12 United States Patent

Yoo et al.

US010713095B2

US 10,713,095 B2
Jul. 14, 2020

(10) Patent No.:
45) Date of Patent:

(54) MULTI-CORE PROCESSOR AND METHOD
OF CONTROLLING THE SAME USING
REVISABLE TRANSLATION TABLES

(71) Applicant: Samsung Electronics Co., Ltd.,
Suwon-s1, Gyeonggi-do (KR)

(72) Inventors: Donghoon Yoo, Suwon-si (KR);
Bernhard Egger, Seoul (KR)

(73) Assignee: Samsung Electronics Co., Ltd.,
Gyeonggi-do (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 187 days.

(21) Appl. No.: 15/469,828

(22) Filed: Mar. 27, 2017
(65) Prior Publication Data
US 2017/0277571 Al Sep. 28, 2017
(30) Foreign Application Priority Data
Mar. 28, 2016 (KR) ..oeiiiiinn, 10-2016-0036967
(51) Imnt. CL
GO6IF 9/50 (2006.01)
(52) U.S. CL
CPC GO6rl 9/5044 (2013.01); GO6F 9/505

(2013.01); GOGF 9/5022 (2013.01); GO6F
9/5027 (2013.01); GO6F 9/50 (2013.01); Y02D
10/22 (2018.01)

(58) Field of Classification Search
CPC GO6F 9/5044; GO6F 9/5027; GO6F 9/5022;
GO6F 9/505; GO6F 9/50

See application file for complete search history.

COPY INFORMATION FROM FIRST CORE
TO SECOND CORE

STOP CORE ALLOCATED TO FIRST PROCESS

(56) References Cited
U.S. PATENT DOCUMENTS

5,572,680 A 11/1996 Ikeda et al.

5,835,963 A * 11/1998 Yoshioka GO6F 12/1054
711/207

6,732,251 B2 5/2004 Harris et al.

7,000,051 B2 2/2006 Armstrong et al.

7,669,203 B2* 2/2010 Samra GO6F 9/3851
712/233

7,769,938 B2 8/2010 Kaushik et al.

8,286,162 B2 10/2012 Neiger et al.

8,489,789 B2 7/2013 Serebrin et al.

8,954,658 B1* 2/2015 Asnaashari GO6F 3/0604
711/103

9,116,869 B2 8/2015 Madukkarumukumana et al.

2004/0148603 Al* 7/2004 Baylis GO6F 9/45504
718/100
(Continued)

FOREIGN PATENT DOCUMENTS

JP 2977688 B2 11/1999
JP 2002-149403 A 5/2002
(Continued)

Primary Examiner — Meng A1'T An
Assistant Examiner — Michael W Ayers

(74) Attorney, Agent, or Firm — Harness, Dickey and
Pierce, P.L.C.

(57) ABSTRACT

A method of controlling a multi-core processor includes
allocating at least one core of the multi-core processor to at
least one process for execution; generating a translation
table with respect to the at least one process to translate a
logical ID of the at least one core allocated to the at least one
process to a physical ID; and controlling the at least one
process based on the translation table generated with respect

to the at least one process.

17 Claims, 8 Drawing Sheets

602

504

| RELEASE ALLOCATION OF FIRST CORE AND |—606
| ALLOCATE SECOND CORE TO FIRST PROCESS |

608

US 10,713,095 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2011/0088038 Al* 4/2011 Kruglick GO6F 9/54
718/104
2011/0197003 Al* 8/2011 Serebrin GO6F 9/45558
710/267
2011/0197004 Al 8/2011 Serebrin et al.
2012/0266179 Al1* 10/2012 Osborn GOG6F 9/5077
718/105
2013/0080732 Al 3/2013 Nellans et al.
2014/0101670 Al 4/2014 Bae
2014/0344550 A1 11/2014 Kiruglick
2016/0080732 Al 3/2016 Pedley et al.
2016/0252943 Al* 9/2016 Varma GO6F 15/00
713/310
FOREIGN PATENT DOCUMENTS
KR 10-1004240 B1 12/2010
KR 10-2012-0131175 A 12/2012
KR 10-201400445 A 4/2014

* cited by examiner

U.S. Patent Jul. 14, 2020 Sheet 1 of 8 US 10,713,095 B2

ALLOCATE AT LEAST ONE CORE TO
AT LEAST ONE PROCESS

FIG. 2

CONTROLLER [*——=1 WANAGEF

U.S. Patent Jul. 14, 2020 Sheet 2 of 8 US 10,713,095 B2

SECOND CORE
5 0322 |

- FRsT |]
| TRANSLATION | | TRANSLATION | |

TABLE

U.S. Patent Jul. 14, 2020 Sheet 3 of 8 US 10,713,095 B2

FiG, 4

400

LOGICAL ID (410) PHYSICAL ID (420}

US 10,713,095 B2

HIDYNYW 30HN0S3Y

Sheet 4 of 8

HIINAIHOS | mm._:mmxum

| TbS , 268 W
| $5300Hd ONOO3S | | $S300Hd 1S |

Jul. 14, 2020

G Old

U.S. Patent

U.S. Patent Jul. 14, 2020 Sheet 5 of 8 US 10,713,095 B2

COPY INFORMATION FROM FIRST CORE
TO SECOND CORE

| RELEASE ALLOCATION OF FIRST CORE AND |—606
| ALLOCATE SECOND CORE TO FIRST PROCESS |

US 10,713,095 B2

Sheet 6 of 8

Jul. 14, 2020

U.S. Patent

14

U.S. Patent Jul. 14, 2020 Sheet 7 of 8 US 10,713,095 B2

STOP CORE ALLOCATED TO FIRST PROCESS
AND SECOND PROCESS

802

CHANGE INFORMATION IN FIRST CORE WITH | —goa
INFORMATION IN SECOND CORE

US 10,713,095 B2

Sheet 8 of 8

Jul. 14, 2020

6 Dld

U.S. Patent

US 10,713,095 B2

1

MULTI-CORE PROCESSOR AND METHOD
OF CONTROLLING THE SAME USING
REVISABLE TRANSLATION TABLES

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit under 35 USC 119(a)
of Korean Patent Application No. 10-2016-0036967, filed
on Mar. 28, 2016, in the Korean Intellectual Property Oflice,
the entire disclosure of which 1s 1ncorporated herein by
reference for all purposes.

BACKGROUND

1. Field

The following description relates to multi-core processors
and methods of controlling the same.

2. Description of Related Art

A multi-core 1s a package including two or more 1nde-
pendent cores combined into a single integrated circuit. A
core 1n a multi-core processor 1s a semiconductor circuit part
which, generally, does not include a shared cache memory in
the core part of a circuit of a processor. However, a cache
memory for exclusive use of the core (and not for sharing
with other elements) 1s commonly included in the core.
Simultaneous Multi-Threading (SMT) 1s a technique which
1s similar to that used by the multi-core for process man-
agement. However, SMT differs 1n a number of way from
the multi-core’s technique. For example, SMT practically
has heretofore only ever been used internally, within a single
core, as 1t not adapted to synergistic orchestration of pro-
cessing amongst a series of interconnected cores. To reduce
power consumption and heat generation, an operation volt-
age or a clock speed of each core of the multi-core processor
1s independently controlled and an operation state including
an 1dle state 1s controlled 1n some multi-core products.
Therefore, various attempts have been conducted to obtain
a method of allocating and re-allocating cores of a multi-
core for optimizing process performance.

SUMMARY

This Summary 1s provided to mtroduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

According to a general aspect, a method of controlling a
multi-core processor, the method includes allocating at least
one core of the multi-core processor to at least one process
for execution; generating a translation table with respect to
the at least one process to translate a logical ID of the at least
one core allocated to the at least one process to a physical
ID; and controlling the at least one process based on the
translation table generated with respect to the at least one
process.

At least one process may include a first process, and the
controlling of the at least one process may include changing
the at least one core allocated to the first process with
another core; and revising the translation table with respect
to the first process in response to the at least one core
allocated to the first process being changed with the other
core.

