US010699003B2

a2y United States Patent (10) Patent No.: US 10,699,003 B2

Zamir et al. 45) Date of Patent: Jun. 30, 2020
(54) VIRTUAL AIR-GAPPED ENDPOINT, AND (2013.01); HO4L 63/1491 (2013.01); HO4L
METHODS THEREOF 63720 (2013.01); HO4W 12/0806 (2019.01);
(Continued)
(71) Applicant: Hysolate Ltd., Tel Aviv-Jafia (IL) (58) Field of Classification Search
| CPC .. GO6F 21/53; GO6F 9/4353558; GO6F 9/45545;
(72) Inventors: Tal Zamir, Tel Aviv (IL); Oleg GO6F 2009/45562; GO6F 2009/45595:
Zlotnik, Nesher (IL); Boris Figovsky, GO6F 2009/45587; HO4L 63/20
Hadera (IL) See application file for complete search history.
(73) Assignee: HYSOLATE LTD., Tel Aviv-Jafta (IL) (56) References Cited
(*) Notice: Subject to any disclaimer, the term of this U.S. PAIENT DOCUMENTS
patent 1s extended or adjusted under 35 N .
U.S.C. 154(b) by 212 days. 6,496,847 B1* 12/2002 Bugnion GOO6F 9/7‘:)535/3?

9,116,733 B2 8/2015 Banga et al.
(Continued)

(22) Filed: Nov. 9, 2017 Primary Examiner — Christopher C Harris
(74) Attorney, Agent, or Firm — M&B IP Analysts, LLC

(21) Appl. No.: 15/808,306

(65) Prior Publication Data

US 2018/0213001 A1 Jul. 26, 2018 (57) ABSTRACT

An arr-gapped computing system includes at least network
card interface; a processing circuitry; and a memory, the

Related U.S. Application Data memory containing instructions that, when executed by the

processing circuitry, configure the system to: mitialize a

(60) Provisional application No. 62/449,123, filed on Jan. hypervisor for execution over a primitive OS; create a
23, 2017. plurality of 1solated security zones by instantiating a plural-

ity of corresponding virtual machines using the hypervisor,

(51) Int. CIL. wherein each of the plurality of security zones includes a
GO6F 21/53 (2013.01) plurality of applications executed over a guest OS; 1nstan-
HO4L 29/06 (2006.01) tiate a networking virtual machine using the hypervisor;
(Continued) control, by the networking virtual machine, access of each

application 1n each of the plurality of security zones to an
external network resource; and monitor execution of the

guest OS and each application 1 at least one activated

(2013.01); GOOF 9745545 (2013.01); GO6F security zone of the plurality of security zones, wherein the
9745558 (2013.01); GO6F 21/606 (2013.01); monitoring 1s performed to maintain compliance with a

HO4L 6172015 (2013.01); HO4L 63/02 security policy corresponding to each activated security
(2013.01); HO4L 63/0209 (2013.01); HO4L zone being monitored.

63/0272 (2013.01); HO4L 63/0815 (2013.01);

(52) U.S. CL
CPC ... GOGF 21/53 (2013.01); GOGF 9/45537

HO4L 63710 (2013.01); HO4L 63/1416 31 Claims, 8 Drawing Sheets
~- 100
(
150 130-1 130-2 130-N
— - d 4
N-VM’ tttttttttt 1l) /) | : “"T"““““‘““T*ﬂ
131 13| T 1ar
i | -t
190 o 0 © :
Guest OS5 Guest OS - -
| 132 132 , LJUTEIEOE
Hyoervisor
140

160

Al ok ke ok ol ol why g g gy g PRy ke R Rpd Rpd Rl Rpd kel kgl
_-— e Yl YR T Sy O T e T W W W e e e B e el e e

GPU Mem | Storage ' NiC OP |

US 10,699,003 B2

Page 2
(51) Int. CL 9,386,021 B1 7/2016 Pratt
a 9,417,904 B2 82016 Shin et al.
GO6r 97455 (2018'03‘) 10,310,696 B1* 6/2019 Taylor GOGF 9/45545
GOOF 21/60 (2013.01) 2006/0146057 Al* 7/2006 Blythe GOGF 9/45537
HO4W 12/08 (2009.01) 345/506
HO4L 29/12 (2006.01) 2011/0113467 Al* 52011 Agarwal ... GOGF 21/6281
726/1
(52) gi)sé Cl. GOGF 2009/4557 (2013.01): GOGF 2012/0054744 A1* 3/2012 Singh ..cccoooveevn... GOGF 21/53
---------------- * j 718/1
2009/45562 (2013.01); GOGF 2009/45587 2014/0282813 Al* 9/2014 Botzercocoo...... HO4L. 63/20
(2013.01); GOOF 2009/45591 (2013.01); GO6F 726/1
2009/45595 (2013.01); HO4L 63/0263 2014/0351810 A1 11/2014 Pratt et al.
(2013.01) 2015/0248554 Al* 9/2015 Dumitru GOGF 21/53
' 726/1
. 2015/0277949 A1* 10/2015 Loh .coocovevereenn.. GOG6F 9/45558
(56) References Cited 711/159
_ 2016/0021149 Al 1/2016 Maistn et al.

U.S. PATENT DOCUMENTS 2016/0285914 AL* 9/2016 Singh ..oooooooovvv. HOA4L 63/20
2017/0180325 Al* 6/2017 Palermo HO4L. 63/04

9,129,123 B2
9,218,489 B2

9/2015 Mooring

12/2015 Mooring et al.

* cited by examiner

U.S. Patent Jun. 30, 2020 Sheet 1 of 8 US 10,699,003 B2

Guest 0S| | Guest OS |
82) | 1s2 | 132

“v 1.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:;.*::E (‘j_}__
\ 4 $

Hypervisor
140

FPrimitive OS
160

>

FIG. 1

U.S. Patent Jun. 30, 2020 Sheet 2 of 8 US 10,699,003 B2

(.140
Security Module
240
Abstraction Layer
210
___________________________ e
Cptimization Module
230
Y Y
Native Native
HPR HPR
220 220

FIG. 2

U.S. Patent

Jun. 30, 2020

300

Sheet 3 of 8

Network
Policy

Browsing
Policy

330

Connectivity
Policy

340

FIG. 3

US 10,699,003 B2

US 10,699,003 B2

Sheet 4 of 8

Jun. 30, 2020

U.S. Patent

. dp g i ey i e i e e i e i e i e i e i e i e e i e e i e e i e i e e i e e i e e i e e i e e i e e i e e i e e i e e i e de b e de b ek o b Bk oa koa k
e ra s e e e e
DO 02 L AE a aE L 3E L AE 0L AE 0L 3E LAl 0l 3E L AE AL Al ol 3E 0L 3 ol A ol 2 0L AL sl ol ok 3 0L S ab ol ab ol ol ol ._...__.4__&...&.4....4__ ._.__.__..:_.4._ L e *

..

N A
e
-
o

+ 4 4 4
I.I.‘.I.I.‘.I.I.

