represent the partial products values acquired
from the DA LUT and where Q_4,, represents a constant
oflset value that 1s equal to

and that 1s added to the sum of the partial products values.
Q. e €ltectively shifts the output of the DAFFE to the
correct value and 1s typically accomplished using a register
that feeds the oflset value into an adder within the binary
oflset DAFFE architecture, thereby ensuring that the modi-
fied DA equation 1s solved correctly.

In the DAFFE 300 disclosed the addressing logic related
to the MSB bits and the complexity of the downstream
adders 350 (discussed 1n greater detail below) 1s reduced 1n
accordance with the removed MSB bits 1n the blocks 310,
322 and 321. Additionally, the next-to-MSBs are modified to
their inverted value 1n lieu of the magnitude reduction from
the dropping of MSBs. All other bit values (e.g., the least-
significant-bits (LSBs), the next-to-LSBs, etc.) remain
unchanged when generating corresponding DA LUT

US 10,721,104 B2

11

addresses. In any case, to account for the reduced size of
these blocks, the disclosed DAFFE 300 1s configured to
implement the DA equation rewritten as follows:

: . (3)
Yy = Z Qk, Re 27+ Qﬂﬁser + Qcorrecrion
n=r

where Q____ . represents a variable correction value that
1s equal to

[%Z(il)xﬂn +2N]

and that accounts for signal polarity (given that the sum of
partial products value that would otherwise account for
signal polarity was not acquired from the DA LUT 321).
Thus, 1n the present invention, the combination of Q_ ., and
Q. oerie,, €llectively shifts the output of the DAFFE 300 to
the correct level. However, since the value of Q__ . 1s
variable, 1t cannot be applied using a register alone. Thus, as
mentioned above, the disclosed DAFFE 300 includes, for
cach DA LUT 321, a corresponding adjustment LUT 324 (as
opposed to just an offset register). This adjustment LUT 324
stores pre-calculated possible outcomes for correction plus
offset computations (1.e., for Qg ., and Q_, ,ccro,) (1-€.,
pre-calculated adjustment values that include both a correc-
tion component and an offset component).

The disclosed DAFFE 300 can further include an address
generator 310 (also referred to herein as an address genera-
tion logic block), which receirves a group of digital words
from the retimer 302 (e.g., the X, N-bit digital words) and
generates LUT addresses for acquiring sum of partial prod-
ucts values from the DA LUT 321 and an adjustment value
from the adjustment LUT 324. The retimer 302 can 1nclude
first-in-first-out (FIFO) logic for generating the various tap
signals of the FIR, which are unit-time delayed versions of
the input digital data. The address generator 310 can gen-
erate the look-up table (LUT) addresses (including DA LUT
addresses and an adjustment LUT address) in standard
binary format and can include additional logic for process-
ing these standard binary LUT addresses for use with the
LUTs, which are in offset binary format. That 1s, the address
generator 310 can include address processing logic config-
ured to convert these LUT addresses from standard binary to
oflset binary format or, alternatively, mapping logic for
mapping the addresses to a corresponding offset binary
address (given top and bottom half LUT symmetry dis-
cussed above).

More specifically, for a received group of digital words
corresponding to a group of specific signal taps, the address
generator can generate DA LUT addresses from a group of
the least significant bits (LSBs) of the digital words through
a group ol next-to-most significant bits (next-to-MSBs) of
the digital words, respectively. That 1s, when the predeter-
mined number (X) of digital words from the FIFO chain 1s
forwarded to the address generator 310, they can be decom-
posed by the address generator 310. A group of bits made up
of the LSBs of the digital words 1s combined to form one
X-bit DA LUT address, a group of bits made up of the
next-to-LSBs of the same digital words 1s combined to form
another X-bit DA LUT address, and so on until a group of
bits made up of the next-to-MSBs of the same digital words
1s modified and then combined to form the last X-bit DA

10

15

20

25

30

35

40

45

50

55

60

65

12

LUT address associated with that X digital words. To
compensate for a magnitude reduction in the final output,
due to this dropping of the MSBs when generating the DA
LUT addresses, the next-to-MSBs are specifically modified
to their mverted value before being combined to form the
corresponding DA LUT address for the next-to-MSB posi-
tion. All other bit values (1.e., the LSBs, the next-to-LSBs,
etc.) remain unchanged when generating corresponding DA
LUT addresses.

The address generator 310 can further process these
standard binary X-bit DA LUT addresses so that they can be
used with the DA LUT 321, which 1s in the ofiset binary
format. That 1s, the address generator 310 can convert or
map these address to offset binary X-bit DA LUT addresses
322 and can output them to the DA LUT 321 for processing.
The DA LUT 321 can receive the ofiset binary X-bit DA
LUT addresses 322 as discrete mputs and can, in response,
output sum of partial products values 323 stored in the
addressed locations.

As mentioned above, the most significant bits (MSBs),
which represent signal polarity, are dropped when generat-
ing DA LUT addresses. However they are still used. Spe-
cifically, the address generator 310 can form an X-bit
adjustment LUT address from a group of bits made up of the
most significant bits (MSBs) of the same digital words that
were used to form the X-bit DA LUT addresses, discussed
above. The address generator 310 can further processes this
standard binary X-bit adjustment LUT address so that 1t can
be used with the adjustment LUT 324, which 1s in oflset
binary format. That 1s, the address generator 310 can convert
or map this address to an oflset binary X-bit adjustment LUT
address 325 and can output it to the adjustment LUT 324 for
processing. The adjustment LUT 324 can receive the oflset
binary X-bit adjustment LUT address 325 as an mput and
can, 1n response, output an adjustment value 326 stored at
the addressed location.

