12 United States Patent

Raman et al.

US010698884B2

US 10,698,884 B2
Jun. 30, 2020

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC LINEAGE VALIDATION SYSTEM

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

Applicant: Bank of America Corporation,

Inventors:

Assignee:

Notice:

Appl.

Filed:

US 2019/0138627 Al

Charlotte, NC (US)

Sundar Rajan Raman, Tamil Nadu

(IN); Jeff L. Howard, Charlotte, NC
(US); Prasad L.v.k.d. Dasari,

Charlotte, NC (US)

. Lakshmikanth S.

Nagapudi, Waxhaw, NC (US);
Padmanabham Ponnada, Charlotte,

NC (US)

Charlotte, NC (US)

Bank of America Corporation,

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 284 days.

No.: 15/804,405

Nov. 6, 2017

Prior Publicatio

May

Int. CI.

GO6F 16/23
GO6F 9/445
GO6F 16725
GO6F 8/36

(2019.0°
(2018.0°
(2019.0°
(2018.0°

U.S. CL

CPC

Field

n Data
9, 2019

)
)
)
)

GO6I' 16/2365 (2019.01); GO6F 8/36

(2013.01); GO6F 9/44521 (2013.01); GO6F

of Classification Search

16/258 (2019.01)

CPC .. GO6F 16/2445; GO6F 16/289; GO6F 16/217;

(56) References Cited

U.S. PATENT DOCUMENTS

7,647,298 B2* 1/2010 Adya GO6F 16/2445
707/999.002
7,680,767 B2* 3/2010 Adya ... GO6F 16/24539
707/999.002
7,890,543 B2* 2/2011 Hunt GO6F 9/4492
707/803
7,895,241 B2* 2/2011 Schoen GO6F 16/20
707/802
8,176,475 B2* 5/2012 Kosche GOO6F 11/3447
717/127

8,290,960 B2 10/2012 Li et al.
8,595,042 B2* 112013 Adler G06Q 10/06
705/7.11

(Continued)

Primary Examiner — Daniel A Kuddus

(74) Attorney, Agent, or Firm — Banner & Witcofl, Ltd.;
Michael A. Springs

(57) ABSTRACT

Systems for providing dynamic lineage validation are pro-
vided. A system may receirve mapping data from a comput-
ing device. The mapping data may be formatted used to
generate one or more libraries. In some examples, the
libraries may be stored and used in development of future
processes. In some examples, one or more controls related to
the process, mapping data, and the like, may be received.
The system may execute the controls to determine whether
data violates the one or more of the controls. I so, the
system may prevent the associated process from executing.
If the data does not violate one or more controls, the system
may cause the process to execute. After executing the
process, run time events may be collected. The run time
events may be linked to the mapping data and may be used

to validate data quality, data lineage, data accuracy, and the
like.

GO6F 16/10; G96F 16/284

See application file for complete search history.

300 .. RECEIVE MAPPING
DOCUMENT
| y
302 | |
- FORMAT MAPPING DATA |
J
304 5
~ GENERATE LIBRARY |
_____ Y
306 . _
- RECEIVE CONTROLS
308 .. ?-.H_
__T _____ _— CDNTHDLS "'-~.______t‘|:l___._-—--
T VIOLATED? .-~
__________ Yo L
310 . ENT
e pF}E"{ENr .. 312 .. EXECUTE
. EXECUTION OF A
' PROCESS e
| ‘
314 . RECENVE RUN TIME
DATA
316 .. LINKRUNTIME

T DATA TO MAPPING

VALIDATE

15 Claims, 9 Drawing Sheets

US 10,698,884 B2
Page 2

(56)

9,330,119
2005/0060313
2006/0294151
2007/0226203
2008/0235280
2010/0114628

2011/0066602
2013/0080197
2014/0114907
2014/0344310

2014/0344778

2015/0347542

2018/0253669

References Cited

U.S. PATENT DOCUMENTS
B2 5/2016 Chan
Al 3/2005 Naimat et al.

Al 12/2006 Wong et al.

Al* 9/2007 Adya ...
Al* 9/2008 Schoen
Al* 5/2010 Adler
Al 3/2011 Studer et al.

Al 3/2013 Kung et al.

Al 4/2014 Kozina et al.

Al* 11/2014 Seetharaman

AL* 1172014 Lau ..ooovvvveiieieirinnnnnn,
Al* 12/2015 Sullivan
Al* 9/2018 Thunoli

* cited by examiner

ttttttttt

GOO6F 11/0751

GO6F 16/2445
GOOF 16/20
G06Q 10/063

705/7.11

GOO6F 8/35

707/803
GOOF 8/35

717/106

GO6F 16/254

707/602

G06Q 10/067

U.S. Patent Jun. 30, 2020 Sheet 1 of 9 US 10,698,884 B2

110

. Dynamic Lineage |
' Validation Computing |
‘ Platform |

120 130

= ~

Generated Library Process Execution
Computing Device Computing System

A

150
(‘J

180

| Local User
Computing Device 1

Private
Network

Local User
Computing Device 2

195

C Public Network

Remote User
Computing Device 2

e

175

4

Remote User
Computing Device 1

)
70

FIG. 1A

U.S. Patent

110

L,j

Jun. 30, 2020 Sheet 2 of 9

US 10,698,884 B2

111

Dynamic Data Transmission Control Computing Platform

\4

Processor(s)

112

N

Memory(s)

Mapping Document Module
112a

Mapping Data Formatting Module
112b

Library Generation Module
112¢

FProcess Execution Moduie
112d

Run Time Event Module
1172e

Validation Moduie
112f

User Interface Generation/Display Module

1129

113

Communication Interface(s)

WLWM

FIG. 1B

Ve DOld

Atelqi jwsuel} (902

Aleigr
gjelauagy {607

US 10,698,884 B2

eyeq buiddep
jewiod (y0z

SUOHOUN.