N S

L M M M M KON K

LR R R R RN

.H?H?Hx”xﬂxﬂx”xﬂx” ” -”___
WA A AR A a'w
F gl . »
A T
A A A »
KA A K A T
A A A A A A .
N A A A -
.H#H#H#Hu”rﬂx”r”x” u”s””x”u” o o
Ol A A o W ’
F e W FEAL ChA
A, i s xR ol
g i A X KA W
A o A il
A N W
A i i A, A & o Sy
e S A x W A ety
v e i A W b o aN
A A A, i -
1__.H| T T e o ko .r.m.r. R
. A A A A A szt w o TR
- o A o " o T
v g S i e A o= ’ P I a N
A I, A s AT . 2 NN T .
A e A i a - A o ay
A i i, i B I x W o
i R 2ol / Kl X a N
A o Yala T x I ol -
g i e A " »Y ’ o o
oot o o o o o o nknr. . ..__.n..._..___ o M _nm_n T
A e A, I LR O o ! -
A e, ; T K.
o K X FOE N o K Mt -
R e Ly w . unx A A PR
’.’.’.’.’.’.’.’.’. F Y i A ll.'.r.r‘.r.r.".r.' m bk & & & & & B = F] -’“ .’“ x an
Ely e e X R .. R . Al Koy .
o o o o e s o 2N T O
P A PP g B " MM “aa
ol o e N ¥ 2= ; au
o o o o e o o e o o 2 "t iy
FlE A " P e * I e 2y
FOE g A PR iy L »oi - e
R el [y o I T
O A oy . - e
FOAE oy, i ¥ - Hat I
r”r”rﬂr”r”rwr”r”rurrrxrrn . R Hi. : .”._._”._...
A A A - - o
KR A A K A e e R * N - L,
EVE A A o St
A A A A A A A A "N oy
O A i A, - XK e e
A " T - ('
FE o, A ol A, = Tt
AR S P aty
.”r.”r.”r.Jrrrrxjxrx”r”r”r”x”x”xr. st Hx - __.HJH -
FOAE oy Py e
(A A A O o
o o o o o o P o
A O e St
A A A P I oy
A B e e
FOAE ol 2N wa
A A A A O Tt
LR i T . i
EY A - e
A "N e
A - Pt
EYE T 2 .)
N AR KA A O e e
R K KA * .
NP RN N AN] ORI~ e - -
Ll = i - N
A N P . .
A A el R o . i e
[T AL A e o e S "M e
A rrrrrv.r N A SN e_._.4._...
rrrrﬁ.rrnrrrrrr N b - -
L &
..aHa“n”nHaxn”xxa“n”nun“n”n”n”runun”r RO < - 1..”._._”.__..
0 I e i e Sy o Taay
R 2" . ' wat ol
AR AR AR LA A . y...lni -z Tt
T T Y Y T Ve iy P, . o
0 I o e - Hat I
b o R A R A AR A A A AL AL A P . R
N 0 I Il i -k . St
A " Py r o
N i . O al e
A A A e pe e M MM oA MO M N KM L] I, . ™
R N I Il i . o e St
b o e A e AR A A A A A A A . P . y
N 0 Il i . ol Rt
T T T e Vs s T i i Vg T T, P P o .
W O N Ny . S
F A A, e e P .
0 I . o o™ 2
R a Py o
N 0 I Il i . N x)
N _.u- o . W
N i . =
T Y Y Y iV Ve Sy o P, .
R I I . i e
M -4 P P
I I ol i) Sy =
R W » U .
0 A A ~a -4
T Y Y Y e iy - P .
T Il > :
O i v & .

e I I
e e e MMM M N MMM MK MM
A AEXEREXEEXEXEREERNNNNN
HHHHHHHHHHHHHHHHHHHHHHHHHPFHP?FHFFP E A

,

.HHH”H”HHH”H”HHH”H”HHH”H”H”u..”F”FH?”FHF”?”F”FH?”FHF”?” ”] H
A E N E NN E N RN RN N NN N NN NN KN KN NN N
S
I i i i i
P HHHHHHHHHHHHPHFHFHPHFHFHPHFHHH
= N o S
S
A EXERERXEXEXEXEXEXEREERENNMNNNNNNNKNMNNNMNN
5 HHHHHHHHHHHHPH?HFHPH?HFHPHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHH.u..HPHFHFHPHFHFHPHFHFHPHFHF A
MM E N N -

o

L H]
I I KT I, ”x”,”x”p
H.HH.F.H.?!.r.H.F.H.?!.r.H.F.I.?!.r.H.F.P?FFFHPH’.HFHPH’.HFHPH’HF A !.HFHPH!.HFH
.1.#.1H1.1.F11@1?1?1.#.??11&.11?#?!?#?# F

x’x”x’x’xr

430

410

FlG. 4

U.S. Patent Jun. 30, 2020 Sheet 5 of 8 US 10,699,003 B2

Endpoint Endpoint Endpoint
510-1 510-2 |5 o o 510-M (500
A & A
v I 4 \ 4
' < ' _ Management
_ Server
Network il 330
220
L
\ _

FIG. 5

U.S. Patent Jun. 30, 2020 Sheet 6 of 8 US 10,699,003 B2

N 4 >605

Initialize a hypervisor is to be executed over a primitive OS
{ . f

‘ e e ol e e e ol e ol e e e e ol ol e B

Create secure zones

V 5620
Instantiate a networking VM

¢ |

\L 5630

Activate a security zone
| J

T

Monitor execution of the applications and guest OS in each
active security zone

FIG. 6

U.S. Patent Jun. 30, 2020 Sheet 7 of 8 US 10,699,003 B2

: S710
Acquire a first primary virtual layer within a primary guest OS5

2

Acquire a second primary virtual layer within a second guest
OS5

Y S730
Receive a command to link the first and second virtual layers

7 S740
Link the first and second virtual layers

G, 7

U.S. Patent Jun. 30, 2020 Sheet 8 of 8 US 10,699,003 B2

300

¢ o o o i e

. 171 .1 .1 T T T T T T T T 01 1 T T T T T T T T T T T 1 T 1 1 1 11 1 .1 .1 1 1.1 .1 .1 .1 .11 .11 1.1_ 1
_ar-:!ll--ll--ll---------------------tr:

e e e
.|.
r

el
...)
i .. "::‘] :: :
L by
... n v
RSP EAPIEIE LI g " '
L .. Lo Ry
.............................)
i :, ,E:..J :: :
B L L L s s - e T T T by
.‘ e e e T . .lr %
BT W T Ty
......... y
I e . ool e - ;
-k * = = 2 =2 = = o aw '. ' ' '

. E Ot e e et e e e e e et : - [l ¥
R RO RRRORLASRERRBas: SRR o " :
I | 3 e e N e e N N L IR Yl
[X E R E RSN EEEEE N DN B > ar . N ¥
Sk e e e L et e et e et e e e L I L i
B - - e e e e e et e e e et e e L L am ' v, r
P L et e e e e e e L e L .

[X E R E R E SRR EE R RN E R RS * a4 ':‘ln.~ ¥
T LN e e e N U et e e Y L L Tl T T T T T -
B e e e e e oo Py go-t AN 5!"'!"1"‘!"!"'- " '
i} . 3t e e et e el e el et el et el et e el e - e A R R R L) - --;----2 h._ r
U O e e et e et N M L I L k- DI L)
." FE N BN R e o e e e e N N e e [I R R "'J T .- drodr 0 0 & dr 0 A X .‘- r
I L e e e N N e e N N L IR Yl [. N W)
[e et e e e et e e - a4 R I -'r :':444-444-4-# N ¥
e P N N NN N NN k| [T R T ¥ [.....-.-._...-._.-‘ - . .
........... T e e . 7 o ST T T T T . L v
B Nt et e e Ay el e I Ty N IR U T T PR, FEE R R ",
[T O o o U e o n n N e e et et e D L Ay B B T T I LN ¥
.'_ r A Al A e i e ar - %
L e T e . O \
RS L RN b 8 v ~
-.".. RS AL .1.1.1-...........-.................-....."":‘-: .‘- :
B Y " :
Wl e e L .
.'_ ...] %
.. o "
[l ¥

W T T T T T T T T T T o "
." ...] [
.. o "
[r ! , ¥
W T T T T T T T T T T o : "
.‘ ... r Ty %
W T T T T T T T T T o S e e " .
.:_: ... "t;:‘l ‘:-I:-':-':-I:-.:‘:‘:ﬁ:‘:‘:ﬁ:‘:‘:ﬁ:‘:‘:ﬁ :"lllllllllllllllllllllllllll!lllll!ll!lllll!ll!ll*‘.r
L ¥ e e N MR R RN R RN RN R RN N AN R AR R RN N R RN RN A RN R RN N R RN A

