US010719250B2

12 United States Patent (10) Patent No.: US 10,719,250 B2
Danilov et al. 45) Date of Patent: *Jul. 21, 2020

(54) SYSTEM AND METHOD FOR COMBINING (56) References Cited

ERASURE-CODED PROTECTION SETS |
U.S. PATENT DOCUMENTS

(71) Applicant: EMC IP Holding Company LLC, 5675802 A 10/1997 Allen et al.

Hopkinton, MA (US) 5,805,788 A 9/1998 Johnson
7,389,393 Bl 6/2008 Karr et al.
(72) Inventors: Mikhail Danilov, Saint Petersburg 5,370,542 B2) 2/2013 Lu et al.
(RU); Kirill Gusakov, Saint Petersburg 3,495,465 BI® 72013 Anboltoooovvvvees. HO3M 13/29
(RU) 714/763
(Continued)

(73) Assignee: EMC IP HOLDING COMPANY
LLC, Hopkinton, MA (US) OTHER PUBLICATIONS

Non-Final Office Action received for U.S. Appl. No. 15/651,504

(*) Notice: Subject to any disclaimer, the term of this dated Mar. 21, 2019, 10 pages.

patent 1s extended or adjusted under 35

US.C. 154(b) by 59 days. (Continued)
This patent is subject to a terminal dis- Primary Examiner — Thien Nguyen
claimer. (74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP
21) Appl. No.: 16/024,314
(21) Appl. No (57) ABSTRACT
(22) Filed: Jun. 29, 2018 Resource-eflicient data protection i1s performed by generat-
ing meta chunks in storage systems that utilize erasure
(65) Prior Publication Data coding. During erasure coding with a k+m configuration, a

data chunk can be divided into k data fragments, having
indices 1 to k, that can be encoded by combining them with
corresponding coetfhicients of a coding matrix, to generate
coding fragments. Source portions that have a reduced set

US 2020/0004447 Al Jan. 2, 2020

(51) Int. CL

Goor 3/06 (2006'01‘) (e.g., less than k data fragments) of data fragments and that
HO3M 15/47 (2006'0:~) are complementary (e.g., that do not have common indices)
GOol 16901 (2019.01) can be determined and combined to generate a meta chunk.
(52) U.S. Cl. The coding fragments of the source portions can be added to
CPC GO6F 3/0638 (2013.01); GO6F 3/067 generate coding fragments for the meta chunk, which can

(2013.01); GO6F 3/0631 (2013.01); GOOF then be utilized to recover data fragments of any of the
16/901 (2019.01); HO3M 13/47 (2013.01) source portions. Further, the coding fragments, that were

(58) Field of Classification Search previously generated by individually encoding each source
CPC GO6F 3/0638; GO6F 16/901; GO6F 3/0631; portion, can be deleted.

GO6F 3/067; HO3M 13/47
See application file for complete search history. 20 Claims, 11 Drawing Sheets

600 DATA FRAGMENTS CODING FRAGMENTS
\ J/k
e B /J\ ™

602 ~
PORTIONA | DA ' ct || &

¥ \6101 . ‘Lﬁm,
604
T o T i
PORTION B D | | D C;" I C,°
\ _
y 610, . 614,
606 ~
PORTION C | by o€ || cf
\‘6103 \6143
608 ~

PORTION U D,Y D,V D, c,’ C,’

US 10,719,250 B2
Page 2

(56)

8,832,234
8,972,478
9,003,838
9,641,615
10,055,145
10,361,810
10,503,611

2002/0166026
2005/0140529
2006/0047896
2006/0075007
2006/0143508
2007/0239759
2008/0320061
2009/0259882

20

201

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

201
201
201
201
201
201
201

10/003 1060
201
201
201
201
201
201

0/0218037
0/0332748
1/0138148
1/0246503
2/0023291
2/0191901

2/0204077

2/0317234
3/0054822
3/0088501
3/0097470
3/0246876
4/0064048

4/0280375
4/0297955
4/0380088
4/0380125
5/0370656
6/0011935
6/0011936
6/0055054
6/0162378
6/0328295
6/0357649
6/0371145
6/0380650
7/0003880
7/0102993
7/0206025
7/0206135
7/0262187

8/0063213

8/0129417
8/0181324
8/0181612
8/0267856
8/0341662
9/0028179

9/0065310

References Cited

U.S. PATENT DOCUMENTS

WEEE W

2 b
e

AN A AR AFARAARARARARAARAAAARAAAA AN AAANAARAAAA AN A

1 =&

9/201
3/201
6/201
5/201
8/201
7/201
12/201
11/200
6/200
3/200
4/200
6/200
10/200
12/200
10/200
2/201
8/201
12/201
6/201
10/201
1/201
7/201
8/201

12/201
2/201
4/201
4/201
9/201
3/201

9/201
10/201
12/201
12/201
12/201

1/201

1/201

2/201

6/201
11/201
12/201
12/201
12/201

1/201

4/201

7/201

7/201

9/201

3/201

5/201
6/201
6/201
9/201
11/201
1/201
2/201

O N OO ~1th h I

2
5
0
§
§
7
8
9
0
0
0
1
1
2
2
2

WO ~1~-1 -1~~~ ANANINAANDNNDn DS b DD B W

O N OO0 0O 00 00 OO

Brooker et al.
Storer et al.
Boyle et al.
Robins et al.
Danilov et al.
Myung
Srivastav et al.
Ulrich et al.

Choi et al.

Nguyen et al.
Anderson et al.
Mochizuki et al.
Shen et al.
Aszmann et al.
Shellhamer

Chew et al.

Swartz et al.

Van der Goot et al.
Friedman et al.
Bender et al.

Zeng et al.

Norair
D’ Abreu

HO3M 13/05

ttttttttttttttttt

GOO6F 11/1012
714/755

ttttttttttttt

Bohrer et al.
Mordani et al.
Fell

Hwang et al.

Manssour et al.
Cohen et al.

Rawson et al.
Yamazaki et al.
Bennett et al.
Calder et al.
Tsafrir et al.
Luby

Luby
Patterson, III et al.
Garlapati et al.
Baptist et al.
Karrotu et al.
Akutsu et al.
Calder et al.
Fisher et al.

Hu
Viswanathan
/eng
Manzanares et al.
Bevilacqua-Linn

tttttttttttttttttttttt

ttttttttttttttttttttttttt

HO41. 65/605
Sivasubramanian et al.
Daniliv et al.

Daniliv et al.
Hayasaka et al.

HO04B 7/15521

iiiiiiiiiiiiii

7/2019 Larson et al.
12/2019 Danilov et al.
12/2019 Danilov et al.

2019/0205437 Al
2019/0384500 Al
2019/0386683 Al

OTHER PUBLICATTIONS

Non-Final Office Action recerved for U.S. Appl. No. 15/662,273

dated Nov. 16, 2018, 19 pages.

Final Office Action received for U.S. Appl. No. 15/662,273 dated
May 15, 2019, 33 pages.

Non-Final Office Action received for U.S. Appl. No. 15/965,479
dated Apr. 15, 2019, 21 pages.

Non-Final Office Action recerved for U.S. Appl. No. 15/794,950
dated Jul. 9, 2019, 29 pages.

Final Office Action received for U.S. Appl. No. 15/651,504 dated
Sep. 18, 2019, 15 pages.

Non-Final Office Action recerved for U.S. Appl. No. 15/952,179
dated Sep. 10, 2019, 42 pages.

“Standard Raid Levels—RAID 6 Wikipedia. [https://en.wikipedia.
org/wiki/Standard RAID_levels#RAID_6], retrieved Oct. 18, 2019,
11 pages.

Non-Final Office Action recerved for U.S. Appl. No. 15/656,382
dated Nov. 1, 2019, 47 pages.

Final Office Action received for U.S. Appl. No. 15/952,179 dated
Nov. 26, 2019, 53 pages.

Non-Final Office Action recerved for U.S. Appl. No. 16/177,278
dated Dec. 2, 2019, 55 pages.

Non-Final Office Action recerved for U.S. Appl. No. 15/651,504
dated Dec. 31, 2019, 18 pages.

Non-Final Office Action recerved for U.S. Appl. No. 16/010,246
dated Dec. 5, 2019, 67 pages.

Stonebreaker et al. “Distributed RAID—A New Multiple Copy
Algorithm.”, IEEE ICDE, 1990, pp. 430-437.

Muralidhar et al. “f4: Facebook’s Warm BLOB Storage System”,
USENIX. OSDI, Oct. 2014, pp. 383-398.

Non-Final Office Action recerved for U.S. Appl. No. 16/010,255
dated Jan. 9, 2020, 31 pages.

Office Action dated Feb. 5, 2020 for U.S. Appl. No. 16/261,551, 30
pages.

Non-Final Office Action received for U.S. Appl. No. 16/228,612
dated Feb. 27, 2020, 49 pages.

Final Office Action received for U.S. Appl. No. 16/010,246 dated
Mar. 16, 2020, 33 pages.

Final Office Action received for U.S. Appl. No. 15/656,382 dated
Apr. 6, 2020, 31 pages.

Non-Final Office Action recerved for U.S. Appl. No. 15/582,167
dated Sep. 7, 2018, 19 pages.

Non-Final Office Action received for U.S. Appl. No. 15/952,179
dated Apr. 20, 2020, 68 pages.

Notice of Allowance dated May 4, 2020 for U.S. Appl. No.
16/240,193, 46 pages.

Office Action dated May 11, 2020 for U.S. Appl. No. 16/177,278,
53 pages.

Oflice Action dated May 8, 2020 for U.S. Appl. No. 16/231,018, 78
pages.

Notice of Allowance dated May 11, 2020 for U.S. Appl. No.
16/240,193, 24 pages.