LonepHeA ejefi
/S1RAOY (£0

11

Sheet 3 of 9

L L

B R g g g g g T g S e g g g g g g g g g B g R R g R R R R R g g g R o g g g g
1111111111111111111111

Jun. 30, 2020
%]
T
3
g
-
5
=
=
4
e
©
—
S
N

ere(] buiddepy
a1elous) (107

| WIOHE|4 ‘
~ Bugnduwion) uouepyep |
 oBesuroiweuhg |

0l
LWBISAQ
Bugndwon
UONoaX 3 $58004d

01
aiAa(] Dupndwion
Aigigi paieisusg)

0L1/0%1
aoiAB(]
Buinduwon Jes

U.S. Patent

US 10,698,884 B2

Sheet 4 of 9

Jun. 30, 2020

U.S. Patent

111

111

SS80014 91N0a9X3
0] uoonasy|
ajeiauen) (117

| mm_msm “
| /Siou0Y 8jnoexy
| juoneniea3 (012

S8|NH/510U00
AAIY (807

301A8(]

SENY/SI0ARU0Y Jwsuei] (602

buindwion Jesn

Aieqr
P8]eIoulc) BI0IS
janedey (102
0ct L
_ 14! m
@&chﬁmo soie(Bugndwo) |
com:&xm mmmuo._n_” Aieiq] pejeseuss

0Ll
uiopeld
Bungndwon) uonepieA
abeauly onueUAQ

US 10,698,884 B2

Sheet 5 of 9

Jun. 30, 2020

U.S. Patent

0LL0GH
20IAB(]

| Bunndwion sesp

J¢ Dld

eyeq Buddep
sleplien (8127

eje buiddepy
SLUBUMY YUIT (£LZ]

........... |

SIUBAT SLUUNY
onRoRY (912

111

SJUSAT BUUNY JWSURL] (GLZ

$S830.44
Jojuon (12

LOoRoNASY)
anoax3 (€1

0¢)
LWoISAQ
mcmz:.a_‘:oo
| UOIINOdX T §S800.d

aoiAa(] bunndwion
Aigiqi pajeloauss)

wioyeld

bunndwon uogepieA

abeauy] olweuAq

US 10,698,884 B2

Sheet 6 of 9

Jun. 30, 2020

U.S. Patent

a0BLIojU]

ac 9id

11

80BLIoIY| Jas) nwsuel| (QZ7

11

0LL0GE
SoM8(]
Buinduwon Jes

I e e e e i ol o i i ol o ol o m o oh o om I e e e e e i o i i ol i i i o o e

mcmz:.a_‘:oo

| UOPNOAXT $S8004d

0ct
aiAa(] Dupndwion
AigiQi pejeisuss)

aoeIBlU] Josn
sjelsust) (817

L L L L L L L L L L L

aa et T T L T

woyeld

| Bunndwos uogepiep

abeauy] olweuAq

U.S. Patent Jun. 30, 2020 Sheet 7 of 9 US 10,698,884 B2

‘‘

300 - | RECEIVE MAPPING
% DOCUMENT

--

302 .

304 -

306 .

“ N BN BN BN B BN MmN BN N BN BN BN BN BN BN BN BN BN BN BN M BN BN M M M M

3 O 8. ”) .r‘rj-) H“l‘
) “..-"‘1. - .r".r H"'h
. . - — :\.‘ B ,"', 'ln\..h
n..-_:._.. .H'"‘i._ .
L R
a e
L .
. - 1‘"\‘._ .
e .,)
e ' ", -
o : T,
- ; T
.-"'y I"""‘,
™ ’f
. : . -
e V|'OLA I ED /
"‘h.__ .) . . n .’f__,.
. . -
..

e

-.""‘\-\.
- -_._I,-F'
""-u___ #fr

--.H“

4 !

N |

N |

H 1

‘"..
- f-’"
‘qr -
~ .",.A",

e et T e L et e e 1"-5_‘ R T T TE kT T T g o R R R R I T A T T L T I R R o o g o R o T T o R SR TR R S U U R})y
................... J 1
:; i
1
L i

T — —— J
~ _ PREVENT 312 EXECUTE
PROCESS ? o

PR CES L ¢

314 . RECEIVE RUN TIME:
DATA

1
\ L
r]
' i
\ L
E i
]
\ I
E 1
++++++++++++++++++++++++++++++ ‘h+-+-+h+-+-+h+-+-+h+-+-+h+-+-J
L 1
1
!
1
]

316 | LINKRUNTIME
*~ DATA TO MAPPING |
? DATA ;