The disclosed DAFFE 300 can further include down-
stream adder logic including, but not limited to, at least one
adder 350 that can add together the sum of partial products
values 323 acquired from the DA LUT 321 and the adjust-
ment value 326 acquired from the adjustment LUT 324 in
order to correctly solve the DA equation (3).

It should be noted that the adjustment value 1s included 1n
the DA equation (3) and incorporates both the correction
component and the oflset component in order to compensate
for the reduction 1n size of the DA LUT due to the dropping
of the MSBs and the use of the oflset binary format,
respectively. Additionally, 1t should be noted that this
DAFFE configuration and, particularly, the reduced number
of sum of partial products values acquired from the DA LUT
due to the dropping of the MSBs when generating the DA
LUT addresses, allows for a corresponding reduction in the
complexity of the downstream adder logic (e.g., adder(s)
350) and, thereby a corresponding reduction in power con-
sumption when processing the data from the DA LUT.

Embodiments of the disclosed DAFFE can include mul-
tiple DAFFE slices (as described above) that operate in
parallel to process different groups of digital inputs (e.g.,
from substantially over lapping sub-sets of analog-to-digital
converters (ADCs) within a larger set of ADCs). Addition-
ally, embodiments of the DAFFE can include multiple sets
of the above-described LUTs 1n a single DAFFE slice to
allow for parallel processing of relatively small groups of
digital inputs, which have been sampled from a given
sub-set of the larger set of ADCs.

To better illustrate the features of the disclosed DAFFEs
with power-optimized distributed arithmetic (DA) architec-

US 10,721,104 B2

13

ture, one particular embodiment (namely DAFFE 400) 1s
described 1n greater detail below and 1llustrated in FIG. 4.

The DAFFE 400 can include sixteen, essentially identical,
DAFFE slices, one of which 1s shown 1n FIG. 4. These slices

can operate in parallel to process sixteen different groups of °

digital words from sixteen substantially overlapping sub-
sets ol analog-to-digital converters (ADCs) within a larger
set of thirty-two ADCs 0-32 that process an analog signal
(e.g., a 56 Gbps PAM-4 signal) after 1t has been received by
a receiver (RX) from a transmitter (1X) and processed by an
analog front end (AFE) of the RX.

In the DAFFE 400 one slice can receive and process
digital words from ADCs 0-13, another can receirve and
process digital words from ADCs 1-16, another can receive
and process digital words from ADCs 2-17, and so on.

Each of the DAFFE slices will solve the DA equation:

12 (4)
Vo=) ApX Dy,

n=-—>3

where Y, are the digital outputs of the FFE corresponding to
one group of digital word 1nputs, k 1s a unit time, n 1s the
number of taps (e.g., 16), D, are the digital words recerved
from the ADCs, and A are the corresponding filter coetli-
cients (also referred herein as tap weights) for each of the
sixteen taps -3 to 12. In this equation (4), D, can be
represented as follows:

“ (3)

or

4
Dy, = -—d&j:X:f54-:Elﬁhmi)i2H
n=0

/

5 (6)
D, = Z by, X 2",
n=>0

where b, s=d, 5 for the MSB and b, ,=d, , for all other bits
of the data sample D,. Thus, equation (4) can be rewritten as
follows:

12(

5
Yy = E
=0

n=—3 /

\ (7)

b(k—(n,j)) X A" | x 2/,

/

Furthermore, as discussed above, when using the oflset

binary format (as opposed to the standard binary format) the
DA LUT size can be reduced. In this case, D, can further be
rewritten as follows:

1 (8)

Dy = §<Dk — (=Dy)y,

In two’s complement, —D, can equate to the following:

5 (9)
_D, =1+ Zbk?” .
n=0

Thus, the DA equation can further be rewritten as follows:

10

15

20

25

30

35

40

45

50

55

60

65

(10)

><2f+[z = XA,

n=—>3 J

where

> \

12 1
E [Z 5 X An X C—n,)

=0 n=—>3 ¥

corresponds to a sum of products computation representative
of a first half of the possible outcomes for the sum of partial
products values (which are the sign-reversed mirror image
of the bottom half, where ¢, represents c,,=[b, b, I,

where, for n=0 to 5, ¢, takes {-1,1} values because b, is
10,1}, and where

12 \
1

Z) XA,

n——>3 y

represents a constant oflset value (also referred to herein as

Qo ser):

Additionally, as mentioned above, the MSBs of each of
the digital words received by the DAFFE 400 will indicate
signal polarity (whereas the LSBs through the next-to-MSBs
indicate magnitude) and 1n the embodiments disclosed
herein the DAFFE 1s configured to drop these MSB when
generating addresses for DALUT(s) resulting 1n smaller size
of the DA LUT(s) and further resulting in corresponding
reductions i the number of sum of partial products values
acquired from the DA LUT(s), the downstream adder logic
complexity required to process those sum of partial products
values and power consumption (e.g., by up to 3%) during
operation. In order to compensate for this reduction in sum

of partial products values and shiit the output of the DAFFE

400 to the correct level, the DA equation solved by the
DAFFE 400 can further be rewritten as follows:

(11)
x 24 &

12 1
Yk = E [E XAHXC(R_(HJ))

b

B
+[§ X Z (£1)X A, X32],
n=-—73

/

where

4 \

12 1
E (Z 5 X An X Cle~(n.)

