12 United States Patent

Isman et al.

US010705807B2

US 10,705,807 B2
*Jul. 7, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(63)

(60)

(1)

(52)

(58)

APPLICATION TESTING

Applicant: Ab Initio Technology LLC, Lexington,

MA (US)

Inventors: Marshall A. Isman, Newton, MA (US);
John Joyce, Newton, MA (US)

Assignee: Ab Initio Technology LLC, Lexington,
MA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 296 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/881,979

Filed: Jan. 29, 2018

Prior Publication Data

US 2018/0232214 Al Aug. 16, 2018

Related U.S. Application Data

Continuation of application No. 14/715,807, filed on
May 19, 2015, now Pat. No. 9,880,318.

Provisional application No. 62/075,451, filed on Nov.
5, 2014.

Int. CI.

GO6F 8/35 (2018.01)

GO6F 11/36 (2006.01)

GO6F 8/34 (2018.01)

U.S. CL

CPC GO6F 8/35 (2013.01); GO6F 11/3636

(2013.01); GOGF 8/34 (2013.01)

Field of Classification Search

CPC GO6F 8/35; GO6F 11/3636; GO6F 8/34
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

0,102,968 A
0,389,429 Bl
6,983,317 Bl

8/2000 Colby et al.
5/2002 Kane
1/2006 Bishop

(Continued)

FOREIGN PATENT DOCUMENTS

1/1987
3/1998
9/2013

502-006344
H10-083328
2013-171345

o T

OTHER PUBLICATTONS

JP Ofhice Action 1n Japanese Appln. No. 2017-522000, dated Oct.
29, 2019, 9 pages.

(Continued)

Primary Examiner — Viva Miller
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

A method includes analyzing, by a processor, a {irst version
of a computer program. The analyzing includes 1dentifying
a first data processing element included 1n the first version
of the computer program. The first data processing element
references a first data source external to the first version of
the computer program. The method includes generating a
data source element that represents a second data source
different from the first data source. The method includes
generating a second version of the computer program. The
second version of the computer program includes the gen-
erated data source element and a second data processing
clement that 1s based on the first data processing element. In
the second version of the computer program, the second data
processing element references the generated data source
clement.

35 Claims, 12 Drawing Sheets

100
~ ——
114
== -
Data source Iex
o e
118
\N
104
Sort 108
Reformat
112
Gather
106
Replicate
110
Filter by

Expression

US 10,705,807 B2
Page 2

(56)

7,039,645
8,627,296
8,670,720
8,949,140

9,880,818
2002/0152241
2004/0153708
2007/0118278
2008/0270350
2009/0133033
2011/0271256
2011/0307897
2012/0131559
2012/0254259
2014/0141767
2016/0124836
2016/0124998

2017/0177740

U.S. PATENT DOCUM

Bl
Bl
Bl
B2 *

B2

AN AN A A AN AN

>

References Cited

5/2006

1/201
3/201

2/201

4

4
5

1/2018
10/2002

8/2004
5/2007
10/2008
5/2009
11/2011
12/2011

5/201
10/201
5/201
5/201

5/201

N ON B

6/2017

Neal
Picard
Neal
Liu

Isman
Hepworth

Joshi

Finn

Bojanic et al.
[Lindo et al.
Robertsson
Atterbury
Wu

McGuire et al.

Sharma
Isman et al.

Oftner

Abaya

EINTTS

ttttttttttttttttttttttttttt

GO6F 8/30
705/7.27

GOO6F 16/2428
707/798

OTHER PUBLICATIONS

International Preliminary Report on Patentability, PCT/US2017/

033285, dated Dec. 13, 2018.

Agarwal et al., Sinnet: Social Interaction Network Extractor from
Text, Proceedings of ITCNLP, pp. 33-36, 14-18 (2013).
International Search Report and Written Opinion 1ssued in PCT/
US2017/033285, dated Jul. 26, 2017.

International Search Report and Written Opinion, PCT/US2015/
059136, dated Feb. 15, 2016 (16 pages).

Cheung et al., “Partial replay of long-running applications”, Pro-
ceedings of the 19th ACM Sigsoft Symposium and the 13” Euro-
pean Conference on Foundations of Software Engineering, SIGSOFT/
FSE, pp. 135-145 (2011).

Honarmand et al., “Reply Debugging: Leveraging Record and
Replay for Program Debugging”, ACM Sigarch Computer Archi-
tecture News, Architecture, pp. 445-456 (2014).

International Preliminary Report on Patentability, PCT/US2015/
059136, dated May 9, 2017.

Transaction History of U.S. Appl. No. 14/715,807, Jan. 26, 2018.
U.S. Appl. No. 14/715,807, filed May 19, 2015, Marshall A. Isman

and John Joyce.

* cited by examiner

U.S. Patent Jul. 7, 2020 Sheet 1 of 12 US 10,705,807 B2

100 \/
114
116 QOutput data
sink
Data source °
118
104
Sort 108
Reformat
112
Gather

106
Replicate

FIG. 1

110
Filter by

Expression

US 10,705,807 B2

Sheet 2 of 12

Jul. 7, 2020

U.S. Patent

¢ Ol

\

00¢

> opurajid ndinQ/sesered/S INANOIINOD avs!lgralyed edK0i01d;

siolowered Jo rdquINy // |

S$9824N0S 183} J0} Ajuo ipasoubi payipowt St // ()
paxnbax 1 // |

uedyd Si//

agoad a1y paseyd St/ Q)

dgoxd 91 [BOO] S1// ()

> 9qoad e s .31 2qoxd s1//]
110d weansdn je roquint 20udanbas // ¢

> 110d wreansumMop // ur/adinogeepinding

> 110d weansdn /7 no/xoyien

¢CC
0¢C
124
91C
4%
clLe
0i¢

> UOIMOSUI Y] JO swieU //1Bp'7 sul
UOIMASUI PUOIAS JO FUIUUIFAQ {UOILIASUIL S11] JO pUd //

> Jepojeorjdor 10} 90In0S 38AY/ TVIYAS IV $:o1L] |§|3noAe]

> opurajlf mdup/siesered/SINANOINOD 9V §)|$id|ped adAjoloxd;
sIglowered JO Ioquind // g

pagIpouwt st // ¢

soqoud 10} Ajuo ‘patoubi aqoiad oy poseyd st //Q
saqoud .10} Ajuo ‘{pasoubi 9qoxd iy [B20] SI// ()

807 , 924N0S }s3} e s 31 2qoid si// ¢
110d wiransdn je roquinu 20uanbas// ()

90¢ > 110d WraNSUMOp // UL/Id)1]
¥0¢ > 11od weansdn // jnojaseqeie(q
¢0C > UOIMASUI }JS1I} JO dWeU // 18P 20In0S | Sul

uoijasul }sii} jo Buiuuibaq ‘1apeay jo pua J/

QLM UO SUOTMIASUL JOPIO // |
loy

paljdde aq |jim suoltasul asay} ydelb ay] // dwrydesb ajdwexs/diN 1vV$

UOISIIA // |

Jopesgy aul]-¢ & YlIM Sliels 3|} >m_.hw>0 yoe3l //

A4

L0¢

U.S. Patent Jul. 7, 2020 Sheet 3 of 12 US 10,705,807 B2

308
310

User interface 314

Analysis engine 300 Insertion engine 306

312

Wplggily g, SpEpERE. JpEgEgE EpEpERS pEpEgE 0 SNy TpEgEgEy 0 SplpEgEy SpEgEgE, EgEpEgl

Graph 100

U.S. Patent Jul. 7, 2020 Sheet 4 of 12 US 10,705,807 B2

400
Receive list of data sources
and output data sinks
402
Analyze graph to identify data
sources and output data sinks
404
Compare identified data
sources and output data sinks
{o list
406

Define overlay specifications

FIG. 4

U.S. Patent Jul. 7, 2020 Sheet 5 of 12 US 10,705,807 B2

500

AN

102
Data source

114

Output data
SInk

502

Test 103
SOUrce Filter 118

504
Probe

104

Sort 108

Reformat
112
Gather
106
Replicate

110
Filter by

Expression

FIG. 5A

U.S. Patent Jul. 7, 2020 Sheet 6 of 12 US 10,705,807 B2

500"

N

102

Data source

114
Output data
Sink
502' 103
Tes! Filter
source
§_Q£r_'
Probe
104
Sort 108
Reformat
112
Gather
106
Replicate

110
Filter by

EXpression

FIG. 5B

U.S. Patent Jul. 7, 2020 Sheet 7 of 12 US 10,705,807 B2

500"

102
Data source

114

Output data

Sink

502" 103
Test source Filter 118

104

Sort 108
Reformat

112
Gather

106
Replicate

110
Filter by

EXpression

FIG. 5C

U.S. Patent

102
Data source

104
Sort

Jul. 7, 2020

5001”

103
Filter

106
Replicate

Sheet 8 of 12

108
Reformat

110
Filter by

Expression

FIG. 5D

US 10,705,807 B2

114

Output data
sink

_5_9&111
Probe

112
Gather

U.S. Patent Jul. 7, 2020 Sheet 9 of 12 US 10,705,807 B2

608
Compiler

w—

FIG. 6

004
Graph

)/

602

US 10,705,807 B2

18[1dwon
4%

C

=

=

= \
’»

X

& Aiojisoday
e 91e}S POAES
= 017

U.S. Patent

labeueyy sjels panes

L Dl

c0L

U.S. Patent Jul. 7, 2020 Sheet 11 of 12 US 10,705,807 B2

800
z‘ 828

DEVELOPMENT ENVIRONMENT 818
820
826 Executabl
Compiler e Graph
% 830
822 ' 824
_ ~a Y
<> el j___ =) Test Execution
Code | Overlay | Environment

Repository | Repository)I

e .