318 . &

> - VALIDATE

U.S. Patent Jun. 30, 2020 Sheet 8 of 9 US 10,698,884 B2

401

DYNAMIC LINEAGE VALIDATION COMPUTING DEVICE

403 | Processor | Memory N A1

b e e e e e e e e e e e e e e s e s s i s e i s e e e s e e e s e s e e e e e

417 I\ | Operating System | N 421

Data

419 \J Applications

B g O g e B S e T g e e g e g g g ageagr r i sfin e slin afin sl slin sl alie sle ol sl sl slin ol slie ol sl e slin ol ol alie slin sl ofin sl slin ol s sle sl sl sle sl sl sl slis sl e alie slis sl o slie ol afie sl slin ol e sle ol e ol sl ol sle ol ol i slie sl ol e slie ol ofie alie slin ol

409 Communications Module

Y. |
~ 429 . N 495
431 NN

Network

FIG. 4

U.S. Patent Jun. 30, 2020 Sheet 9 of 9 US 10,698,884 B2

901 N4 Workstation 501 /\J Workstation | Workstation /™ 501

/ 502

502 503

02 ——

Computer Network

505 -

i

DYNAMIC LINEAGE " 504
VALIDATION
PROCESSING SERVER

500

Computer Network

US 10,698,834 B2

1
DYNAMIC LINEAGE VALIDATION SYSTEM

BACKGROUND

Aspects of the disclosure relate to electrical computers,
systems, and other devices. In particular, one or more
aspects of the disclosure relate to provide dynamic lineage
validation processes and efliciently generated processes for
execution.

Design and execution of computer processes, such as
applications, and the like, can be critical to functioning of a
business. However, in conventional systems, design of one
Or more processes can be time consuming and 1nethicient. In
particular, may systems require users to create or generate a
process from a most basic starting point, even when tasks
that are commonly used 1n processes have been previously
generated.

Further, conventional systems for generating and execut-
ing processes do not have robust validation or tracking
capabilities. For instance, inquiries regarding validity of
data, accuracy of data, lineage of data, versions of processes,
mapping documents, and the like, are not readily accessible
in conventional systems. Accordingly, requests for this
information can be time consuming and detract from other
work being performed. Accordingly, systems to efliciently
generate and execute work processes, provide validation of
mapping and other data, and provide ease of access to
lineage, mapping, runtime and other data, may be advanta-
geous.

SUMMARY

The following presents a simplified summary 1n order to
provide a basic understanding of some aspects of the dis-
closure. The summary 1s not an extensive overview of the
disclosure. It 1s neither imntended to identily key or critical
clements of the disclosure nor to delineate the scope of the
disclosure. The following summary merely presents some
concepts of the disclosure 1n a simplified form as a prelude
to the description below.

Aspects of the disclosure provide eflective, eflicient,
scalable, and convenient technical solutions that address and
overcome the technical problems associated with designing
and executing a process, generating reusable components or
libraries, and efliciently determining and presenting infor-
mation related to accuracy of data and validity of data based
on collected run time data.

In some examples, a system, computing platform, or the
like, may receive mapping data, for instance, via a mapping
document. In some arrangements, the mapping data may be
received from a computing device. The mapping data may
be formatted and the formatted data may be used to generate
and/or drive one or more libraries or components. In some
examples, the libraries or components may be stored and
used 1n development of future processes as pre-generated
modules.

In some examples, one or more controls and/or rules
related to the process, mapping data, and the like, may be
received. The system, computing platform, or the like, may
evaluate or execute the rules to determine whether data
violates the one or more of the controls and/or rules. It so,
the system, computing platiorm, or the like, may prevent the
associated process from executing.

If the data does not violate one or more rules and/or
controls, the system, computing platform, or the like, may
cause the process to execute. After executing the process,
run time events may be collected and transmitted to the

10

15

20

25

30

35

40

45

50

55

60

65

2

system, computing platform, or the like. The run time events
may be linked to the mapping data and may be used to

validate data quality, data lineage, data accuracy, and the
like.

In some examples, one or more interactive user interfaces
or dashboards may be generated. The interactive user inter-
faces or dashboards may provide access to mapping data,
run time events, linecage information, and the like, and may
be used to illustrate data quality, accuracy, and the like.

These features, along with many others, are discussed 1n
greater detail below.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

The present disclosure 1s illustrated by way of example
and not limited 1n the accompanying figures 1n which like
reference numerals imndicate similar elements and 1n which:

FIGS. 1A and 1B depict an illustrative computing envi-
ronment for implementing dynamic lineage validation func-
tions 1n accordance with one or more aspects described
herein;

FIGS. 2A-2D depict an 1illustrative event sequence for
implementing dynamic lineage validation functions 1n
accordance with one or more aspects described herein;

FIG. 3 depicts an 1llustrative method for implementing,
and using a system to perform dynamic lineage validation
functions, according to one or more aspects described
herein;

FIG. 4 1llustrates one example operating environment 1n
which various aspects of the disclosure may be implemented
in accordance with one or more aspects described herein;
and

FIG. 5 depicts an illustrative block diagram of worksta-
tions and servers that may be used to implement the pro-
cesses and functions of certain aspects of the present dis-
closure 1n accordance with one or more aspects described
herein.

DETAILED DESCRIPTION

In the {following description of wvarious illustrative
embodiments, reference 1s made to the accompanying draw-
ings, which form a part hereof, and in which 1s shown, by
way of 1llustration, various embodiments 1n which aspects of
the disclosure may be practiced. It 1s to be understood that
other embodiments may be utilized, and structural and
functional modifications may be made, without departing
from the scope of the present disclosure.