The at least one core allocated to the first process may
include a first core, and the changing of the at least one core

10

15

20

25

30

35

40

45

50

55

60

65

2

with the other core may include: copying information from
the first core to a second core, wherein the second core may
be a core that 1s not allocated to the first process; releasing
the allocation of the first core with respect to the first
process; and allocating the second core to the first process.

The revising of the translation table may include revising
a physical ID of the core 1n the translation table with respect
to the first process to a physical ID of the second core.

The at least one process may further includes a second
process, and the second core may be one of at least one core
allocated to the second process, wherein the changing of the
core with the other core may further include copying infor-
mation from the second core to the first core; releasing the
allocation of the second core with respect to the second
process; and allocating the first core to the second process.

The revising of the translation table may include revising
a physical 1D of the first core 1n the translation table, with
respect to the first process, to a physical ID of the second
core; and revising a physical ID of the second core in the
translation table, with respect to the second process, to a
physical ID of the first core.

The generating of the translation table may include gen-
crating a first translation table with respect to the first
process; storing the first translation table 1n a memory; and
storing an address of the memory where the first translation
table 1s stored 1n a register of the at least one core allocated
to the first process.

The at least one process may include a first process, and
the controlling of the first process may include communi-
cating with the at least one core allocated to the first process
via the translation table.

According to another general aspect, a multi-core proces-
sor icludes a plurality of cores, the multi-core processor
including a core manager configured to allocate at least one
core from among the plurality of cores to at least one process
and generate a translation table with respect to the process
to translate a logical ID of the at least one core allocated to
the at least one process to a physical ID; and a controller
configured to control the at least one process by using the
translation table generated with respect to the at least one of
the processes.

The at least one process may include a first process, and
the core manager may be further configured to change the at
least one core allocated to the first process with another core
and revise the translation table with respect to the first
process when the at least one core allocated to the first
process 1s changed with the other core.

The at least one core allocated to the first process may
include a first core, and the core manager may be further
configured to copy information from the first core to a
second core, wherein the second core may be a core that was
not allocated to the first process, release the allocation of the
first core with respect to the first process, and allocate the
second core to the first process.

The core manager may be further configured to revise a
physical ID of the first core in the translation table, with
respect to the first process, to a physical ID of the second
core.

The at least one process may include a second process, the
second core may be one of the at least one core allocated to
the second process, and the core manager may be further
configured to copy information from the second core to the
first core, release the allocation of the second core with
respect to the second process, and allocate the first core to
the second process.

The core manager may be further configured to revise a
physical ID of the first core in the translation table, with

US 10,713,095 B2

3

respect to the first process, to a physical ID of the second
core and revise a physical ID of the second core in the
translation table, with respect to the second process, to a
physical ID of the first core.

Each of the cores may include a register configured to
store an address of the translation table, the core manager
may be further configured to generate a {irst translation table
with respect to the first process in the at least one of the
processes, control the first translation table to be stored in a
memory, and store an address of the memory where the first
translation table 1s stored in the register of the at least one
core allocated to the first process.

The at least one process may include a first process and
the controller may be further configured to communicate
with the at least one core allocated to the first process.

A non-transitory computer-readable storage medium may
store 1nstructions that, when executed by a processor, cause
the processor to perform the method.

According to another general aspect, a method of con-
trolling a multi-core processor includes allocating a core of
the multi-core processor to a computer process for execution
of the computer process thereon; generating a core transla-
tion table for the computer process 1 a memory, the core
translation table registering a physical core 1dentifier of the
allocated core of the multi-core processor to correspond with
a logical core identifier therefor; and, executing the com-
puter process on the allocated core of the multi-core pro-
cessor based on the logical core 1dentifier of the generated
core translation table.

The method may further include stopping execution of the
allocated core having a physical core identifier correspond-
ing with the logical core 1dentifier; and, reallocating another
core of the multi-core processor to the computer process by
moditying the logical core identifier in the generated core
translation table to indicate a physical core 1dentifier of the
reallocated other core of the multi-core processor; and,
executing the computer process on the reallocated other core
based on the same logical core 1dentifier, wherein the logical
core 1dentifier indicates the physical core identifier of the
reallocated other core.

Either one or both of the computer process and a task
scheduler may be actuated to execute the computer process
on the logical core identifier via transmission of a control
order, and a resource manager may intercept the control
order for the logical core identifier and transforms the
logical core 1dentifier to a physical core identifier for the
allocated core, based on the core translation table, for
execution of the computer process thereon.

Neither the computer process, nor the task scheduler, may
be provided with a physical core identifier or an address to
the core translation table.

Either one or both of the computer process and a task
scheduler may generate a control order directed at the
allocated core by reference to the logical core identifier, and
after reallocation to the other core, either one or both of the
computer process and the task scheduler employ the same,
substantially unchanged, control order.

According to another general aspect, a management appa-
ratus of a multi-core processor having a plurality of cores,
the management apparatus includes a first core configured
to: allocate a second core from among the plurality of cores
to a process and generate a translation table with respect to
the process to translate a logical 1D of the allocated second
core to a physical ID; and control the process via the
generated translation table.

The management apparatus may {further include a
memory configured to store instructions, wherein the first

10

15

20

25

30

35

40

45

50

55

60

65

4

core 1s further configured to execute the instructions to
configure the first core of the multi-core processor to allo-
cate the second core from among the plurality of cores to at
least one process and generate the translation table with
respect to the process to translate the logical ID of the
second core allocated to the process to the physical ID, and
control the process by using the translation table generated
with respect to the process.

The first core may include a core manager configured to
allocate the second core from among the plurality of cores
to at least one process and generate the translation table with
respect to the process to translate the logical ID of the
second core allocated to the process to the physical ID; and
a controller configured to control the process by using the
translation table generated with respect to the process.

The first core may be different from the second core.

Other features and aspects will be apparent from the
tollowing detailed description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flowchart of a method of controlling a
multi-core processor, according to an embodiment.

FIG. 2 1s a block diagram of a multi-core processor,
according to an embodiment.

FIG. 3 15 a block diagram of a computing device, accord-
ing to an embodiment.

FIG. 4 shows a translation table, according to an embodi-
ment.

FIG. 5 shows a drawing explaining a method of control-
ling a multi-core processor, according to an embodiment.

FIG. 6 1s a tlowchart of a method of changing an allocated
core with another core 1n a process, according to an embodi-
ment.

FIG. 7 shows a drawing explaining a method of translat-
ing an allocated core to another core 1n a process, according
to an embodiment.

FIG. 8 1s a flowchart of a method of exchanging cores
between processes, according to an embodiment.

FIG. 9 shows a drawing explaining a method of changing
cores between processes, according to an embodiment.

Throughout the drawings and the detailed description, the
same relerence numerals refer to the same elements. The
drawings may not be to scale, and the relative size, propor-
tions, and depiction of elements in the drawings may be
exaggerated for clanty, illustration, and convenience.

DETAILED DESCRIPTION

The following detailed description 1s provided to assist
the reader 1n gaining a comprehensive understanding of the
methods, apparatuses, and/or systems described herein.
However, various changes, modifications, and equivalents
of the methods, apparatuses, and/or systems described
herein will be apparent atter an understanding of the dis-
closure of this application. For example, the sequences of
operations described herein are merely examples, and are
not limited to those set forth herein, but may be changed as
will be apparent after an understanding of the disclosure of
this application, with the exception of operations necessarily
occurring 1n a certain order. Also, descriptions of features
that are known 1n the art may be omitted for increased clarity
and conciseness.

The features described herein may be embodied 1n dif-
terent forms, and are not to be construed as being limited to
the examples described heremn. Rather, the examples
described herein have been provided merely to illustrate

US 10,713,095 B2

S

some of the many possible ways of implementing the
methods, apparatuses, and/or systems described herein that
will be apparent after an understanding of the disclosure of
this application.