* cited by examiner

U.S. Patent Jul. 21, 2020 Sheet 1 of 11 US 10,719,250 B2

100 “\ Other
118 Remote

108 (GEO)
- Zone(s)

Storage
Node M

104(M)

Storage Storage
Node 1 Node 2

104(1) 104(2)

Cluster
(Zone)

112
102
114 Asynch. 4~ 116
Replication
Logic
Object Storage
System
Chunk
manager

120
122
cPU
RAM 4~ 124

126

FIG. 1

U.S. Patent Jul. 21, 2020 Sheet 2 of 11 US 10,719,250 B2

200 \

CHUNK SPACE
/7 202
204 ﬂ
- OBJECT 1 SEGMENTS
206 j‘
208

% _ OBJECT 3 SEGMENTS

FIG. 2

U.S. Patent Jul. 21, 2020 Sheet 3 of 11 US 10,719,250 B2

300 \

120

CHUNK MANAGER

302

304

SOURCE PORTION

DETECTION COMPONENT

DATA STORE

306

COMBINATION COMPONENT

FIG. 3

U.S. Patent Jul. 21, 2020 Sheet 4 of 11 US 10,719,250 B2

400 \

: 120

CHUNK MANAGER

306
/7

COMBINATION COMPONENT

402
/7

CLEANUP COMPONENT

FIG. 4

U.S. Patent Jul. 21, 2020 Sheet 5 of 11 US 10,719,250 B2

500 \

RECOVERY COMPONENT f 502

: 504

FAILURE CONDITION
DETECTION COMPONENT

i E 506

DECODING COMPONENT [<—T—»

g E 508

DATA STORAGE
COMPONENT

304

DATA STORE

FIG. S

US 10,719,250 B2

Sheet 6 of 11

Jul. 21, 2020

U.S. Patent

P19~)

o || L0
19~ '

0 || 40
119~ ¥

SLINHNDVHA DNIAOD

bbbl
e
|
rrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
ttt
!
!
,./J/...
h \\\«A:
._M.\n
L

SLINANDVHA VILVd

[1 NOILdOd

\ 809

J NOILLdOd

p N 909

d NOLLJOd

" 09

V NOILdOd

p 09

/ 009

US 10,719,250 B2

|
|
|
_
— _
\an |
o |
& |
- _
N |
W |
_.n_ﬂw |
7 p. :NU :_U _
|
|
|
_ <|\ _
— _
A\ o\ _
2._, o _
y—
e~ /
= 809
—

U.S. Patent

d9 “OlAd

—_— — e e —m e — e — — — — — —

|||||||||||||||

P— e e e e e e e e e = = =

|||||||||||||||

|||||||||||||||

—_ —_—_ e e _— —_— e — — — — — — — —_—e— e e e e e e = — — — — —

|||||||||||||||||||||||||||||

IIIIIIIIIIIIII

[1 NOILLd0Od

—_— — e e —m e — e — — — — — —

|||||||||||||||

P— e e e e e e e e e = = =

|||||||||||||||

J NOILLIOd

\ 909

d NOILdOd

" 709

V NOILLd0Od

" 09

|.

4(059

U.S. Patent Jul. 21, 2020 Sheet 8 of 11 US 10,719,250 B2

700 \
702

DETERMINE SOURCE PORTIONS WITH A REDUCED SET OF DATA
FRAGMENTS THAT ARE COMPLEMENTARY

704
COMBINE THE DATA FRAGMENTS OF THE SOURCE PORTIONS AS A
META CHUNK
706
LINK THE SOURCE PORTIONS TO THE META CHUNK
708
ADD THE CODING FRAGMENTS OF THE SOURCE PORTIONS TO
GENERATE CODING FRAGMENTS FOR THE META CHUNK
710

DELETE INDIVIDUAL SETS OF CODING FRAGMENTS THAT WERE
PREVIOUSLY GENERATED FOR EACH SOURCE PORTION

FIG. 7

U.S. Patent Jul. 21, 2020 Sheet 9 of 11 US 10,719,250 B2

800 —\

302

DETERMINE THAT A FAILURE CONDITION HAS OCCURRED WITHIN AN
OBJECT STORAGE SYSTEM

804

IDENTIFY THAT THE UNAVAILABLE DATA FRAGMENT(S) IS OF A SOURCE
PORTION THAT IS ASSOCIATED WITH A META CHUNK

300

RECOVER THE DATA FRAGMENT(S) AT A META CHUNK LEVEL

STORE THE DATA FRAGMENT(S) AS PART OF THE SOURCE PORTIONS

FIG. 8

US 10,719,250 B2

Sheet 10 of 11

Jul. 21, 2020

U.S. Patent

900

910

o ul aF wF ul o of
1

hents

T

{1

agennt

¥
L"

3¢ Man

N
N

ur
i:‘ :

1
S gl e g g i gl gl g g

[g g g e

902

W w ey YTy YT e W T e W e e e e e W Y R W W e P wF aF o wlt W o o e

A O o O O A A O O A g O A A A A A o o

904\

S e g g

i

Tt 1)
904,
§ New

ﬂr.. "
feonc
ik

_1-!‘

S{

o

H

A g g g g i g e - g g g e gl gl i g gl e i i g g e g gl i g gl g i g g e i i g g gl g i g g g e g gy g e i g i g g gl gt g g gl ke i g g g i g g gl g i g i g g e g i g g P g e g g e i e g g e gl i i g g gl g e g g g i g g g g gl g i i gl i i gle g g g gl . g i e g i ol g e g gl fin e g g g g e g ogle i i ol g g g g Jip e g gl g g e g gl i

ECS Node M

D08\

Y08,

x

T, o T,

Storage Sery

L
-aEaE s .I........I..I...I.h.i...l..l..l. AT A o ER N

T

W ol e o o o

L N A RS buon s oo o
L}

\“\é\
3

SRS

" h“ﬁ“\‘i‘dﬂ“ﬁ*ﬁ‘ﬁ““ A g g e g g g g g g e

%
Ahxahxnxxnnmiﬁﬁiﬁn kA A A A A

%

T

e
L 3
-

ﬂi"ﬂh‘ﬂ'&

o" mf ol o o 0¥ of oFf o ol vl ol o i o W o oF o o7 2F el 2 off of of oF 2F off oF2F oFf ok)

TR L T S

L
'R e N AR 'h'-:-;nTx

2]

L&

§
b

4
R

Pl
Z 75

% by

E A I N I I 2 2 o s n a2 s aaarlli. s araaa a2 a2a =

- ¥

AR AR
e S s A hun o

L, P A
L |

R i i bRl il Rt it s s Attt Es

NN

e 2 o L i FEERAEEEREE L il L

A T T B e e I A A e B A T P A P P A A T A A T P P A A P P I A I P P P A P A P P P P A

U.S. Patent Jul. 21, 2020 Sheet 11 of 11 US 10,719,250 B2

 (DATA 1012
T
§ 1014
PROCESSING R 1042
UNIT §
% OUTPUT I OUTPUT
OO T ADAPTER(S) DEVICE(S)
1016
e SYSTEM 1038 1040
MEMORY —
INTERFACE
VOLATILE |\ INPUT
1020 PORT(S) DEVICE(S)
NON
VOLATILE | ' 1
1022 k (018 036

1050

BUS

INTERFACE

NETWORK

COMMUNICATION | INTERFACE
CONNECTION(S)

1026

1043

DISK
STORAGE

REMOTE
COMPUTER(S)

1024
MEMORY

STORAGE

1044

1046

FIG. 10

US 10,719,250 B2

1

SYSTEM AND METHOD FOR COMBINING
ERASURE-CODED PROTECTION SETS

TECHNICAL FIELD

The subject disclosure relates generally to storage sys-
tems. More specifically, this disclosure relates to various
embodiments for combining erasure-coded protection sets.

BACKGROUND

The large 1increase 1n amount of data generated by digital
systems has created a new set of challenges for data storage
environments. Traditional storage area network (SAN) and/
or network-attached storage (NAS) architectures have not
been designed to support data storage and/or protection at
large multi-petabyte capacity levels. Object storage technol-
ogy can be utilized to meet these requirements. By utilizing
object storage technology, organizations can not only keep
up with rising capacity levels, but can also store these new
capacity levels at a manageable cost point.

Typically, a scale-out, cluster-based, shared-nothing
object storage that employs a microservices architecture
pattern, for example, an Elastic Cloud Storage (ECS™) can
be utilized as a storage environment for a new generation of
workloads. ECS™ utilizes the latest trends in software
architecture and development to achieve increased availabil-
ity, capacity use etliciency, and performance. ECS™ uses a
specific method for disk capacity management, wherein disk
space 1s partitioned 1nto a set of blocks of fixed size called
chunks. User data 1s stored in these chunks and the chunks
are shared. One chunk can comprise fragments of several
user objects. Chunk content 1s modified 1n an append mode.
When chunks become full, they are sealed and the content
of sealed chunks 1s immutable. Oftentimes, chunks can
comprise a reduced set of data fragments. This increases
capacity overheads on data protection and there are some
cases when the overheads may be unreasonably high.

The above-described background relating to ECS™ 15
merely mtended to provide a contextual overview of some
current 1ssues, and 1s not intended to be exhaustive. Other
contextual information may become further apparent upon
review ol the following detailed description.

SUMMARY

The following presents a simplified summary of the
specification 1 order to provide a basic understanding of
some aspects of the specification. This summary 1s not an
extensive overview of the specification. It 1s intended to
neither 1dentity key or critical elements of the specification
nor delineate the scope of any particular embodiments of the
specification, or any scope of the claims. Its sole purpose 1s
to present some concepts of the specification 1n a simplified
form as a prelude to the more detailed description that 1s
presented 1n this disclosure.

Example systems and methods, and other embodiments,
disclosed herein relate to facilitating capacity management
in distributed storage systems. In one example embodiment,
a system 1s disclosed that comprises a processor and a
memory that stores executable instructions that, when
executed by the processor, facilitate performance of opera-
tions. Moreover, the operations comprise selecting source
chunks stored within a storage system that are determined to
have fewer than a defined number of data fragments,
wherein the source chunks are divided into indexed data
fragments, and wherein the indexed data fragments are

10

15

20

25

30

35

40

45

50

55

60

65

2

erasure-coded to generate source coding fragments. Further,
operations comprise based on combining the source chunks,
generating a meta chunk and 1n response to veritying that the
source chunks do not have data fragments with a common
index, adding the source coding Ifragments to generate
combined coding fragments associated with the meta chunk.