. . - - . . - - ™ > S R R R R RN g

- E ol e e e et et e e
AR AR AR RR AR AR R AR R KRR AR RN R R R R R R R R R R RN A
o e et N e e et e
o el Y e e e e e e e e
ol N e M
o 3o o e e et e e et e e e)
o e e e e e et N e N e
o 3ol e e e e et e e e
ol R Nt N e et R e M
¢ 3ol e e e et e e e e e
ol e e e et et e e
o a0 e et e e e et e et et e e
o N N e N e R N
o 3ol Sl Y e e e e e e e)
ol R et e ek et R et Nt e
o D e R R B R R R
A
I IG - 8
3
-
'ﬂ
ﬁ
'l'
ﬁ
e
1l"-
. w
i!-"r"
|]
; mininininininininininininininintninininlniniel ninininintniniatnlnininl aininintn el ntnin el
1
1
. 1
A | L I N I I O T O O O O O O O O O T O O O O O O O O OO I O I O O O O O O R O O .
B I I At I B I e 1
-. 111 r ‘- 1
- - 1
n ‘1.' 1
- B .
- [1
. ‘1.' 1
[B -
. 1
T " .
N - L
- - 1
n ‘1.' 1
- B .
- [1
. ‘1.' 1
- Yy - !
L) L -
N W 15'5 !
-) R RN NN 1
L I I M M) ¥ . XTI NN
3 ” AR AARARNAL T, 1. bttt o -
) l-.] ') LI) [AL LR AR, .
‘n - ll:. :l -------------- *l’ ’ " :l'l ! -'J-'J-‘J-: b..- el Tl Tl] : :
= s s gAY FEFEFFyrrryYyrrryYyryyrgysssFrcsFEscEr,E,----r == yrFrws Ko _=_=E_S_8=_8§_8§_§N_Bu_=u_Bu_= R | e e O N NN N Ny NN Ry |
W ‘-' -‘I‘l‘l‘l‘l‘l‘l‘l‘l‘l‘l‘ ' .-l- i‘ P N PR | ' I-‘I‘I‘I-‘I‘I‘I-‘:‘-- 1
§- -t e ey
w . -t L e 1
=Y. [] 4 - 1 1
N - v ¥ -
-5 L] L P | !
N " Tlalal :
[B -
-, 1
N ":' 1
N - L
- - 1
n ‘1.' 1
N - v +
- [] LA B B BN BE BE BE BE B N BC BL NE BL BN BL BC B BE BL BN B NL BN BE B N BL NL B NE OBL NN L BL NN AL BL L BN N N N N 1
. Y e B T e i T e e e e i L
- Y N
))Y NN
- L - - *.""*""‘]
[= % = 3 = % = 3 = 3 = 3w = 3 = 35 = 4 = 3 = 9 = 95 =9 =3 =9 =9y =4 =0y o=oy ==y o=y o= P e
I R R N L e N
11 1‘;'4."bJ
NN
Lol el
Lt o e
el)
Enan sl
FEENE R RN ER RSN R R N
O E R EE R
ot et e e el e e e e e e e
e e et e e
R EE R R
T‘b‘b‘ *J-*J-*b‘b‘b‘b‘b‘b‘b‘b‘b‘b‘b‘b“'|

FiG. 9

US 10,699,003 B2

1

VIRTUAL AIR-GAPPED ENDPOINT, AND
METHODS THEREOF

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/449,123 filed on Jan. 23, 2017, the
contents of which are hereby incorporated by reference.

TECHNICAL FIELD

The present disclosure relates generally to security sys-
tems, and more specifically to allowing air gapping security
using virtual computing.

BACKGROUND

Ailr gapping 1s a security measure that involves 1solating
a computer from an external connection. For example, an air
gapped computer 1s one that 1s physically segregated and
incapable of connecting wirelessly or physically with other
computers or network devices. Air gapped systems and
networks are used to protect many types of critical systems,
such as those utilized in industries including financial,
military, government, utility facilities, and the like.

Preventing a computer or a network from accessing an
external network significantly limits the productivity of
users using such a computer or network. For example, an
application executed on an “air gapped” computer cannot
access any resource over the Internet. To do so, the user
would need to use a different computer having access to the
Internet.

In the related art, there are a number of solutions attempt-
ing to 1solate diflerent computing environments on a single
computer. However, such solutions do not provide a com-
plete air gapping architecture. Furthermore, such solutions
often sufler from user experience 1ssues.

As a prime example, some 1solation solutions are based on
virtual machine (VM) technologies. That 1s, VMs are con-
tainers 1n which applications and guest operating systems
can be executed. By design, all VMs are 1solated from one
another. This 1solation enables multiple virtual machines to
run securely while sharing hardware.

Although virtual machines share hardware (e.g., CPU,
memory, and I/O devices, etc.), a guest operating system
running on an individual virtual machine cannot detect any
device other than the virtual devices made available to the
guest operating system. In various virtualization environ-
ments, a hypervisor acts as an interface between the guest
operating system and the host operating system for some or
all of the functions of the guests. A host operating system
directly interacts with the hardware. A host operating system
may be Windows®, Linux®, and the like.

Endpoints (e.g., desktop or laptop computer) configured
with VM 1solation do not provide a complete defense against
malicious code. One vulnerability point 1n such virtualiza-
tion environments 1s the host operating system. That 1s,
hackers can exploit security vulnerabilities integrated in
such operating systems to propagate malicious code to the
hypervisors and then to the guest operating systems. Further,
a user can install malicious software directly on the host
operating systems (1.e., outside of the virtualization envi-
ronment). To prevent users from 1nstalling software directly
on the host operating system, such an operating system
should be restricted. However, such an approach limits the

10

15

20

25

30

35

40

45

50

55

60

65

2

user experience as the user cannot install applications,
plug-ins, change settings, and so on, with a restricted oper-
ating system.

Other 1solation solutions are based on the sandboxing of
critical applications executed on an endpoint. The sandbox-
ing 1s achieved by running each application 1n a separate
VM. This 1solation can also be penetrated by hackers, as the
sandboxed applications are often executed over a vulnerable
host operating system which 1s controlled by the user and
has a wide attack surface.

Another i1solation solution 1s based on separating any
browsing activity from the endpoint to eliminate malware
and phishing from websites and emails. In such solutions,
the browser 1s executed m a VM 1n a cloud computing
platform, where all webpages are rendered 1n the cloud and
sent to the endpoint for display therein. This solution does
not defend from other applications executed in a typical
endpoint. Further, such solution does not prevent a user from
installing malicious software on the endpoint.

It would therefore be advantageous to provide a solution
that would overcome the deficiencies noted above.

SUMMARY

A summary of several example embodiments of the
disclosure follows. This summary 1s provided for the con-
venience ol the reader to provide a basic understanding of
such embodiments and does not wholly define the breadth of
the disclosure. This summary 1s not an extensive overview
of all contemplated embodiments, and 1s intended to neither
identify key or critical elements of all embodiments nor to
delineate the scope of any or all aspects. Its sole purpose 1s
to present some concepts of one or more embodiments 1n a
simplified form as a prelude to the more detailed description
that 1s presented later. For convenience, the term “some
embodiments” or “certain embodiments” may be used
herein to refer to a single embodiment or multiple embodi-
ments of the disclosure.

Certain embodiments disclosed herein include a method
for operating an air-gapped endpoint. The method comprises
initializing, on the endpoint, a hypervisor for execution over
a primitive operating system (OS) of the endpoint; creating
a plurality of 1solated security zones by instantiating a
plurality of corresponding virtual machines using the hyper-
visor, whereimn each of the plurality of security zones
includes a plurality of applications executed over a guest
OS; mstantiating a networking virtual machine using the
hypervisor; controlling, by the networking virtual machine,
access of each application in each of the plurality of security
zones to an external network resource; and monitoring
execution of the guest OS and each application 1n at least
one activated security zone of the plurality of security zones,
wherein the monitoring 1s performed to maintain compliance
with a security policy corresponding to each activated
security zone being monitored.

Certain embodiments disclosed herein also include a
non-transitory computer readable medium having stored
thereon causing a processing circuitry to execute a process
for operating an air-gapped endpoint.

Certain embodiments disclosed herein also include am
air-gapped computing system, comprising: at least network
card interface; a processing circuitry; and a memory, the
memory containing instructions that, when executed by the
processing circuitry, configure the system to: mmitialize a
hypervisor for execution over a primitive operating system
(OS); create a plurality of 1solated security zones by instan-
tiating a plurality of corresponding virtual machines using

US 10,699,003 B2

3

the hypervisor, wherein each of the plurality of security
zones includes a plurality of applications executed over a
guest OS; mnstantiate a networking virtual machine using the
hypervisor; control, by the networking virtual machine,
access ol each application 1n each of the plurality of security
zones to an external network resource; and monitor execu-
tion of the guest OS and each application 1n at least one
activated security zone of the plurality of security zones,
wherein the monitoring 1s performed to maintain compliance
with a security policy corresponding to each activated
security zone being monitored.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed
out and distinctly claimed 1n the claims at the conclusion of
the specification. The foregoing and other objects, features,
and advantages of the disclosed embodiments will be appar-
ent from the following detailed description taken in con-
junction with the accompanying drawings.