=0 n=—>3 J

corresponds to the sum of products of tap data ¢,_,, »,, with
tap coethicients A, where ¢, ., for =4 1s nverted to
account for magnitude reduction from the dropping of MSB,
where

US 10,721,104 B2

represents me constant oftset value (Q,z,.,) included to
account for using the oflset binary format, where

b

| 12
{EX Z (x1)Xx A, xX32

n=—>3 ¥

represents a variable correction value (also referred to herein

as Q__ .)included to account for the dropping of the
MSBs for the DA LUT addresses, and where

=2 ‘w
+[§ X Z (x1)x A, xX32

n=—>3 /

corresponds to correction plus oflset computations to ensure
that the final output of the DA equation and, thereby the DA
FEE 1s correct.

To solve this DA equation (11), each DAFFE slice i the
DAFFE 400 can further include multiple sets of DA and
adjustment LUTs (as described above with regard to FIG. 3)
to allow for parallel processing of smaller groups of the
sixteen 6b digital words received from the sixteen ADCs.
Additionally, each DAFFE slice can include a retimer 402
with an input 401 that receives sixteen 6-bit (6b) digital
words at successive unit intervals of, for example, 16.6
picoseconds (ps). These digital words can be received from
sixteen of thurty-two different ADCs and can correspond to
the sampling of analog signals at sixteen different taps (e.g.,
see taps —3 to 12 on the exemplary impulse response shown
in FIG. 5).

Each DAFFE slice can further include multiple sets
491-492 of look-up tables (LUTs) in binary offset format and
address generators 411-412 for each set. Specifically, each
DAFFE slice can include a lower order set 491 of LUTs for
eight lower order taps (e.g., taps =3 to 4 shown 1n FIG. 5),
a lower order address generator 411, a higher order set 492
of LUTs for higher order taps (e.g., see taps 5-12 of FIG. 5)
and a higher order address generator 412.

In operation, the retimer 402 can receive the 6b digital
words can capture and hold the received digital words until
the first eight 6b digital words are received. The retimer 402
can then forward the first eight to the lower order address
generator 411 for parallel feed forward equalization process-
ing. Meanwhile, the retimer 402 can continue to hold the
newly received 6b digital words until the next eight are
received. The retimer 402 can then forward the next eight to
the higher order address generator 412 (e.g., via delay flip
flops 403) for parallel feed forward equalization processing.

The lower order set of LUTs 491 can include {four
different LUTs 1n oflset binary format. These LUTs can
include a first DA LUT 421(1), a first adjustment LUT
424(1), a second DA LUT 421(2) and a second adjustment
LUT 424(2). The first DA LUT 421(1) can store pre-
calculated first possible outcomes for first sum of partial
products computations associated with the four lowest taps
(1.e., taps =3 to 0). The first adjustment LUT 424(1) can store
pre-calculated first possible outcomes for first correction
plus oflset computations also associated with these four taps

10

15

20

25

30

35

40

45

50

55

60

65

16

-3 t0 0. The second DA LUT 421(2) can store pre-calculated
second possible outcomes for second sum of partial products
computations associated with the next four lowest taps (i.e.,
taps 1 to 4). The second adjustment LUT 424(2) can store
second possible outcomes for second correction computa-
tions only associated with these same four taps 0 to 4.

The lower order address generator 411 can generate LUT
addresses for acquiring data from the lower order set 491 of
LUTs using the first eight of sixteen digital words received
by the DAFFE slice and forwarded to the lower order
address generator 411 from the retimer 402. Specifically, the
lower order address generator 411 can first divide the
received digital words into two groups of four 6b digital
words. The lower order address generator 411 can then
generate five first DA LUT addresses, in standard binary
format, by decomposing four 6b digital words in the first
group and using the corresponding bits from those words
(except for the most-significant-bits (MSBs)) to form five,
standard binary, first DA LUT addresses, each having 4 bits.
That 1s, the lower order address generator 411 can generate
the five, standard binary, 4b first DA LUT addresses from a
group ol least significant bits (LLSBs) of the first group
through a group of next-to-most significant bits (next-to-
MSBs) of the first group, respectively. The lower order
address generator 411 can further process these five, stan-
dard binary, 4b first DA LUT addresses (e.g., convert or map
them to five, ofiset binary, 4b first DA LUT addresses
422(1), respectively) 1n order to acquire (1.e., access) five
first sum of partial products values 423(1) stored in the first
DA LUT 421(1) at the addressed locations.

The lower order address generator 411 can also generate
a standard binary, 4b first adjustment address from a group
of MSBs of the first group and can process that standard
binary, 4b first adjustment address (e.g., convert or map 1t
into an ofilset binary, 4b first adjustment address 425(1)) 1n
order to acquire a first adjustment value 426(1) stored 1n the
first adjustment LUT 424(1) at the addressed location.