Another example embodiment of the specification relates
to a method that comprises selecting, by a system compris-
ing a processor, source chunks from chunks of an object
storage system, wherein the source chunks are determined to
have fewer data fragments than remaining of the chunks
other than the source chunks, wherein the data fragments do
not have common 1ndices that are utilized for erasure coding
the data fragments, and wherein the erasure coding the data
fragments results 1n generation of source coding fragments.
The method further comprises determining a meta chunk
that represents a combination of the data fragments and
based on a summation of the source coding Ifragments,
determining combined coding fragments for the source
chunks at a meta chunk level, wherein the combined coding
fragments are to be employed to recover at least a portion of
the data fragments during a failure condition.

Another example embodiment of the specification relates
to a computer-readable storage medium comprising instruc-
tions that, 1n response to execution, cause a computing node
device comprising a processor to perform operations, com-
prising encoding chunks of data stored 1n an object storage
system, wherein the chunks comprise data fragments that
have been assigned respective indices, and wherein the
encoding comprises combining, based on the respective
indices, the data fragments with corresponding encoding
coellicients to generate respective coding fragments. Fur-
ther, the operations comprise combining a group of the

chunks to generate a meta chunk, wherein the group of the
chunks are determined not to have more than a defined
number of data fragments, and wherein the group of the
chunks are determined not to have data fragments having
common indices. In addition, the operations comprise based
on a summation of a group of the coding fragments that
correspond to the group of the chunks, determining meta
chunk coding fragments that are to be employed to recover
at least a portion of the group of the chunks during a failure
condition.

The following description and the drawings set forth
certain 1llustrative aspects of the specification. These aspects
are indicative, however, of but a few of the various ways 1n
which the principles of the specification may be employed.
Other advantages and novel features of the specification will
become apparent from the detailed description of the speci-
fication when considered 1n conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example cloud data storage system
comprising that facilitates combining erasure-coded protec-
tion sets during meta chunk generation, according to one or
more example implementations.

FIG. 2 illustrates an example layout of a chunk within an
object storage system i1n accordance with an aspect of the
specification.

FIG. 3 illustrates an example system for combining pro-
tection sets, according to an aspect of the subject disclosure.

FIG. 4 illustrates an example system that facilitates efli-
cient data protection by employing meta chunks.

FIG. § illustrates an example system that facilitates efli-
cient data recovery by employing meta chunks.

US 10,719,250 B2

3

FIGS. 6 A-6B depict example embodiments that 1llustrate
a reduction of capacity overheads on data protection without

complete data re-protection.

FIG. 7 1llustrates an example method for determining a
combined protection set for complementary data portions 1n
accordance with an aspect of this disclosure.

FIG. 8 illustrates an example method for data recovery at
a meta chunk level 1n accordance with an aspect of this
disclosure.

FIG. 9 illustrates high-level architecture of an Elastic
Cloud Storage (ECS™) cluster that facilitates combining
erasure-coded protection sets.

FIG. 10 1llustrates a block diagram of an example com-
puter operable to execute the disclosed distributed storage
system architecture.

DETAILED DESCRIPTION

One or more embodiments are now described with refer-
ence to the drawings, wherein like reference numerals are
used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific
details are set forth 1n order to provide a thorough under-
standing of the various embodiments. It may be evident,
however, that the various embodiments can be practiced
without these specific details, e.g., without applying to any
particular networked environment or standard. In other
instances, well-known structures and devices are shown 1n
block diagram form in order to facilitate describing the
embodiments 1n additional detail.

The term “cloud” as used herein can refer to a cluster of
nodes (e.g., set of network servers), for example, within a
distributed object storage system, that are communicatively
and/or operatively coupled to each other, and that host a set
ol applications utilized for servicing user requests. In gen-
eral, the cloud computing resources can communicate with
user devices via most any wired and/or wireless communi-
cation network to provide access to services that are based
in the cloud and not stored locally (e.g., on the user device).
A typical cloud-computing environment can include mul-
tiple layers, aggregated together, that interact with each
other to provide resources for end-users.

Example systems and methods disclosed herein, 1n one or
more embodiments, relate to cloud storage systems that
utilize erasure coding for data protection, such as, but not
limited to an elastic cloud storage (ECS™) platform. The
ECS™ platform combines the cost advantages of commod-
ity 1nfrastructure with the reliability, availability and ser-
viceability of traditional arrays. In one aspect, the ECS™
platform can comprise a cluster of nodes (also referred to as
“cluster” herein) that delivers scalable and simple public
cloud services with the reliability and/or control of a private-
cloud infrastructure. Moreover, the ECS™ platform com-
prises a scale-out, cluster-based, shared-nothing object stor-
age, which employs a microservices architecture pattern.
The ECS™ platform can support storage, manipulation,
and/or analysis of unstructured data on a massive scale on
commodity hardware. As an example, ECS™ can support
mobile, cloud, big data, content-sharing, and/or social net-
working applications. ECS™ can be deployed as a turnkey
storage appliance or as a software product that can be
installed on a set of qualified commodity servers and/or
disks. The ECS™ scale-out and geo-distributed architecture
1s a cloud platform that can provide at least the following
teatures: (1) lower cost than public clouds; (1) unmatched
combination ol storage efliciency and data access; (i11)
anywhere read/write access with strong consistency that

5

10

15

20

25

30

35

40

45

50

55

60

65

4

simplifies application development; (1v) no single point of
failure to 1ncrease availability and performance; (v) univer-
sal accessibility that eliminates storage silos and ineflicient
extract, transform, load (ETL)/data movement processes;
etc.

In an aspect, ECS™ does not rely on a file system for disk
capacity management. Instead, ECS™ partitions disk space
into a set of blocks of fixed size called chunks (e.g., having
a chunk size of 128 MB). All user data is stored in these
chunks and the chunks are shared. Typically, a chunk can
comprise fragments ol several diflerent user objects. The
chunk content can be modified in an append-only mode.
When a chunk becomes full, it can be sealed and the content
of a sealed chunk 1s immutable. Further, ECS™ does not
employ traditional data protection schemes like mirroring or
parity protection. Instead, ECS™ utilizes erasure coding for
data protection. A chunk can be divided into indexed por-
tions (e.g., data fragments), for example, by a chunk man-
ager. An 1index of a data fragment can be a numerical value
assigned by the chunk manager and utilized for erasure
coding. Moreover, the index of a data fragment can be
utilized to determine a coeflicient, within an erasure coding
matrix (e.g., the index can be utilized to determine a row
and/or column of the matrix), which 1s to be combined (e.g.,
multiplied) with the data fragment to generate a correspond-
ing coding fragment for the chunk. Although the systems
and methods disclosed herein have been described with
respect to object storage systems (e.g., ECS™), it 1s noted
that the subject specification 1s not limited to object storage
systems and can be utilized for most any storage systems
that utilize erasure coding for data protection and chunks for
disk capacity management. Thus, any of the embodiments,
aspects, concepts, structures, functionalities or examples
described herein are non-limiting, and the technology may
be used 1 various ways that provide benefits and advantages
in computing and data storage in general.

Oftentimes erasure-coded storage systems create a data
protection unit (e.g., meta chunk), which combines two or
more source chunks having a reduced sets of data fragments,
to 1ncrease capacity use efliciency without verification and
data copying. However, generation of this data protection
unit requires complete data re-protection. In other words, an
encoding operation (e.g., erasure coding operation) has to be
performed using all/combined data fragments of the meta
chunk to generate new coding fragments. This 1s a very
resource-demanding operation, especially for GEO erasure
coding. The systems and methods disclosed herein facilitate
resource-ellicient data protection in storage systems that
utilize erasure coding, wherein when two or more comple-
mentary data portions are to be combined, their protection
sets (e.g., coding fragments) can be united nto a combined
protection set (e.g., a protection set with greater number of
data fragments) via simple summing operation.

FIG. 1 shows part of a cloud data storage system such as
ECS™ comprising a zone (e.g., cluster) 102 of storage
nodes 104(1)-104(M), 1n which each node 1s typically a
server configured primarily to serve objects 1n response to
client requests (e.g., received from clients 108). The nodes
104(1)-104(M) can be coupled to each other via a suitable
data communications link comprising interfaces and proto-
cols such as, but not limited to, Ethernet block 106.

Clients 108 can send data system-related requests to the
cluster 102, which in general 1s configured as one large
object namespace; there may be on the order of billions of
objects maintained 1n a cluster, for example. To this end, a
node such as the node 104(2) generally comprises ports 112
by which clients connect to the cloud storage system.

US 10,719,250 B2

S

Example ports are provided for requests via various proto-
cols, including but not limited to SMB (server message
block), FTP (file transfer protocol), HITP/HTTPS (hyper-
text transier protocol), and NFS (Network File System);
turther, SSH (secure shell) allows administration-related
requests, for example.

Each node, such as the node 104(2), includes an instance
of an object storage system 114 and data services. For a
cluster that comprises a “GEQO” zone of a geographically
distributed storage system, at least one node, such as the
node 104(2), includes or coupled to reference tracking
asynchronous replication logic 116 that synchronizes the
cluster/zone 102 with each other remote GEO zone 118.
Note that ECS™ 1mplements asynchronous low-level rep-
lication, that 1s, not object level replication. Typically, orga-
nizations protect against outages or information loss by
backing-up (e.g., replicating) their data periodically. During
backup, one or more duplicate or deduplicated copies of the
primary data are created and written to a new disk or to a
tape, for example within a different zone. The term “zone”
as used herein can refer to one or more clusters that 1s/are
independently operated and/or managed. Diflerent zones can
be deployed within the same location (e.g., within the same
data center) and/or at different geographical locations (e.g.,
within different data centers).

In general, and 1n one or more implementations, e.g.,
ECS™, disk space 1s partitioned into a set of large blocks of
fixed size called chunks; user data 1s stored in chunks.
Chunks are shared, that 1s, one chunk may contain segments
of multiple user objects; e.g., one chunk may contain mixed
segments ol some number of (e.g., three) user objects.