FIG. 1 1s a schematic diagram of an endpoint arranged
with a virtualized environment according to an embodiment.

FIG. 2 1s a block diagram 1llustrating the arrangement of
a hypervisor according to an embodiment.

FIG. 3 1s a policy diagram of a security policy structured
according to an embodiment.

FIG. 4 1s a screenshot of an endpoint display.

FIG. 5 1s a network diagram illustrating a deployment of
a management server according to an embodiment.

FIG. 6 1s a flowchart illustrating a method for operating an
air-gapped endpoint in a virtualized environment according
to an embodiment.

FIG. 7 1s a flowchart 1illustrating a method for clipping
virtual layers in multiple 1solated virtual machine environ-
ments as a single unified UX (user interface) according to an
embodiment.

FIG. 8 1s a schematic diagram 1llustrating a second virtual
machine window overlapping a first virtual machine win-
dow.

FI1G. 9 1s a schematic diagram 1llustrating a second virtual
machine window placed over a clipped version of a first
virtual machine window.

DETAILED DESCRIPTION

It 1s 1mportant to note that the embodiments disclosed
herein are only examples of the many advantageous uses of
the innovative teachings herein. In general, statements made
in the specification of the present application do not neces-
sarily limit any of the various claimed embodiments. More-
over, some statements may apply to some inventive features
but not to others. In general, unless otherwise indicated,
singular elements may be 1n plural and vice versa with no
loss of generality. In the drawings, like numerals refer to like
parts through several views.

By way of example to the disclosed embodiments, a
virtualized environment designed to secure endpoints from
execution of malicious code 1s provided. Specifically, the
disclosed embodiments allow for operation of any endpoint
in a virtual air-gap mode, thereby ensuring that the endpoint
1s 1solated from unsecured resources (such as networks,
external drives, and the like). The disclosed wvirtualized
environment allows for executing multiple applications in a
number of diflerent secured zones, while providing a seam-
less user experience.

In an embodiment, each zone 1s 1solated from other zones,
and each application that can be accessed by a user is

10

15

20

25

30

35

40

45

50

55

60

65

4

executed 1 one of a few virtualized environments. In
addition, the virtualized environment does not require a tull
host OS to interface between the security zones and the
hardware of the endpoint. As another security measure, a
user of the endpoint cannot configure any element of the
underlying virtualized environment.

FIG. 1 shows a schematic diagram 1llustrating an endpoint
100 arranged with a virtualized environment 110 according
to an embodiment. The endpoint 100 may be a computing
device, such as a personal computer (PC) 1n a form factor of
either a laptop or desktop.

The endpoint 100 includes hardware 120, such as can be
found 1n a standard desktop or laptop computer. The hard-
ware 120 may include, for example, a processing circuitry
(CPU) 121, a memory (Mem) 122, a storage 123, a network
interface card (NIC) 124, mput/output (I/O) peripherals
(10P) 125, a graphics processing unit (GPU) 126, and a
sound card (SC) 127. The processing circuitry 121 may be
realized by one or more hardware logic components and
circuits. For example, and without limitation, a general-
purpose microprocessor, a central processing unit (CPU), a
multi-core CPU, a digital signal processor (DSP), and the
like, or any other hardware logic components that can
perform calculations or other manipulations of information.
The memory 122 may be volatile (e.g., RAM, etc.), non-
volatile (e.g., ROM, flash memory, etc.), or a combination
thereof.

The storage 123 may be magnetic storage, optical storage,
and the like and may be realized, for example, as flash
memory or other memory technology, CD-ROM, Digital
Versatile Disks (DVDs) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information. The NIC 124 allows
the endpoint 100 to communicate with external networks
over a wired connection, a wireless connection, or both.

The NIC 124 may transmit communication media, receive
communication media, or both. For example, the NIC 124
may 1n a form of a modem, an integrated network interface,
a radio frequency transmitter/receiver, an infrared port, a
USB connection, and the like.

The I/O peripheral 125 allows connectivity to external
peripherals, such as a disk drive, printers, wireless keyboard,
pointing device, a microphone, a speaker, a docking station,
and the like. The I/O peripherals 125 may allow connectivity
through USB ports, PS/2 ports, Infrared ports, and the like.
The GPU 126 provides connectivity to a monitor display.
The sound card 127 (or audio card) provides mnput and
output of audio signals to and from an endpoint under
control of guest OS.

It should be noted that other hardware components are
included 1n a typical hardware of an endpoint which are not
illustrated herein. Such components may include, but are not
limited to, a motherboard, a power source, and the like.

According to the disclosed embodiments, the virtualized
environment 110 1s designed to provide a complete virtual
air-gapping for a plurality of security zones 130-1 through
130-7 (hereinafter referred to individually as a security zone
130 and collectively as security zones 130, merely for
simplicity purposes). The virtualized environment 110 1s
also arranged to include a hypervisor 140 controlling the
security zones 130, a networking VM (N-VM) 150, and a
primitive operating system (OS) 160.

Each security zone 130 1s realized as a virtual machine
executing a plurality of applications 131 over a guest OS
132. Each security zone 130 1s configured to host applica-
tions based on their security and sensitivity levels. For

US 10,699,003 B2

S

example, a security zone 130 may be a corporate zone for
general corporate applications, a personal zone for untrusted
content and applications, a privileged I'T zone for production
applications, a financial zone for sensitive financial appli-
cations (e.g., SWIFT), a zone for critical infrastructure
applications (e.g., SCADA), and so on.

Each security zone 130 1s completely 1solated from each
of the other zones 130. That 1s, an application executed 1n
zone 130-1 cannot access any content or applications
executed 1n zone 130-2.

As an example, the zone 130-1 may be a trusted corporate
zone (executing sensitive corporate applications) while the
zone 130-2 can run applications that can access untrusted
applications and resources. That 1s, the corporate zone 130-1
provides access to sensitive corporate resources and can be
strictly locked down, while the personal zone 130-2 can
provide free access to the Internet and allow the user to
install and run any application.

According to the disclosed embodiments, the virtualized
environment 110 provides a complete separation between
the zones 130-1 and 130-2, thereby providing a complete
air-gap between the zones. As will be discussed below,
applications from different zones 130 are displayed on the
same display, content can be copied from one zone to
another (under a control of a user), and switching between
zones 1s seamless. Thus, the virtualized environment 110
would allow improved productivity for users.

The operation of the security zones 130 1s controlled by
the hypervisor 140. Specifically, the hypervisor 140 1s
configured to instantiate a VM for each security zone 130.
The applications 132 are executed 1 each corresponding
VM. The hypervisor 140 1s configured to present the zones
130, and hence the applications 131 executed therein, with
a unified user experience (UX).

According to an embodiment, the hypervisor 140 1s also
configured to instantiate the N-VM 150. The N-VM 150 1s
not accessible to the user, i1.e., no user applications are
executed therein and no local configuration of the N-VM
150 1s allowed. The N-VM 150 1s configured to control and
regulate access to the external networks (not shown in FIG.
1) through the NIC 124. Examples for such networks may
include, but are not limited to, the Internet, a local area
network (LAN), a virtual private network (VPN), a short-
range network (e.g., Bluetooth®), and the like. The opera-
tion of the N-VM 150 1s discussed 1n greater detail below.

According to the disclosed embodiments, after instanti-
ating the VMSs of the zones 130 and the N-VM 130, the
hypervisor 140 1s configured to virtualize the components of
the hypervisor 140. That 1s, for each guest OS 132, the
hypervisor 140 provides a limited set of virtualized hard-
ware services. For example, when the user 1s 1n a security
zone 130-1 an access to a microphone will be permitted to
access the applications 131 running 1n that zone.

In an embodiment, the hypervisor 140 1s configured to
instantiate and control the VMs, as well as to virtualize
hardware services to such VMs. This allows for program-
ming the hypervisor 140 with a significantly lower number
of code lines, thereby reducing the risks of vulnerabilities
that can be exploited by, for example, the guest OS 132. In
an embodiment, controlling the VMs (zones 130) includes
enforcing security policies for each zone, as discussed 1n
greater detail below.

FIG. 2 1s an example block diagram illustrating the
arrangement of the hypervisor 140 according to an embodi-
ment. The hypervisor 140 includes an abstraction layer 210
that allows the integration with a plurality of commercially
available native hypervisors 220. Non-limiting examples for

10

15

20

25

30

35

40

45

50

55

60

65

6

such native hypervisors 220 include Oracle® VM, Micro-
solt® Hyper-V®, and the like. The native hypervisors 220
primarily provide access to guest OSs such as Windows®
10, Windows® 7, Linux, and the like.