816

DATA STORAGE

004

EXECUTION
ENVIRONMENT

FIG. 8

U.S. Patent Jul. 7, 2020 Sheet 12 of 12 US 10,705,807 B2

300

\\ 902

Receive a first version of a graph

904
Receive an overlay specification that defines one
or more insertions
906
Generate one or more objects that each
correspond to one of the defined insertions
908

Generate a second version of at least a portion of

the graph that includes at least some of the
components and flows of the graph and the one or

more generated objects

FIG. 9

US 10,705,807 B2

1
APPLICATION TESTING

CLAIM OF PRIORITY

This application 1s a continuation of U.S. application Ser.
No. 14/715,807, filed on May 19, 2015, which claims
priority U.S. Provisional Patent Application Ser. No. 62/075,
451, filed on Nowv. 5, 2014, the entire contents of both which

are hereby incorporated by reference.

BACKGROUND

This description relates to debugging a graph.

Code developers often debug source code throughout the
development process. In doing so, the source code can be
modified with debug code which can impact the function-
ality of the source code. It 1s often desirable to remove the
added debug code from the source code when debugging has
concluded 1n order to restore the original functionality of the
source code.

SUMMARY

In a general aspect, a method includes analyzing, by a
processor, a first version of a computer program. The ana-
lyzing includes i1dentifying a first data processing element
included 1n the first version of the computer program. The
first data processing element references a first data source
external to the first version of the computer program. The
method includes generating a data source element that
represents a second data source different from the first data
source. The method includes generating a second version of
the computer program. The second version of the computer
program includes the generated data source element and a
second data processing element that 1s based on the first data
processing element. In the second version of the computer
program, the second data processing element references the
generated data source element.

Embodiments can include one or more of the following
features.

The method includes determining a location of the second
data source. Determining the location of the second data
source comprises receiving an mput indicative of the loca-
tion.

The method includes presenting, 1n a user interface, an
identifier of the identified first data processing element, the
first data source, or both. The method includes receiving a
selection of the i1dentified first data processing element, the
first data source, or both.

Analyzing the first version of the computer program
includes analyzing an input flow into at least one of the data
processing elements in the first version of the computer
program.

The method includes analyzing the first version of the
computer program at runtime of the computer program.

The computer program includes a graph. Generating the
second version of the computer program comprises locating
the generated data source element at an nput tlow to the
second data processing element.

Data from the second data source has the same format as
data from the first data source.

Generating the data source element includes defining an
overlay specification for the generated data source element.

The method 1ncludes populating the second data source
with data based on data from the first data source.

In the first version of the computer program, a third data
processing element references a first data destination exter-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

nal to the first version of the computer program. In the
second version ol the computer program, a fourth data
processing element that 1s based on the third data processing
clement references a second data destination different from
the first data destination.

The method 1ncludes 1dentifying a third data processing
clement included in the first version of the computer pro-
gram. The third data processing references a first data
destination external to the first version of the computer
program. The method includes generating an output element
that represents a second data destination different from the
first data destination. The second version of the computer
program includes the generated output element and a fourth
data processing element that 1s based on the third data
processing element. In the second version of the computer
program, the fourth data processing element references the
generated output element. The method includes determining
a location of the second data destination. Determining the
location of the second data destination comprises receiving
an 1nput indicative of the location.

The method includes executing the second version of the
computer program.

Executing the second version of the computer program
enables debugging of the computer program.

Generating the second version of at least a portion of the
computer program includes generating a copy of the portion
of the computer program. The method 1ncludes modifying
the copy of the portion of the computer program to include
the generated data source element.

In a general aspect, a system 1ncludes means for analyz-
ing, by a processor, a {irst version ol a computer program.
The analyzing includes identifying a first data processing
clement included in the first version of the computer pro-
gram. The first data processing element references a {first
data source external to the first version of the computer
program. The system includes means for generating a data
source element that represents a second data source different
from the first data source. The system includes means for
generating a second version of the computer program. The
second version of the computer program includes the gen-
crated data source element and a second data processing
clement that 1s based on the first data processing element. In
the second version of the computer program, the second data
processing element references the generated data source
clement.

In a general aspect, a system includes a processor coupled
to a memory, the processor and memory configured to
analyze, by the processor, a first version of a computer
program. The analyzing includes identifying a first data
processing element imcluded 1n the first version of a com-
puter program. The first data processing element references
a first data source external to the first version of the
computer program. The processor and memory are config-
ured to generate a data source element that represents a
second data source different from the first data source. The
processor and memory are configured to generate a second
version of at least a portion of the computer program. The
second version of the computer program includes the gen-
crated data source element and a second data processing
clement that 1s based on the first data processing element. In
the second version of the computer program, the second data
processing eclement references the generated data source
clement.

In a general aspect, a non-transitory computer-readable
medium stores instructions for causing a computing system
to analyze, by a processor, a first version of a computer
program. The analyzing includes identifying a first data

US 10,705,807 B2

3

processing element included 1n the first version of a com-
puter program. The first data processing element references
a first data source external to the first version of the
computer program. The istructions cause the computing
system to generate a data source element that represents a
second data source different from the first data source. The
instructions cause the computing system to generate a sec-
ond version of at least a portion of the computer program.
The second version of the computer program includes the
generated data source element and a second data processing
clement that 1s based on the first data processing element. In
the second version of the computer program, the second data
processing element references the generated data source
clement.

Other features and advantages will become apparent from
the following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1s an example of a graph.

FIG. 2 1s an example of an overlay specification.
FIG. 3 1s a block diagram.

FIG. 4 1s a tlow chart.

FIGS. 5A-5D are examples of modified graphs.
FIGS. 6-8 are block diagrams.

FIG. 9 1s a flow chart.

DESCRIPTION

When testing or debugging an executable application,
such as a graph, a tester or developer may want to conduct
testing using a particular set of input data. In some examples,
the tester may wish to make a change to the application. By
executing the application using a consistent set of input data
both before and after the change, the effect of that change on
the data output by the application can be monitored. In some
examples, the tester may have a specific set of test data that
1s to be used when testing the application, such as a set of
test data that will cause all of the functions of the application
to be executed at least once. Similarly, the tester may wish
to write the data output by the application to a particular
destination that 1s different than the standard destination to
which the application writes 1ts output data.

In a conventional development environment, the tester
manually provides the desired set of input data for testing
and specifies the destination for the output data. We describe
here an approach to automatically identifying data sources
that provide mput data to an application and output data
sinks that receive output data from an application. The
identified data sources can be automatically replaced by
replacement data sources, sometimes referred to as test
sources. The 1dentified output data sinks can be automati-
cally replaced by alternative destinations, sometimes
referred to as probes. Test sources and probes are examples
ol 1nsertions.

In some examples, the executable application 1s a graph-
based process. Insertions, such as test sources and probes,
are objects that are associated with a flow 1n the graph-based
process. A test source can replace data passing through a
flow (e.g., upstream data) with new data, such that upstream
computations do not need to be rerun for each execution of
the graph. For instance, a test source can replace a data
source such that test data i1s provided to the graph from the
test source rather than from the data source. A probe can
monitor data passing through a flow as the graph executes,
and can cause the data to be saved for later examination or

10

15

20

25

30

35

40

45

50

55

60

65

4

reuse. For instance, a probe can receive data that would
otherwise have been saved to an output data sink, such as a
database.

Insertions, such as test sources and probes, can be defined
by an overlay specification, which 1s a {file that 1s separate
from the graph or other executable application. In some
examples, the insertions can be defined automatically based
on an automated analysis of the application, e.g., based on
an automatic 1dentification of the data sources and output
data sinks of the application.

The insertions defined 1n the overlay specification can be
added 1nto the application during execution without becom-
ing a part of the original application. When the application
1s compiled, a compiler considers the overlay file and
generates an executable application that includes the inser-
tions. We sometimes refer to the original application as the
first version of the application and the application that
includes the insertions as the second version of the appli-
cation. For instance, in the example of a graph-based pro-
cess, the executable graph can be visually represented as a
second version of the graph that includes the components of
a first version of the graph combined with the insertion
objects defined 1 the overlay specification. In some
examples, the executable graph 1s a shell script and 1s not
stored 1n a file. In some examples, the executable graph and
the graph are stored in separate files.