A chunk manager 120 can be utilized to manage the
chunks and their protection (e.g., via erasure coding (EC)).
Erasure coding was created as a forward error correction
method for binary erasure channel. However, erasure coding,
can be used for data protection on data storages. During
erasure coding (e.g., utilizing a k+m conﬁguratlon) the
chunk manager 120 can partition a piece of data (e.g.,
chunk) into k data fragments of equal size. During encoding,
redundant m coding fragments are created so that the system
can tolerate the loss of any m fragments. Typically, the
chunk manager 120 can assign indices to the data fragments
(and corresponding coding fragments). In an example, an
index can be a numerical value (e.g., 1 to k) that 1s utilized
for erasure coding. Moreover, the mndex of a data fragment
can be utilized to determine a coeflicient, within an erasure
coding matrix, which i1s to be combined (e.g., multiplied)
with the data fragment to generate a corresponding coding,
fragment for the chunk. For example, an index value can
specily a row and/or column of the coeflicient within the
erasure coding matrix. As an example, the indices can be
assigned based on a defined sequence, in a random order,
based on a defined criterion (e.g., to increase probability of
complementary data fragments), based on operator prefer-
ences, etc. The process of coding fragments creation 1s
called encoding. The process of data fragments recovery
using available data and coding fragments 1s called decod-
ng.

In one example embodiment, GEO erasure coding can
also be utilized, wherein 1t a distributed storage 100 1s to
tolerate the loss of any m zones/clusters/chunks, then GEO
erasure coding can begin at each zone by replicating each
new chunk to at least m remote zones. As a result, there are
m backup copies of each chunk. Typically, there 1s one
primary backup copy, which can be utilized for encoding.
Encoding 1s performed by one zone for primary backup
chunks and other zones replicate to it. Once a zone has k

10

15

20

25

30

35

40

45

50

55

60

65

6

primary chunks replicated from different remote zones, the
zone can perform encoding using the chunks replicated to 1t
as data fragments. The chunk size 1s fixed, in ECS™, with

padding or other data to complement, wherein the other data
1s added as needed. The result of encoding 1s m data portions
ol a chunk size. They are stored as chunks of a specific type
called coding chunks. After encoding 1s complete, the zone
can store one coding chunk locally and move other m-1
coding chunks to remote zones making sure all the k+m data
and coding chunks are stored at diflerent zones whenever
possible. Afterwards, the primary backup chunks used for
encoding and their peer backup chunks at other zones can be
deleted.

According to an aspect, the chunk manager 120 can
ciliciently generate combined data protection sets during
consolidating two or more erasure-coded data portions (e.g.,
normal/source chunks) that have a reduced sets of data
fragments. As an example, chunk manager 120 can verily
that the two or more erasure-coded data portions are comple-
mentary (e.g., do not have data fragments with the same
index) and perform a summing operation to combine their
corresponding coding fragments to generate a combined
protection set. A CPU 122 and RAM 124 are shown {for
completeness; note that the RAM 124 can comprise at least
some non-volatile RAM. The node includes storage devices
such as disks 126, comprising hard disk drives and/or
solid-state drives. It 1s noted that the storage devices can
comprise volatile memory(s) or nonvolatile memory(s), or
both volatile and nonvolatile memory(s). Examples of suit-
able types of volatile and non-volatile memory are described
below with reference to FIG. 10. The memory (e.g., data
stores, databases, tables, etc.) of the subject systems and
methods 1s itended to comprise, without being limited to,
these and any other suitable types of memory.

FIG. 2 illustrates an example layout 200 of a chunk within
an object storage system in accordance with an aspect of the
specification. In an aspect, disk space of the object storage
system can be partitioned into a set of blocks of fixed size
called chunks. As an example the chunk size can be 128
MB. Typically, user data 1s stored in these chunks and the
chunks are shared. As shown in FIG. 2, a chunk 202 can
comprise segments of several user objects (e.g., object 1
segments 204, object 2 segments 206, and object 3 segments
208). It 1s noted that the chunk layout depicted 1n FIG. 2. 1s
one example and the chunks can have most any other layout
with segments from one or more user objects. Chunk content
1s modified 1n an append-only mode. When the chunk
becomes full enough, 1t 1s sealed. After the chunk 1s sealed,
its content 1s immutable.

In an aspect, the chunk can be protected by employing
crasure coding. During erasure coding, a chunk can be
divided 1nto k data fragments of equal size. To encode the
chunk, redundant m coding fragments are created so that the
system can tolerate the loss of any m fragments. The process
of generating the coding fragments 1s called encoding. The
process of data fragments recovery using available data and
coding fragments 1s called decoding. As an example, the
encoding operation can be represented with the equation
below:

CI_Z_,F_I sz,r (1)
wherein,
nyf :‘X}J *D, (2)

and wherein, X, . 1s a defined coetlicient from a coding
matrix (e.g., wherein 1, 1, and/or k can be most any 1nteger).

US 10,719,250 B2

7

Further, ;1 1s an index assigned to the data fragment. It 1s
noted that D, are independent data fragments and C, are
coding fragments.

Additionally, or optionally, the systems and methods
disclosed herein can support geographically distributed set-
ups (GEO) comprising two or more zones. GEO can be used
to provide an additional protection of user data by means of
replication. Replication works at the chunk level, wherein a
backup copy of a chunk stored 1n a primary zone can be
replicated to one or more secondary zones. Each zone
protects the chunks it stores. If a copy of a chunk becomes
unavailable, 1t can be recovered using 1ts other copy. This
process 1s called GEO recovery. In case of GEO erasure
coding, remote backup copies of data chunks are used as
data fragments and coding fragments created for such data
fragments are stored as coding chunks.

Referring now to FIG. 3, there 1llustrated 1s an example
system 300 for combining protection sets, according to an
aspect of the subject disclosure. In one aspect, the chunk
manager 120 can efliciently protect chunks, for example, by
employing erasure coding (or GEO/distributed erasure cod-
ing). As an example, the chunk manager 120 can include
functionality as more fully described herein, for example, as
described above with regard to system 100. It 1s noted that
the term ““data fragment™ as used herein can comprise either
a traditional data fragment of a chunk (e.g., erasure coding
use case) or a data chunk within a zone (e.g., GEO/
distributed erasure coding use case); and the term “coding
fragment” as used herein can comprise either a traditional
coding fragment of a chunk (e.g., erasure coding use case)
or a coding chunk within a zone (e.g., GEO/distributed
erasure coding use case).

In one aspect, a source portion detection component 302
can be utilized to determine two or more source portions
(e.g., comprising data fragments and corresponding coding
fragments). As an example, a source portion comprises
fewer data fragments than a maximum number (k) of data
fragments that can be stored within a chunk. There can be
several cases when a portion has fewer than k data frag-
ments. In one example, a data chunk can be sealed before 1t
gets filled. In this example scenario, a storage system stores
only one or more (1) first data fragments, the data fragments
with user data and the remaining k-1 data fragments contain
no user data so they are not stored. This scenario 1s normally
a result of a failure or a node restart. As an example, when
a storage system survives a period of mstability, the system
may produce thousands of poorly filled chunks with just one
or two data fragments. In another example, a quasi-com-
pacting garbage collection process detects unused blocks
within data chunks, reclaims their capacity, and re-uses the
freed capacity to create new composite chunks. With the
quasi- compactmg garbage collection on, chunks degrade
gradually. That 1s, a particular chunk can “lose” 1ts data
fragments at 1ts beginning, its end, or 1n the middle. The
number of lost fragments grows with the lapse of time. In yet
another example, deletion of data chunks can lead to a
situation wherein a protection set created with GEO erasure
coding can comprise fewer than k data chunks. Coding
chunks from such a protection set are partial coding chunks.

Typically, a data store 304 (e.g., chunk table) can store
information about portions/chunks, for example, the number
of data fragments stored 1in each portion/chunk and their
indices. The source portion detection component 302 can
utilize this information to identify two or more source
portions that can be unified to reduce system capacity
overheads. As an example, source portion detection com-
ponent 302 can determine source portions that when com-

10

15

20

25

30

35

40

45

50

55

60

65

8

bined have k (or fewer than k) data fragments, periodically,
on-demand, in response to detecting an event, at a specified
time, etc. Further, the source portion detection component
302 can select source portions that determined to be comple-
mentary. Two or more data portions are said to complement
cach other when there 1s no a pair of data portions that have
data fragments with the same index. In other words, for each
data fragment index there 1s one or zero data fragments
among all complementary data portions. As an example,
indices are assigned to data fragments to facilitate the EC
encoding operation, for example, by the chunk manager.
Moreover, a coding fragment 1s generated based on com-
bining (e.g., multiplying) a data fragment with a coding
matrix coetlicient that i1s selected based on the 1index of the
data fragment.

In some example embodiments, a probability of having
complementary data portions can be increased artificially.
Moreover, when a chunk is sealed prematurely, e.g., the
chunk manager 120 can assign random indexes to the
chunk’s data fragments. For example, indexes can be
assigned 1n a range r to r+(1-1), (wherein r can be any 1integer
greater than 1) and so on instead of indexes 1n a range 1 to
l. In one example, r can be randomly selected and/or
determined based on an optimization and/or machine learn-
ing techmque. Additionally, or optionally, the source portion
detection component 302 can optimize the source portions
selected such that the combined number of data fragments of
the portions has the closest value to k. It 1s noted that a
source portion can be a normal chunk or a previously
combined portion.

According to an aspect, a combination component 306
can create a combined protection set (e.g., comprising a
meta chunk) based on the source portions selected by the
source portion detection component 302. It 1s noted that
physical capacity 1s not allocated for the meta chunk.
However, the combination component 306 can create a
layout within the newly created data portion (e.g., meta
chunk). This layout can map the data fragments of the source
portions to the data fragments of the newly created data
portion. This mapping can be stored within the data store
304. The creation of the new data portion does not impact
data access because data location can still be specified using
source portions, which remain the same. This assures an
advantage over conventional copying garbage collection.
Further, the generation of the new data portion does not
require resource-demanding verification procedure. Further,
utilization of the new data portion does not require user data
location updates.