The lower order address generator 411 can also generate
five second DA LUT addresses, 1n standard binary format,
by decomposing the four 6b digital words 1n the second
group and using the corresponding bits from those words
(except for the most-significant-bits (MSBs) to form five,
standard binary, second DA LUT addresses, each having 4
bits. That 1s, the lower order address generator 411 can
generate the five, standard binary, 4b second DA LUT
addresses from a group of least significant bits (LSBs) of the
second group through a group of next-to-most significant
bits (next-to-MSBs) of the second group, respectively. The
lower order address generator 411 can further process these
five, standard binary, 4b second DA LUT addresses (e.g.,
convert or map them to five, offset binary, 4b second DA
LUT addresses 422(2), respectively) 1in order to acquire (1.e.,
access) five second sum of partial products values 423(2)
stored 1n the second DA LUT 421(2) at the addressed
locations. The lower order address generator 411 can also
generate a standard binary, 4b second adjustment address
from a group of MSBs of the second group and can process
that standard binary, 4b second adjustment address (e.g.,
convert or map 1t to an oflset binary, 4b second adjustment
address 425(2)) 1n order to acquire a second adjustment
value 426(2) stored 1n the second adjustment LUT 424(2) at
the addressed location.

The higher order set of LUTs 492 can similarly include
four different LUTs 1n oflset binary format. These LUTs can
include third DA LUT 421(3), a third adjustment LUT
424(3), a fourth DA LUT 421(4) and a fourth adjustment
LUT 424(4). The third DA LUT 421(3) can store pre-

US 10,721,104 B2

17

calculated third possible outcomes for sum of partial prod-
ucts computations associated with the next four higher taps
(1.e., taps 5 to 8). The third adjustment LUT 424(3) can store
pre-calculated third possible outcomes for third correction
plus offset computations associated with these same four
taps 5 to 8. The fourth DA LUT 421(4) can store pre-
calculated fourth possible outcomes for fourth sum of partial
products computations associated with the four highest taps
(1.e., taps 9-12). The fourth adjustment LUT 424(4) can store
tourth possible outcomes for fourth correction computations
only associated with these same four taps 9-12.

The higher order address generator 412 can generate
addresses for acquiring data from the higher order set 492 of
LUTs using the next eight of sixteen digital words received
by the DAFFE slice and forwarded to the higher order
address generator 412 by from the retimer 402 via the delay
tlip tlops 403. Specifically, the higher order address genera-
tor 412 can divide the eight 6b digital words into two groups
(1.e., a third group and a fourth group).

The higher order address generator 412 can then generate
five third DA LUT addresses, 1n standard binary format, by
decomposing the four 6b digital words 1n the third group and
using the corresponding bits from those words (except for
the most-significant-bits (MSBs) to form five, standard
binary, third DA LUT addresses, each having 4 bits. That 1s,
the higher order address generator 412 can generate the five,
standard binary, 4b third DA LUT addresses from a group of
least significant bits (LSBs) of the third group through a
group ol next-to-most significant bits (next-to-MSBs) of the
third group, respectively. The higher order address generator
412 can further process these five, standard binary, 4b third
DA LUT addresses (e.g., convert or map them to five, oflset
binary, 4b third DA LUT addresses 422(3), respectlvely) 1n

order to acquire (i1.e., access) five third sum of partial
products values 423 (3) stored in the third DALUT 421(3) at

the addressed locations.

The higher order address generator 412 can also generate
a standard binary, 4b third adjustment address from a group
of MSBs of the third group and can process that standard
binary, 4b third adjustment address (e.g., convert or map 1t
to an oflset bmary,, 4b third adjustment address 425(3)) 1n
order to acquire a third adjustment value 426(3) stored 1n the
third adjustment LUT 424(3) at the addressed location.

The higher order address generator 412 can also generate
five fourth DA LUT addresses, 1n standard binary format, by
decomposing the four 6b words digital words 1n the fourth
group and using the corresponding bits from those words
(except for the most-significant-bits (MSBs) into five, stan-
dard binary, fourth DA LUT addresses, each having 4 bits.
That 1s, the higher order address generator 412 can generate
the five, standard binary, 4b fourth DA LUT addresses from
a group of least significant bits (LSBs) of the fourth group
through a group of next-to-most significant bits (next-to-
MSBs) of the fourth group, respectively. The higher order
address generator 412 can further process these five, stan-
dard binary, 4b fourth DA LUT addresses (e.g., convert or
map them to five, oflset binary, 4b fourth DA LUT addresses
422(4), respectively) 1n order to acquire (i.e., access) five
fourth sum of partial products values 423(4) stored in the
fourth DA LUT 421(4) at the addressed locations. The
higher order address generator 412 can also generate a
standard binary, 4b fourth adjustment address from a group
of MSBs of the fourth group and can process that standard
binary, 4b fourth adjustment address (e.g., convert or map 1t
to an oflset bmary,, 4b fourth adjustment address 425(4)) 1n
order to acquire a fourth adjustment value 426(4) stored 1n
the fourth adjustment LUT 424(4) at the addressed location.

10

15

20

25

30

35

40

45

50

55

60

65

18

It should be noted that for all but the next-to-MSB
position addresses for each of the DA LUTs 421(1)-(4)
described above, the address generators 411-412 combined
same-position bits (1.e., all LSBs, all next-to-LSBs, etc.) 1n
sequential order to form the corresponding DA LUT address.
However, to compensate for a magnitude reduction 1n the
final output, due to thus dropping of the MSBs when gen-
erating DA LUT addresses, for each next-to-MSBs position
address, the next-to-MSBs are modified to their inverted
value belfore being combined to form the corresponding DA
LUT address. All other bit values (e.g., the LSBs, the
next-to-LSBs, etc.) remain unchanged when generating cor-
responding DA LUT addresses.