The incorporation of the insertions 1nto the second version
of the graph does not modity the first version of the graph
being debugged. Instead, the msertion definitions remain in
a separate file (e.g., the separate overlay specification) and
can be turned into ordinary graph components for inclusion
in the modified graph at the beginning of the code genera-
tion. As such, there 1s no risk of madvertently breaking the
original graph during debugging.

Insertions can also be itroduced at locations in a graph
other than at data sources and output data sinks. These
insertions, which we sometimes refer to as internal inser-
tions, can enable a tester to access the data as 1t flows
through the graph. For example, a tester may wish to verily
the data as 1t flows from one component to another. A tester
may also have verified that an upstream process functions
correctly but may not have verified the downstream pro-
cesses. In some cases, the upstream process may take a long
time to execute, resulting in ineflicient testing. Testing
clliciency can be improved 1f the tester can replace previ-
ously validated upstream operations with previously vali-
dated data. In a conventional development environment, the
tester would need to modity the graph in order to add a
watch point or to replace upstream components with pre-
validated data. However, once the graph has been edited, the
tester cannot be sure that they have not modified the func-
tionality of the original graph. In some environments, the
tester may lack the necessary permissions to edit the graph.

FIG. 1 shows an example of a graph 100. The graph 100
1s a visual representation of a computer program that
includes data processing components connected by flows. A
flow connecting two components indicates that records
output from the first component are passed to the second
component. A first component references a second compo-
nent when the first component 1s connected to a second
component by a flow.

A data source 102, such as a database (as shown), a file,
a queue, an executable statement (e.g., a SQL statement) or
another type of data source that 1s external to the graph 100,
includes one or more data records to be processed by the
graph 100. By external, we mean that the data of the data
source 102 1s not stored 1n the graph 100. The data source

US 10,705,807 B2

S

102 1s connected to a filter component 103 by a flow. In
general, a filter component filters or removes records that do
not meet predetermined criteria. In this example, the filter
component 103 passes data records of customers who live 1n
Ohio and rejects the other records. The filter component 103
1s connected to a sort component 104 that sorts the filtered
data records by zip code. The sort component 104 1is
connected to a replicate component 106 that creates a copy
of data records so that they can be processed 1n two different
ways. The replicate component 1s connected to a reformat
component 108 and a filter by expression component 110.
For example, one istance of data records of customers who
live 1n Ohio, which are sorted by zip code, 1s sent to the
reformat component 108, and another instance of the data
records 1s sent to the filter by expression component 110.
The reformat component 108 changes the format of the data
records to a different data format, and the filter by expression
component 110 removes data records based on an expression
associated with the data record. The reformat component
108 and the filter by expression component 110 are con-
nected to a gather component 112 that combines the recerved
data records, and the gather component 1s connected to an
output data sink component 114 that i1s external to the graph,
such as a database (as shown), a file, a queue, or a down-
stream processing component. By external, we mean that the
data of the output data sink 114 1s not stored in the graph
100. While the graph 100 includes many flows between
components, a flow 116 between the data source 102 and the
filter component 103 (which we sometimes refer to as the
source-filter flow 116) and a flow 118 between the gather
component 112 and the output data sink 114 (which we
sometimes refer to as the gather-output tlow 118) are of
particular iterest 1n this example.

Atester of the graph 100 may wish to debug the graph 100
in order to verily i1ts functionality. In some cases, a tester
may want to verily data as 1t flows from one component to
another. In some cases, a tester may want to bypass upstream
components in a graph 100, and instead insert data at the
locations of the bypassed components. In some cases, a
tester may want to test the operation of the graph 100 using
a consistent set of mput data 1n order to monitor the eflect
of changing the graph on the data output by the graph. In
some cases, a tester may want to test the operation of the
graph 100 using a set of input data that the tester knows will
cause all of the functions of the graph to be executed at least
once, thus enabling complete testing of the graph.

In debugging the graph 100, 1t may be desirable to refrain
from modilying the graph. For example, a tester may not
want to risk breaking the functionality of the graph. In some
examples, a tester may have limited or no access to the graph
(e.g., the tester may lack the necessary permissions to edit
the graph). In order to debug the graph 100 without modi-
tying the graph, an overlay can be used to debug the graph.
In some examples, the overlay can be specified automati-
cally, e.g., based on an automated analysis of the graph. A
second version of at least a portion of the graph 100 can be
generated based on the original graph 100 (sometimes called
the first version of the graph) and the overlay specification.

FIG. 2 shows an example of an overlay specification 200
that defines an overlay. The overlay specification 200 can be
stored 1n a file. The file may be separate from a file
contaiming the graph. The overlay specification defines one
or more insertions. An isertion can be an object that is
associated with a tlow of the graph 100 and can take the form
ol a probe or a test source.

A probe collects or monitors data as it 1s passed through
a flow between components of the graph 100, e.g., along a

10

15

20

25

30

35

40

45

50

55

60

65

6

flow from a first component to a second component or along
a flow to an output data sink. For example, data can be
monitored, saved for later examination, or saved for re-use
when it passes through a flow as the graph 100 executes. The
overlay specification can define a probe that refers to a tlow
that carries data that 1s to be collected or monitored. The
probe speciiies the flow through which data 1s to be collected
or monitored. The probe can be configured to report par-
ticular values, or report when a particular value 1s within or
outside of a predetermined range. Data that 1s passed
through the probe may be saved for later analysis or use, for
example, the data can be stored in a flat file or relational
database.

In some examples, the probe can refer to a flow from a
component of the graph 100 to an output data sink, such as
a file or a database. By placing a probe along a flow to a data
sink during debugging of the graph 100, the probe receives
the data output from the graph 100. For instance, each time
the graph 100 1s executed 1n a debugging mode, the output
data can be received by a probe and written to a file so that
the output data from various graph executions can be
compared or otherwise evaluated. In some examples, an

output data sink 1s automatically 1dentified and an overlay 1s
automatically specified to define a probe for insertion prior
to the 1dentified output data sink.

In some examples, the probe can refer to a flow from an
upstream component of the graph 100 to a downstream
component. By placing a probe along a flow to a down-
stream component during debugging of the graph 100, the
probe receives the data that would otherwise have been
received by the downstream component, thus preventing the
downstream component from executing. For instance, a
tester may wish to monitor the results of the graph process-
ing prior to the downstream component. For instance, the
downstream component may have a functionality that has an
cllect external to the graph, e.g., the downstream component
may send a text message to each person whose credit card
record 1s processed by the downstream component. During
debugging of the graph, a tester may wish to disable such
components that have an eflect external to the graph.

A test source 1nserts data into the graph 100 at a particular
flow between two components of the graph 100. The overlay
specification can define a test source that refers to a flow that
carries data that 1s to be replaced with data from the test
source. In some examples, the test source replaces data that
would normally pass through a flow with new data. In some
scenarios, the test source can be configured to read previ-
ously saved data, and pass the data to the downstream
component. In some examples, a test source inserts data into
the graph 100 at a flow from a data source, such as a database
or file. The test source can insert data having the same
format as the data that would otherwise have been provided
by the data source. In some examples, a data source 1s
automatically identified and an overlay 1s automatically
specified to define a test source to replace the 1dentified data
source.

In some examples, the results of the execution of the
graph 100 up to a certain pomnt (e.g., up to a certain
component) may have been previously verified. In other
words, upstream process functions may have been verified
up to a certain point. In such cases, 1t may be inefl

icient for
upstream components to reprocess functions every time the
graph 100 executes. The test source can insert data (e.g., the
previously verified data) into the graph at that certain point.
In this manner, entire sections of a graph 100 that were
previously executed may be bypassed.

US 10,705,807 B2

7

FIG. 2 shows an example of an overlay specification 200
that defines an overlay. The overlay specification 200 can
include one or more insertion definitions. In this example,
the overlay specification 200 includes one test source defi-
nition 201 and one probe definition 213. The overlay speci-
fication 200 starts with a 3-line header that specifies the
graph that the insertion definitions can correspond to. The
header 1s followed by the test source definition 201, which
includes a name 202, an upstream port 204, a downstream
port 206, an 1nsertion type 208, a prototype path 210, and a
layout parameter 212.

The upstream port 204 of the test source definition 201
references an output port of the component that 1s directly
upstream from the flow where the test source 1s to be
inserted mto the graph 100. A component that 1s upstream
from a tlow 1s a component from whose output port data 1s
output onto the flow. In the example of FIG. 2, the upstream
port 204 of the test source definition 201 points to the output
of the database 102. The downstream port 206 of the test
source definition 201 references an input port of the com-
ponent that 1s directly downstream from the flow where the
test source 1s to be 1serted into the graph 100. A component

that 1s downstream from a flow 1s a component at whose
input port data 1s recerved from the flow. In the example of
FIG. 2, the downstream port 206 of the test source definition
points to the mput of the filter component 103. The test
source definition 201 in this example thus indicates that a
test source 1s to be placed in the flow between the output of
the database 102 and the mnput of the filter component 103
such that data provided by the test source can replace input
data from the database 102.