In one embodiment, the combination component 306 can
unite the complementary data portions via a simple sum-
ming operation as follows: There are n protection sets for n
complementary data portions (e.g., n 1S an integer greater
than 1). Each p-th protection set can be described with an
incomplete set of data fragments {D £l and a complete set of
coding fragments {C#}. In this oxamplo scenario, the union
of the protection sets (U) would comprise: (1) a union of n
sets of data fragments {D/}, wherein each data fragment
preserves 1ts 1mitial index. The result of this unmion can be
indicated as {D, “1, and (ii) a set of m coding fragments

{C.Y}, wherein

Ci"=2,-,"CF (3)

Performing data protection at the level of the combined
data portion (e.g., meta chunk) allows reduction of capacity
overheads on data protection by n times, where n 1s a number
ol normal/source data portions united. Moreover, n*m cod-

ing fragments for source data portions are replaced with just

US 10,719,250 B2

9

m coding fragments of the standard size for a united data
portion. Accordingly, system 300 can reduce capacity over-
heads without complete data re-protection, resulting 1n a
process that 1s less resource demanding. This 1s especially
advantageous 1n case of GEO erasure coding, wherein 5
complete data re-protection after meta chunk generation 1s
substantially resource demanding.

FIG. 4 illustrates an example system 400 that facilitates
ellicient data protection by employing meta chunks. In one
aspect, the chunk manager 120 and the combination com- 10
ponent 306 can include functionality as more fully described
herein, for example, as described above with regard to
systems 100 and 300. Typically, erasure coding 1s utilized
for data protection. Moreover, when data 1s protected with
crasure coding, the overheads on data protection are be 15
calculated as m/k. In a situation when a chunk has fewer data
fragments (1) the overheads are my/l. Thus, the fewer 1, the
greater capacity overheads on data protection and there are
cases when the overheads may be unreasonably high. Con-
ventional copying garbage collection mechanisms are too 20
slow to make a difference. In contrast, system 400 can
cliciently protect complementary data portions that have
reduced sets of data fragments (e.g., by employing meta
chunks) without complete data re-protection

As described 1n detail supra, the combination component 25
306 can generate a new meta chunk. In an example, a layout
can be created within the new meta chunk that maps the data
fragments of the source portions to the data fragments of the
new meta chunk. Further, the combination component 306
can combine (e.g., add) the coding fragments of the source 30
portions to generate and store m coding fragments for the
new meta chunk. In an aspect, metadata of the source
portions (e.g., stored in data store 304) can be updated to
reference their meta chunk.

Furthermore, a cleanup component 402 can be utilized to 35
delete coding fragments associated with the source portions
(e.g., that were previously generated to protect individual
source portions). With reference to equation (3), after the set
{C.”} is generated and saved, the combination component
306 can delete the source sets of coding fragments {C#}. As 40
an example, for n source portions, the cleanup component
402 can delete n sets of m coding fragments, one set per
source portion from the iitial set. Source meta chunks (af
any) can also be deleted by the cleanup component 402.
Performing data protection at the meta chunk level (instead 45
of source chunk level) allows to reduce the capacity over-
heads by n times, where n 1s a number of source portions
united 1 one meta chunk. Moreover, n*m previously gen-
erated coding fragments for the source portions are replaced
with just m coding fragments of the standard size for a meta 50
chunk.

FIG. 5§ illustrates an example system 300 that facilitates
ellicient data recovery by employing meta chunks. In one
aspect, a recovery component 302 can be utilized to recover
one or more source portions that have been protected at a 55
meta chunk level. It 1s noted that the data store 304 can
include functionality as more fully described herein, for
example, as described above with regards to system 300.

In one aspect, a failure detection component 504 can
determine that a failure condition has occurred. For 60
example, a failure condition can comprise a loss and/or
unavailability of data (e.g., one or more data and/or coding,
fragments) due to data corruption, hardware failures, data
center disasters, natural disasters, malicious attacks, etc.
Moreover, the failure detection component 304 can detect 65
the unavailability and/or loss at the source portion level. A
decoding component 306 can perform recovery of the data

10

fragment at the meta chunk level. For example, the decoding
component 506 can employ a decoding matrix that corre-
sponds to the coding matrix utilized during erasure coding.
Further, the decoding component 506 can utilize mapping
information (e.g., that maps source portions to a meta chunk)
that 1s, for example, stored within the data store 304, to
determine the meta chunk that 1s to be recovered. The
decoding results 1n a recovery of the data fragments, which
can then be stored as a part of 1ts parent source portion (e.g.,
by employing the data storage component 508).

FIGS. 6 A-6B depict example embodiments that 1llustrate
reduction of capacity overheads on data protection without
complete data re-protection. FIG. 6A illustrates three
example portions, portion A 602, portion B 604, and portion
C 606, that have a reduced set of data fragments, 610,-610,
respectively. Moreover, in this example scenario, a 4+2
(k=4, m=2) erasure coding protection configuration/protocol
1s applied for data protection and coding fragments 614, -
614, are generated for each portion A-C. Although only
three portions are depicted, 1t 1s noted that the subject
disclosure 1s not limited to three portions with a 442
protection configuration, and most any number (greater than
1) of portions with most any erasure coding protection
scheme can be utilized.

In this example, portion A 602 comprises one data frag-
ments, D.? (e.g., data fragments D,*, D,, and D, can be
deleted by a quasi-compacting garbage collector); portion B
604 comprises two data fragments D,” and D,” (e.g., the
portion was sealed prematurely); and portion C 606 com-
prises one data fragment D, (e.g., the portion was sealed
prematurely). Altogether the portions above comprise 4 (k)
data fragments and 6 (3*m) coding fragments. The over-
heads on data protection 1s 3/2 (6/4) instead of target 1/2
(2/4).

In one aspect, the source portion detection component 302
can determine that the portions A-C are complementary
portions. Moreover, any two or more of the portions A-C do
not have data fragments with the same index. In other words,
for each data fragment index (D),) there 1s one or zero data
fragments among all complementary data portions. For
example, portions A-C have only one data fragment D, for
index 1; only one data fragment D,* for index 2; only one
data fragment D, for index 3; and only one data fragment
D.” for index 4. Accordingly, portions A-C can be combined
(e.g., via the combination component 306) into a meta
chunk, portion U 608 having data fragments 612. It 1s noted
that the combination does not require transier and/or pro-
cessing of the data fragments 610,-610,. According to an
embodiment, the combination component 306 can add the
coding fragments 614,-614, to generate coding fragments
616 for the portion U 608. For example, C,“=C,“*+C,”+C,“
and C,“=C,“+C.”+C,°.

FIG. 6B illustrates an example final layout of data and
coding fragments. Coding fragments 616 can be utilized to
protect data fragments within portion U 608 that belong to
the three source portions (portion A 602, portion B 604, and
portion C 606). The source portions (portion A 602, portion
B 604, and portion C 606) can be linked with the portion U
608 (c.g., via metadata stored in the data store 304) and the
individual coding fragments 614,-614, created for the
source portions can be deleted (e.g., via the cleanup com-
ponent 402).

Since encoding 1s performed at meta chunk level, there
are four data fragments (k) 608 and two (m) coding frag-
ments 616, the target level of overheads on data protection
1/2 (m/k) can be achieved. Data protection with meta chunks
1s a lightweight alternative to the copying garbage collector

US 10,719,250 B2

11

in ECS™. It can increase capacity use efliciency without
verification and/or data copying. Although FIGS. 6A-6B
depict the generation and encoding of a meta chunk (e.g.,
portion U 608) subsequent to encoding of individual source
portions (portion A 602, portion B 604, and portion C 606),
it 1s noted that the subject disclosure 1s not so limited and
that the source portions can be 1dentified and employed to
generate a meta chunk, before they have been 1individually
encoded.

FIGS. 7-8 illustrate flow diagrams and/or methods in
accordance with the disclosed subject matter. For simplicity
of explanation, the flow diagrams and/or methods are
depicted and described as a series of acts. It 1s to be
understood and appreciated that the various embodiments
are not limited by the acts illustrated and/or by the order of
acts, for example acts can occur 1n various orders and/or
concurrently, and with other acts not presented and
described herein. Furthermore, not all illustrated acts may be
required to implement the flow diagrams and/or methods in
accordance with the disclosed subject matter. In addition,
those skilled 1n the art will understand and appreciate that
the methods could alternatively be represented as a series of
interrelated states via a state diagram or events. Additionally,
it should be further appreciated that the methods disclosed
heremnafter and throughout this specification are capable of
being stored on an article of manufacture to facilitate
transporting and transferring such methods to computers.
The term article of manufacture, as used herein, 1s intended
to encompass a computer program accessible from any
computer-readable device or computer-readable storage/
communications media.

Referring now to FIG. 7, there 1llustrated 1s an example
method 700 for determining a combined protection set for
complementary data portions. In an aspect, method 700 can
be performed within an object storage system, for example,
ECS™, The object storage system can employ chunks for
disk capacity management, wherein the disk space 1s parti-
tioned 1to a set of blocks of fixed/defined size (e.g., 128
MB) called chunks. All user data can be stored in the chunks
and the chunks can be shared between different users. For
example, a chunk can comprise fragments of several dozens
of user objects. However, one chunk can also comprise
fragments of thousands of user objects (e.g., in case of email
archives). Chunk content can be modified 1n an append-only
mode. When a chunk becomes full enough, it can be sealed
and once sealed, the content of the chunk 1s immutable.
Oftentimes, chunks can be sealed before they are full and/or
can have fewer than the maximum/defined number of data
fragments (e.g., defined k data fragments for a k+l erasure
coding protection protocol). Accordingly, at 702, source
portions with a reduced set of data fragments that are
complementary can be determined. For example, source
portions that do no have data fragments having the same
indices can be selected (e.g., based on information stored
within a chunk table (or other system data store)). In an
aspect, a source portion can comprise a reduced set of data
fragments and corresponding coding fragments that have
been generated based on erasure coding of the data frag-
ments. In case of distributed erasure coding, the source
portion can comprise a reduced set of data chunks and
corresponding coding chunks that have been generated
based on GEO erasure coding of the data chunks. Although
the systems and methods herein are described with respect
to data fragments that have been erasure coded, 1t 1s noted
that the subject embodiments can also be applied to data
chunks that are GEO erasure coded.