Those skilled 1in the art will recognize that the filter
coellicients A used 1n the modified DA equation computa-
tions (1.e., the sum of partial products computations and the
correction plus oflset computations) for the lower order taps
(1.e., taps =3 to 7) will be greater than those used 1n the same
computations for the higher order taps. Thus, the sum of
partial products values output by the DA LUTs 1n the lower
order set 491 will be larger than those output by the DA
LUTs in the higher order sets 491. For example, 1n the
exemplary embodiment shown 1n FIG. 4, the first DA LUT
421(1) can output 9b words representing the first sum of
partial products values 423(1); the second DA LUT 421(2)
can output 8b words representing the second sum of partial
products values 423(2); the third DA LUT 421(3) can output
/b words representing the third sum of partial products
values 423(3); and the fourth DA LUT 421(4) can also
output 7b words representing the fourth sum of partial
products values 423(4).

This DAFFE 400 can further include downstream adder
logic including, but not limited to, hierarchical adders 451-
453, which in combination compute a total sum of the first
sum of partial products values 423(1) acquired from the first
DA LUT 421(1), the first adjustment value 426(1) acquired
from the first adjustment LUT 424(1), the second sum of
partial products values 423(2) acquired from the second DA
LUT 421(2), the second adjustment value 426(2) acquired
from the second adjustment LUT 424(2), the third sum of
partial products values 423(3) acquired from the third DA
LUT 421(3), the third adjustment value 426(3) acquired
from the third adjustment LUT 424(3), the fourth sum of
partial products values 423(4) acquired from the fourth DA
LUT 421(4), and, finally, the fourth adjustment value 426(4)
acquired from the fourth adjustment LUT 424(4) to solve the
modified DA equation (11) above.

Specifically, a first adder 451 (e.g., a first carry-save
addition (CSA) tree circuit) or series of first adders can add
together the first sum of partial products values 423(1)
acquired from the first DA LUT 421(1), the first adjustment
value 426(1) acquired from the first adjustment LUT 424(1),
the second sum of partial products values 423(2) acquired
from the second DA LUT 421(2), and the second adjustment
value 426(2) acquired from the second adjustment LUT
424(2). It should be noted that only one oiflset value 1is
included to account for the use of the binary offset format
when processing the lower order taps. Thus, as mentioned
above, the second adjustment value 426(2) acquired from
the second adjustment LUT 424(2) will only include the
outcome of a correction computation (with the oflset at
zero). A second adder 452 (e.g., a second CSA tree circuit)
or series ol second adders can add together the third sum of
partial products values 423(3) acquired from the third DA
LUT 421(3), the third adjustment value 426(3) acquired
from the third adjustment LUT 424(3), the fourth sum of
partial products values 423(4) acquired from the fourth DA

US 10,721,104 B2

19

LUT 421(4), and, finally, the fourth adjustment value 426(4)
acquired from the fourth adjustment LUT 424(4). It should
be noted that only one oflset value 1s included to account for
the use of the binary offset format when processing the
higher order taps also. Thus, as mentioned above, the fourth
adjustment value 426(4) acquired from the fourth adjust-
ment LUT 424(2) will only include the outcome of a
correction computation (with the oflset at zero). At least one
third adder 453 (e.g., a Kogge-Stone adder (KSA), also
referred to as a carry look-ahead adder) can add together the
sums output from the first adder(s) 451 and second adder(s)
452 and can output, at an output node 480 of the DAFFE
400, the answer to modified DA equation 1n the form of a 9b
word.

It should be noted that pipeline flop registers (not shown)
can be 1nserted between the hierarchical adders 451-4353 1n
order to maintain proper timing and, particularly, 1n order to

maintain the C8 clock whose frequency 1s one eighth the
incoming bit rate, C1 throughout the DAFFE 400.

It should also be noted that 1n the disclosed DA FEE 400
embodiments, the adjustment values that are acquired from
the adjustment LUTs and added into the final output by the
adders 451-453 compensate for the reduction in size of the
associated DA LUTs due to dropping of the MSBs and the
use of the offset binary format, respectively. Additionally, 1t
should be noted that this DAFFE configuration and, particu-
larly, the reduced number of sum of partial products values
acquired from each of the DA LUTs due to the dropping of
the MSBs when generating the DA LUT addresses, allows
for a corresponding reduction 1n the complexity of the
downstream adder logic (e.g., adder(s) 451-453) and,
thereby a corresponding reduction 1 power consumption
when processing the data from the DA LUTs.

Referring to the flow diagram of FIG. 6, also disclosed
herein are corresponding feed forward equalization methods
employing such a power-optimized distributed arithmetic
(DA) architecture.

The method embodiments disclosed herein can include

providing a distributed arithmetic (DA) feed forward equal-
izer (FFE) (see process 602). The DAFFE can, for example,

be configured as the DAFFE 300 described above and
illustrated in FI1G. 3, as the DAFFE 400 described above and
illustrated 1n FIG. 4, or alternatively as any other DAFFE
structure that has the above-described DAFFE features
employed to reduce power consumption. For purposes of
illustration, the method steps are described in greater detail
below with respect to the general DAFFE 300 structure
shown 1n FIG. 3.

The DAFFE provided at process step 602 can be incor-
porated 1nto a recerver (RX), such as a level-4 pulse ampli-
tude modulation (PAM-4) data receiver, to correct for signal
degradation. Specifically, the RX can include analog-to-
digital converters (ADCs), which receive an analog signal
transmitted from a transmitter (1X), convert the received
signal from analog to digital, and output digital words 1n
standard binary format to the DAFFE. These digital words
can have an equal number of bits. That 1s, they can all be
N-bit digital words.