It 1s noted that various connections between elements are
discussed 1n the following description. It 1s noted that these
connections are general and, unless specified otherwise, may
be direct or indirect, wired or wireless, and that the speci-
fication 1s not intended to be limiting 1n this respect.

Some aspects of the disclosure relate to providing lineage
validation functions as well as generating process compo-
nents that may be stored and re-used to generate other
processes for execution.

For many entities, particularly those involved with regu-
latory bodies, providing transparency and illustrating data
quality and accuracy are paramount. Many conventional
systems require requests to specific users to access specific
systems to retrieve specific information 1n order to provide
this transparency, validate data, illustrate lineage, illustrate
accuracy ol data, and the like. These arrangements are
ineflicient and can be prone to error. In addition, they require
resources that might not be available at a desired time and/or
may be better allocated to other functions.

US 10,698,834 B2

3

Accordingly, systems for providing transparency, data
accuracy, lineage iformation, and the like, without requir-
ing the inefliciencies of conventional systems may be advan-
tageous.

Aspects described herein relate to systems, computing
platforms, methods, computer-readable media, and the like,
for performing lineage validation functions. The arrange-
ments described herein include receiving mapping data (e.g.,
from a mapping document) which may then be used to build
a process. For istance, mapping data may be formatted, for
instance, using a data iterchange standard, and the format-
ted data may then be used to generate one or more libraries
or components that may be reused 1n future process devel-
opment.

In some examples, one or more controls and/or rules may
be recerved. The controls and/or rules may be executed to
determine whether data associated with a process violates
any ol the controls and/or rules. If so, the system may
prevent execution of the process. If no controls or rules are
violated, the process may be executed. After executing the
process, run time data may be collected. The run time data
may include run time events that may be linked to the
received mapping data. Accordingly, design data (e.g., map-
ping data, and the like) may be linked to run time data and
the linked data may be used to provide data lineage infor-
mation, illustrate data quality and/or accuracy, and the like.

In some examples, the system may generate one or more
interactive dashboards or user interfaces. The interactive
user interfaces may enable eflicient collection of data (e.g.,
mapping data, run time events, and the like) and may enable
cilicient illustration of data (e.g., data quality, lineage vali-
dation, data accuracy, and the like). These interactive user
interfaces and dashboards may be customized or manipu-
lated to provide desired information.

These and various other arrangements will be discussed
more fully below.

FIGS. 1A and 1B depict an 1illustrative computing envi-
ronment for implementing and using a dynamic data lineage
validation computing system in accordance with one or
more aspects described herein. Referring to FIG. 1A, com-
puting environment 100 may include one or more computing
devices and/or other computing systems. For example, com-
puting environment 100 may include a dynamic lineage
validation computing platform 110, a generated library
computing device 120, a process execution computing sys-
tem 130, a first local user computing device 150, a second

local user computing device 155, a first remote user com-
puting device 170, and a second remote user computing,
device 175.

Dynamic lineage validation computing platform 110 may
be configured to provide dynamic data lineage validation
control functions. In some examples, mapping data may be
received (e.g., from a user computing device such as local
user computing device 150, local user computing device
155, remote user computing device 170, remote user com-
puting device 175, or the like) or other computing device.
The mapping data may include source locations and target
locations for data. This mapping data may include lineage of
the data. The mapping data may be formatted (e.g., using a
data interchange standard) and may be used to drnive or
generate one or more libraries or components. The generated
libraries may be stored in a computing device, such as
generated library computing device 120, 1n a database, or the
like. The generated libraries may be later used to generate
one or more processes (e.g., an application, or the like) for
execution.

10

15

20

25

30

35

40

45

50

55

60

65

4

The dynamic lineage validation computing platform 110
may further execute or generate an instruction to execute a
process (e.g., an application developed, or the like). The
process may be executed by the dynamic lineage validation
computing platform 110, by process execution computing
system 130, or by another computing device. After execut-
ing the process, runtime events may be collected. The
dynamic lineage validation computing platform 110 may
then link and/or compare the runtime events to the mapping
data to validate the mapping data, execution of the process,
and the like. Accordingly, data lineage may be captured,
stored, and validated by the system to ensure accuracy of
data, and the like.

Generated library computing device 120 may be any type
of computing device performing various library storage,
mamipulation, and the like, functions, for example, within an
entity. For instance, the generated library computing device
120 may store one or more generated libraries which may be
accessed via a computing device (e.g., local user computing
device 150, local user computing device 135, remote user
computing device 170, remote user computing device 175,
or the like) to generate or develop one or more processes.
The libraries may be selected and used as pre-generated
modules for data preparation, sourcing, controls, and the
like, when developing a process.

Process execution computing system 130 may be any time
of computer system performing various process execution
function, for example, within an enfity. For examples, a
process may be executed in order to generate runtime data
or events for use 1n validation. In some arrangements, the
dynamic lineage validation computing platform 110 may
generate an istruction or command to execute a process and
may transmit the instruction or command to the process
execution computing system 130. The process execution
computing system 130 may receive the mstruction or com-
mand and execute the mstruction or command to execute the
selected process.