10

15

20

25

30

35

40

45

50

55

60

65

12

At 704, data fragments of the source portions can be
combined as a meta chunk. In one aspect, physical capacity
1s not allocated for the meta chunk, but a layout can be
created within the new meta chunk. This layout can link the
data fragments of the source portions involved to the data
fragments of the meta chunk. At 706, the source portions can
be linked to the meta chunk. As an example, the metadata
(e.g., stored 1n a chunk table) of the source portions can be
updated to include a reference to the meta chunk.

At 708, the coding fragments of the source portions can
be added to generate coding fragments for the meta chunk.
This set of coding fragments can be utilized to recover data
fragments of one or more of the source portions (e.g.,
subsequent to a failure condition). Further, at 710, the
individual sets of coding fragments, that were previously
generated by individually encoding each source portion, can
be deleted. In one aspect, 1f the source portions comprise one
or more previously generated meta chunks, the previously
generated meta chunks can also be deleted. Further, 1n this
example scenario, the source portions of the one or more
previously generated meta chunks can be linked to the new
meta chunk.

FIG. 8 illustrates 1s an example method 800 for data
recovery at a meta chunk level 1n accordance with an aspect
of this disclosure. At 802 1t can be determined that a failure
condition has occurred within an object storage system (e.g.,
ECS™), wherein one or more data fragments have become
corrupted, unavailable, and/or lost. At 804, it can be 1den-
tified that the unavailable data fragment(s) belongs to a
source portion that 1s associated with a meta chunk. For
example, metadata associated with the source portion can
provide a reference and/or link to a meta chunk that 1s to be
recovered. At 806, the data fragment(s) can be recovered at
a meta chunk level. For example, a decoding operation can
be performed by employing the coding fragments of the
meta chunk. Further, at 808, the recovered data fragment(s)
1s stored as a part of the source portion.

The systems and methods (e.g., 100-800) disclosed herein
provide at least the following non-limiting advantages: (1)
reduced capacity overheads during data protection; and (11)
creation of meta chunks does not impact data access because
data location 1s still specified using normal chunks, which
remain the same. Use of meta chunks does not require
neither resource-demanding verification procedure nor user
data location updates; (111) summation of the coding frag-
ments of complementary source portions allows a simple,
cllicient, and relatively quicker technique for generating a
combined protection set.

FIG. 9 illustrates an example high-level architecture 900
of an ECS™ cluster, according to an aspect of the subject
disclosure. ECS™ can comprise a software-defined, cloud-
scale, object storage platform that combines the cost advan-
tages of commodity infrastructure with the reliability, avail-
ability and serviceability of traditional arrays. With ECS™,
an organization can deliver scalable and simple public cloud
services with the reliability and control of a private-cloud
infrastructure. ECS™ provides comprehensive protocol sup-
port for unstructured (object and/or file) workloads on a
single, cloud-scale storage platform. In an aspect, the ECS™
cluster 902 can comprise multiple nodes 904,-904,
wherein M 1s most any 1nteger. It 1s noted that the zones 102,
and/or zone(s) 118, can comprise at least a portion of ECS™
cluster 902. The nodes 904,-904,, can comprise storage
devices (e.g. hard drives) 906,-906,, and can run a set of
services 908,-908,,. For example, single node that runs
ECS™ version 3.0 can manage 20 independent services.

US 10,719,250 B2

13

Further, ECS™ data/management clients 910 can be
coupled to the nodes 904,-904, .

The ECS™ cluster 902 does not protect user data with
traditional schemes like mirroring or parity protection.
Instead, the ECS™ cluster 902 utilizes a k+m erasure coding
protection scheme, wherein a data block (e.g., data chunk) 1s
divided 1nto k data fragments and m coding fragments are
created (e.g., by encoding the k data fragments). Encoding
1s performed 1n a manner such that the ECS™ cluster 902
can tolerate the loss of any m fragments. As an example, the
default scheme for ECS™ 15 1244, 1.¢. k equals to 12 and m
equals to 4; however, the subject disclosure 1s not limited to
this erasure coding protection scheme. When some frag-
ments are lost, the missing fragments are restored via a
decoding operation.

In one aspect, the storage services 908,-908, . can handle
data availability and protection against data corruption,
hardware failures, and/or data center disasters. As an
example, the storage services 908,-908,, can comprise an
unstructured storage engine (USE) (not shown), which 1s a
distributed shared service that runs on each node 904 ,-904, ..
and manages transactions and persists data to nodes. The
USE enables global namespace management across geo-
graphically dispersed data centers through geo-replication.
In an aspect, the USE can write all object-related data (such
as, user data, metadata, object location data) to logical
containers of contiguous disk space known as chunks.
Chunks are open and accepting writes, or closed and not
accepting writes. After chunks are closed, the USE can
erasure-code them. The USE can write to chunks 1n an
append-only pattern so that existing data 1s never overwrit-
ten or modified. This strategy improves performance
because locking and cache validation 1s not required for 1I/O
operations. All nodes 904 ,-904, , can process write requests
for the same object simultaneously while writing to different
chunks.

ECS™ continuously monitors the health of the nodes
904,-904, ., their disks, and objects stored in the cluster.
ECS™ disperses data protection responsibilities across the
cluster, it can automatically re-protect at-risk objects when

nodes or disks fail. When there 1s a failure of a node or drive
in the site, the USE can 1dentily the chunks and/or erasure
coded fragments aflected by the failure and can write copies
of the aflected chunks and/or erasure coded fragments to
good nodes and disks that do not currently have copies.

Private and hybrid clouds greatly interest customers, who
are facing ever-increasing amounts of data and storage costs,
particularly in the public cloud space. ECS™ provides a
scale-out and geo-distributed architecture that delivers an
on-premise cloud platform that scales to exabytes of data
with a TCO (Total Cost of Ownership) that’s significantly
less than public cloud storage. Further, ECS™ provides
versatility, hyper-scalability, powerful features, and use of
low-cost 1industry standard hardware.

Referring now to FIG. 10, there 1s illustrated a block
diagram of an example computer operable to execute data
deletion with distributed erasure coding. In order to provide
additional context for various aspects of the disclosed sub-
ject matter, FIG. 10 and the following discussion are
intended to provide a brief, general description of a suitable
computing environment 1000 1 which the various aspects
of the specification can be implemented. While the specifi-
cation has been described above 1n the general context of
computer-executable instructions that can run on one or
more computers, those skilled in the art will recognize that

10

15

20

25

30

35

40

45

50

55

60

65

14

the specification also can be implemented in combination
with other program modules and/or as a combination of
hardware and software.

Generally, program modules include routines, programs,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the immventive
methods can be practiced with other computer system con-
figurations, including single-processor or multiprocessor
computer systems, minicomputers, mainirame computers,
as well as personal computers, hand-held computing
devices, microprocessor-based or programmable consumer
clectronics, and the like, each of which can be operatively
coupled to one or more associated devices. The illustrated
aspects of the specification can also be practiced 1n distrib-
uted computing environments where certain tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules can be located 1n both local
and remote memory storage devices.

Computing devices typically include a variety of media,
which can include computer-readable storage media and/or
communications media, which two terms are used herein
differently from one another as follows. Computer-readable
storage media can be any available storage media that can be
accessed by the computer and includes both volatile and
nonvolatile media, removable and non-removable media. By
way ol example, and not limitation, computer-readable
storage media can be implemented 1n connection with any
method or technology for storage of information such as
computer-readable instructions, program modules, struc-
tured data, or unstructured data. Computer-readable storage
media can include, but are not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disk (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or other tangible
and/or non-transitory media which can be used to store
desired mformation. Computer-readable storage media can
be accessed by one or more local or remote computing
devices, e.g., via access requests, queries or other data
retrieval protocols, for a variety of operations with respect to
the information stored by the medium.

Communications media typically embody computer-read-
able instructions, data structures, program modules or other
structured or unstructured data 1n a data signal such as a
modulated data signal, (e.g., a carrier wave or other transport
mechanism), and includes any information delivery or trans-
port media. The term “modulated data signal” or signals
refers to a signal that has one or more of 1ts characteristics
set or changed 1n such a manner as to encode mnformation 1n
one or more signals. By way of example, and not limitation,
communication media include wired media, such as a wired
network or direct-wired connection, and wireless media
such as acoustic, radio frequency (RF), infrared and other
wireless media.

With reference to FIG. 10, a block diagram of a comput-
ing system 1000 operable to execute the disclosed systems
and methods 1s illustrated, 1n accordance with an embodi-
ment. Computer 1012 comprises a processing unit 1014, a
system memory 1016, and a system bus 1018. As an
example, the component(s), server(s), client(s), node(s),
cluster(s), system(s), zone(s), module(s), agent(s), engine(s),
manager(s), and/or device(s) disclosed herein with respect to
systems 100-600 and 900 can each include at least a portion
of the computing system 1000. System bus 1018 couples
system components comprising, but not limited to, system

US 10,719,250 B2

15

memory 1016 to processing unit 1014. Processing unit 1014
can be any of various available processors. Dual micropro-
cessors and other multiprocessor architectures also can be
employed as processing unit 1014.

System bus 1018 can be any of several types of bus
structure(s) comprising a memory bus or a memory control-
ler, a peripheral bus or an external bus, and/or a local bus
using any variety ol available bus architectures comprising,
but not limited to, industrial standard architecture (ISA),
micro-channel architecture (MSA), extended ISA (EISA),
intelligent drive electronics (IDE), VESA local bus (VLB),
peripheral component interconnect (PCI), card bus, univer-
sal serial bus (USB), advanced graphics port (AGP), per-
sonal computer memory card international association bus
(PCMCIA), Firewire (IEEE 1394), small computer systems
interface (SCSI), and/or controller area network (CAN) bus
used 1n vehicles.