Terminologies used herein are selected as commonly used
by those of ordinary skill in the art in consideration of
functions of the current embodiment, but may vary accord-
ing to the technical intention, precedents, or a disclosure of
a new technology. Also, 1n particular cases, some terms are
selected by the applicant, and in this case, the meanings of
the terms will be described in detail at corresponding parts
of the specification. Accordingly, the terms used 1n the
specification should be defined not by simply the names of
the terms but based on the meaning and contents of the
whole specification.

It will be understood that when a part 1s referred to as
being “connected” to another element, it includes when the
part 1s directly connected to the other element and 1s
clectrically connected to another element by intervening
another constituent element therebetween. It should be
understood that, when a part “comprises” or “includes” a
constituent element 1n the specification, unless otherwise
defined, it 1s not excluding other elements but may further
include other constituent elements. Also, 1n the specification,
the term “unit” or “module” denotes a unit that processes at
least a function or an operation, and the function and
operation, according to an embodiment, 1s realized by hard-
ware.

The terms “comprise” or “comprising” used in the
embodiments should not be interpreted that various con-
stituent elements or various operations described 1n the
specification are necessarily included. Also, 1t should be
interpreted that some of the constituent elements and some
operations may not be included, and additional constituent
clements or operations may further be included as will be
understood by one of skill in the art after gaining a thorough
understanding of the disclosure.

The descriptions of the embodiments should not be inter-
preted as being restricted to that which 1s explicitly dis-
closed. Rather, embodiments that are readily inferred from a
thorough understanding of the totality of the detailed
descriptions, figures, and claims, and embodiments apparent
to those of ordinary skill 1n the art will be understood to be
included. Reference will now be made in detail to embodi-
ments, examples of which are 1llustrated in the accompany-
ing drawings.

FIG. 1 1s a flowchart of a method of controlling a
multi-core processor, according to an embodiment.

In an operation 102, the multi-core processor allocates at
least one core to at least one process. The process denotes a
program executed 1n the multi-core processor by at least one

core. The process 1s a task or an object scheduled {for
execution.

The process denotes a computer program executed 1n a
computer. The program denotes an executing code generally
stored 1n a hard disc, etc., and the process may be referred
to as a task unit executing a program and a program state by
driving a program 1n a memory. For example, the process 1s
an application or a virtual machine, but 1s not limited thereto.

In an operation 104, the multi-core processor generates a
translation table with respect to each process. The translation
table 1s used for translating a logic ID with respect to at least
one core allocated to each process to a physical ID.

The translation table includes a logical ID field and a
physical ID field. Alternatively, the translation table may
include only the physical ID field, according to one or more

5

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiments. In this case, an index that indicates the
physical ID field 1s used as a logical 1ID.

In an operation 106, the multi-core processor controls
cach of the processes via each of the generated translation
tables. The multi-core processor communicates with the at
least one core allocated 1n a first process via a translation
table generated with respect to the first process. For
example, the at least one core allocated to the first process
includes a first core and a second core. At this point, the first
core transmits a message to the second core based on a
logical 1D of the second core. For example, the first core
transmits an inter-core interrupt (ICI) with respect to the
second core based on the logical ID of the second core. The
multi-core processor translates a logical ID of the second
core to a physical ID of the second core via the generated
translation table with respect to the first process. The multi-
core processor transmits an ICI to the second core based on
the physical ID of the second core.

FIG. 2 1s a block diagram of a multi-core processor 200
according to an embodiment. The method of controlling the
multi-core processor described with reference to FIG. 1, or
other such method, may be used to control the multi-core
processor 200 depicted 1n FIG. 2, or other such multi-core
processor, and the multi-core processor 200 depicted in FIG.
2 may perform the operations described with respect to FIG.
1.

Reterring to FIG. 2, the multi-core processor 200 includes
a core manager 210 and a controller 220. The multi-core
processor 200 depicted in FIG. 2 may include other ele-
ments, but 1s shown in simplified form for clanty and
conciseness. Accordingly, 1t should be understood by those
of ordinary skill 1n the art, after gaining a thorough under-
standing of the detailed description, that common constitu-
ent elements may further be included in the multi-core
processor 200 besides the elements depicted 1n FIG. 2.

The multi-core processor 200 includes a plurality of
cores. An operation performed by the core manager 210 and
the controller 220, according to one or more embodiments,
may be performed by at least one core included in the
multi-core processor 200. Also, the operation performed by
the core manager 210 and the controller 220 may be per-
formed by an additional hardware included 1n the multi-core
processor 200.

The core manager 210 allocates at least one core to at least
one process. Also, the core manager 210 generates a trans-
lation table with respect to each process to translate a logical
ID of the at least one core allocated to each process to a
physical ID.

The core manager 210 may, 1 response to changing
operational conditions, change at least one core which 1is
allocated to a process to another core. For example, the core
manager 210 changes a core allocated to a first process to
another core. Also, the core manager 210 may additionally
allocate additional core/(s) to the first process.

When the core allocated to the first process 1s reallocated
to another core, the core manager 210 revises a translation
table with respect to the first process. The practical descrip-
tion for changing a core allocated to a process to another
core and the practical description of revising a translation
table are described further below with reference to FIGS. 6
through 9.

The core manager 210 controls the generated translation
table to be stored 1n a memory. The core manager 210 stores
a table (such as an array, string, struct, object, or other
suitable data storage structure) or a pointer to the table, such
as a memory address where the translation table 1s stored 1n
a register 1n a core, cache, or other suitable memory location.

US 10,713,095 B2

7

The memory may be included 1n the multi-core processor
200 or may be located outside of the multi-core processor
200.

The controller 220 controls each process based on each of
the translation tables generated with respect to each process.
For example, the controller 220 controls communication
between cores via a translation table. The controller 220
control cores to transmit a message or ICI via a translation
table.

FIG. 3 1s a block diagram of a computing device 300
according to an embodiment.

The computing device 300 includes a first core 310, a
second core 320, and a memory 330. For example, the
memory 330 includes a random access memory (RAM),
such as dynamic random access memory (DRAM) or a static
random access memory (SRAM), or a a read-only memory
(ROM) or clectrically erasable programmable read-only
memory (EEPROM), but the kind of the memory 330 1s not
limited thereto.

The computing device 300 includes a first core 310 and a
second core 320. The computing device 300 allocates at
least one core that includes the first core 310 1n the first
process.

The computing device 300 generates a first translation
table 332 that translates a logical ID with respect to the at
least one core allocated to the first process to a physical 1D
(which 1s a fixed and permanent i1dentification of the core).
The computing device 300 controls the first translation table
332 to be stored in the memory 330.

According to one or more embodiments, the computing
device 300 stores an address of a memory 1n which the first
translation table 332 1s stored 1n a register 1n the at least one
core allocated to the first process. For example, the com-
puting device 300 stores an address of a memory 1n which
the first translation table 332 1s stored 1n a register 312 in the
first core 310.

The computing device 300 allocates at least one core that
includes the second core 320 to a second process. The
computing device 300 generates a second translation table
334 that translates a logical ID with respect to the at least one
core allocated to the second process to a physical ID. The
computing device 300 controls the second translation table
334 to be stored in the memory 330.

The computing device 300 stores an address of a memory
in which the second translation table 334 1s stored 1n a
register 1n the at least one core allocated to the second
process. For example, the computing device 300 stores an
address of a memory 1n which the first translation table 334
1s stored in a register 322 in the second core 320.

FI1G. 4 1s a drawing of a translation table 400 according to
an embodiment.