The hypervisor 140 also includes an optimization module
230 configured to perform optimization processes to accel-
crate or otherwise improve the operation of the native
hypervisors 220. Such optimization processes include, but
are not limited to, display optimization (3D and graphic
rendering), audio optimization (playback and audio record-
ings), and power optimization.

In an embodiment, the audio optimization includes
bypassing all emulation layers, typically performed by a
standard native hypervisor when emulating a sound card
(127, FIG. 1). To this end, the optimization module 230 1s

configured to 1nteract directly with an application layer of a
guest OS 130, so as to receive the audio signals. The
optimization module 230 replays the audio signals to the
audio card (in the host’s hardware device). This allows for
reducing latency ivolved by emulating the standard audio
hardware, thereby improving latency and performance.

In another embodiment, the display optimization includes
causing the GPU (126, FIG. 1) to render only specific
windows ol applications running m a VM (zone), and
displaying such windows on a desktop display of another
VM. To this end, the optimization module 230 1s configured
to provide the GPU 126 only with the regions of the
application windows 1n the guest OS. Such regions can be
deducted from the data provided by a guest OS. The
optimization module 230 1s further configured to capture a
tull screen display of the VM and instruct the GPU 126 to
crop that VM’s virtual display window while not rendering
any region that does not belong to one of the application
windows 1n the guest OS. It should be noted that the GPU
126 would typically show the VM’s virtual display as a full
screen window. This optimization allows minimal data copy
of each frame, resulting 1n 1mproved video performance.

In yet another embodiment, the power optimization 1s
designed to extend the operating hours of a battery (not
shown). The wvirtualized environment (110, FIG. 1) 1s
designed to run multiple operating systems 1n multiple VMs.
This can rapidly drain battery power as there 1s intensive
usage ol the processing circuitry (121, FIG. 1) and [/O
devices by multiple operating systems 1nstead of just one I/O
device on a normal machine.

The optimization module 230 15 configured to “freeze’ all
virtual machines (i.e., change their current states into an idle
state) that do not have an active foreground window. In their
idle state, VMs no longer consume CPU or perform I/O
operations. The applications executed 1n the idle (frozen)
VMs are displayed in their last state before the freeze
operation. When the user switches the focus back to one of
the frozen VMs, the optimization module 230 changes its
state to that of a normal operation. It should be noted that the
power optimization provides a security benefit, as a frozen
VM cannot be attacked because 1t does not have any
attack-vulnerable surface at that time.

According to the disclosed embodiments, the hypervisor
140 also includes a security module 240 configured to
directly communicate with the VMs 130 and 150. That 1s,
any request to access the hypervisor 140 1s received and
handled by the security module 240. In an embodiment, a
request (or command) to access a resource of the hypervisor
140 15 captured by the security module 240 such that the
request does not reach the OS 160. For example, a keyboard
shortcut (e.g., Ctrl+C) would be captured and handled by the

US 10,699,003 B2

7

hypervisor 140. That 1s, the hypervisor 140 disclosed herein
prevents any interfacing of a user device with the primitive
OS 160.

Returning to FIG. 1, the primitive OS 160 1s configured to
merely execute device drivers. For example, a display
driver, a printer driver, a PCle chipset dnivers will be
executed by the primitive OS 160. The primitive OS 160
does not and cannot access any user applications (e.g.,
applications nstalled by a user), any user-controlled OS, or
any user commands. That 1s, the primitive OS 160 cannot
execute any code which may be orniginated from any sofit-
ware 1nstalled or uploaded by the user. For example, a user
accesses an unsecure website from a browser running 1n a
personal secure zone and unintentionally downloads a mal-
ware. The malware cannot access and cannot be executed by
the primitive OS 160. Further, the user cannot directly install
soltware applications outside of the security zones 130, and
specifically cannot 1nstall software directly on the primitive
OS 160.

In an embodiment, the primitive OS 160 1s configured to
execute only pre-signed code. Thus, any malware code will
not be executed by the primitive OS 160. In yet another
embodiment, the primitive OS 160 cannot access the NIC
124, thus, cannot access an external network. The commu-
nication 1s performed through the N-VM 150. To this end,
any TCP/IP activity by the primitive OS 1s controlled and
restricted by the N-VM 150.

In an example implementation, the primitive OS 160 may
implement a virtual NIC (not shown) configured with a
virtual IP to allow communication with the N-VM 150. In
yet another embodiment, the files of the primitive OS 160
are non-persistent, ensuring that the primitive OS 160 1is
reset to its original configuration after each boot of the
endpoint 110. In yet another embodiment, the files of the
primitive OS 160 are encrypted, so that cannot be tampered
or manipulated.

In an embodiment, the primitive OS 160 may be, for
example, Windows®, Mac OS®, or Linux®, that has been
configured to allow only execution of drivers and to elimi-
nate any functionality as discussed herein.

The N-VM 1350 1s configured to manage network connec-
tivity. That 1s, the N-VM 150 1s monitoring and policing all
communications between the applications 131 in the difler-
ent security zones 130 and external networks (not shown 1n
FIG. 1). In an embodiment, the N-VM 150 1s configured
with a network policy (e.g., the network policy 310, FIG. 3)
for each security zone 130 determining which networks can
be accessed for the zone. The network policy may be defined
for each application 131 1mm a zone or for a group of
applications. Further, the access may be defined with a set of
permissions. As an example, a full access to a network
resource, a limited access to a network resource, access 1s
permitted after authentication, and so on.

In an embodiment, all network access requests are routed
to the N-VM 150. In response, the N-VM 150 1s configured
to 1dentily for a secunity zone 130 (1.e., a VM) requesting to
access an external network. The N-VM 150 allows or denies
the access request based on the network policy determined
for the requesting zone. As an example, requests from a
personal zone to a corporate network will be blocked by the
N-VM 150, while requests from a corporate network to the
same network will be allowed. The network policies are
pre-configured using, for example, a management server
(not shown 1n FIG. 1) connected to the endpoint 100. The
management server 1s discussed 1n detail herein below.

It should be appreciated that the primitive OS 160, the
hypervisor 140, or both, do not manage the network con-

10

15

20

25

30

35

40

45

50

55

60

65

8

nection, and as such do not allow or deny connections to
external networks. It should be further appreciated that
physical connection to the external networks are established
through the NIC 124 under the control of the N-VM 150.
The N-VM 150 operates 1n a non-persistent mode and 1s
reverted to 1ts 1itial state upon each connect or disconnect
event, adding another layer of security in case the N-VM
150 somehow becomes inifected.

In an embodiment, the N-VM 1350 1s configured to per-
form network identification at various layers, e.g., MAC
layer, TCP/IP layer, and application layer (e.g., HI'TPS or
SSL 1dentification). In another embodiment, the network
policies can be enforced by applying access control or
firewall rules at TCP/IP or application layers (e.g., layers 4
or 7 of the OSI module). In yet another embodiment, the
N-VM 150 1s configured to allow connection using VLAN
tags or through DHCP proxy implemented in the N-VM 150.

It should be appreciated that the virtualized environment
110 provides a complete virtual air-gapping secured solution
to applications executed 1n each security zone even 1f one or
more of the zones becomes vulnerable. The design of the
virtualized environment 110 assumes that all VMs, guest
OSs, and applications executed 1n the zones 130 are not
trusted. Additional layers of protection are achieved by
means of the hypervisor 140, the N-VM 130, and the limited
functionality of the primitive OS 160.

As an example, a corporate zone (e.g., one of the security
zones 130) 1s infected by a malicious bot communicating
with a command-and-control server. According to the dis-
closed embodiments, the bot cannot communicate with 1ts
command-and-control server on the Internet, as such access
attempt will be blocked by the N-VM 150. That 1s, the
N-VM 150 may allow access to an internal corporate
network or a whitelisted set of cloud hosts, as defined 1n a
network policy for the corporate zone.

In an embodiment, VMs of the security zones 130 are
non-persistent. That 1s, the VMs are initialized to an original
configuration after each boot, logoil, application event, and
so on. That 15, VMs infected with malware will return to
theirr imitial “clean” state aiter, e.g., each boot.