Local user computing device 150, 155 and remote user
computing device 170, 175 may be configured to commu-
nicate with and/or connect to one or more computing
devices or systems shown in FIG. 1A. For instance, local
user computing device 150, 155 may communicate with one
or more computing systems or devices via network 190,
while remote user computing device 170, 175 may commu-
nicate with one or more computing systems or devices via
network 195. The local and remote user computing devices
may be used to communicate with, for example, dynamic
lineage validation computing platform 110, receive mapping
data, select libraries for generating processes for execution,
display one or more user interfaces, and the like.

In one or more arrangements, generated library comput-
ing device 120, process execution computing system 130,
local user computing device 150, local user computing
device 155, remote user computing device 170, and/or
remote user computing device 175 may be any type of
computing device or combination of devices capable of
performing the particular functions described herein. For
example, generated library computing device 120, process
execution computing system 130, local user computing
device 150, local user computing device 135, remote user
computing device 170, and/or remote user computing device
175 may, in some instances, be and/or include server com-
puters, desktop computers, laptop computers, tablet com-
puters, smart phones, or the like that may include one or
more processors, memories, communication iterfaces, stor-
age devices, and/or other components. As noted above, and
as 1illustrated in greater detail below, any and/or all of

US 10,698,834 B2

S

generated library computing device 120, process execution
computing system 130, local user computing device 150,
local user computing device 155, remote user computing
device 170, and/or remote user computing device 175 may,
in some 1instances, be special-purpose computing devices
configured to perform specific functions.

Computing environment 100 also may include one or
more computing platforms. For example, and as noted
above, computing environment 100 may include dynamic
lineage validation computing platform 110. As 1llustrated 1n
greater detail below, dynamic lineage validation computing
platform 110 may include one or more computing devices
configured to perform one or more of the functions
described herein. For example, dynamic lineage validation
computing platiorm 110 may include one or more computers
(e.g., laptop computers, desktop computers, servers, server
blades, or the like).

As mentioned above, computing environment 100 also
may include one or more networks, which may interconnect
one or more of dynamic lineage validation computing plat-
form 110, generated library computing device 120, process
execution computing system 130, local user computing
device 150, local user computing device 135, remote user
computing device 170, and/or remote user computing device
175. For example, computing environment 100 may include
private network 190 and public network 195. Private net-
work 190 and/or public network 195 may include one or
more sub-networks (e.g., Local Area Networks (LANSs),
Wide Area Networks (WANSs), or the like). Private network
190 may be associated with a particular organization (e.g., a
corporation, financial institution, educational institution,
governmental institution, or the like) and may 1nterconnect
one or more computing devices associated with the organi-
zation. For example, dynamic lineage validation computing
platform 110, generated library computing device 120, pro-
cess execution computing system 130, local user computing
device 150, and local user computing device 155, may be
associated with an organization (e.g., a financial institution),
and private network 190 may be associated with and/or
operated by the organization, and may include one or more
networks (e.g., LANs, WANs, virtual private networks
(VPNs), or the like) that interconnect dynamic lineage
validation computing platform 110, generated library com-
puting device 120, process execution computing system
130, local user computing device 150, and local user com-
puting device 155, and one or more other computing devices
and/or computer systems that are used by, operated by,
and/or otherwise associated with the organization. Public
network 195 may connect private network 190 and/or one or
more computing devices connected thereto (e.g., dynamic
lineage wvalidation computing platform 110, generated
library computing device 120, process execution computing
system 130, local user computing device 1350, local user
computing device 1535) with one or more networks and/or
computing devices that are not associated with the organi-
zation. For example remote user computing device 170,
and/or remote user computing device 175 might not be
associated with an organization that operates private net-
work 190 (e.g., because remote user computing device 170
and remote user computing device 175 may be owned,
operated, and/or serviced by one or more entities different
from the organization that operates private network 190,
such as one or more customers of the organization, public or
government entities, and/or vendors of the organization,
rather than being owned and/or operated by the orgamization
itsell or an employee or afliliate of the organization), and
public network 195 may include one or more networks (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

the internet) that connect remote user computing device 170
and remote user computing device 175 to private network
190 and/or one or more computing devices connected
thereto (e.g., dynamic lineage validation computing plat-
form 110, generated library computing device 120, process
execution computing system 130, local user computing
device 150, local user computing device 1355).

Referring to FIG. 1B, dynamic lineage validation com-
puting platform 110 may include one or more processors
111, memory 112, and communication nterface 113. A data
bus may interconnect processor(s) 111, memory 112, and
communication interface 113. Commumnication interface 113
may be a network interface configured to support commu-
nication between dynamic lineage validation computing
platform 110 and one or more networks (e.g., private net-
work 190, public network 195, or the like). Memory 112
may include one or more program modules having instruc-
tions that when executed by processor(s) 111 cause dynamic
lineage validation computing platform 110 to perform one or
more functions described herein and/or one or more data-
bases that may store and/or otherwise maintain information
which may be used by such program modules and/or pro-
cessor(s) 111. In some instances, the one or more program
modules and/or databases may be stored by and/or main-
tamned 1n different memory units of dynamic lineage vali-
dation computing platform 110 and/or by different comput-
ing devices that may form and/or otherwise make up
dynamic lineage validation computing platform 110.