The DAFFE provided at process step 602 can further
include at least one set of look-up tables (LUTs) 1n offset
binary format. That 1s, the LUTs can be configured to be
indexed using addresses in oflset binary format as opposed
to standard binary format (also referred to herein as two’s
complement format). Those skilled 1n the art will recognize
that 1n the standard binary format signal data 1s represented
by a digital word containing bits of 0’s and 1’s and the most
significant bit (MSB) 1n the digital word will indicate signal

5

10

15

20

25

30

35

40

45

50

55

60

65

20

polarity besides magnitude. For example, a 0 MSB can
represent positive signal polarity and a 1 MSB can represent
negative signal polarity. Offset binary format instead refers
to a digital coding scheme where all-zero corresponds to the
minimal negative value and all-one to the maximal positive

value. In any case, the set of LUTs can include at least one
DA look-up table (LUT) 321 and at least one adjustment

LUT 324 for each DA LUT 321. As discussed above, the DA
LUT 321 can store pre-calculated possible outcomes for sum
of partial products computations (1.e., pre-calculated sum of
partial products values) and the corresponding adjustment
LUT 324 can store pre-calculated possible outcomes for
correction plus oflset computations. These possible out-
comes for the sum of partial products values and the possible
outcomes for the correction plus oflset computations are
included to allow the DAFFE 300 to solve a DA equation
(see the above-discussion of DA equation (3), see also the
above-discussion of DA equation (11)).

In operation, the method can further include receiving, at
a retimer 302 of the DAFFE 300 at an mput 301, digital
iputs (1.e., N-bit digital words) from ADCs at successive
unmit itervals (Ul) (see process step 604). The method can
turther include capturing and holding, by the retimer 302,
the N-bit digital words until some predetermined number
(e.g., X) of the digital words are sampled (1.e., held) (see
process step 606). Once the predetermined number of digital
words have been captured, the method can further include
forwarding, by the retimer 302, the predetermined number
of digital words as group to an address generator 310 of the
DAFFE 300 for parallel feed forward equalization process-
ing (see process step 608).

The method can further include receiving, by an address
generator 310, the group of digital words from the retimer
302 (e.g., the X, N-bit digital words). Next, the method can
include generatmg,, by the address generator 310, LUT
addresses for acquiring sum of partial products values and
adjustment values from the above-mentioned LUTs. Spe-
cifically, method can include generating LUT addresses
(including DA LUT addresses and an adjustment address) 1n
standard binary format (see process step 608), processing
these standard binary format LUT addresses for use with the
oflset binary LUTs (1.e. Convertmg or mapping the standard
binary LUT addresses to oflset binary LUT addresses) (see
process step 610) and then forwarding the DA LUT
addresses and the adjustment LUT addresses to the DA LUT
and the adjustment LUT, respectively (see process step 612).

More specifically, process step 608 of generating LUT
addresses can include regrouping the received group of
digital words and generating DA LUT addresses from a
group of the least significant bits (LSBs) of the digital words
through a group of next-to-most significant bits (next-to-
MSBs) of the digital words, respectively. That 1s, when the
predetermined number (X) of digital words 1s forwarded to
the address generator 310, they can be decomposed. The
most-significant bits (MSBs) are dropped. Then, a group of
bits made up of the LSBs of the digital words are combined
to form one X-bit DA LUT address, a group of bits made up
of the next-to-LSBs of the same digital words are combined
to form another X-bit DA LUT address, and so on until a
group ol bits made up of the next-to-MSBs of the same
digital words are modified and then combined to form the
last X-bit DA LUT address associated with that X digital
words. As mentioned above, the MSB are dropped when
generating DA LUT addresses. To compensate for a mag-
nitude reduction in the final output, due to this dropping of
the MSBs when generating the DA LUT addresses, the

next-to-MSBs are specifically modified to their inverted

US 10,721,104 B2

21

value before being combined to form the corresponding DA
LUT address for the next-to-MSB position. All other bit
values (e.g., the least-significant-bits (LSBs), the next-to-
L.SBs, etc.) remain unchanged when generating correspond-
ing DA LUT addresses.

Process step 608 can further include using the most
significant bits (MSBs), which represent signal polarity,
when generating the adjustment LUT address. Specifically,
to generate an X-bit adjustment LUT address at process 608
a group of bits made up of the most significant bits (MSBs)

of the same digital words that were used to form the X-bit

DA LUT addresses are combined.

At process steps 610-612, standard binary X-bit DA LUT
addresses can be converted into addresses with recognition
of offset binary representation of sum of partial products
values in LUT 321 and can be forwarded to the DALUT 321
for processing. Similarly, the standard binary X-bit adjust-
ment address can be converted to an X-bit adjustment
address 325 so as to recognize the oflset binary representa-
tion in the LUT 324 and can be forwarded to the adjustment
LUT 324 for processing.

The method can further include, in response to the X-bit
DA LUT addresses 322 (which are recerved as discrete
inputs to the DA LUT 321), outputting, by the DA LUT 321
to downstream adder logic (e.g., see adder(s) 350), sum of
partial products values 323 stored in the addressed locations
(see process step 614). The method can further include, 1n
response to the X-bit adjustment LUT address 325 (which 1s
received by the adjustment LUT as an input), outputting, by
the adjustment LUT 324 to the downstream adder logic, an
adjustment value 326 stored at the addressed location (see
also process step 614).