System memory 1016 comprises volatile memory 1020
and nonvolatile memory 1022. A basic mput/output system
(BIOS), comprising routines to transier information between
clements within computer 1012, such as during start-up, can
be stored in nonvolatile memory 1022. By way of illustra-
tion, and not limitation, nonvolatile memory 1022 can
comprise ROM, PROM, EPROM, EEPROM, or flash
memory. Volatile memory 1020 comprises RAM, which acts
as external cache memory. By way of illustration and not

limitation, RAM 1s available 1n many forms such as SRAM,
dynamic RAM (DRAM), synchronous DRAM (SDRAM),

double data rate SDRAM (DDR SDRAM), enhanced
SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), Ram-
bus direct RAM (RDRAM), direct Rambus dynamic RAM
(DRDRAM), and Rambus dynamic RAM (RDRAM).
Computer 1012 also comprises removable/non-remov-
able, volatile/non-volatile computer storage media. FIG. 10
illustrates, for example, disk storage 1024. Disk storage
1024 comprises, but 1s not limited to, devices like a magnetic
disk drive, tloppy disk drive, tape drive, Jaz drive, Zip drive,
L.S-100 drive, flash memory card, or memory stick. In
addition, disk storage 1024 can comprise storage media
separately or i combination with other storage media

comprising, but not limited to, an optical disk drive such as
a compact disk ROM device (CD-ROM), CD recordable

drive (CD-R Dnive), CD rewritable drive (CD-RW Drive) or
a digital versatile disk ROM drive (DVD-ROM). To facili-
tate connection of the disk storage devices 1024 to system
bus 1018, a removable or non-removable interface 1s typi-
cally used, such as interface 1026.

It 1s to be appreciated that FIG. 10 describes software that
acts as an intermediary between users and computer
resources described 1n suitable operating environment 1000.
Such software comprises an operating system 1028. Oper-
ating system 1028, which can be stored on disk storage
1024, acts to control and allocate resources of computer
system 1012. System applications 1030 take advantage of
the management ol resources by operating system 1028
through program modules 1032 and program data 1034
stored either m system memory 1016 or on disk storage
1024. It 1s to be appreciated that the disclosed subject matter
can be mmplemented with various operating systems or
combinations ol operating systems.

A user can enter commands or mnformation imto computer
1012 through mput device(s) 1036. Input devices 1036
comprise, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, cellular
phone, user equipment, smartphone, and the like. These and

10

15

20

25

30

35

40

45

50

55

60

65

16

other input devices connect to processing unit 1014 through
system bus 1018 via intertace port(s) 1038. Interface port(s)
1038 comprise, for example, a serial port, a parallel port, a
game port, a universal serial bus (USB), a wireless based
port, e.g., Wi-F1, Bluetooth®, etc. Output device(s) 1040 use
some of the same type of ports as mput device(s) 1036.

Thus, for example, a USB port can be used to provide
iput to computer 1012 and to output information from
computer 1012 to an output device 1040. Output adapter
1042 1s provided to illustrate that there are some output
devices 1040, like display devices, light projection devices,
monitors, speakers, and printers, among other output devices
1040, which use special adapters. Output adapters 1042
comprise, by way of illustration and not limitation, video
and sound devices, cards, etc. that provide means of con-
nection between output device 1040 and system bus 1018. It
should be noted that other devices and/or systems of devices
provide both mput and output capabilities such as remote
computer(s) 1044.

Computer 1012 can operate 1n a networked environment
using logical connections to one or more remote computers,
such as remote computer(s) 1044. Remote computer(s) 1044
can be a personal computer, a server, a router, a network PC,
a workstation, a microprocessor based appliance, a peer
device, or other common network node and the like, and
typically comprises many or all of the elements described
relative to computer 1012.

For purposes of brevity, only a memory storage device
1046 1s 1llustrated with remote computer(s) 1044. Remote
computer(s) 1044 1s logically connected to computer 1012
through a network interface 1048 and then physically and/or
wirelessly connected via communication connection 1050.
Network interface 1048 encompasses wire and/or wireless
communication networks such as local-area networks
(LAN) and wide-area networks (WAN). LAN technologies
comprise liber distributed data interface (FDDI), copper
distributed data intertace (CDDI), Ethernet, token ring and
the like. WAN technologies comprise, but are not limited to,
point-to-point links, circuit switching networks like inte-
grated services digital networks (ISDN) and vanations
thereon, packet switching networks, and digital subscriber
lines (DSL).

Communication connection(s) 1050 refer(s) to hardware/
soltware employed to connect network interface 1048 to bus
1018. While communication connection 1050 1s shown for
illustrative clanty inside computer 1012, 1t can also be
external to computer 1012. The hardware/software for con-
nection to network interface 1048 can comprise, for
example, 1internal and external technologies such as
modems, comprising regular telephone grade modems,
cable modems and DSL modems, wireless modems, ISDN
adapters, and Ethernet cards.

The computer 1012 can operate in a networked environ-
ment using logical connections via wired and/or wireless
communications to one or more remote computers, cellular
based devices, user equipment, smartphones, or other com-
puting devices, such as workstations, server computers,
routers, personal computers, portable computers, micropro-
cessor-based entertainment appliances, peer devices or other
common network nodes, etc. The computer 1012 can con-
nect to other devices/networks by way of antenna, port,
network interface adaptor, wireless access point, modem,
and/or the like.

The computer 1012 1s operable to communicate with any
wireless devices or entities operatively disposed 1n wireless
communication, €.g., a printer, scanner, desktop and/or
portable computer, portable data assistant, communications

US 10,719,250 B2

17

satellite, user equipment, cellular base device, smartphone,
any piece ol equipment or location associated with a wire-
lessly detectable tag (e.g., scanner, a kiosk, news stand,
restroom), and telephone. This comprises at least Wi-F1 and
Bluetooth® wireless technologies. Thus, the communication
can be a predefined structure as with a conventional network
or simply an ad hoc communication between at least two
devices.

The computing system 1000 1s operable to communicate
with any wireless devices or entities operatively disposed in
wireless communication, e.g., desktop and/or portable com-
puter, server, communications satellite, etc. This includes at
least Wi-F1 and Bluetooth® wireless technologies. Thus, the
communication can be a predefined structure as with a
conventional network or simply an ad hoc communication
between at least two devices.

Wi-F1, or Wireless Fidelity, allows connection to the
Internet from a couch at home, a bed 1n a hotel room, or a
conference room at work, without wires. Wi-Fi1 1s a wireless
technology similar to that used 1n a cell phone that enables
such devices, e.g., computers, to send and receive data
indoors and out; anywhere within the range of a base station.
Wi-F1 networks use radio technologies called IEEE 802.11
(a, b, g, n, etc.) to provide secure, reliable, fast wireless
connectivity. A Wi-F1 network can be used to connect
computers to each other, to the Internet, and to wired
networks (Wthh use IEEE 802.3 or Ethernet). Wi-Fi net-

works operate 1n the unlicensed 5 GHz radio band at a 54
Mbps (802.11a) data rate, and/or a 2.4 GHz radio band at an

11 Mbps (802.11b), a 54 Mbps (802.11¢g) data rate, or up to
a 600 Mbps (802.11n) data rate for example, or with
products that contain both bands (dual band), so the net-
works can provide real-world performance similar to the
basic 10Basel wired Ethernet networks used 1n many
oflices.

As 1t employed 1n the subject specification, the term
“processor’ can refer to substantially any computing pro-
cessing unit or device comprising, but not limited to com-
prising, single-core processors; single-processors with soft-
ware multithread execution capability; multi-core
processors; multi-core processors with software multithread
execution capability; multi-core processors with hardware
multithread technology; parallel platiorms; and parallel plat-
torms with distributed shared memory 1n a single machine or
multiple machines. Additionally, a processor can refer to an
integrated circuit, a state machine, an application specific
integrated circuit (ASIC), a digital signal processor (DSP),
a programmable gate array (PGA) including a field pro-
grammable gate array (FPGA), a programmable logic con-
troller (PLC), a complex programmable logic device
(CPLD), a discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to per-
form the functions described herein. Processors can exploit
nano-scale architectures such as, but not limited to, molecu-
lar and quantum-dot based transistors, switches and gates, 1n
order to optimize space usage or enhance performance of
user equipment. A processor may also be implemented as a
combination of computing processing units. One or more
processors can be utilized 1n supporting a virtualized com-
puting environment. The virtualized computing environment
may support one or more virtual machines representing
computers, servers, or other computing devices. In such
virtualized virtual machines, components such as processors
and storage devices may be virtualized or logically repre-
sented. In an aspect, when a processor executes instructions
to perform “operations”, this could include the processor

10

15

20

25

30

35

40

45

50

55

60

65

18

performing the operations directly and/or facilitating, direct-
ing, or cooperating with another device or component to
perform the operations

In the subject specification, terms such as “data store,”
data storage,” “database,” “cache,” and substantially any
other information storage component relevant to operation
and functionality of a component, refer to “memory com-
ponents,” or entities embodied 1n a “memory” or compo-
nents comprising the memory. It 1s noted that the memory
components, or computer-readable storage media, described
herein can be either volatile memory or nonvolatile memory,
or can include both volatile and nonvolatile memory. By
way of illustration, and not limitation, nonvolatile memory
can include read only memory (ROM), programmable ROM

(PROM), electrically programmable ROM (EPROM), elec-
trically erasable ROM (EEPROM), or flash memory. Vola-
tile memory can include random access memory (RAM),
which acts as external cache memory. By way of illustration

and not limitation, RAM 1s available in many forms such as
synchronous RAM (SRAM), dynamic RAM (DRAM), syn-
chronous DRAM (SDRAM), double data rate SDRAM
(DDR SDRAM), enhanced SDRAM (ESDRAM), Syn-
chlink DRAM (SLDRAM), and direct Rambus RAM
(DRRAM). Additionally, the disclosed memory components
of systems or methods herein are mtended to comprise,
without being limited to comprising, these and any other
suitable types of memory.

The 1llustrated aspects of the disclosure can be practiced
in distributed computing environments where certain tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules can be located in
both local and remote memory storage devices.

The systems and processes described above can be
embodied within hardware, such as a single integrated
circuit (IC) chip, multiple ICs, an application specific inte-
grated circuit (ASIC), or the like. Further, the order 1n which
some or all of the process blocks appear 1n each process
should not be deemed limiting. Rather, 1t should be under-
stood that some of the process blocks can be executed 1n a
variety of orders that are not all of which may be explicitly
illustrated herein.