For example, memory 112 may have, store, and/or include
a mapping document module 112a. Mapping document
module 112¢ may store instructions and/or data that may
cause or enable the dynamic lineage validation computing
plattorm 110 to receive mapping data from one or more
computing devices, such as local user computing device
150, local user computing device 153, remote user comput-
ing device 170, remote user computing device 173, or the
like. The mapping data may include data lineage informa-
tion, data movement mnformation, operations associated with
the data, and the like. This data may be used to generate one
or more libraries or components, as will be discussed more
tully herein. In some examples, mapping document module
112a may also receive one or more data controls, rules, or
the like, that may be used in executing one or more pro-
CEeSSes.

Dynamic lineage validation computing platform 110 may
further have, store and/or include a mapping data formatting
module 112b. Mapping data formatting module 1126 may
store instructions and/or data that may cause or enable the
dynamic lineage validation computing platform 110 to for-
mat the received mapping data in order to generate one or
more libraries. For instance, the mapping data may be
formatting using a data interchange standard.

The formatted mapping data may then be used to generate
one or more libraries or components by library generation
module 112¢. Library generation module 112¢ may store
instructions and/or data that may cause or enable the
dynamic lineage validation computing platiorm 110 to gen-
erate one or more libraries or components. The generated
libraries or components may be transmitted to, for instance,
generated library computing device 120, for use by one or
more developers or the like to generate processes using the
libraries as pre-generated modules,

Dynamic lineage validation computing platform 110 may
turther have, store and/or 1include a process execution mod-
ule 1124d. Process execution module 1124 may store mnstruc-
tions and/or data that may cause or enable the dynamic
lineage validation computing platform 110 to generate an

US 10,698,834 B2

7

instruction, signal or command to execute one or more
processes. In some examples, the one or more processes may
be processes executing aspects associated with the mapping
data received. In some arrangements, the mstruction, signal
or command may be transmitted to a computing system,
such as process execution computing system 130, and may
be executed by the system to execute the one or more
Processes.

Dynamic lineage validation computing platform 110 may
further have, store and/or include a run time event module
112¢. The run time event module 112¢ may store 1nstruction
and/or data that may cause or enable the dynamic lineage
validation computing platform 110 to receive or collect run
time data, including run time events, from the executed
process. The run time events may be stored, for mstance, in
a database, and may be used 1n one or more validation
Processes.

Dynamic lineage validation computing platform 110 may
turther have, store and/or include a validation module 112/
Validation module 112/ may store instructions and/or data
that may cause or enable the dynamic lineage validation
computing platform 110 to link and/or compare run time
events to mapping data to validate expected results from the
mapping data, execution of the process, and the like. In some
examples, the validation module 112/ may store the linked
run time events, mapping data, and the like. Accordingly,
upon recerving a request (e.g., from local user computing
device 150, local user computing device 155, remote user
computing device 170, remote user computing device 175,
or the like) the validation data may be provided. Accord-
ingly, a request for validation data (e.g., for presentation to
one or more regulatory agencies or the like) may be provided
cliciently and without requiring additional processes to
generate the requested data, compare the data, or the like.

Dynamic lineage validation computing platform 110 may
turther have, store and/or include a user interface generation/
display module 112g. User interface generation/display
module 112g may store istructions and/or data that may
cause or enable the dynamic lineage validation computing
plattorm 110 to generate one or more interactive user
interfaces or dashboards, transmit the generated user inter-
faces or dashboards to a device (e.g., local user computing
device 150, local user computing device 155, remote user
computing device 170, remote user computing device 175,
or the like), and/or may cause the generated interface or
dashboard to display on a display of the device. In some
examples, the generated interfaces or dashboards may dis-
play linecage of data, data sources, data target locations,
processes performed on the data, expected results, actual
results (e.g., from run time events), and the like. Accord-
ingly, data quality, accuracy and the like, can be quickly
evaluated.

In some examples, the generated user interface or dash-
board may include an indication of one or more controls
received by the system. In some examples, 1 the data does
not meet predefined conditions associated with the goals,
execution ol one or more processes may be prevented.
Accordingly, a generated user interface or dashboard may
include controls data, outcome of controls evaluations, and
the like.

FIGS. 2A-2D depict an illustrative event sequence for
implementing and using dynamic lineage validation func-
tions 1 accordance with one or more aspects described
herein. The events shown 1n the illustrative event sequence
are merely one example sequence and additional events may
be added, or events may be omitted, without departing from
the 1nvention.

10

15

20

25

30

35

40

45

50

55

60

65

8

Retferring to FIG. 2A, at step 201, mapping data may be
generated. In some examples, the mapping data may be
generated by, for example, local user computing device 150,
remote user computing device 170, or the like. In some
arrangements, the mapping data may be imported by the
local user computing device 150, remote user computing
device 170, or the like. In some examples, mapping data
may be received via a mapping document that may be 1n one
of various diflerent formats without departing from the
invention.

The mapping data may include data source information,
data target information, operations performed on the data,
and the like.

In step 202, the mapping data may be transmitted from the
computing device (e.g., local user computing device 150,
remote user computing device 170, or the like) to the
dynamic lineage validation computing platform 110. In step
203, the mapping data may be received by the dynamic
lincage validation computing platform 110. Receipt of the
mapping data may cause the dynamic lineage validation
computing platform 110 to imnitiate or activate validation
functions. For instance, upon recerving mapping data, the
dynamic lineage validation computing platform 110 may
initiate, activate, or enable one or more functions of the
dynamic lineage validation computing platform 110, such as
mapping data formatting functions, process execution func-
tions, library generation functions, validation functions, and
the like. In some examples, activating, initiating, or enabling
one or more functions may include providing a function that
was not previously available or enabled (e.g., before acti-
vation, 1nitiation, or enabling).