The method can further include computing, by the down-
stream adder logic (e.g., by adder(s) 350), the total sum of
the sum of the partial products values 323 acquired from the
DA LUT 321 and the adjustment value 326 acquired from
the adjustment LUT 324 in order to correctly solve the DA
equation (see process step 618).

Embodiments of the disclosed method can further include
operating multiple DAFFE slices (as described above) 1n
parallel to process different groups of digital inputs (e.g.,
from substantially over lapping sub-sets of analog-to-digital
converters (ADCs) within a larger set of ADCs). Embodi-
ments of the disclosed method can also include employing
multiple sets of the above-described LUTs in a single
DAFFE slice to allow for parallel processing of relatively
small groups of digital inputs, which have been sampled
from a given sub-set of the larger set of ADCs.

It should be understood that the terminology used herein
1s for the purpose of describing the disclosed structures and
methods and 1s not intended to be limiting. For example, as
used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. Additionally, as used
herein, the terms “comprises” “comprising”’, “includes™ and/
or “including” specily the presence of stated features, inte-
gers, steps, operations, elements, and/or components, but do
not preclude the presence or addition of one or more other
features, 1ntegers, steps, operations, elements, components,
and/or groups thereof. Furthermore, 1t should be understood
that the descriptions of operations performed by the dis-
closed structure or component thereotf are not intended to be
limiting (unless otherwise indicated). For example, when a
structure or component thereof 1s described above or
claimed as performing a given operation (e.g., receiving,
capturing, holding, forwarding, processing, generating,
computing, etc.), then 1t should be understood that the

10

15

20

25

30

35

40

45

50

55

60

65

22

structure or component thereof 1s configured to perform that
given operation (1.e., adapted to perform that given opera-
tion) and may also be configured to perform (1.e., adapted to
perform) other operations. It should also be understood that
the corresponding structures, materials, acts, and equivalents
of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found i1n the marketplace, or to enable others of

ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed 1s:

1. A feed forward equalizer comprising;:

a distributed arithmetic look-up table storing possible

outcomes for sum of partial products computations;
an adjustment look-up table storing possible outcomes for
correction plus oflset computations; and

an address generator configured to receive a predeter-

mined number of digital words and to generate difierent
look-up table addresses using groups of bits from the
digital words,

wherein the look-up table addresses comprise distributed

arithmetic look-up table addresses for acquiring sum of

partial products values from the distributed arithmetic
look-up table and an adjustment look-up table address
for acquiring an adjustment value from the adjustment
look-up table.

2. The feed forward equalizer of claim 1, wherein the
different look-up table addresses are generated from groups
ol same-position bits from the digital words.

3. The feed forward equalizer of claim 1,
wherein all look-up tables are 1n ofiset binary format, and
wherein the address generator imitially generates all

addresses 1n standard binary format and then processes

the addresses to facilitate use with the look-up tables 1n
the offset binary format.

4. The feed forward equalizer of claim 3,

wherein the distributed arithmetic look-up table addresses

are generated from a group of least significant bits of
the digital words through a group of next-to-most
significant bits of the digital words, respectively,

wherein the adjustment look-up table address from a

group of most significant bits of the digital words to
acquire an adjustment value from the adjustment look-
up table, and

wherein next-to-most significant bit values are inverted

when generating a corresponding distributed arithmetic
look-up table address and wherein all other bit values
remain unchanged when generating corresponding dis-
tributed arithmetic look-up table addresses.

5. The feed forward equalizer of claim 4, further com-
prising at least one adder configured to compute a sum of the
sum of partial products values and the adjustment value to
solve a distributed anthmetic equation, wherein dropping
most significant bits when forming the distributed arithmetic
look-up table addresses decreases a number of sum of partial
products values acquired from the distributed arithmetic

US 10,721,104 B2

23

look-up table, allowing for a reduction 1n downstream adder
logic complexity and a corresponding reduction in power
consumption when solving the distributed arthmetic equa-
tion.

6. The feed forward equalizer of claim 5, wherein the
adjustment value accounts for the dropping of the most
significant bits from the digital words when forming the
distributed arithmetic look-up table addresses and using of
the oflset binary format in order to correctly solve the
distributed arithmetic equation.

7. The feed forward equalizer of claim 1, further com-
prising:

at least one first set of distributed arithmetic and adjust-

ment look-up tables for lower order taps; and

at least one second set of distributed arithmetic and

adjustment look-up tables for higher order taps.

8. The feed forward equalizer of claim 7, wherein any sum
of partial products values acquired from any distributed
arithmetic look-up table in the first set 1s wider than any sum
of partial products values acquired from any distributed
arithmetic look-up table in the second set.

9. The feed forward equalizer of claim 1, wherein the
digital words are outputs of analog-to-digital converters.

10. The feed forward equalizer of claim 1, further com-
prising a retimer configured to receive digital words at
successive unit intervals, to hold the digital words until the
predetermined number are received, and to forward the
predetermined number of the digital words to the address
generator for parallel feed forward equalization processing.