As used in this application, the terms “component,”
“module,” “system,” “interface,” “cluster,” “server,”
“node,” or the like are generally intended to refer to a
computer-related entity, either hardware, a combination of
hardware and software, software, or software 1n execution or
an entity related to an operational machine with one or more
specific functionalities. For example, a component can be,
but 1s not limited to being, a process running on a processor,
a processor, an object, an executable, a thread of execution,
computer-executable 1nstruction(s), a program, and/or a
computer. By way of illustration, both an application run-
ning on a controller and the controller can be a component.
One or more components may reside within a process and/or
thread of execution and a component may be localized on
one computer and/or distributed between two or more com-
puters. As another example, an interface can include mnput/
output (I/0O) components as well as associated processor,
application, and/or APl components.

Furthermore, the terms “user,” 7 <

consumer,” “client,” and
the like are employed interchangeably throughout the sub-
ject specification, unless context warrants particular distinc-
tion(s) among the terms. It 1s noted that such terms can refer
to human entities or automated components/devices sup-
ported through artificial intelligence (e.g., a capacity to

US 10,719,250 B2

19

make inference based on complex mathematical formal-
1sms), which can provide simulated vision, sound recogni-
tion and so forth.

Further, the various embodiments can be implemented as
a method, apparatus, or article of manufacture using stan-
dard programming and/or engineering techniques to produce
soltware, firmware, hardware, or any combination thereof to
control a computer to implement one or more aspects of the
disclosed subject matter. An article of manufacture can
encompass a computer program accessible from any com-
puter-readable device or computer-readable storage/commu-
nications media. For example, computer readable storage
media can include but are not limited to magnetic storage
devices (e.g., hard disk, floppy disk, magnetic strips . . .),
optical disks (e.g., compact disk (CD), digital versatile disk
(DVD) . ..), smart cards, and flash memory devices (e.g.,
card, stick, key drive . . .). Of course, those skilled 1n the art
will recognize many modifications can be made to this
configuration without departing from the scope or spirit of
the various embodiments.

Artificial intelligence based systems, e.g., utilizing explic-
itly and/or implicitly trained classifiers, can be employed 1n
connection with performing inference and/or probabilistic
determinations and/or statistical-based determinations as 1n
accordance with one or more aspects of the disclosed subject
matter as described herein. For example, an artificial intel-
ligence system can be used to dynamically perform opera-
tions as described herein.

A classifier can be a function that maps an input attribute
vector, x=(x1, x2, x3, x4, xn), to a confidence that the input
belongs to a class, that 1s, I(x)=confidence (class). Such
classification can employ a probabilistic and/or statistical-
based analysis (e.g., factoring into the analysis utilities and
costs) to infer an action that a user desires to be automati-
cally performed. In the case of communication systems, for
example, attributes can be information received from access
points, servers, components of a wireless communication
network, etc., and the classes can be categories or areas of
interest (e.g., levels of priorities). A support vector machine
1s an example of a classifier that can be employed. The
support vector machine operates by finding a hypersurface
in the space of possible mputs, which the hypersurface
attempts to split the triggering criteria from the non-trigger-
ing events. Intuitively, this makes the classification correct
for testing data that 1s near, but not 1dentical to training data.
Other directed and undirected model classification
approaches include, e.g., naive Bayes, Bayesian networks,
decision trees, neural networks, fuzzy logic models, and
probabilistic classification models providing different pat-
terns of independence can be employed. Classification as
used herein can also be inclusive of statistical regression that
1s utilized to develop models of priority.

In accordance with various aspects of the subject speci-
fication, artificial intelligence based systems, components,
etc. can employ classifiers that are explicitly trained, e.g., via
a generic training data, etc. as well as implicitly trained, e.g.,
via observing characteristics of communication equipment,
¢.g., a server, etc., receiving reports from such communica-
tion equipment, receiving operator preferences, receiving
historical information, recerving extrinsic information, etc.
For example, support vector machines can be configured via
a learning or traiming phase within a classifier constructor
and feature selection module. Thus, the classifier(s) can be
used by an artificial intelligence system to automatically
learn and perform a number of functions.

In addition, the word “example” or “exemplary” 1s used
herein to mean serving as an example, istance, or illustra-

10

15

20

25

30

35

40

45

50

55

60

65

20

tion. Any aspect or design described herein as “exemplary”
1s not necessarily to be construed as preferred or advanta-
geous over other aspects or designs. Rather, use of the word
exemplary 1s intended to present concepts in a concrete
fashion. As used 1n thus application, the term “or” 1s intended
to mean an inclusive “or’” rather than an exclusive “or.” That
1s, unless specified otherwise, or clear from context, “X
employs A or B” 1s mtended to mean any of the natural
inclusive permutations. That 1s, 1f X employs A; X employs
B; or X employs both A and B, then “X employs A or B” 1s
satisfied under any of the foregoing instances. In addition,
the articles “a” and “an™ as used 1n this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from
context to be directed to a singular form.

What has been described above includes examples of the
present specification. It 1s, of course, not possible to describe
every concervable combination of components or methods
for purposes of describing the present specification, but one
of ordinary skill 1n the art may recognize that many further
combinations and permutations of the present specification
are possible. Accordingly, the present specification 1is
intended to embrace all such alterations, modifications and
variations that fall within the spirit and scope of the
appended claims. Furthermore, to the extent that the term
“includes™ 1s used 1n either the detailed description or the
claims, such term 1s intended to be inclusive 1n a manner
similar to the term “comprising” as “‘comprising” 1s 1nter-
preted when employed as a transitional word 1n a claim.

What 1s claimed 1s:

1. A system, comprising;

a processor; and

a non-transitory memory that stores executable instruc-

tions that, when executed by the processor, facilitate

performance ol operations, comprising:

selecting source chunks stored within a storage system
that are determined to have fewer than a defined
number of data fragments, wherein the source
chunks are divided into indexed data fragments, and
wherein the indexed data fragments are erasure-
coded to generate source coding fragments;

based on combining the source chunks, generating a
meta chunk; and

in response to verifying that the source chunks do not
have data fragments with a common index, adding
the source coding fragments to generate combined
coding fragments associated with the meta chunk.

2. The system of claim 1, wherein the operations further
comprise:

linking the source chunks to the meta chunk.

3. The system of claim 2, wherein the linking comprises
updating metadata associated with a source chunk of the
source chunks to comprise reference data indicative of the
meta chunk.

4. The system of claim 1, wherein the operations further
comprise:

storing the combined coding fragments; and

subsequent to the storing, deleting the source coding

fragments.

5. The system of claim 1, wherein the meta chunk 1s a first
meta chunk and the source chunks are first source chunks,
wherein the first source chunks comprise a second meta
chunk that has been generated based on a combination of
second source chunks, and wherein the second source
chunks are determined to have fewer than the defined
number of data fragments.

US 10,719,250 B2

21

6. The system of claim 1, wherein a source chunk of the
source chunks 1s determined to have been sealed prema-
turely.

7. The system of claim 1, wherein the combined coding
fragments are employable to recover at least a portion of the
indexed data fragments.

8. The system of claim 1, wheremn the indexed data
fragments comprise indices that are assigned to increase a
probability that the two or more of the source chunks do not
have the data fragments with the common index.

9. The system of claim 1, wherein physical capacity 1s not
allocated for the meta chunk.

10. The system of claim 1, wherein the storage system
comprises a geographically-distributed object storage sys-
tem.

11. A method, comprising;

selecting, by a system comprising a processor, source

chunks from chunks of an object storage system,
wherein the source chunks are determined to have
fewer data fragments than remaining of the chunks
other than the source chunks, wherein the data frag-
ments do not have common indices that are utilized for
crasure coding the data fragments, and wherein the
crasure coding the data fragments results 1n generation
of source coding fragments;

determining a meta chunk that represents a combination

of the data fragments; and

based on a summation of the source coding fragments,

determining combined coding fragments for the source
chunks at a meta chunk level, wherein the combined
coding fragments are to be employed to recover at least
a portion of the data fragments during a failure condi-
tion.

12. The method of claim 11, further comprising:

assigning respective indices to first data fragments, of the

data fragments, that are associated with a source chunk
of the source chunks, wherein the assigning comprises
assigning the respective indices to increase a likelihood
that the data fragments do not have the common
indices.

13. The method of claim 11, further comprising:

storing reference data that links the source chunks to the

meta chunk.

14. The method of claim 13, further comprising:

in response to determining that the failure condition has

been satisfied, determining, based on the reference
data, the meta chunk linked to at least the portion of the
source chunks.

5

10

15

20

25

30

35

40

45

22

15. The method of claim 14, further comprising:

recovering at least the portion of the source chunks based

on performing a decoding operation at the meta chunk
level.

16. The method of claim 11, further comprising:

subsequent to the determining the combined coding frag-

ments, deleting source coding fragments.

17. A non-transitory computer-readable storage medium
comprising instructions that, in response to execution, cause
a server device comprising a processor to perform opera-
tions, comprising:

encoding chunks of data stored in an object storage

system, wherein the chunks comprise data fragments
that have been assigned respective indices, and wherein
the encoding comprises combining, based on the
respective indices, the data fragments with correspond-
ing encoding coellicients to generate respective coding
fragments;

combining a group of the chunks to generate a meta

chunk, wherein the group of the chunks are determined
not to have more than a defined number of data
fragments, and wherein the group of the chunks are
determined not to have data fragments having common
indices; and

based on a summation of a group of the coding fragments

that correspond to the group of the chunks, determining
meta chunk coding fragments that are to be employed
to recover at least a portion of the group of the chunks
during a failure condition.

18. The non-transitory computer-readable storage
medium of claim 17, wherein the coding fragments are meta
chunk coding fragments, and the operations further com-
prise:

subsequent to the determining the meta chunk coding

fragments, deleting the group of the coding fragments.

19. The non-transitory computer-readable storage
medium of claim 17, wherein the operations further com-
prise:

determining reference data that links the group of the

chunks to the meta chunk.

20. The non-transitory computer-readable storage
medium of claim 19, wherein the operations further com-
prise:

updating metadata associated with the group of the

chunks the reference data.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