Referring to FIG. 4, the translation table 400 includes a
logical ID field 410 and a physical ID field 420. The
translation table 400, according to one or more embodi-
ments, does not include an additional memory space for the
logical ID field 410. For example, the translation table 400
includes only a memory space to contain a value represent-
ing the physical ID field 420, the values are indexed for
indicating the physical ID field 420 with the logical ID. For
example, a one dimensional array, having a size correspond-
ing to the number of physical cores, 1s employed to register
core allocations based on array position within the array. In
such manner, as would be known to one of skill in the art
alter gaining a thorough understanding of the detailed
description, values 1n the array indicating physical core 1D
allocation are retrieved by mvoking the array and a position
therewithin e.g. translationTable(0) would return physical

5

10

15

20

25

30

35

40

45

50

55

60

65

8

core ID “3” 1n the example of FIG. 4. Similarly, invocation
of translationTable(7) would return physical core ID “4”.
One may employ such array, for example, 1n the sending of
ICI interrupts e.g. ICI(translationTable(3)) to communicate
with physical core ID 7—according to the translation table
for the specific process corresponding with FIG. 4.

Unlike the above, the translation table 400, according to
one or more embodiments, may include an additional
memory space for the logical ID field 410. The translation
table 400 depicted in FIG. 4 1s a non-limiting example, and
thus, the type of the translation table 400 1s not limited
thereto and any suitable memory structure for registering
correspondence between physical core ID and logical core
ID may be employed

Referring to FIG. 4, the multi-core processor 200,
depending upon a process’s computational requirements,
may allocate eight cores to a single process. For example,
the multi-core processor 200 may allocate eight cores, that
1s, physical ID 0 through 7 to a single process. Indices that
indicate the physical ID field 420 are 0 through 7, the
multi-core processor 200 may use 0 through 7 as logical 1Ds.
However, the number of cores included in the multi-core
processor 200 and the number of cores allocated to each
process are not limited.

In the example translation table 400, the logical 1D 0
corresponds to the physical ID 3, and the logical ID 1
corresponds to the physical ID 1. The method of matching
the logical ID to the physical ID 1s not limited, and, 1n some
cases, the logical ID may be the same as the physical ID (that
1s not to say that the logical IDs are the same as the physical
IDs, but where, for example, the logical IDs and Physical
IDs enumerate the cores with integers or other repeating
identifier values, there may be an overlap or identity of those
values at some point 1n time during dynamic allocation and
reallocation of one or more cores (e.g. a core having physical
ID 1 may, at some point, for some process, also be allocated
logical ID 1)—however, amongst the logical 1Ds, each ID
for each core 1s unique and, amongst the physical IDs, each
core ID 1s unique). In one or more other embodiments, the
logical ID and physical IDs may be provided a globally
unique string identifier or other such suitably orthogonal
values to 1dentily each core uniquely. The sequence of
storing the physical IDs 1n the physical 1D field 420 1s not
limited, that 1s, the physical 1Ds, according to one or more
embodiments, may be stored according to load balancing
algorithms in response to changing operational or compu-
tational requirements ol a particular process, based on a

survey of all (or a plurality of) processes, randomly, or
sequentially stored 1n the physical ID field 420. Additionally,
or 1n the alternative, weighting or spreading algorithms may
be employed to either cluster or de-cluster processes on
particular cores, or blocks containing cores 1n the sequence
of storing the physical 1Ds.

The multi-core processor 200 provides information of a
logical ID of each core. However, the multi-core processor
200 may not provide the information of a physical ID to the
process. The multi-core processor 200 may not allow the
process to have an access right with respect to the translation
table 400 or the physical core IDs, and, 1mn this sense,
provides a measure of abstraction 1solating the processes
from direct access to the physical core IDs.

For example, the multi-core processor 200 selectively
establishes security access rights and prohibits the processes
from having an access right, such as a writing and/or reading
right with respect to a register in which an address of a
memory where the translation table 400 1s stored. Rather, the
processes are only allowed limited access, such as by, for

US 10,713,095 B2

9

example, actuating a resource manager to intercept the
process, scheduler, or core interrupt or control orders
directed to a logical ID and seamlessly re-routing the control
order or interrupt to the actual physical ID such as by, e.g.
a getPhysicalld() function 1n the resource manager, or other
such suitable function which supplies the physical core 1D
according to the parameter input within the parentheses, e.g.
logical core ID “2” based on the values stored in the
corresponding process core translation table. This 1s
because, 1f each process 1s allowed to have a right to obtain
information with respect to the physical 1D field 420 of a
core and a right to revise the translation table 400, 1t may be
difficult for the multi-core processor 200 to manage all of the
Cores.

Accordingly, the multi-core processor 200 does not allow
cach process to have an access and/or modily right with
respect to the translation table 400. That 1s, the process
controls cores based on the logical IDs and not the physical
IDs. The multi-core processor 200 allows the cores to
perform a control order by changing a logical ID included in
a control order of a process to a physical 1D.

For example, the process allows a core having a logical 1D
0 to send a message to a core having a logical ID 6. The
multi-core processor 200 changes the logical 1D 0 to the
physical ID 3 based on the translation table 400, and a
logical ID 6 1s changed to physical ID 2. Accordingly, the
multi-core processor 200 enables the physical ID 3 to send
a message with respect to the physical ID 2.

Meanwhile, the multi-core processor 200 changes the at
least one core allocated to the process and revises the
translation table 400. In other words, the multi-core proces-
sor 200 remaps the at least one core. The multi-core pro-
cessor 200 reallocates a core having physical 1D 9 instead of
the core having physical ID 7 to the process. At this point,
the multi-core processor 200 releases the allocation of the
core having a physical ID 7 and allocates the core having a
physical ID 9 to the process. That 1s, the multi-core proces-
sor 200 revises the physical ID 7 included 1n the physical 1D
field 420 of the translation table 400 to the physical ID 9.
Afterwards, when the process 1s going to control the core
having a logical ID 3, the core having the physical ID 9
performs the control order

FIG. 5 1s a drawing explaining a method of controlling the
multi-core processor 200, according to an embodiment.

Referring to FI1G. 5, the multi-core processor 200 includes
cores having physical IDs 0 through 7 (heremafiter, a core
having a physical ID n 1s referred to as a core n). A resource
manager 520 corresponds to the core manager 210 and the
controller 220 of FIG. 2.

The resource manager 3520, according to one or more
embodiments, runs under a low-level runtime environment.
Also, a first process 530 and a second process 540 run under
a high-level runtime environment.

The resource manager 520 runs at least one of 0 through
7 cores. Also, the resource manager 520 may run in con-
nection with additional hardware. The resource manager 520
1s a relatively coarse-grained resource manager, according to
one or more embodiments.

The first process 530 and the second process 540 respec-
tively, according to an embodiment, include schedulers 532
and 3542. The schedulers 532 and 542 set-up a schedule of
the first and second processes 330 and 540. The schedulers
532 and 542, unlike the resource manager 520, run at a
high-level runtime environment, and thus, are enabled to
have an access right (or a set of access rights) different from
that of the resource manager 520. For example, the resource
manager 520, according to an embodiment, 1s provided with

5

10

15

20

25

30

35

40

45

50

55

60

65

10

appropriate access permissions (or an address to the trans-
lation table) for first and second translation tables 534 and
544, but the schedulers 532 and 542 may not access the {irst

and second translation tables 534 and 544.
The resource manager 520 allocates a physical core 4 515
and a physical core 5 516 to the first process 530. The

resource manager 520 generates the first translation table
534 and stores the first translation table 534 1n a memory.
The resource manager 520 stores an address of a memory of
the first translation table 334 in a register included in the
core 4 515 and/or the core 5 516.

The resource manager 520 controls the first process 530
based on the first translation table 534. Meanwhile, the
resource manager 520 does not allow the first process 530
and the scheduler 532 of the first process 530 to have an
access right with respect to the register where the address of
the memory of the first translation table 534 included 1n the
core 4 515 and the core 5 516. Accordingly, the first process
530 and the scheduler 532 of the first process 530 may not
know a physical ID of a core allocated to the first process
530. The first process 530 and the scheduler 332 of the first
process 330 transmits a control order with respect to the core
0 and the core 1 based on a logical ID, and not the physical
ID. The resource manager 520, according to an embodiment,
intercepts the control order bearing the logical 1D, trans-
forms the logical ID 1nto a corresponding physical 1D, based
on the translation table, and transmits a control order with
respect to the core 4 5315 and the core 5 516 based on the first
translation table 534.