In step 204, the recerved mapping data may be formatted.
For instance, the received mapping data may be formatting
using a data interchange standard. In some examples, for-
matting the data may result 1n a formatted dataset which may
be used to generate one or more libraries 1n step 205. For
instance, the formatted data may be used to generate one or
more libraries or components that may be used in future
development 1n, for instance, a modular fashion. Accord-
ingly, a developer may extract one or more pre-generated
libraries and may use the library to efliciently generate a new
process for execution, development, or the like, without
recreating the code stored in the library. This may aid in
conserving computing resources by reducing the time
required to generate new process, or the like, in development
or design stages.

In step 206, the generated library may be transmitted to,
for 1nstance, data storage, such as a generated library com-
puting device 120. The generated library computing device
120 may be a computing device specifically configured to
perform one or more functions described herein. For
instance, the generated library computing device may be
configured to store one or more generated libraries or
components, to provide access to the stored one or more
libraries or components, to enable searching and selection of
a desired library or component, and the like.

With reference to FIG. 2B, in step 207, the generated
library may be received by the generated library computing
device 120 and may be stored by the generated library
computing device 120 for later use.

In step 208, one or more controls and/or rules may be
received. For mstance, in generating a process for execution,
one or more controls or rules for the data may be received,
¢.g., from local user computing device 150, remote user
computing device 170, or the like. In some examples, one or
more controls or rules may include predefined thresholds or
limits for a value of one or more data elements. In some

US 10,698,834 B2

9

examples, the predefined threshold or limit may include a
predefined or predetermined acceptable range 1 which a
value of a data element should fall. If the value of the data
clement 1s outside the range, the rule may be violated.

In step 209, the controls and/or rules may be transmitted
from the computing device (e.g., local user computing
device 150, remote user computing device 170) to the
dynamic lineage validation computing platform 110. In step
210, the one or more controls and/or rules may be evaluated
or executed to determine whether data violates any of the
controls and/or rules. If so, the dynamic lineage validation
computing platform 110 may prevent a process associated
with the data from executing. For instance, the dynamic
lineage validation computing platform 110 may generate an
instruction or comment preventing a device from executing
the associated process.

If the recerved rules and/or controls are not violated, in
step 211, the dynamic lineage validation computing platform
110 may generate an instruction, signal or command to
execute an associated process. In step 212, the generated
instruction, signal or command may be transmitted to, for
instance, a process execution computing system 130. In
some arrangements, the process execution computing sys-
tem 130 may be part of (e.g., in a same physical device) as
the dynamic lineage validation computing platform 110. In
other examples, the process execution computing system
130 may be a separate device.

With reference to FIG. 2C, 1n step 213, the instruction,
signal or command may be received by the process execu-
tion computing system 130 and may be executed by the
system. Execution of the mnstruction may cause the process
execution computing system 130 to execute the process.

In step 214, the executed process may be monitored and
one or more run time events may be captured. In some
examples, the run time events may log functions performed,
one or more outcomes, data sources and locations, and the
like. In step 215, the run time events may be transmitted to
the dynamic lineage validation computing platform 110.

In step 216, the run time events may be recerved by the
dynamic lineage validation computing platform 110. In step
217, the run time events may be linked to the mapping data
by the dynamic lineage validation computing platform 110.
Linking the run time events to the mapping data may be
performed 1n a variety of ways. For instance, in some
examples, version mformation of the process (e.g., of an
application) may be embedded into the code associated with
the process (e.g., in the formatted mapping data). Accord-
ingly, when a process 1s executed, the version mnformation
may be output with the run time events. This will then tie the
run time events captured to the version embedded in the
formatted mapping data.

In another example, the source code may be enriched with
unique names for various steps of the process. When the
process 1s executed, run time events may be generated and
collected and the name of the step executed may be stored
with the step and output when the step 1s executed. In some
examples, the unique name may also be associated with
design information, such as testing documents, require-
ments, controls, rules, and the like) and, thus, the run time
event output with the unique name can then be linked to the
design information (e.g., mapping data).

In still another example, mapping data and/or mapping
documents may be enriched to include version and release
information. In some examples, links between run time
events and mapping data may be tested. For instance, a
system may pull data from run time information, as well as
mapping data, and verity that the data i1s properly linked.

10

15

20

25

30

35

40

45

50

55

60

65

10

This information may be recorded and may further record
the link between the run time data and the mapping data.

In step 218, mapping data may be validated. For instance,
the run time events may be compared to the mapping data to
confirm that execution of the process produced results
expected based on the mapping data. This validation process
may be recorded and any 1ssues 1dentified may be flagged for
turther processing.