The isertion type 208 defines whether the insertion 1s a
test source or a probe. A value of “0” defines a test source,
and a value of “1” defines a probe. Because this insertion 1s
a test source, the value of the insertion type 208 1s “0”.

The prototype path 210 indicates the type of the insertion.
In this example, because this 1nsertion 1s a test source, the
prototype path 210 specifies an input file component. The
prototype path 210 points to a file that contains the code that
defines an 1nsertion of the particular type. A layout param-
eter 212 defines a location of a source file that contains data
that the test source will contain. In some examples, the
location 1s a file path. The data 1n the source file 1s to replace
the data that would normally pass through the flow defined
by the upstream port 204 and the downstream port 206. That
1s, when the test source 1s applied to the graph 100, the filter
component 103 receives the data 1n the source file rather
than receiving data from the database 102.

The source file contains data having the same format as
the data that would otherwise be received by the component
downstream of the test source. In some examples, the data
in the source file may be the same as the data i1n the data
source (e.g., the database) that 1s upstream from the test
source. For instance, data records from the database 102 can
be copied into the source file. In some examples, the data
source 1ndicates an executable statement, such as a SQL
query. In these examples, the SQL query can be executed
and the results of the query execution can be stored 1n the
source file. In some examples, the data in the source file can
be obtained from somewhere other than the data source. For
instance, the data in the source file can be generated 1n order
to ensure that certain data (e.g., certain ranges of values) are
processed for complete debugging of the graph 100. In some
examples, the data in the source file remains the same even
if the data 1n the data source changes, thus allowing debug-
ging to continue with a consistent set of mput data.

10

15

20

25

30

35

40

45

50

55

60

65

8

In some examples, the data 1n the source file may be the
same as the data that would pass through the tlow during
normal execution of the graph 100, but by 1nserting the data
using a test source, upstream components can refrain from
processing. For example, an upstream component, such as
the replicate component 106, may require large amounts of
system resources to process the data, or may take a relatively
long time to process the data compared to other components
in the data tlow graph 100. As such, known data (e.g., the
same data that would pass through the flow during normal
execution) can be nserted into the flow to save time or to
conserve system resources.

The test source definition 201 i1s followed by a probe
definition 213, which includes a name 214, an upstream port
216, a downstream port 218, an insertion type 220, and a
prototype path 222.

The upstream port 216 of the probe definition 213 refer-
ences an output port of the component that i1s directly
upstream from the tflow where the probe 1s to be mserted into
the graph 100. In the example of FIG. 2, the upstream port
216 of the probe defimition 213 points to the output of the
gather component 112. The downstream port 218 of the
probe definition 213 references an mput port of the compo-
nent that 1s directly downstream irom the flow where the
probe 1s to be mserted into the graph 100. In the example of
FIG. 2, the downstream port 218 of the probe definition 213
points to the output data sink component 114. The probe
definition 213 1n this example thus indicates that a probe 1s
to be placed in the flow between the output of the gather
component 112 and the output data sink component 114 such
that the probe receives data that would otherwise have been
written to the output data sink component.

The nsertion type 220 of the probe definition 213 defines
whether the insertion 1s a test source or a probe. A value of
“1” defines a probe. Because this insertion i1s a probe, the
value of the insertion type 220 1s “17.

The prototype path 222 indicates the type of the msertion.
In this example, because this insertion 1s a probe, the
prototype path 222 specifies an output file component. The
prototype path 222 points to a file that contains the code that
defines an 1nsertion of the particular type.

In some examples, the data that 1s to be monitored by the
probe 1s stored 1n a file that 1s automatically created by the
system. The file can be stored 1n a location that 1s determined
by the system. The probe monitors data that passes through
the flow defined by the upstream port 216 and the down-
stream port 218. That 1s, when the probe 1s applied to the
graph 100, the data that passes from the output of the gather
component 112 to the mput of the output data sink compo-
nent 114 1s monitored and stored 1n the file that 1s automati-
cally created by the system. In some examples, the data can
be monitored before 1t 1s stored. The file 1s capable of
receiving data of the same format that would have been
received by the component referenced by the probe defini-
tion (1n this example, the external data sink component 114).

In some examples, one or more insertions can be defined
by the overlay specification as a result of an automated
analysis of the graph 100. For instance, an automated
analysis of the graph 100 can be conducted to 1dentily any
data sources, such as databases, files, or other types of data
sources. One or more of the i1dentified data sources can be
automatically replaced by a test source. By a replaced data
source, we mean that a test source 1s inserted into the flow
directly downstream of the data source such that data from
the test source 1s provided to the downstream component
rather than data from the data source. Similarly, an auto-
mated analysis of the graph 100 can 1dentify any output data

US 10,705,807 B2

9

sinks, such as databases, files, or other types of output data
sinks. One or more of the identified output data sinks can be
automatically replaced by a probe. By a replaced output data
sink, we mean that a probe 1s 1nserted into the flow directly
upstream of the output data sink such that data from the
upstream component 1s received by the probe rather than by
the output data sink. Automated analysis of the graph 100
can also be used to identily other components, such as a
particular type of component (e.g., a particular type of
component whose execution has an eflect external to the
graph 100).

Referring to FIG. 3, an analysis engine 300 automatically
analyzes the graph 100 to identity data sources 302 and
output data sinks 304. For instance, the analysis engine 300
can access the parameters and connections for each node of
the graph 100. If a given node has no incoming connections,
the analysis engine 300 1dentifies the node as a data source.
Similarly, 11 a given node has no outgoing connections, the
analysis engine 300 identifies the node as an output data
sink. To access and analyze each node of a graph, the
analysis engine “walks” along all of the connections of the
graph. In some examples, the graph 100 1s not instantiated
or parameterized until runtime (e.g., when processing starts
for debugging purposes). The analysis engine 300 can
perform an automated analysis at runtime to i1dentity data
sources and output data sinks in the graph 100.

The analysis engine 300 sends identifiers of the data
sources 302 and output data sinks 304 to an insertion engine
306, which determines which of the data sources and output
data sinks are to be replaced by test sources and probes,
respectively. In some examples, a tester 308 provides a list
310 of data sources and output data sinks that are to be
replaced by test sources and probes. The list 310 can be
provided as a file, a database, or 1n another format. For
instance, the tester 308 might include on the list 310 any data
source that he expects to change frequently. By replacing
such a data source with a test source, the tester 308 can
ensure that the graph can be tested using consistent mput
data.

The msertion engine 306 compares each identified data
source 302 and output data sink 304 with the data sources
and output data sinks on the list 310. The 1nsertion engine
creates an overlay specification 312 for any data source 302
or output data sink 304 that appears on the list 310. In some
examples, parameters for the overlay specification 312, such
as upstream and downstream ports, 1s provided to the
isertion engine 306 by the analysis engine 300. In some
examples, the insertion engine 306 accesses the graph 100 to
obtain the relevant parameters.

To create an overlay specification 312 for a test source, the
insertion engine 306 populates the source file with data. In
some examples, the insertion engine 306 populates the
source file for a test source that will replace a particular data
source 302 with data copied from the data source 302. In
some examples, the data source 302 includes an executable
expression, such as a SQL statement, and the insertion
engine 306 executes the executable expression and popu-
lates the source file with the results of the execution. In some
examples, the isertion engine 306 can prompt the tester 308
for data for the source file through a user interface 314. For
instance, the msertion engine 306 can present a list of the
identified data sources 302 to the tester 308 such that the
tester 308 can select which of the 1dentified data sources 302
are to be replaced by a test source. The tester 308 can also
specily the data to be included 1n the source file for the test
source. In some cases, the tester 308 can 1dentily a location
(e.g, a path) of a file that includes data for the test source. In

10

15

20

25

30

35

40

45

50

55

60

65

10

some cases, the tester 308 can instruct the insertion engine
308 to generate a source file that 1s a copy of the data in the
original data source 302. In some cases, the tester 308 can
instruct the insertion engine 308 to execute an executable
expression, such as a SQL statement, that 1s included or
associated with the original data source 302. In some cases,
the tester 308 can cause data to be generated for the source
file of the test source. For instance, the tester 308 may
provide a set of data, such as real data or generated data, that
will cause every function 1n the graph to execute at least
once.

To create an overlay specification 312 for a probe, the
isertion engine 308 determines the location of the file
where the output data 1s to be stored. In some examples, the
location 1s set by default, e.g., by a system architect. In some
examples, the insertion engine 306 can prompt the tester 308
through the user interface 314 to specily a location for the
output data {ile.

Referring to FIG. 4, 1n a general approach to automati-
cally defining 1nsertions, a list of data sources and output
data sinks that are to be replaced by test sources and probes,
respectively, 1s received (400). For instance, the list can be
provided by a tester based on his knowledge of the data
sources and output data sinks or based on goals or objectives
for the debugging. In some examples, the list can also
include 1dentifiers, such as locations and filenames, of files
that are to replace the data sources and output data sinks that
are included on the list.