The resource manager 520 allocates a core 0 511 and a
core 1 512 to the second process 540. The resource manager
520 generates the second translation table 544, and stores the
second translation table 544 1n a memory. The resource
manager 520 stores an address of a memory of the second
translation table 544 in a register included 1n the core 0 511
and the core 1 512.

The resource manager 320 controls the second process
540 based on the second translation table 544. Meanwhile,
the resource manager 520 does not allow the second process
540 and the scheduler 542 of the second process 540 to have
an access right with respect to the register where the address
of the memory of the second translation table 544 included
in the core 0 511 and the core 1 512 1s stored. Accordingly,
the second process 340 and the scheduler 542 of the second
process 540 are prevented from determining a physical ID of
a core allocated to the second process 540. The second
process 540 and the scheduler 542 of the second process 540
transmit a control order with respect to the core 0 511 and
the core 1 512 based on a logical ID only. The resource
manager 520 transmits a control order with respect to the
core 0 511 and the core 1 512 based on the second translation
table 544.

FIG. 6 1s a lowchart of a method of changing an allocated
core to another core 1n a process according to an embodi-
ment. For example, the multi-core processor 200 changes a
first core allocated 1n a first process to a second core which
1s a core that 1s not allocated to the first process.

In an operation 602, the multi-core processor 200 stops at
least one core allocated to a first process. At this point,
according to an embodiment, the multi-core processor 200
stops all clocks of cores allocated to the first process.

In an operation 604, the multi-core processor 200 copies
information included in the first core (which was allocated
to the first process) to the second core (which 1s to become
allocated to the first process 1n lieu of the first core). At this
point, the multi-core processor 200 copies volatile informa-
tion (or address pointers to the volatile nformation)

US 10,713,095 B2

11

included 1n the first core to the second core. For example, the
multi-core processor 200 copies mformation (or address
pointers to information stored, for example, on a cache
memory such as SRAM) stored 1n registers 1n the first core
to registers in the second core. Also, the multi-core proces-
sor 200, according to one or more embodiments, copies
cache mformation included 1n the first core to a cache 1n the
second core. In these cases, the multi-core processor 200
flushes cache information of the first core and performs a
write-back operation to refresh the cache.

In an operation 606, the multi-core processor 200 releases
the allocation of the first core with respect to the first
process. Also, the multi-core processor 200 allocates the
second core to the first process.

In an operation 608, the multi-core processor 200, or
resource manager, revises a translation table with respect to
the first process. At this point, the multi-core processor 200
revises a physical ID of the first core included in the
translation table with respect to the first process to a physical
ID of the second core.

FIG. 7 1s a drawing explaining a method of changing an
allocated core to another core 1n a process according to an
embodiment.

Referring to FI1G. 7, the multi-core processor 200 includes
core 0 511 through core 7 518. The eight cores 1included 1n
the multi-core processor 200, according to an embodiment,
are divided into two blocks, however, the number of cores
and the number of blocks are merely a non-limiting, 1llus-
trative example. The multi-core processor 200 may have any
suitable number of cores and these cores may be divided into
any suitable number of blocks or other divisions. For
example, the core 0 511 through core 3 514 are included 1n
one block, and the core 4 515 through the core 7 518 may
be included 1n another block.

For example, the multi-core processor 200 allocates the
corc 4 515 and the core 5 516 to the first process, and
generates a translation table 712 with respect to the first
process. In the translation table 712, a logical ID 0 corre-
sponds to the core 4 515, and the logical ID 1 corresponds
to the core 5 516.

The multi-core processor 200 changes at least one core
allocated to the first process to another core. That 1s, the
multi-core processor 200 reallocates the core 2 513 and the
core 3 514 to the first process. As depicted in FIG. 5, the
second process uses the core 0511 and the core 1 512. In this
example, the multi-core processor 200 changes the block
that includes the core 4 515 through the core 7 518 to an idle
state (or a power saving state) by allocating the core 2 513
and the core 3 514 to the first process and by eflecting the
allocation with respect to the core 4 5135 and the core 5 516.
The multi-core processor 200 reduces power consumption
thereol by activating the core 0 through the core 3 514 and
by changing the core 4 515 through core 7 518 to an 1idle
state.

Due to each process using only the logical ID, the
multi-core processor 200 does not provide information
related to a core change to each process, but instead selec-
tively and imtelligently revises a translation table for the
specific process to thereby improve the functioning of the
multi-core processor itsell by reducing unnecessary ICI
interrupts, process coordination, and system resource usage
in the dynamic allocation of cores amongst the processes.
Accordingly, each process controls cores based on the same
control order before and after changing the cores. The
multi-core processor 200 controls cores to perform each
process by changing a logical ID included 1n the control

10

15

20

25

30

35

40

45

50

55

60

65

12

order of each process to a physical ID of the changed core
based on the changed translation table.

A practical method, according to one or more embodi-
ments, of reallocating a core 1s as follows. The multi-core
processor 200 stops the core 4 515 and the core 5 516 that
are allocated to the first process. For example, the multi-core
processor 200 stops clocks of the core 4 515 and the core 5
516.

The multi-core processor 200 copies information included
in the core 4 515 to the core 2 513. The multi-core processor
200 copies volatile information included in the core 4 515 to
the core 2 513. For example, the multi-core processor 200
copies miformation stored in registers 1n the core 4 515 to
registers 1n the core 2 513. Also, the multi-core processor
200 copies cache mformation included in the core 4 515 to
the core 2 513. For example, the multi-core processor 200
flushes cache information of the core 4 515 and performs a
write-back.

Finally, the multi-core processor 200 releases the alloca-
tion of the core 4 515 with respect to the first process and
allocates the core 2 513 to the first process.

Also, the multi-core processor 200 copies information
included 1n the core 5 516 to the core 3 514. Also, the
multi-core processor 200 releases the allocation of the core
5 516 to the first process, and allocates the core 3 514 to the
first process.

The multi-core processor 200 revises the translation table
712. Referring to revised translation table 722, the multi-
core processor 200 revises the physical 1D 4 of the core 4
515 included 1n the translation table 712 to a physical ID 2
of the core 2 513. Also, the multi-core processor 200 revises
the physical ID 5 of the core 5 516 included in the translation
table 712 to a physical ID 3 of the core 3 514 in the revised
translation table 722 for the first process.

FIG. 8 1s a flowchart of a method of exchanging cores
between processes, according to an embodiment.

The multi-core processor 200 changes a core allocated to
the first process with a core allocated to the second process.
For example, the multi-core processor 200 changes the first
core allocated to the first process with the second core
allocated to the second process.

In an operation 802, the multi-core processor 200 stops

the cores allocated to the first and second processes. Accord-
ing to one or more embodiments, the multi-core processor
200 stops clocks of all of the cores allocated to the first
process and the second process.

In an operation 804, the multi-core processor 200 changes
information included in the first core with information
included 1n the second core. The multi-core processor 200
copies mformation included in the first core to the second
core. The multi-core processor 200 copies nformation
included 1n the second core to the first core. The multi-core
processor 200 copies volatile information included in the
first core to the second core. For example, the multi-core
processor 200 copies information stored in registers in the
first core to registers 1n the second core. According to one or
more embodiments, a third storage location 1s employed to
temporarily store information from one of the first and
second processes during the transfer period to ensure that
values are not over-written 1n unrecoverable manner. Also,
the multi-core processor 200 copies cache information
included 1n the first core to the second core. For example, the
multi-core processor 200 flushes the cache information of
the first core and performs a write-back. Also, the multi-core
processor 200 copies volatile information included in the

US 10,713,095 B2

13

second core to the first core. Also, the multi-core processor
200 copies cache information included 1n the second core to
the first core.

In an operation 806, the multi-core processor 200 reallo-
cates cores. The multi-core processor 200 releases the allo-
cation of the first core with respect to the first process. Also,
the multi-core processor 200 releases the allocation of the
second core with respect to the second process. The multi-
core processor 200 allocates the second core to the first
process and the first core to the second process.