The operation of the security zones 130 1s also regulated
by additional preconfigured policies. In an embodiment,
illustrated 1n FIG. 3, a security policy 300 1s preconfigured
for a security zone 130. A security policy 300 includes at
least a network policy 310, a user interface (UX) policy 320,
a browsing policy 330, and a connectivity policy 340. A
security policy 300 1s configured for each security zone 130
by, for example, a management server.

In an example embodiment, the UX policy 320 defines
which user interface actions are allowed to be performed by
the user in the respective zone. Examples for such actions
include, but are not limited to, clipboard, printing, screen-
shoting, and the like. As a non-limiting example, the UX
policy 320 can define 11 the user can copy content and paste
such content 1n a different zone, or 1f content from a diflerent
zone can be pasted in the current zone. Content may include,
for example, text, an 1mage, a file and the like. The UX
policy 320 may also designate what type of content can be
copied, pasted, or both.

In an embodiment, cross-transfer of content between
security zones 1s allowed only when explicitly approved by

the user. This ensures that a malware cannot copy content
from one zone to another.

The browsing policy 330 defines a whitelist of URLs or
domain names that can be accessed from a browser executed
in the respective zone. This allows, for example, blocking
browsers from accessing malicious URLs when the user

US 10,699,003 B2

9

mistakenly browses to such URLs in the wrong security
zone. In an optional embodiment, the blocked URL can be
accessed and launched in another security zone which 1s
allowed to access that URL. It should be noted that the
browsing policy 330 1s different from the network policy 310
in that it restricts access to certain URLs after a network
established (based on the definitions) defined 1n the network
policy. The network policy 310 1s discussed in detailed
above.

The connectivity policy 340 defines a set of allowed
peripheral devices through wired or wireless connections.
As an example, the connectivity policy 340 may define 1t
connections through a USB plug are allowed or restricted.
Restricted connectivity may limit all connections or con-
nections to designated USB devices (e.g., printer but not
Flash Drive). Examples for other wired connections may
include, for example, DisplayPort, Thunderbolt™, HDMI,
PS/2, and the like. Wireless connections may include short
range connections that allow wireless docking of peripheral
devices (e.g., Wi1Gig™), and the like.

Returming to FIG. 1, the disclosed embodiments allow
concurrent execution of applications 131 from different
security zones 130. In one configuration, one security zone
(e.g., 130-1) 1s set as a primary zone, while another secure
zone (e.g., 130-2) 1s set as a secondary zone. The applica-
tions and OS of the primary zone are executed in the
foreground, while those of the secondary zone are executed
on the background. Primarily, a user can interact with
applications of the primary zone, 1.e., windows of such
applications are displayed on the endpoint’s display.

In one embodiment, the applications from the secondary
zone can be displayed on the endpoint’s display providing
the user with the ability to iteract with applications from
different zones. Windows of applications from different
zones are optionally marked differently.

FI1G. 4 shows an example screenshot 400 of an endpoint’s
desktop display showing windows 410, 420, and 430. The
windows 410 and 420 are of web browsers, while the
window 430 1s a remote desktop client. In this example, the
application of window 410 1s running in a first security zone
(e.g., a corporate zone) while the applications of windows
420 and 430 are of the second security zones (e.g., a
privileged zone). The borders of applications are utilized to
distinguish between the first and second zone. In the
embodiment illustrated in FIG. 4, a user can switch between
the windows 410 through 430, that 1s, between zones.

In another embodiment, only applications of the primary
security zones are displayed. In order to display windows of
applications from the secondary security zones, application
windows 1n the primary security zone are hidden and the
application windows in the secondary security zones are
exclusively shown. The switching between zone can be
performed using a predefined UX command (e.g., Ctrl+F[1],
an icon, a taskbar shortcut, etc.).

It should be emphasized that, regardless of the display
mode, applications executed 1n different zones cannot access
cach other. There 1s a complete separation between zones
and applications executed therein.

FIG. 5 shows an example network diagram 500 1llustrat-
ing a deployment of a management server 530 according to
an embodiment. As noted above, the security zones can be
configured through the management server 3530. This
includes defining the type of each zone, the zone’s guest OS,
and the applications that can be 1nstalled and executed 1n the
zone. For example, a security zone can be defined to be a
corporate zone running Linux OS and corporate approved
applications.

10

15

20

25

30

35

40

45

50

55

60

65

10

In another embodiment, the security policy for the secu-
rity zone 1s also defined through the management server 530.
As noted above, a security policy may include network, UX,
browser, and connectivity policies.

In an embodiment, the management server 530 may
include preconfigured security zones and policies that can be
casily uploaded to a new endpoint. In yet another embodi-
ment, the management server 530 can be utilized to clone
security zones from one endpoint to another. Therefore, the
management server 530 simplifies the process of reconfig-
uring new endpoints.

As shown in FIG. 5, the management server 330 is
connected to a plurality of endpoints 510-1 through 510-M
(collectively referred to as endpoints 510) through a network
520. The network 520 may include a local area network
(LAN), a wide area network (WAN), the Internet, and the
like. In an embodiment, the management server 530 may be
deployed on-premises of an orgamization and managed by
the I'T personnel of the organization. In yet another embodi-
ment, the management server 530 may be deployed in a
cloud computing platform, such as a private cloud, a public
cloud, or a hybrid cloud. In such deployment, the manage-
ment server 530 can serve a plurality of different tenants.

According to the disclosed embodiments, the manage-
ment server 330 1s a secured device. As such, only specific
designated endpoints can access the management server
530. In an embodiment, the server 530 accepts connection
requests from endpoints including valid certificates, e.g.,
SSL client certificates. Such certificates are istalled only on
the designated endpoints.

In the example diagram shown in FIG. 5, only the
endpoint 510-2 can access the management server 530 over
a secured connection (e.g., SSL connection). The endpoint
510-2 may be, for example, of an administrator. In a further
embodiment, only a specific security zone (VM) within the
designated endpoint 510-2 can access the management
server 330.

Furthermore, when the management server 530 accesses
the endpoints 510, the access 1s performed over a secured
connection. Any connection attempt made by the manage-
ment server 330 to an endpoint 510 1s verified by a hyper-
visor (e.g., the hypervisor 140, FIG. 1). That 1s, the hyper-
visor verifies the certificate of the management server 530
before accepting a connection with the management server
530.

The management server 530 may be structured as a
computing device including a processing circuitry coupled
to a memory, a storage, and a network interface (not shown
in FIG. 5).

The processing circuitry may be realized as one or more
hardware logic components and circuits. For example, and
without limitation, i1llustrative types of hardware logic com-
ponents that can be used include field programmable gate
arrays (FPGAs), application-specific integrated circuits
(ASICs), Application-specific standard products (ASSPs),
system-on-a-chip systems (SOCs), general-purpose micro-
processors, microcontrollers, digital signal processors
(DSPs), and the like, or any other hardware logic compo-
nents that can perform calculations or other manipulations of
information.

The memory may be volatile (e.g., RAM, etc.), non-
volatile (e.g., ROM, flash memory, etc.), or a combination
thereol. In one configuration, computer readable nstructions
to 1implement one or more embodiments disclosed herein
may be stored 1n the storage.

In another embodiment, the memory 1s configured to store
software. Software shall be construed broadly to mean any

US 10,699,003 B2

11

type of instructions, whether referred to as software, firm-
ware, middleware, microcode, hardware description lan-
guage, or otherwise. Instructions may include code (e.g., 1n
source code format, binary code format, executable code
format, or any other suitable format of code). The nstruc-
tions, when executed by the one or more processors, cause
the processing circuitry to perform the various processes
described herein with respect to the operation of the man-
agement server, such as configuring security zones and
policies with the endpoints.

The storage may be magnetic storage, optical storage, and
the like, and may be realized, for example, as flash memory
or other memory technology, CD-ROM, Digital Versatile
Disks (DVDs), or any other medium which can be used to
store the desired information. The storage may store the
received templates of security zones, policies defined for
cach zone, SSL certificates, configuration of entire secured
zones, and so on.

FIG. 6 shows an example flowchart 600 illustrating a
method for operating an air-gapped endpoint 1n a virtualized
environment according to an embodiment.

At S605, a hypervisor 1s 1nitialized to be executed over a
primitive OS. The initialization occurs when the endpoint
boots. As discussed in detail above, the primitive OS 1s
limited version of an operating system designed to only run
drivers ol hardware components.