A graph 1s analyzed automatically, e.g., by a processor, to
identily data sources, output data sinks, or both 1n the graph
(402). In particular, components that have no incoming
connections are i1dentified as data sources and components
that have no outgoing connections are identified as output
data sinks. For instance, each component i1s analyzed to
identify its incoming and outgoing connections, and each
connection from each component 1s followed to the adjacent
component to 1dentify the incoming and outgoing connec-
tions of that component. In this way, all of the components
of the graph can be analyzed. In some examples, the analysis
can be performed automatically at runtime, e.g., after the
graph has been parameterized. In some examples, the analy-
s1s can be performed automatically and dynamically, e.g.,
while the graph 1s running. For instance, a dynamic analysis
can be performed when certain parameters are resolved
during the execution of the graph. In some examples, the
graph 1s recerved nto short-term memory, from where 1t 1s
analyzed by a processor to i1dentily data sources or output
data sinks.

The i1dentified data sources and output data sinks are
automatically compared to the data sources and output data
sinks on the list (404). An overlay specification 1s defined for
cach identified data source or output data sink that 1is
included on the list (406). Prior to execution of the graph, a
compiler may compile the graph into an executable graph.
As part of compilation, the compiler considers the overlay
specification 200. For example, the compiler may accept the
overlay specification 200 as an input. One or more nsertions
are processed and inserted into the graph in the form of
objects that each corresponds to an insertion definition
contained in the overlay specification 200. The insertion
objects may be represented in the second version of the
graph 500 (shown 1n FIG. 5A) along with the data process-
ing components mcluded in the first version of the graph
100. The insertion objects may be connected to data pro-
cessing components or other insertions by directed tlows.
However, the overlay specification 200, or the file that stores
the overlay specification, remains separate from a file con-

US 10,705,807 B2

11

taining the graph. That 1s, while the insertion objects may
appear 1n the second version of the graph 500 along with the
data processing components included 1n the first version of
the graph 100, the file containing the first version of the
graph 100 does not include insertion defimitions. The mser-
tion objects are sometimes simply referred to as isertions.

In some examples, the tester does not supply an 1nitial list
of data sources and output data sinks that are to be replaced.
Rather, the graph 1s automatically analyzed and a list of all
of the data sources and output data sinks associated with the
graph 1s presented to the tester through a user interface. The
tester can select one or more of the data sources and output
data sinks to be replaced by insertions. The tester can
identifiers, such as locations and filenames, of files that are
to replace the data sources and output data sinks that are
included on the list, or can provide instructions for the
generation of the source file for an insertion.

Insertions defined in the overlay specification can be
executed using one of at least two modes: Single-Execution
Mode and Saved-State Mode.

FIG. 6 1llustrates an example system for executing inser-
tion definitions 1n Single-Execution Mode. In this example,
a client 602 generates or references a first version of a graph
604 and an overlay file 606 (e.g., an overlay specification)
that defines insertions. For example, the overlay file 606
may be the overlay specification 200 of FIG. 2. The graph
604 1s then compiled by the compiler 608. The compiler 608
considers the overlay file 606 and creates a second version
of the graph. The second version of the graph 1s executable
and includes the insertions defined by the overlay file 606.
The second version of the graph can then be executed. In
some examples, the compilation and the execution occur
concurrently. If the second version of the graph 1s to be
executed again, this process 1s repeated, including re-speci-
tying, re-compiling the graph 604 and re-executing second
version of the graph. No information 1s saved from one
execution of the executable graph to the next.

FIG. 5A shows an example of a second version of a graph
500. The second version of the graph 500 1s a visual
representation of the graph. In this example, second version
of the graph 500 1s similar to the first version of the graph
100 of FIG. 1 and has been modified to include insertions.
The second version of the graph 500 includes representa-
tions of the insertions defined 1n the overlay specification
200 of FIG. 2. The test source msertion 302 corresponds to
the test source definition 201 and the probe insertion 504
corresponds to the probe defimtion 213. In this example,
isertions were generated when a compiler compiled the
graph 100. While FIG. 5A shows a second version of the
graph 3500, the original, first version of the graph 10
remains unmodified.

The test source msertion 302 1s placed between the output
of the data source 102 and the mput of the filter component
103, where the flow 116 had been located 1n the first version
of the graph 100. The location of the insertion 1s based on the
upstream port 204 and the downstream port 206 1n the test
source definition (FIG. 2). When the second version of the
graph 500 1s executed, data does not flow from the data
source 102 to the filter component 103, as was the case 1n the
first version of the graph 100. Instead, data from the source
file 1dentified by the layout parameter 212 1n the test source
definition 201 of the test source 502 flows to the filter
component 103.

The probe insertion 504 1s placed 1n the flow 118, between
the output of the gather component 112 and the mnput of the
output data sink component 114. The location of the inser-
tion 1s based on the upstream port 216 and the downstream

10

15

20

25

30

35

40

45

50

55

60

65

12

port 218 1n the probe definition 213 (FIG. 2). When the
second version of the graph 500 1s executed, data that flows
from the gather component 112 to the output data sink
component 114 1s momtored and stored by the probe inser-
tion 504. As mentioned above, to execute the executable
graph again, the graph 1s re-specified, re-compiled, and the
executable graph 1s to be re-executed. No information 1s
saved from one execution of the executable graph to the
next. For example, 11 the executable graph were to be
executed again, the probe mnsertion 504 would be repopu-
lated with the same data.

In the example of FIG. 5A, the data flowing along flow
118 1s received by both the probe insertion 504 and the
output data sink component 114. Referring to FIG. 5B, 1n
some examples, a second version of the graph 3500' can
include a probe insertion 504' that interrupt the flow to the
output data sink component 114 such that data 1s received by
the probe msertion 504' and does not tlow to the output data
sink component 114.

In the examples of FIGS. 5A and 5B, the second version
of the graph 500, 500' includes both the test source 1nsertion
502 (or 502') and the probe insertion 504 (or 504"). In some
examples, the second version of a graph can include multiple
test source 1nsertions and multiple probe insertions. Refer-
ring to FIG. 5C, in some examples, a second version of a
graph 500" can include one or more test source insertions
502" but no probe insertions. Referring to FIG. 5D, 1n some
examples, the second version of a graph 500™ can include
one or more probe insertions 504™ but no test source
insertions.

FIG. 7 illustrates an example system for executing inser-
tion definitions 1n Saved-State Mode with a saved state
manager 708. In this example, a client 702 generates or
references a graph 704 and an overlay file 706 (e¢.g., an
overlay specification) that defines insertions. For example,
the overlay file 706 may be the overlay specification 200 of
FIG. 2. The saved state repository 710 1s managed by the
saved state manager 708 and a compiler 712. The saved state
manager 708 can also 1dentity where the saved state data 1s
located within the saved state repository 710. The graph 704
1s compiled by the compiler 712. The compiler 712 consid-
ers the overlay file 706 and creates a second version of the
graph that includes the nsertions defined by the overlay file
706. The second version of the graph can then be executed.
In some examples, the compilation and the execution occur
concurrently. Saved-State Mode differs from Single-Execu-
tion Mode 1n that Saved-State Mode allows the executable
graph to execute a number of times while saving information
between executions. For example, referring to FIG. SA, 1if
the insertions defined in the overlay specification 200 of
FIG. 2 were executed using Saved-State Mode, the probe
insertion 304 that was populated on the first execution of the
second version of the graph may not need to be repopulated
during a second execution. In some examples, the probe
insertion 504 could be internally transformed into a test
source on the second execution because the probe insertion
504 would essentially be inserting data into the graph at the
flow between the output of the gather component 112 and the
iput of the output data sink component 114.

The saved state manager 708, which can reside 1n a saved
state manager directory, manages the saved state. Examples
of information that can be saved 1n the saved state repository
710 include information related to probe insertions, infor-
mation related to test source insertions, information related
to the overlay file 706, and parameters (e.g., attributes)
associated with graph components, among other informa-
tion.

US 10,705,807 B2

13

In some examples, when an executable graph 1s executed,
only particular portions of the graph are executed. That 1s,
only particular components of the graph are executed. In
some examples, fewer than all of the components of the
graph are executed. The executable graph may only execute
components that will impact an insertion. For example, the
executable graph may only execute portions of the graph
that are necessary for the defined probe mnsertions to monitor
and store data. In some examples, components that are
downstream from the most downstream probe may not need
to be executed. In some examples, the second version of the
graph 1s a second version of the entire original graph. In
some examples, the second version of the graph 1s a second
version of only a portion of the entire original graph, e.g., a
second version of only those portions of the graph that are
relevant for the defined insertions.