In an operation 808, the multi-core processor 200 revises
a translation table with respect to the first process and a
translation table with respect to the second process. The
multi-core processor 200 revises a physical ID of the first
core included i1n the translation table with respect to the first
process to a physical ID of the second core. Also, the
multi-core processor 200 revises a physical ID of the second
core included in the translation table with respect to the
second process to a physical ID of the first core.

FIG. 9 1s a drawing explaining a method of exchanging
cores between processes, according to an embodiment.

The multi-core processor 200 allocates the core 4 515 and
the core 5 316 to the first process. Also, the multi-core
processor 200 generates a translation table 922 with respect
to the first process. In the translation table 922, a logical 1D
0 corresponds to the core 4 515, and the logical ID 1
corresponds to the core 5 516.

The multi-core processor 200 allocates a core 0 511 and
a core 1 512 to the second process. Also, the multi-core
processor 200 generates a translation table 912 with respect
to the second process. In the translation table 912, the logical
ID 0 corresponds to the core 1 512, and the logical ID 1
corresponds to the core 0 511.

The multi-core processor 200 changes at least one core
allocated to the first process with at least one core allocated
to the second process. For example, the multi-core processor
200 changes the core 4 515 allocated to the first process with
the core 1 512 allocated to the second process.

The multi-core processor 200 stops the core 4 515 and the
core 5 516 allocated to the first process. At this point, the
multi-core processor 200 stops clocks of the core 4 515 and
the core 5 516. Also, the multi-core processor 200 stops the
core 0 511 and the core 1 512 allocated to the second
process. At this point, the multi-core processor 200 stops the
clocks of the core 0 511 and the core 1 512.

The multi-core processor 200 copies information included
in the core 4 515 to the core 1 512. The multi-core processor
200 copies volatile information mcluded in the core 4 515 to
the core 1 512. For example, the multi-core processor 200
copies information stored in registers 1n the core 4 515 to
registers 1n the core 1 512. The multi-core processor 200
copies cache information included 1n the core 4 515 to the
core 1 512. For example, the multi-core processor 200
flushes the cache information of the core 4 515 and performs
a write-back. The copying of registers from one core to
another does not necessarily imply a direct copying; rather,
the contents of the registers may be moved to an interme-
diate location to preserve the values 1n the copying and avoid
the overwriting of one set of the registers.

Also, the multi-core processor 200 copies mformation
included in the core 1 512 to the core 4 515. The multi-core
processor 200 copies volatile mformation included 1n the
core 1 512 to the core 4 515. Also, the multi-core processor
200 copies cache mformation included 1n the core 1 312 to
the core 4 5185.

The multi-core processor 200 releases the allocation of
the core 4 515 to the first process. The multi-core processor

10

15

20

25

30

35

40

45

50

55

60

65

14

200 releases the allocation of the core 1 512 with respect to
the second process. The multi-core processor 200 allocates
the core 4 515 to the second process. Also, the multi-core
processor 200 allocates the core 1 512 to the first process.

The multi-core processor 200 revises the translation table
922 with respect to the first process to arrive at the revised
translation table 924 for the first process. Referring to the
revised translation table 924, the multi-core processor 200
revises a physical ID 4 of the core 4 515 included in the
translation table 922 to a physical ID 1 of the core 1 5312 (as
seen 1n revised translation table 924).

Also, the multi-core processor 200 revises the translation
table 912 with respect to the second process. Referring to the
revised translation table 914, the multi-core processor 200
revises a physical ID 1 of the core 1 512 included 1n the
translation table 912 to a physical ID 4 of the core 4 515 (as
seen 1n the revised translation table 914 for the second
Process).

A device according to the current embodiment may
include a process, a memory that stores and executes pro-
gram data, a permanent storage, such as disc drive, and a
user 1nterface, such as a communication port for communi-
cating with an external device, a touch panel, keys, and
buttons, etc. Methods realized by a software module or an
algorithm may be stored as codes readable by a computer
that may perform the process or on a non-transitory com-
puter readable recording medium as program commands.
The non-transitory computer readable recording medium
may 1include a magnetic storage medium (for example,
read-only memory (ROM), random-access memory (RAM),
floppy disks, or hard discs) and optical readable medium (for
example, CD-ROMs, Digital versatile discs (DVD)), etc.
The non-transitory computer readable recording medium
can also be distributed over network coupled computer
systems so that the computer readable code 1s stored and
executed 1n a distributed fashion.

Portions of the disclosure may be expressed as functional
block configurations and various processing steps. Accord-
ing to one or more embodiments, the functional blocks may
be realized by a configuration of a various hardware and/or
soltware that perform specific functions. For example, an
embodiment employs direct circuit configurations such as
memory, processing, logic, and look-up table that perform
various functions by at least one microprocessor or other
control devices. Embodiments may also be realized by
programming or scripting languages, such as C, C++, Java,
and assembly including various algorithms that are realized
in combination of data structures, processors, routines, or
other programming configurations. The functional aspects
may be realized 1n one or more algorithms that are per-
formed 1n at least one processor. Also, certain embodiments
employ a technique for electronic environment set-up, signal
processing, and/or data processing, as would be known to
one of skill 1n the art after gaining a thorough understanding
of the detailed description. Terms such as mechanism,
clement, means, and configuration may be used in a broad
sense, and are not limited to mechanical and physical
configurations. The terms may include meanings of a series
of routines of solftware executing or running 1n connection
with a processor, memory, and other hardware.

Specific executions described 1n the current embodiment
are examples, and thus, are not limited to such technical
scope 1n any methods. For the clarity of the specification, the
descriptions of conventional electronic configurations, con-
trol systems, soitware, and other functional aspects of the
systems may be omitted for clarity and conciseness. Also,
lines of connections or connection members between con-

US 10,713,095 B2

15

stituent elements depicted in the drawings are examples of
functional connections and/or physical or circuitry connec-
tions, and thus, the lines may be expressed as replaceable or
additional functional connections, physical connections, or
circuitry connections.

In the current embodiments (particularly, 1n the claims),
the use of the term “the” and terms similar to “the” may be
applied to both singular and plural. Also, when a range 1s
described, the range includes an individual value within the
range (as long as there 1s no counter description) and 1s the
same as the individual value that constitutes the range in the
specification. Finally, 1t there 1s no clear description or
counter description with respect to the operations that con-
stitute a method, the operations may be executed in an
appropriate sequence. The execution sequence 1s not neces-
sarily limited to the description order of the operations.

The controller 220, core manager 210, schedulers 532,
542, and resource manager 520 in FIGS. 2 and 3, respec-
tively, that perform the operations described 1n this appli-
cation are implemented by hardware components configured
to perform the operations described in this application.
Examples of hardware components that may be used to
perform the operations described in this application where
appropriate include controllers, sensors, generators, drivers,
memories, comparators, arithmetic logic units, adders, sub-
tractors, multipliers, dividers, integrators, and any other
clectronic components configured to perform the operations
described in this application. In other examples, one or more
of the hardware components that perform the operations
described 1n this application are implemented by computing
hardware, for example, by one or more processors, cores,
core portions, or computers. A processor or computer may
be implemented by one or more processing elements, such
as an array of logic gates, a controller and an arithmetic logic
unit, a digital signal processor, a microcomputer, a program-
mable logic controller, a field-programmable gate array, a
programmable logic array, a microprocessor, or any other
device or combination of devices that i1s configured to
respond to and execute instructions 1 a defined manner to
achieve a desired result. In one example, a processor or
computer includes, or 1s connected to, one or more memo-
ries storing instructions or soitware that are executed by the
processor or computer. Hardware components implemented
by a processor or computer may execute instructions or
soltware, such as an operating system (OS) and one or more
software applications that run on the OS, to perform the
operations described in this application. The hardware com-
ponents may also access, manipulate, process, create, and
store data 1n response to execution of the instructions or
software. For simplicity, the singular term ““processor” or
“computer” may be used 1n the description of the examples
described 1n this application, but in other examples multiple
processors or computers may be used, or a processor or
computer may 1include multiple processing elements, or
multiple types of processing elements, or both. For example,
a single hardware component or two or more hardware
components may be implemented by a single processor, or
two or more processors, or a processor and a controller. One
or more hardware components may be implemented by one
Or more processors, or a processor and a controller, and one
or more other hardware components may be implemented by
one or more other processors, or another processor and
another controller. One or more processors, or a processor
and a controller, may implement a single hardware compo-
nent, or two or more hardware components. A hardware
component may have any one or more of different process-
ing configurations, examples of which include a single

10

15

20

25

30

35

40

45

50

55

60

65

16

processor, 1ndependent processors, parallel processors,
single-instruction single-data (SISD) multiprocessing,
single-nstruction multiple-data (SIMD) multiprocessing,
multiple-instruction single-data (MISD) multiprocessing,
and multiple-mnstruction multiple-data (MIMD) multipro-
cessing.