At S610, a plurality of secure zones 1s created in the
endpoint. In an embodiment, S610 includes instantiating a
plurality of VMs by a hypervisor executed over a primitive
OS. Each VM runs 1ts own guest OS and a set of applica-
tions. In an embodiment, a security policy 1s associated with
cach security zone defining at least any one of, or a com-
bination of: a network policy, a UX policy, a browsing
policy, and a connectivity policy. The type of the guest OS,
applications and policies of each security zone can be
retrieved from the management server, e.g., the server 530.
In an embodiment, an operating system (OS) booted with the
endpoint may be migrated to operate as one of the guest OSs.

At S620, a networking VM 1s instantiated by the hyper-
visor. In an embodiment, the networking VM 1s configured
with the network policy of each security zone.

At S630, at least one security zone 1s activated to be a
primary zone. This allows execution of the security zone’s
applications 1n the foreground.

At 5640, execution of the applications and guest OS 1n the
at least one security zone are monitored to at least maintain
compliance with the security policy. To this end, all network
access attempts are directed to the networking VM. The
networking VM enforces access to external networks based
on the network policy. The operation of the networking VM
1s discussed 1n detail above.

In an embodiment, S640 further includes checking each
HTTP request from a web browser to determine if the
request 1s to access an allowed domain name, as defined in
the browsing policy. In an embodiment, S640 further
includes capturing UX command initiated by the user and
determining, based on the UX policy, 1f the request UX
command 1s allowed. In yet another embodiment, S640
monitoring connectivity to peripheral devices to determine 1
such connectivity 1s permitted. Such connectivity attempt 1s
performed against the connectivity policy.

As noted above, two or more security zones can be
concurrently executed in the virtualized environment con-
currently. The endpoint can be configured to display appli-
cations from different zones, or applications from a different
zone only. In an embodiment, windows of applications from

10

15

20

25

30

35

40

45

50

55

60

65

12

different zones are visually distinguished. All applications
regardless of their zone are displayed on a unified UX.

FIG. 7 1s a flowchart 700 1llustrating a method for clipping
virtual layers in multiple 1solated virtual machine environ-
ments as a single unified UX (user iterface) according to an
embodiment.

At 8710, a first primary virtual layer (first entity window)
within a primary guest 1s acquired. The first virtual layer 1s
configured to execute within a process space of the primary

guest executing an operating system in the single user
interface.

At S720, a second virtual layer within a secondary guest

1s acquired. The second virtual layer (second entity window)
1s configured to execute within a process space of the

secondary guest separately executing operating systems

distinctly from the process space of the primary guest 1n the
single user interface.

At S730, a command to link the first and second virtual
layers 1s received. The command may be received through a
user interface including a graphical user interface replicat-
ing, customizing, or both, of the graphical user interface of
operating systems that the host and a plurality of guests
separately execute.

At S740, the virtual layers are linked. The linkage of such
layers causes, when the primary guest 1s activated, the first
and second virtual layers visually to overlap. That 1s, while
operating within distinct operating systems, the primary
guest 1s presented on top.

In an embodiment, the linking 1s performed at least 1n part
by: specitying, through the user interface, the first virtual
layer and the second virtual layer as visually overlapping for
including the single user interface as a single desktop
environment; executing the command to create OS-speciiic
captured user interface elements clipping, according to the
specilying of the first virtual layer and the second virtual
layer, such that the first virtual layer and the second virtual
layer execute within the process space of distinct operating
systems, wherein the primary guest 1s presented on top; and
presenting, through the user interface, the first virtual layer
and the second virtual layer as visually overlapping for
including the single user interface as a single desktop
environment.

In the endpoint’s display, both VM windows can be
displayed 1n such a way that the second VM window 1is
displayed above (thus overlapping) the first VM window.
Since the second VM window now contains only the second
entity, the achieved configuration 800 is that the second
entity displayed on top of the entire first VM content
(including the first entity as graphically illustrated 1n FIG.
8).

In another embodiment, the method of flowchart 700 may
include receiving a command to also clip the area of the first
entity that intersects with the second entity. In the endpoint’s
display, both VM windows can be displayed in such way that
the second VM window 1s displayed on top of the entire first
VM content (including the first entity). Since the second VM
window now contains only part of the second entity (the
entity area that does not overlap with the first entity area),
the achieved configuration 900 1s that the first entity 1s on top
of the second entity, which 1s on top of the rest of the first
VM content (as graphically illustrated 1n FIG. 9).

Upon completion of the clipping process, an attempt by a
user to modily position, dimensions, state, or a combination
thereol, of a guest entity while the virtual clipping layer 1s
active may be identified. The modification may be applied to
the single desktop environment, such modification as a

US 10,699,003 B2

13

result of user interaction to graphical user iterface 1n a form
ol overlapping 1s updated 1n real-time.

The modification can be additionally configured to toggle
the activation of the first virtual layer and the second virtual
layer 1n the graphical user interface interchangeably based
on the user interaction using the integrated access to the
mouse, keyboard, screen, and resources 1n the single user
interface comprising a single desktop environment. The user
interaction includes managing changes to applications and
interface components of the displayed environments based
on default security policies, predetermined security policies,
or both, using the integrated access to the mouse, keyboard,
screen, and resources 1n the single user intertace comprising
a single desktop environment in real-time. The integrated
access to the mouse, keyboard, screen, and resources 1n the
single user interface comprising a single desktop environ-
ment 1n real-time acquires priority condition based on the
default security policies, predetermined security policies, or
both. For example, the keyboard can be redirected to the VM
that the top entity (guest window) belongs to. The host can
also show entities (host windows), that can be displayed on
top of the first VM but below the second VM. The clipping
action will 1solate an area 1n the second VM 1n the area of
the host entity. The achieved configuration 1s that the host
entity appears as the top window. The modification can also
be configured to toggle the activation of the first virtual layer
and the second virtual layer 1n the graphical user interface
interchangeably based on the user interaction.

In an embodiment, entities (guest windows) of the second
VM can be represented in the task-bar and app-switcher
(ALT+TAB) with the corresponding 1cons, even though they
are not running on said VM. This creates an illusion for the
user that the enfities from the second VM are running on the
first VM (or 1n other words, that entities from both VMs are
all running on the first primary VM).

The various embodiments disclosed herein can be imple-
mented as hardware, firmware, software, or any combination
thereol. Moreover, the software 1s preferably implemented
as an application program tangibly embodied on a program
storage unit or computer readable medium consisting of
parts, or of certain devices and/or a combination of devices.
The application program may be uploaded to, and executed
by, a machine comprising any suitable architecture. Prefer-
ably, the machine 1s implemented on a computer platiorm
having hardware such as one or more central processing
units (“CPUs”), a memory, and input/output interfaces. The
computer platform may also include an operating system
and microinstruction code. The various processes and func-
tions described herein may be eirther part of the microin-
struction code or part of the application program, or any
combination thereof, which may be executed by a CPU,
whether or not such a computer or processor 1s explicitly
shown. In addition, various other peripheral units may be
connected to the computer platform such as an additional
data storage unit and a printing unit. Furthermore, a non-
transitory computer readable medium 1s any computer read-
able medium except for a transitory propagating signal.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the principles of the disclosed embodiment
and the concepts contributed by the inventor to furthering
the art, and are to be construed as being without limitation
to such specifically recited examples and conditions. More-
over, all statements herein reciting principles, aspects, and
embodiments of the disclosed embodiments, as well as
specific examples thereof, are mtended to encompass both
structural and functional equivalents thereof. Additionally, 1t

10

15

20

25

30

35

40

45

50

55

60

65

14

1s intended that such equivalents include both currently
known equivalents as well as equivalents developed 1n the
future, 1.e., any elements developed that perform the same
function, regardless of structure.

As used herein, the phrase “at least one of” followed by
a listing of items means that any of the listed 1tems can be
utilized individually, or any combination of two or more of
the listed 1tems can be utilized. For example, if a system 1s
described as including “at least one of A, B, and C,” the

system can include A alone; B alone; C alone; A and B 1n
combination; B and C in combination; A and C in combi-
nation; or A, B, and C in combination.