In some examples, a probe 1s populated on the first
execution of the executable graph. Between executions,
parameters ol one or more of the graph components may be
changed. A component’s parameters define how the com-
ponent operates. The parameters associated with the com-
ponents can be tracked so that the compiler 712 can deter-
mine when a parameter change has occurred in a component.
A last value table keeps track of the parameters associated
with the graph components. When the executable graph 1s
run, the last value table 1s compared to the current param-
cters of the components to determine whether any param-
eters have changed between runs. When a parameter change
occurs, the change may or may not impact the data that 1s
stored by the probe. The compiler 712 determines whether
the component and the change aflect the data that will be
stored by the probe on the next execution of the executable
graph. If the data that will be stored by the probe would be
allected by the change, then the changed component, as well
as components that reside on flows between the changed
component and the probe, are re-executed during the next
execution of the executable graph. In other words, a com-
ponent between the changed component and the probe 1s
re-executed 11 the changed component impacts the execution
of the component, and the component impacts the data that
1s stored by the probe If the data that will be stored by the
probe would be unatflected by the change, then none of the
components may need to be re-executed.

FIG. 8 shows an example data processing system 800 in
which the debugging techniques can be used. The system
800 includes a data source 802 that may include one or more
sources of data such as storage devices or connections to
online data streams, each of which may store or provide data
in any of a variety of formats (e.g., database tables, spread-
sheet files, flat text files, or a native format used by a
mainiframe). An execution environment 804 and develop-
ment environment 818 may be hosted, for example, on one
or more general-purpose computers under the control of a
suitable operating system, such as a version of the UNIX
operating system. For example, the execution environment
804 can include a multiple-node parallel computing envi-
ronment including a configuration of computer systems
using multiple central processing units (CPUs) or processor
cores, either local (e.g., multiprocessor systems such as
symmetric multi-processing (SMP) computers), or locally
distributed (e.g., multiple processors coupled as clusters or
massively parallel processing (MPP) systems, or remote, or
remotely distributed (e.g., multiple processors coupled via a
local area network (LLAN) and/or wide-area network
(WAN)), or any combination thereof.

The execution environment 804 reads data from the data
source 802 and generates output data. Storage devices

10

15

20

25

30

35

40

45

50

55

60

65

14

providing the data source 802 may be local to the execution
environment 804, for example, being stored on a storage
medium connected to a computer hosting the execution
environment 804 (e.g., hard drive 808), or may be remote to
the execution environment 804, for example, being hosted
on a remote system (e.g., mainirame 810) 1n communication
with a computer hosting the execution environment 804,
over a remote connection (e.g., provided by a cloud com-
puting 1nfrastructure). The data source 802 may contain the
data that 1s defined 1n a test source definition (e.g., the test
source definition 201 of FIG. 2). That 1s, the layout param-
cter 212 of the test source definition 201 may point to a
location of a source file 1n the data source 802.

The output data may be stored back 1n the data source 802
or 1n a data storage system 816 accessible to the execution
environment 804, or otherwise used. The data storage sys-
tem 816 1s also accessible to the development environment
818 1n which a developer 820 1s able to develop, debug, and
test graphs. The development environment 818 1s, 1n some
implementations, a system for developing applications as
graphs that include vertices (representing data processing
components or datasets) connected by directed flows (rep-
resenting tlows of work elements, 1.e., data) between the
vertices. For example, such an environment 1s described in
more detail in U.S. Publication No. 2007/0011668, titled
“Managing Parameters for Graph-Based Applications,”
incorporated herein by reference. A system for executing
such graph-based computations 1s described 1n U.S. Pat. No.

5,966,072, XECUTING COMPUTATIONS

titled “E
EXPRESSED AS GRAPHS,” incorporated herein by refer-
ence. Graphs made 1n accordance with this system provide
methods for getting information into and out of individual
processes represented by graph components, for moving
information between the processes, and for defining a run-
ning order for the processes. This system includes algo-
rithms that choose interprocess communication methods
from any available methods (for example, communication
paths according to the tflows of the graph can use TCP/IP or
UNIX domain sockets, or use shared memory to pass data
between the processes).

The development environment 818 includes a code
repository 822 for storing source code. In some examples,
the source code and overlay specifications (e.g., the overlay
specification 220 of FIG. 2) may be developed by a devel-
oper 820 who has access to the development environment,
for example, through a user interface. In some examples, the
source code and overlay specifications are determined auto-
matically, e.g., by the analysis engine 300 and insertion
engine 306 described above. In some examples, graphs and
overlay specifications can be stored in the code repository
822. In some examples, graphs are stored in the code
repository 822, and overlay specifications are stored in a
separate overlay repository 824.

One or both of the code repository 822 and the overlay
repository 824 may be in communication with a compiler
826. The compiler 826 can compile a first version of a graph
and an overlay specification (e.g., the overlay specification
200 of FIG. 2) into an executable second version of the
graph 828. For example, the compiler may accept the
overlay specification as an iput. One or more nsertions are
processed and inserted into the graph 1n the form of objects
that each corresponds to an insertion definition contained in
the overlay specification. The second version of the graph
828 can be Vlsually represented by a modified graph (e.g.,
the second version of the graph 500 of FIG. 5A). The
insertion objects may be represented 1n the second version of
the graph 500.

US 10,705,807 B2

15

The development environment 818 can include a test
execution environment 830 for executing the second version
of the graph 828. For example, once a graph 1s compiled by
the compiler 826, the second version of the graph 828 can
be executed. Executing the second version of the graph 828
can include executing computations associated with the
components, insertions, and directed tlows of the second
version of the graph 828 as data (e.g., work elements or data
records) flows between components. In some examples, the
test execution environment 830 executes the second version
of the graph 828 without modifying the source code of the
first version graph that 1s stored 1n the code repository 822
or the source code stored in the overlay repository 824. The
test execution environment 830 may be accessible through
an interface of the development environment 818, or may
have 1ts own interface. The interface can be configured to
display information related to the executions. The interface
can also be configured to display information related to the
isertions (e.g., the data being monitored and saved by a
probe, or the data being inserted by a test source). The test
execution environment 830 may allow the developer 820 to
execute the second version of the graph 828 multiple times
and modily aspects of the second version of the graph 828
in between executions.

In some examples, a developer directs the 1nsertions and
compiling of the graph. For instance, a developer 820
selects, from the code repository 822, the first version of the
graph 100 of FIG. 1. The developer 820 also selects, from
the overlay repository 824, the overlay specification 200 of
FIG. 2. In some examples, mstead of selecting the overlay
specification 200, the developer 820 may select insertion
definitions from various overlay specification 1n the overlay
repository 824. The developer 820 instructs the compiler
826 to compile the second version of the graph 828 based on
the first version of the graph 100 and the overlay specifica-
tion 200.

In some examples, the msertions are mserted automati-
cally. For instance, as described above, data sources and
output data sinks 1n the graph 100 are automatically 1den-
tified, e.g., by identifying components that have no incoming,
connections or no outgoing connections. The 1dentified data
sources and output data sinks are automatically compared to
a list of data sources and output data sinks that are to be
replaced by insertions during debugging of the graph 100.
For instance, the list can be provided by the developer 820.
Overlay specifications are automatically created for the data
sources and output data sinks of the graph 100 according to
the list. The second version of the graph 1s then compiled
automatically.

In some examples, aiter execution, the developer 820 can
evaluate the data output into the probe insertion 304. If
necessary, the developer 820 can make changes to the first
version ol graph 100 and re-execute the changed first
version of the graph 100, still using the same input data from
the test source 502. By keeping the input data the same
across multiple turns of execution of the graph, the devel-
oper 820 can compare the data output from the changed first
version of the graph with the previously outputted data to
determine whether the first version of the graph 1s performs-
ing as desired.

In some examples, during or after execution, the devel-
oper 820 can observe mformation related to the executions
of the second version of the graph 828 and 1ts components,
isertions, and flows. For example, referring back to FIG.
5A, the developer 820 may observe that the data monitored
and stored by the probe insertion 504 1s incorrect or unex-
pected. The developer 820 may select, from the overlay

10

15

20

25

30

35

40

45

50

55

60

65

16

repository 824, a probe insertion definition that defines a
probe to be inserted in the flow between the reformat
component 108 and the gather component 112, and a probe
insertion definition that defines a probe to be 1nserted 1n the
flow between the filter by expression component and the
gather component 112. The developer 820 can analyze the
data collected by these two probes to determine whether the
data from the reformat component 108 or the data from the
filter by expression component 110 1s causing the data being
output from the gather component 112 to be incorrect.

Continuing with this example, suppose the developer 820
determines that the data from the filter by expression com-
ponent 110 1s incorrect. Rather than debugging all of the
components upstream from the filter by expression compo-
nent 110 (e.g., the filter component 103, the sort component
104, and the replicate component 106) to determine the
cause of the mcorrect data, the developer 820 may elect to
isert correct data (e.g., data that 1s expected to be output
from the filter by expression component 110) into the tlow
between the filter by expression component 110 and the
gather component 112. The developer 820 can select, from
the overlay repository 824, a test source 1nsertion definition
that defines a test source to be inserted in the tlow between
the filter by expression component 110 and the gather
component 112. This approach may be appropriate 11 the
developer 820 1s concerned with debugging components of
the second version of the graph 500 that are downstream
from the filter by expression component 110.