The methods illustrated in FIGS. 1, 3, and 5-9 that
perform the operations described in this application are
performed by computing hardware, for example, by one or
more processors or computers, implemented as described
above executing instructions or software to perform the
operations described 1n this application that are performed
by the methods. For example, a single operation or two or
more operations may be performed by a single processor, a
single core, two or more cores, a plurality of cores and a
controller, or two or more processors, or a processor and a
controller. One or more operations may be performed by one
Or more processors, or a processor and a controller, and one
or more other operations may be performed by one or more
other processors, or another processor and another control-
ler. One or more processors, or a processor and a controller,
may perform a single operation, or two or more operations.

Instructions or software to control computing hardware,
for example, one or more processors or computers, to
implement the hardware components and perform the meth-
ods as described above may be written as computer pro-
grams, code segments, instructions or any combination
thereof, for individually or collectively instructing or con-
figuring the one or more processors or computers to operate
as a machine or special-purpose computer to perform the
operations that are performed by the hardware components
and the methods as described above. In one example, the
instructions or soitware include machine code that 1s directly
executed by the one or more processors or computers, such
as machine code produced by a compiler. In another
example, the instructions or software includes higher-level
code that 1s executed by the one or more processors or
computer using an interpreter. The nstructions or software
may be written using any programming language based on
the block diagrams and the flow charts illustrated in the
drawings and the corresponding descriptions in the specifi-
cation, which disclose algorithms for performing the opera-
tions that are performed by the hardware components and
the methods as described above.

The structions or soitware to control computing hard-
ware, for example, one or more processors or computers, o
implement the hardware components and perform the meth-
ods as described above, and any associated data, data files,
and data structures, may be recorded, stored, or fixed 1n or
on one or more non-transitory computer-readable storage
media. Examples of a non-transitory computer-readable
storage medium 1nclude read-only memory (ROM), ran-

dom-access memory (RAM), flash memory, CD-ROMs,
CD-Rs, CD+Rs, CD-RWs, CD+RWs, DVD-ROMs, DVD-

Rs, DVD+Rs, DVD-RWs, DVD+RWs, DVD-RAMs, BD-
ROMs, BD-Rs, BD-R LTHs, BD-REs, magnetic tapes,
floppy disks, magneto-optical data storage devices, optical
data storage devices, hard disks, solid-state disks, and any
other device that 1s configured to store the instructions or
soltware and any associated data, data files, and data struc-
tures 1n a non-transitory manner and provide the instructions
or software and any associated data, data files, and data
structures to one or more processors or computers so that the
one or more processors or computers can execute the
instructions. In one example, the instructions or software
and any associated data, data files, and data structures are
distributed over network-coupled computer systems so that

US 10,713,095 B2

17

the 1nstructions and software and any associated data, data
files, and data structures are stored, accessed, and executed
in a distributed fashion by the one or more processors or
computers.

What 1s claimed 1s:
1. A method of controlling a multi-core processor, the
method comprising:
allocating at least one core of the multi-core processor to
at least one process for execution;
generating at least one translation table with respect to the
at least one process to translate a logical ID of the at
least one core allocated to the at least one process to a
physical ID of the at least one core, storing the at least
one translation table 1n a memory, and storing an
address of the memory where the at least one transla-
tion table 1s stored 1n a register of the at least one core;
in response to changing operational conditions of the
multi-core processor, changing the at least one core
allocated to the at least one process with at least two
other cores different than the at least one core and
which are not allocated to the at least one process by
copying at least the address stored in the register of the
at least one core to registers of the at least two other
cores, and revising the at least one translation table to
release allocation of the at least one core with respect
to the at least one process and allocate the at least two
other cores to the at least one process,
wherein the revising of the at least one translation table
comprises revising a physical ID of the at least one
core 1n the at least one translation table with respect
to the at least one process to physical IDs of the at
least two other cores; and
controlling the at least one process based on the at least
one translation table revised with respect to the at least
one process such that a source core of the at least two
other cores allocated to the at least one process com-
municates with a destination core of the at least two
other cores via an inter-core interrupt (ICI) bearing the
logical ID of the destination core, and the multi-core
processor intercepts the ICI bearing the logical 1D,
transforms the logical ID into the physical ID of the
destination core based on the translation table, and
forwards the ICI to the physical ID of the destination
core.
2. The method of claim 1, wherein
the at least one process comprises a lirst process,
the at least one core allocated to the at least one process
comprises a first core allocated to the first process,
the at least two other cores that are not allocated to the at
least one process comprise a second core, and a third
core that are not allocated to the first process,
the changing of the at least one core with the at least two
other cores comprises changing the first core allocated
to the first process with the second core and the third
core that are not allocated to the first process by
copying information stored in a register of the first core
to registers of the second core and the third core, and
releasing the allocation of the first core with respect to
the first process and allocating the second core and the
third core to the first process by revising the at least one
translation table,
wherein the revising of the at least one translation table
comprises revising a physical ID of the first core 1n
the at least one translation table with respect to the
first process to physical IDs of the second core and
the third core; and

10

15

20

25

30

35

40

45

50

55

60

18

the controlling of the at least one process comprises
controlling the first process by communicating with the
second core and the third core allocated to the first
process based on the at least one translation table
revised with respect to the first process.

3. The method of claim 1, wherein

the at east one process comprises a first process,

the at east one core allocated to the at least one process
comprises a first core and a second core allocated to the
first process,

the at least two other cores that are not allocated to the at
least one process comprise a third core and a fourth
core that are not allocated to the first process, and

the changing of the at least one core with the at least two
other cores comprises changing the first core and the
second core allocated to the first process with the third
core and the fourth core that are not allocated to the first
process by copying mnformation stored in registers of
the first core and the second core with respect to the
first process to registers of the third core and the fourth

core, respectively and releasing the allocation of the
first core and the second core with respect to the first
process and allocating the third core and the fourth core
to the first process by revising the at least one transla-
tion table.

4. The method of claim 3, wherein the revising of the at

least one translation table comprises

revising a physical ID of the first core and the second core
in the at least one translation table with respect to the
first process to a physical ID of the third core and the
fourth core, respectively; and
the controlling of the at least one process comprises
controlling the first process by communicating with the
third core and the fourth core allocated to the first
process based on the at least one translation table
revised with respect to the first process.
5. The method of claim 3, wherein
the at least one process further comprises a second
process,
the at least two other cores comprising the third core and
the fourth core are allocated to the second process, and
the changing of the at least one core with the at least two
other cores further comprises changing the third core
and the fourth core allocated to the second process with
the first core and the second core that are not allocated
to the second process by copying imnformation stored in
the registers of the third core and the fourth core with
respect to the second process to the registers of the first
core and the second core, respectively, and releasing
the allocation of the third core and the fourth core with
respect to the second process and allocating the first
core and the second core to the second process by
revising the at least one translation table,
wherein the copying of the information stored in the
registers of the first core and the second core with
respect to the first process and the copying of the
information stored 1n the registers of the third core
and the fourth core with respect to the second
process comprises temporarily storing the iforma-
tion with respect to the first process and the infor-
mation with respect to the second process in the
memory during a transier period.
6. The method of claim 35, wherein the revising of the at

65 least one translation table comprises

revising a physical ID of the first core and the second core
in the at least one translation table with respect to the

US 10,713,095 B2

19

first process to a physical ID of the third core and the
fourth core, respectively, and

revising the physical ID of the third core and the fourth
core 1n the at least one translation table with respect to
the second process to the physical 1D of the first core
and the second core, respectively; and

the controlling of the at least one process comprises

controlling the first process by communicating with the
third core and the fourth core allocated to the first
process based on the at least one translation table
revised with respect to the first process, and

controlling the second process by communicating with the
first core and the second core allocated to the second
process based on the at least one translation table
revised with respect to the second process.