It should be understood that any reference to an element
herein using a designation such as “first,” “second,” and so
forth does not generally limit the quantity or order of those
clements. Rather, these designations are generally used
herein as a convenient method of distinguishing between
two or more elements or instances of an element. Thus, a
reference to first and second elements does not mean that
only two elements may be employed there or that the first
clement must precede the second element in some manner.
Also, unless stated otherwise, a set of elements comprises
one or more clements.

What 1s claimed 1s:

1. A method for operating an air-gapped endpoint, com-
prising;:

imtializing, on the air-gapped endpoint, a hypervisor for

execution over a primitive operating system (OS) of the
air-gapped endpoint;
creating a plurality of 1solated security zones by instan-
tiating a plurality of corresponding virtual machines
using the hypervisor, wherein each of the plurality of
security zones includes a plurality of applications
executed over a guest OS;
instantiating a networking virtual machine using the
hypervisor, wherein the networking virtual machine 1s
instantiated to operate 1n a non-persistent mode;

controlling, by the networking virtual machine, access of
cach application 1n each of the plurality of security
zones to an external network resource;

reverting the networking virtual machine to its initial state

upon at least a disconnect event from the external
network resource; and

monitoring execution of the guest OS and each applica-

tion 1 at least one activated security zone of the
plurality of security zones, wherein the monitoring 1s
performed to maintain compliance with a security
policy corresponding to each activated security zone
being monitored, wherein the primitive OS 1s executed
by a hardware layer of the air-gapped endpoint, and
wherein the primitive OS 1s configured to execute only
pre-signed code of device drivers.

2. The method of claim 1, wherein the hypervisor includes
an abstraction layer, at least one native hypervisor, an
optimization module, and a security module.

3. The method of claim 2, further comprising;:

integrating, by the abstraction layer, the at least one native

hypervisor, wherein the optimization module 1s config-
ured to optimize the execution of the at least one native
hypervisor.

4. The method of claim 2, further comprising:

preforming an optimization process by the optimization

module, wherein the optimization processes includes at
least one of: graphics rendering, sound playback, and
power consumption.

US 10,699,003 B2

15

5. The method of claim 2, further comprising:

enforcing the security policy of a corresponding security

zone of the plurality of security zones.

6. The method of claam 1, wherein each security policy
defines at least one of: a network policy, a user interface
(UX) policy, a browsing policy, and a connectivity policy.

7. The method of claim 6, wherein the UX policy defines
user interface actions allowed to be performed by the user in
the corresponding activated security zone.

8. The method of claim 6, wherein the browsing policy
defines a whitelist of uniform resource locators (URLs) or
domain names that can be accessed from a browser executed
in the corresponding activated security zone.

9. The method of claim 6, wherein the connectivity policy
defines a set of allowed peripheral devices through any one
of: a wired connection, and a wireless connection.

10. The method of claim 6, wherein the network policy
defines, for each application 1n the corresponding activated
security zone, at least one external network resource that 1s
permitted to be accessed, and an access type for the at least
one external network resource.

11. The method of claim 10, wherein controlling access of
cach application 1n each of the plurality of security zones to
an external network resource further comprises:

receiving all network access requests from each applica-

tion;

determining 1f each received network access request com-

plies with the network policy for the corresponding
activated security zone; and

allowing or denying each network access request based on

the determination.

12. The method of claim 11, wherein allowing the net-
work access request further comprises:

directing the network access request to a network inter-

face card (NIC) of the air-gapped endpoint.

13. The method of claim 11, wherein denying the network
access request further comprises:

applying at least one firewall rule to block the network

access request.

14. The method of claim 1, wherein at least one of the
plurality of security zones 1s activated in a foreground and
at least one of the plurality of security zones 1s activated 1n
a background.

15. The method of claim 14, further comprising:

displaying windows of applications executed 1n at least

two different security zones on the same desktop dis-
play.

16. A non-transitory computer readable medium having
stored thereon instructions for causing a processing circuitry
to execute a process for operating an air-gapped endpoint,
the process comprising:

initializing, on the air-gapped endpoint, a hypervisor for

execution over a primitive operating system (OS) of the
air-gapped endpoint;
creating a plurality of 1solated security zones by instan-
tiating a plurality of corresponding virtual machines
using the hypervisor, wherein each of the plurality of
security zones includes a plurality of applications
executed over a guest OS;
instantiating a networking virtual machine using the
hypervisor, wheremn the network virtual machine 1s
instantiated to operate 1n a non-persistent mode;

controlling, by the networking virtual machine, access of
cach application 1 each of the plurality of security
zones to an external network resource:

10

15

20

25

30

35

40

45

50

55

60

65

16

reverting the networking virtual machine to its initial state
upon at least a disconnect event from the external
network resource; and

monitoring execution of the guest OS and each applica-
tion 1 at least one activated security zone of the
plurality of security zones, wherein the monitoring 1s
performed to maintain compliance with a security
policy corresponding to each activated security zone
being monitored, wherein the primitive OS 1s executed
by a hardware layer of the air-gapped endpoint, and
wherein the primitive OS 1s configured to execute only
pre-signed code of device drivers.

17. An air-gapped computing system, comprising:

a network interface card;

a processing circuitry; and

a memory, the memory containing instructions that, when
executed by the processing circuitry, configure the
system to:

imtialize a hypervisor for execution over a primitive
operating system (OS);

create a plurality of 1solated security zones by instantiat-
ing a plurality of corresponding virtual machines using
the hypervisor, wherein each of the plurality of security
zones includes a plurality of applications executed over
a guest OS;

instantiate a networking virtual machine using the hyper-
visor, wherein the network virtual machine 1s instanti-
ated to operate 1n a non-persistent mode;

control, by the networking virtual machine, access of each

application 1n each of the plurality of security zones to
an external network resource;

revert the networking virtual machine to 1ts 1nitial state

upon at least a disconnect event from the external
network resource; and

monitor execution of the guest OS and each application 1n

at least one activated security zone of the plurality of
security zones, wherein the monitoring 1s performed to
maintain compliance with a security policy correspond-
ing to each activated security zone being monitored,
wherein the primitive OS 1s executed by a hardware
layer of the air-gapped endpoint, and wherein the
primitive OS 1s configured to execute only pre-signed
code of device drivers.

18. The system of claim 17, wherein the hypervisor
includes an abstraction layer, at least one native hypervisor,
an optimization module, and a security module.

19. The system of claim 18, wherein the abstraction layer
executed over the processing circuitry 1s configured to
integrate the at least one native hypervisor, and wherein the
optimization module 1s configured to optimize the execution
of the at least one native hypervisor.

20. The system of claim 19, wherein the optimization
module executed over the processing circuitry 1s configured
to optimize at least one of: graphics rendering through a
GPU of the system, sound playback through a sound card of
the system, and power consumption of the system.

21. The system of claim 18, wherein the security module
executed over the processing circuitry 1s configured to
enforce the security policy of a corresponding security zone
of the plurality of security zones.

22. The system of claim 17, wherein each security policy
defines at least one of: a network policy, a user interface
(UX) policy, a browsing policy, and a connectivity policy.

23. The system of claam 22, wherein the UX policy
defines user interface actions allowed to be performed by the
user 1n the corresponding activated security zone.

US 10,699,003 B2

17

24. The system of claim 22, wherein the browsing policy
defines a whitelist of uniform resource locators (URLs) or
domain names that can be accessed from a browser executed
in the corresponding activated security zone.

25. The system of claim 22, wherein the connectivity

policy defines a set of allowed peripheral devices through
any one of: a wired connection, and a wireless connection.

26. The system of claim 22, wherein the network policy
defines, for each application 1n the corresponding activated
security zone, at least one external network resource that 1s
permitted to he accessed and an access type for the at least
one external network resource.

27. The system of claim 26, wherein the system 1s further
configured to:

receive all network access requests from each application;

determine 1f each received network access request com-
plies with the network policy for the corresponding
activated security zone; and

10

15

18

allow or deny each network access request based on the
determination.

28. The system of claim 27, wherein the system 1s further
configured to:
direct the network access request to a network interface
card (NIC) of the air-gapped computing.
29. The system of claim 28, wherein the system 1s further
configured to:

apply at least one firewall rule to block the network access
request.

30. The system of claim 17, wherein at least one of the
plurality of security zones 1s activated 1n a foreground and
at least one of the plurality of security zones 1s activated 1n
a background.

31. The system of claim 30, wherein the system 1s further
configured to:

display windows of applications executed 1n at least two

different security zones on the same desktop display.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