In some examples, overlay specifications are not perma-
nently stored as files 1n a code repository 822 or an overlay
repository 824. Rather, the information that would typically
be included 1n the overlay file (e.g., insertion definitions) 1s
developed by the developer 820 (e.g., through the user
interface) or determined automatically by the analysis
engine 300 and insertion engine 306 and temporarily stored
in memory. The overlay information 1s then passed to the
compiler (e.g., 608 of FIG. 6) or the saved state manager
(e.g., 708 of FIG. 7).

FIG. 9 1s a flowchart illustrating a debugging procedure
900. A first version of a graph (e.g., the graph 100 of FIG.
1) 1s recerved (902). For instance, the first version of the
graph can be received into a short-term memory that is
accessible by a processor. The first version of the graph 100
includes components and flows. The components represent
operations performed on data records, and the flows repre-
sent flows of data records between components. The com-
ponents may include the filter component 103, sort compo-
nent 104, replication component 106, reformat component
108, filter by expression component 110, and gather com-
ponent 112 shown i FIG. 1. The flows can include the
replicate-reformat tlow 116 and the gather-output data sink
flow 118 shown in FIG. 1.

An overlay specification that defines one or more inser-
tions 1s received (904). In some examples, the overlay
specification 1s recerved from a developer or tester. In some
examples, the overlay specification 1s defined automatically,
¢.g., as described above. The overlay specification may be
the overlay specification 200 shown in FIG. 2. The overlay
specification can include one or more insertion definitions
(e.g., test source definition 201 and probe definition 213). An
insertion definition can include a name, an upstream port, a
downstream port, an insertion type, a prototype path, and a
layout parameter (for test source definitions). Each of the
defined 1nsertions can be associated with a tlow of the graph
100. Insertions can take the form of probes or test sources.
Examples of insertions, i the form of components of a
graph, mnclude the test source mnsertion 502 and the probe

US 10,705,807 B2

17

isertion 504 of FIG. SA. For example, the test source
insertion 302 1s associated with the database-filter flow 116
of the graph 100, and the probe 1nsertion 504 1s associated
with the gather-output data sink flow 118 of the graph 100.

One or more objects are generated that each corresponds
to one of the defined insertions (906). The objects may be
components of a graph. Examples of objects include the test
source 1nsertion 502 and the probe insertion 504 of FI1G. 5A.
For example, the test source insertion 502 1s associated with
the replicate-reformat flow 116 of the graph 100, and the
probe 1nsertion 504 1s associated with the gather-output data
sink flow 118 of the graph 100.

A second version of at least a portion of the graph 1s
generated that includes at least some of the components and
flows of the portion of the graph 100 as well as the one or
more generated objects (908). In some examples, the second
version of the graph 1s a copy of the original graph 100 that
1s modified to include at least some of the components and
flows of the portion of the graph 100 as well as the one or
more generated objects. The second version of the graph can
be visually represented by a modified graph (e.g., the second
version of the graph 500 of FIG. 5A). Each object 1s mserted
at the tflow associated with the defined insertion that corre-
sponds to the object. For example, with reference to the
second version of the graph 300, the test source insertion
502 1s inserted 1nto the replicate-reformat flow 116, and the
probe insertion 504 1s inserted into the gather-output data
sink flow 118. While the generated insertion objects may
appear 1n the second version of the graph 500 along with the
data processing components of the graph 100, the first
version of the graph 100 (or the file contaiming the first
version of the graph 100) 1s not modified.

While we described a compiler (e.g., compiler 608 of
FIG. 6 and compiler 712 of FIG. 7) that can compile the
graph and the overlay specification to create second version
of the graph that includes the insertions defined by the
overlay file, 1n some embodiments, the graph and the
overlay specification are not compiled. For example, the
graph and the overlay specification can be executed directly
without being compiled. An interpreter can execute the
graph and the overlay specification directly by translating
cach statement into a sequence of one or more subroutines
that are already compiled into machine code.

While we have described insertions 1in the form of probes
and test sources, 1n some embodiments, 1nsertions can take
on other forms. Insertions can broadly be used to 1nject data
at a given point of a graph and pull data from a given point
of a graph. For example, an imsertion can be designed to
monitor the quality of data passing through a flow of a graph.
If data quality falls below a threshold, a user can receive an
automated alert. Further description of insertions can be
found 1n U.S. application Ser. No. 14/715,904, the contents
of which are incorporated here by reference 1n their entirety.

Furthermore, while we have described insertions in the
context of graphs, in some embodiments, insertions can be
used 1n conjunction with other executable applications. For
instance, data sources and output data sinks for a generic
executable application can be 1dentified through an auto-
mated analysis of the application. The 1dentified data sources
and output data sinks can be replaced by test sources and
probes, respectively. In this way, the executable application
can process data from a test source and output data to a
probe. This configuration can be usetul for testing or debug-
ging the executable application.

The debugging approach described above can be imple-
mented using a computing system executing suitable soft-
ware. For example, the software may include procedures in

10

15

20

25

30

35

40

45

50

55

60

65

18

one or more computer programs that execute on one or more
programmed or programmable computing system (which
may be of various architectures such as distributed, client/
server, or grid) each including at least one processor, at least
one data storage system (including volatile and/or non-
volatile memory and/or storage elements), at least one user
interface (for recerving iput using at least one mput device
or port, and for providing output using at least one output
device or port). The software may include one or more
modules of a larger program, for example, that provides
services related to the design, configuration, and execution
of graphs. The modules of the program (e.g., elements of a
graph) can be implemented as data structures or other
organized data conforming to a data model stored 1n a data
repository.

The software may be provided on a tangible, non-transi-
tory medium, such as a CD-ROM or other computer-
readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g.,
encoded 1n a propagated signal) over a communication
medium of a network to a tangible, non-transitory medium
of a computing system where it 1s executed. Some or all of
the processing may be performed on a special purpose
computer, or using special-purpose hardware, such as copro-
cessors or field-programmable gate arrays (FPGAs) or dedi-
cated, application-specific integrated circuits (ASICs). The
processing may be implemented i a distributed manner in
which different parts of the computation specified by the
soltware are performed by different computing elements.
Each such computer program 1s preferably stored on or
downloaded to a computer-readable storage medium (e.g.,
solid state memory or media, or magnetic or optical media)
ol a storage device accessible by a general or special purpose
programmable computer, for configuring and operating the
computer when the storage device medium 1s read by the
computer to perform the processing described herein. The
inventive system may also be considered to be implemented
as a tangible, non-transitory medium, configured with a
computer program, where the medium so configured causes
a computer to operate 1n a specific and predefined manner to
perform one or more of the processing steps described
herein.

A number of embodiments of the invention have been
described. Nevertheless, 1t 1s to be understood that the
foregoing description 1s intended to illustrate and not to limait
the scope of the mnvention, which 1s defined by the scope of
the following claims. Accordingly, other embodiments are
also within the scope of the following claims. For example,
various modifications may be made without departing from
the scope of the mvention. Additionally, some of the steps
described above may be order independent, and thus can be
performed 1n an order different from that described.

For instance, in addition to or as an alternative to the
features described above, the following embodiments are
described:

Embodiment 1 1s directed to a method including analyz-
ing, by a processor, a first version of a computer program.
The analyzing includes i1dentifying a first data processing
clement included in the first version of the computer pro-
gram. The first data processing eclement references a first
data source external to the first version of the computer
program. The method includes generating a data source
clement that represents a second data source different from
the first data source. The method includes generating a
second version of the computer program. The second ver-
sion of the computer program includes the generated data
source element and a second data processing element that 1s

US 10,705,807 B2

19

based on the first data processing element. In the second
version of the computer program, the second data processing,
clement references the generated data source element.

Embodiment 2 1s directed to embodiment 1, wherein the
method includes determining a location of the second data
source.

Embodiment 3 1s directed to any of the preceding embodi-
ments, wherein determining the location of the second data
source comprises recerving an mput indicative of the loca-
tion.

Embodiment 4 1s directed to any of the preceding embodi-
ments, wherein the method includes presenting, 1n a user
interface, an i1dentifier of the 1dentified first data processing
element, the first data source, or both.

Embodiment 5 1s directed to embodiment 4, wherein the
method includes receiving a selection of the identified first
data processing element, the first data source, or both.

Embodiment 6 1s directed to any of the preceding embodi-
ments, wherein analyzing the first version of the computer
program includes analyzing an input flow into at least one of
the data processing elements in the first version of the
computer program.

Embodiment 7 1s directed to any of the preceding embodi-
ments, wherein the method includes analyzing the first
version of the computer program at runtime of the computer
program.

Embodiment 8 1s directed to any of the preceding embodi-
ments, wherein The computer program includes a graph.

Embodiment 9 1s directed to embodiment 8, wherein
generating the second version of the computer program
comprises locating the generated data source element at an
input flow to the second data processing element.

Embodiment 10 1s directed to any of the preceding
embodiments, wherein data from the second data source has
the same format as data from the first data source.

Embodiment 11 1s directed to any of the preceding
embodiments, wherein generating the data source element
includes defining an overlay specification for the generated
data source element.

Embodiment 12 1s directed to any of the preceding
embodiments, wherein the method includes populating the
second data source with data based on data from the first
data source.