11. A feed forward equalizer comprising:

a lower order set of look-up tables comprising at least:

a first digital arithmetic look-up table storing {irst
possible outcomes for first sum of partial products
computations;

a first adjustment look-up table storing first possible
outcomes for {irst correction plus oflset computa-
tions;

a second distributed arithmetic look-up table storing
second possible outcomes for second sum of partial
products computations; and

a second adjustment look-up table storing second pos-
sible outcomes for second correction computations
only;

a lower order address generator configured to receive

cight digital words,

wherein the lower order address generator 1s further
configured to use groups of bits from four of the
cight digital words in order to generate first distrib-
uted arithmetic look-up table addresses for acquiring
first sum of partial products values from the first
distributed arithmetic look-up table and a first adjust-
ment look-up table address for acquiring a first
adjustment value from the first adjustment look-up
table, and

wherein the lower order address generator 1s further
configured to use groups of bits from a diflerent four
of the eight digital words 1n order to generate second
distributed arithmetic look-up table addresses for
acquiring second sum of partial products values from
the second distributed arithmetic look-up table and a
second adjustment look-up table address for acquir-
ing a second adjustment value from the second
adjustment look-up table;

a higher order set of look-up tables comprising at least:

a third distributed arithmetic look-up table storing third
possible outcomes for third sum of partial products
computations;

10

15

20

25

30

35

40

45

50

55

60

65

24

a third adjustment look-up table storing third possible
outcomes for third correction plus ofiset computa-
tions;

a fourth distributed arithmetic look-up table storing
fourth possible outcomes for fourth sum of partial
products computations; and

a fourth adjustment look-up table storing fourth pos-
sible outcomes for fourth correction computations
only;

a higher order address generator configured to receive an

additional eight digital words

wherein the higher order address generator 1s further
configured to use groups of bits from four of the
additional eight digital words 1n order to generate
third distributed arithmetic look-up table addresses
for acquiring third sum of partial product values
from the third distributed arithmetic look-up table
and a third adjustment look-up table address for
acquiring a third adjustment value from the third
adjustment look-up table, and

wherein the higher order address generator 1s further
configured to use groups of bits from a different four
of the additional eight digital words in order to
generate fourth distributed arithmetic look-up table
addresses for acquiring fourth sum of partial prod-
ucts values from the fourth distributed arithmetic
look-up table and a fourth adjustment look-up table
address for acquiring a fourth adjustment value from
the fourth adjustment look-up table; and

adders configured to compute a total sum of the first
sum of partial products values, the first adjustment
value, the second sum of partial products values, the
second adjustment value, the third sum of partial
products values, the third adjustment value, the
fourth sum of partial products values and the fourth
adjustment value to solve a distributed arithmetic
equation.

12. The feed forward equalizer of claim 11,

wherein all look-up tables in the lower order set and the

higher order set are 1n oflset binary format, and

wherein all address generators initially generate addresses
in standard binary format and then process the
addresses for use with the look-up tables 1n the offset
binary format.

13. The feed forward equalizer of claim 11, wherein the
first sum of partial products values and the second sum of
partial products values are wider than the third sum of partial
products values and the fourth sum of partial products
values.

14. The feed forward equalizer of claim 11, further
comprising a retimer configured to receive digital words at
successive unit imtervals, to hold received digital words until
a first eight are received, to forward the first eight to the
lower order address generator for parallel feed forward
equalization processing, to again hold received digital words
until a next eight are received, and to forward the next eight
to the higher order address generator for parallel feed
forward equalization processing.

15. A method comprising

generating, by an address generator of a feed forward

equalizer, different look-up table addresses using
groups of bits from a predetermined number of digital
words, wherein the look-up table addresses comprise
distributed arithmetic look-up table addresses and an
adjustment look-up table address;

forwarding the distributed look-up table addresses to a

distributed arithmetic look-up table that stores possible

US 10,721,104 B2

25

outcomes for sum of partial products computations and
further forwarding the adjustment look-up table
address to an adjustment look-up table that stores
possible outcomes for correction plus ollset computa-
tions;

in response to the distributed arithmetic look-up table
addresses, outputting, by the distributed arithmetic
look-up table, to at least one adder, sum of partial
products values;

in response to the adjustment look-up table address,
outputting, by the adjustment look-up table to the at
least one adder, an adjustment value; and

computing, by the at least one adder, a sum of the sum of

partial products values and the adjustment value to
solve a distributed arithmetic equation.

16. The method of claim 15, wherein the different look-up

table addresses are generated from groups of same-position

bits from the digital words.
17. The method of claim 15,

wherein all addresses are initially generated 1n standard
binary format and then processed for use 1n the look-up
tables 1n the offset binary format.

10

15

wherein all look-up tables are 1n oflset binary format, and 20

26

18. The method of claim 15,

wherein the distributed arithmetic look-up table addresses
are generated from a group of least significant bits of
the digital words through a group of next-to-most
significant bits of the digital words, respectively,

wherein the adjustment look-up table address from a

group ol most signmificant bits of the digital words to
acquire an adjustment value from the adjustment look-
up table, and

wherein next-to-most significant bit values are inverted

when generating a corresponding distributed arithmetic
look-up table address and wherein all other bit values
remain unchanged when generating corresponding dis-
tributed arithmetic look-up table addresses.

19. The method of claim 18, wherein dropping of the most
significant bits from the digital words when generating the
distributed arithmetic look-up table addresses decreases a
number of sum of partial products values acquired from the
distributed arithmetic look-up table, allowing for a reduction
in downstream adder logic complexity and a corresponding
reduction in power consumption when solving the distrib-
uted arithmetic equation.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