7. The method of claim 5, wherein

the generating of the at least one translation table com-
prises: generating a first translation table with respect to
the first process; storing the first translation table 1n the
memory; and storing an address of the memory where
the first translation table 1s stored 1n the registers of the
first core and the second core allocated to the first
process, respectively.

8. The method of claim 7, wherein the generating of the

at least one translation table further comprises:

generating a second translation table with respect to the
second process;

storing the second translation table in the memory; and

storing an address of the memory where the second
translation table 1s stored in the registers of the third
core and the fourth core allocated to the second process,
respectively.

9. A multi-core processor comprising a plurality of cores,

the multi-core processor comprising:

a core manager configured to
allocate at least one core from among the plurality of
cores to at least one process for execution,
generate at least one translation table with respect to the
at least one process to translate a logical ID of the at
least one core allocated to the at least one process to
a physical ID of the at least one core, store the at least
one translation table in a memory, and store an
address of the memory where the at least one trans-
lation table 1s stored 1n a register of the at least one
core allocated to the at least one process,
in response to changing operational conditions of the
multi-core processor, change the at least one core
allocated to the at least one process with at least two
other cores different than the at least one core and
which are not allocated to the at least one process by
copying at least the address stored in the register of
the at least one core to registers of the at least two
other cores, and revising the at least one translation
table to release allocation of the at least one core with
respect to the at least one process and allocate the at
least two other cores to the at least one process,
wherein the revising of the at least one translation
table comprises revising a physical ID of the at
least one core 1n the at least one translation table
with respect to the at least one process to physical
IDs of the at least two other cores; and
a controller configured to control the at least one process
based on the at least one translation table revised with
respect to the at least one process such that a source
core one of the at least two other cores allocated to the
at least one process communicates with a destination
core of the at least two other cores via an inter-core

10

15

20

25

30

35

40

45

50

55

60

65

20

interrupt (ICI) bearing the logical ID of the destination
core, and the multi-core processor intercepts the ICI
bearing the logical ID, transforms the logical ID nto
the physical ID of the destination core based on the
translation table, and forwards the ICI to the physical
ID of the destination core.
10. The multi-core processor of claim 9, wherein
the at least one process comprises a first process,
the at least one core allocated to the at least one process
comprises a first core allocated to the first process,
the at least two other cores that are not allocated to the at
least one process comprise a second core, and a third
core that are not allocated to the first process,
the core manager 1s further configured to change the at
least one core with the at east two other cores by
changing the first core allocated to the first process with
the second core and the third core that are not allocated
to the first process by copying imformation stored 1n a
register of the first core to registers of the second core
and the third core, and releasing the allocation of the
first core with respect to the first process and allocating
the second core and the third core to the at least one
process by revising the at least one translation table,
wherein the revising of the at least one translation table
comprises revising a physical ID of the first core 1n
the at least one translation table with respect to the
first process to physical IDs of the second core and
the third core, and
the controller 1s further configured to control the at least
one process by controlling the first process by commu-
nicating with the second core and the third core allo-
cated to the first process using the at least one trans-
lation table revised with respect to the first process.
11. The multi-core processor of claim 9, wherein
the at least one process comprises a first process,
the at least one core allocated to the at least one process
comprises a first core and a second core allocated to the
first process,
the at least two other cores that are not allocated to the at
least one process comprise a third core and a fourth
core that are not allocated to the first process, and
the core manager 1s further configured to change the at
least one core with the at least two other cores by
changing the first core and the second core allocated to
the first process with the third core and the fourth core
that are not allocated to the first process by copying
information stored 1n registers of the first core and the
second core with respect to the first process to registers
of the third core and the fourth core, respectively, and
releasing the allocation of the first core and the second
core with respect to the first process and allocating the
third core and the fourth core to the first process by
revising the at least one translation table.
12. The multi-core processor of claim 11, wherein
the core manager 1s further configured to revise the at least
one translation table by revising a physical 1D of the
first core and the second core in the at least one
translation table with respect to the first process to a
physical ID of the third core and the fourth core,
respectively, and
the controller 1s further configured to control the at least
one process by controlling the first process by commu-
nicating with the third core and the fourth core allo-
cated to the first process using the at least one trans-
lation table revised with respect to the first process.

US 10,713,095 B2

21

13. The multi-core processor of claim 11, wherein
the at least one process further comprises a second
process,
the at least two other cores comprising the third core and
the fourth core are allocated to the second process, and
the core manager 1s further configured to change the at
least one core with the at least two other cores by
changing the third core and the fourth core allocated to
the second process with the first core and the second
core that are not allocated to the second process by
copying mformation stored in the registers of the third
core and the fourth core with respect to the second
process to the registers of the first core and the second
core, respectively, and releasing the allocation of the
third core and the fourth core with respect to the second
process and allocating the first core and the second core
to the second process by revising the at least one
translation table,
wherein the copying of the information stored in the
registers of the first core and the second core with
respect to the first process and the copying of the
information stored in the registers of the third core
and the fourth core with respect to the second
process comprises temporarily storing the mforma-
tion with respect to the first process and the infor-
mation with respect to the second process in the
memory during a transier period.
14. The multi-core processor of claim 13, wherein
the core manager 1s further configured to revise the at least
one translation table by
revising a physical ID of the first core and the second
core 1n the at least one translation table with respect
to the first process to a physical ID of the third core
and the fourth core, respectively, and
revising the physical ID of the third core and the fourth
core 1n the at least one translation table with respect

22

to the second process to the physical ID of the first
core and the second core, respectively, and
the controller 1s further configured to control the at least
one process by
5 controlling the first process by communicating with the
third core and the fourth core allocated to the first
process using the at least one translation table
revised with respect to the first process, and
controlling the second process by communicating with
10 the first core and the second core allocated to the
second process using the at least one translation table
revised with respect to the second process.
15. The multi-core processor of claim 13, wherein the
core manager 1s further configured to generate the at least
5 one translation table by,
generating a {irst translation table with respect to the first
process,
storing the first translation table 1n the memory, and
storing an address of the memory where the first transla-
0 tion table 1s stored 1n the registers of the first core and
the second core allocated to the first process, respec-
tively.
16. The multi-core processor of claim 15, wherein the
core manager 1s further configured to generate the at least
»5 one translation table by,
generating a second translation table with respect to the
second process;
storing the second translation table in the memory; and
storing an address of the memory where the second
30 translation table 1s stored in the registers of the third
core and the fourth core allocated to the second process,
respectively.
17. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a processor,
35 cause the processor to perform the method of claim 1.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. £ 10,713,095 B2 Page 1 of 1
APPLICATION NO. : 15/469828

DATED : July 14, 2020
INVENTOR(S) : Donghoon Yoo et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Item (73) Assignee: “Samsung Electronics Co., Ltd., Gyeonggi-do (KR)” Should read

--Samsung Electronics Co., Ltd., Gyeonggi-do (KR) and Seoul National University R&DB
Foundation, Scoul (KR)--

Signed and Sealed this
'Eighth Day ot August, 2023

Katherme Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