Embodiment 13 1s directed to any of the preceding
embodiments, wherein, 1n the first version of the computer
program, a third data processing element references a first
data destination external to the first version of the computer
program. In the second version of the computer program, a
fourth data processing element that 1s based on the third data
processing element references a second data destination
different from the first data destination.

Embodiment 14 1s directed to any of the preceding
embodiments, wherein the method includes identifying a
third data processing element included 1n the first version of
the computer program. The third data processing references
a first data destination external to the first version of the
computer program. The method includes generating an
output element that represents a second data destination
different from the first data destination. The second version
of the computer program includes the generated output
clement and a fourth data processing element that 1s based
on the third data processing element. In the second version
of the computer program, the fourth data processing element
references the generated output element.

Embodiment 15 1s directed to embodiment 14, wherein
the method 1ncludes determining a location of the second
data destination.

10

15

20

25

30

35

40

45

50

55

60

65

20

Embodiment 16 1s directed to embodiment 15, wherein
determining the location of the second data destination
comprises receiving an iput indicative of the location.

Embodiment 17 1s directed to any of the preceding
embodiments, wherein the method includes executing the
second version of the computer program.

Embodiment 18 1s directed to any of the preceding
embodiments, wherein executing the second version of the
computer program enables debugging of the computer pro-
gram.

Embodiment 19 1s directed to any of the preceding
embodiments, wherein generating the second version of at
least a portion of the computer program includes generating
a copy of the portion of the computer program.

Embodiment 20 1s directed to embodiment 19, wherein
the method 1includes moditying the copy of the portion of the
computer program to include the generated data source
clement.

What 1s claimed 1s:

1. A method including:

analyzing a first version of a computer program, the

analyzing including identifying a first data processing
clement included in the first version of the computer
program, the first data processing element referencing
a first data records element that represents a source of
or destination for data records;

identifying a storage for data records, the identified stor-

age being different from the source of or destination for
data records;

generating a second data records element that represents

the 1dentified storage for data records, including defin-
ing a specification for the second data records element
that includes including information indicative of a
location of the 1dentified storage for data records and an
identifier associated with the first data processing ele-
ment; and

generating a second version of the computer program

based on the first version of the computer program and
the specification for the second data records element,
the second version of the computer program including
the generated second data records element and a second
data processing element that 1s based on the first data
processing clement, wherein the first version of the
computer program 1s not modified by the generation of
the second version of the computer program;

in which, 1n the second version of the computer program,

the second data processing element references the
generated second data records element.

2. The method of claim 1, in which 1dentitying the storage
for data records includes determining the location of the
storage for data records.

3. The method of claim 2, in which determining the
location of the storage for data records includes receiving an
input indicative of the location.

4. The method of claim 1, including presenting, 1n a user
interface, an i1dentifier of the first data processing element,
the first data records element, or both.

5. The method of claim 4, including receiving a selection
of the first data processing element, the first data records
element, or both.

6. The method of claim 1, 1n which analyzing the first
version of the computer program includes analyzing an input
flow 1nto one or more data processing elements included 1n
the first version of the computer program.

7. The method of claim 1, 1n which analyzing the first
version of the computer program includes analyzing an

US 10,705,807 B2

21

output tflow from one or more data processing elements
included 1n the first version of the computer program.
8. The method of claim 1, 1n which the computer program
includes a graph.
9. The method of claim 8, 1n which generating the second
version ol the computer program includes locating the
generated second data records element at an input tlow to the
second data processing element.
10. The method of claim 8, in which generating the
second version of the computer program includes locating
the generated second data records element at an output flow
from the second data processing element.
11. The method of claim 1, including populating the
second data records element with data based on data from
the first data records element.
12. The method of claim 1, including executing the
second version of the computer program.
13. The method of claim 1, in which generating the
second version of the computer program includes generating
a copy of at least a portion of the first version of the
computer program.
14. The method of claim 13, including moditying the
generated copy to mclude the second data records element.
15. A system 1ncluding:
means for analyzing a first version of a computer pro-
gram, the analyzing including identitying a first data
processing element 1included in the first version of the
computer program, the first data processing element
referencing a first data records element that represents
a source of or destination for data records:;

means for identifying a storage for data records, the
identified storage being diflerent from the source of or
destination for data records;

means for generating a second data records element that

represents the identified storage for data records,
including defining a specification for the second data
records element that includes including information
indicative of a location of the 1dentified storage for data
records and an 1dentifier associated with the first data
processing e¢lement; and

means for generating a second version of the computer

program based on the first version of the computer
program and the specification for the second data
records element, the second version of the computer
program including the generated second data records
clement and a second data processing element that 1s
based on the first data processing element, wherein the
first version of the computer program 1s not modified
by the generation of the second version of the computer
program;
in which, 1n the second version of the computer program,
the second data processing element references the
generated second data records element.
16. A system including:
one or more processors coupled to a memory, the one or
more processors and memory configured to:
analyze a first version of a computer program, the
analyzing including 1dentifying a first data process-
ing eclement included 1n the first version of the
computer program, the first data processing element
referencing a first data records element that repre-
sents a source of or destination for data records:

identily a storage for data records, the 1dentified storage
being different from the source of or destination for
data records:

generate a second data records element that represents

the 1dentified storage for data records, including

10

15

20

25

30

35

40

45

50

55

60

65

22

defining a specification for the second data records
clement that includes including imnformation indica-
tive of a location of the identified storage for data
records and an 1dentifier associated with the first data
processing element; and

generate a second version of the computer program
based on the first version of the computer program
and the specification for the second data records
clement, the second version of the computer program
including the generated second data records element
and a second data processing element that 1s based
on the first data processing element, wherein the first
version of the computer program 1s not modified by
the generation of the second version of the computer
program;

in which, 1n the second version of the computer pro-
gram, the second data processing element references
the generated second data records element.

17. A non-transitory computer-readable medium storing
instructions for causing a computing system to:

analyze a first version of a computer program, the ana-

lyzing including identifying a first data processing
clement included in the first version of the computer
program, the first data processing element referencing
a first data records element that represents a source of
or destination for data records:

identify a storage for data records, the identified storage

being different from the source of or destination for
data records:

generate a second data records element that represents the

identified storage for data records, including defining a
specification for the second data records element that
includes including information idicative of a location
of the identified storage for data records and an 1den-
tifier associated with the first data processing element;
and

generate a second version of the computer program based

on the first version of the computer program and the
specification for the second data records element, the
second version of the computer program including the
generated second data records element and a second
data processing element that 1s based on the first data
processing clement, wherein the first version of the
computer program 1s not modified by the generation of
the second version of the computer program;

in which, 1n the second version of the computer program,

the second data processing element references the
generated second data records element.

18. The computer-readable medium of claim 17, 1n which
identifying the storage for data records includes determining
the location of the storage for data records.

19. The computer-readable medium of claim 17, 1n which
analyzing the first version of the computer program includes
analyzing an input flow into one or more data processing
clements included in the first version of the computer
program.

20. The computer-readable medium of claim 17, 1n which
analyzing the first version of the computer program includes
analyzing an output flow from one or more data processing
clements included in the first version of the computer
program.

21. The computer-readable medium of claim 17, in which
the computer program includes a graph.

22. The computer-readable medium of claim 21, in which
generating the second version of the computer program
includes locating the generated second data records element
at an input flow to the second data processing element.

US 10,705,807 B2

23

23. The computer-readable medium of claim 21, 1n which
generating the second version of the computer program
includes locating the generated second data records element
at an output flow from the second data processing element.

24. The computer-readable medium of claim 17, storing
istructions for causing the computing system to populate
populating the second data records element with data based
on data from the first data records element.

25. The computer-readable medium of claim 17, storing
instructions for causing the computing system to execute the
second version of the computer program.

26. The computer-readable medium of claim 17, 1n which
generating the second version of the computer program
includes generating a copy of at least a portion of the first
version of the computer program.

27. The system of claim 16, 1n which i1dentifying the
storage for data records includes determining the location of
the storage for data records.

28. The system of claim 16, 1n which analyzing the first
version of the computer program 1ncludes analyzing an input
flow 1nto one or more data processing elements included 1n
the first version of the computer program.

29. The system of claim 16, 1n which analyzing the first
version of the computer program includes analyzing an

10

15

20

24

output tlow from one or more data processing elements
included 1n the first version of the computer program.

30. The system of claim 16, in which the computer
program includes a graph.

31. The system of claim 30, in which generating the
second version of the computer program includes locating
the generated second data records element at an mput flow
to the second data processing element.

32. The system of claim 30, in which generating the
second version of the computer program includes locating
the generated second data records element at an output flow
from the second data processing element.

33. The system of claim 16, the one or more processors
and memory configured to populate populating the second
data records element with data based on data from the first
data records element.

34. The system of claim 16, the one or more processors
and memory configured to execute the second version of the
computer program.

35. The system of claim 16, in which generating the
second version of the computer program includes generating,
a copy of at least a portion of the first version of the
computer program.

	Front Page
	Drawings
	Specification
	Claims