With reference to FIG. 2D, 1 step 219, one or more
interactive user interfaces or dashboards may be generated.
The user interfaces may include validation information,
mapping data, run time events, and the like. In some
examples, the user interface may include links between
mapping data and run time events that may be used to
illustrate accuracy of data, validate data lineage, and the like.
For instance, one or more user mtertaces may include links
between data such as an application, version of the appli-
cation and date information. For example, dates associated
with an application developed for execution (e.g., when
development started, when development ended, when qual-
ity processes started, production release dates, and the like)
may be associated with and/or linked to an application name
and/or version. Accordingly, selection of one of an applica-
tion name, version, or date may cause the user interface to
display the other two of application name, version, or date.
In some examples, these links may be enabled using meta-
data (e.g., release data, date information, and the like)
associated with the application.

In another example, links between an application, a
version of the application, and lineage information may be
established and provided via the user interface. In still
another example, a link between an application, a version of
an application, and mapping documents associated with the
application may be established and provided via the user
interface. In still another example, links between an appli-
cation, version of an application, and test artifacts (e.g., test
plans, 1ssued 1dentified during testing, and the like) may be
established and provided wvia the user interface. In yet
another example, links between an application, version of an
application, and concern information from production may
be established and provided via the user interface.

In some examples, one or more of the links describes
above may be established by enriching data (e.g., mapping
data, mapping documents, and the like) with metadata
associated with an application, a release of an application or
process, and the like.

Various other links may be established and provided via
generated user interfaces and dashboards without departing
from the 1mvention.

In step 220, the generated user interfaces and/or dash-
boards may be transmitted to a computing device, such as
local user computing device 150, remote user computing
device 170, and the like. In step 221, the generated user
interfaces and/or dashboards may be displayed on the com-
puting device 150, 170. In some examples, the generated
user interfaces and dashboards may be used to provide
information about a process to various business units of an
entity. In addition, the generated user interfaces and dash-
boards may be used to provide information to one or more
regulatory agencies regarding data, data quality, accuracy of
data, data processes, controls and/or rules applied, and the
like.

FIG. 3 1s a tlow chart illustrating one example method of
implementing a dynamic lineage validation system accord-
ing to one or more aspects described herein. The processes
illustrated 1n FIG. 3 are merely some example processes and
functions. The steps shown may be performed 1n a different

US 10,698,834 B2

11

order, more steps maybe added, or one or more steps may be
omitted without departing from the invention.

In step 300, a mapping document may be generated. The
mapping document may include mapping data associated
with mapping one or more source locations to one or more
target locations, and the like. The mapping data may also
include data associated with one or more processes or
transformations performed on the data. The mapping docu-
ments including the mapping data may then be transmitted
to and/or received by, for instance, the dynamic lineage
validation computing platform 110.

In step 302, the recerved mapping data may be formatted.
As discussed herein, the mapping data may be formatted
using a data interchange standard resulting in formatted
data. In step 304, the formatted data may be used to drive or
generate one or more libraries or components. The generated
libraries or components may be stored and used for future
development of processes, applications, and the like, as
pre-generated, modules that may be used 1n conjunction
with other libraries to efliciently generate processes (e.g.,
applications, and the like).

In step 306, one or more controls and/or rules may be
received. In step 308, the controls or rules may be executed
to determine whether any of the controls and/or rules are
violated. If so, in step 310, the system (e.g., the dynamic
lineage validation computing platform 110) may prevent
execution of the associated process and the data may be
flagged for further evaluation and/or processing. If, 1n step
308, the one or more controls and/or rules are not violated,
in step 312, the process may be executed. Execution of the
process may include generating an instruction, signal or
command to execute the process and transmitting that
instruction, signal or command to a process execution com-
puting system 130 causing the process to execute.

In step 314, run time data associated with the process may
be received. For instance, after executing the process, run
time events associated with the process may be collected
while the process 1s executing, after execution, or the like.
In some examples, this data may be stored in a log.

In step 316, the run time data and/or events may be linked
to the mapping data received. Accordingly, in step 318, the
mapping data and/or run time events may be validated by
comparing the linked run time events with the mapping data
to determine whether a process 1s executing with expected
results, to confirm data quality, verily data accuracy, and the
like. As discussed above, this information may be displayed

in one or more user interfaces or dashboards to provide
requested data to a user (e.g., business user, regulatory
auditor, or the like).

Accordingly, by storing the mapping data, linecage, and
controls (e.g., design data) with the run time data associated
with the executed process, the data to validate the mapping,
data, controls and the like may be easily stored and accessed.
In addition, the arrangements described herein improve
elliciency and speed to market for one or more products
because code for the process being executed 1s generated
from the mapping document. Accordingly, code can be
reused and efliciently generated without writing new code
for each process to be executed. In some examples, the
mapping documents may be used to generate or drive one or
more libraries. The data from the one or more libraries may
then be used as a starting point for generating code for a new
process. Accordingly, by reusing code previously generated
from one or more mapping documents, the process may be
more efliciently generated and/or may move more quickly
from a design phase to a run or execution phase.

10

15

20

25

30

35

40

45

50

55

60

65

12

Further, as discussed above, the user interfaces and/or
dashboards generated may provide eflicient access to data
and may be customized to provide desired information. For
example, 1n some arrangements, a business unit may identity
one or more types of data as a key business element. The key
business element may then be flagged and may be displayed
to users within the business unit. In addition, by flagging a
key business element and providing access to that data
clement via a user interface or dashboard, the system can
provide data having a business value 1n conjunction with
linecage or other validation data. This may aid in 1improving
clliciency of providing information, reduce the amount of
data that may be presented by focusing on a key business
element, or the like.

Aspects of the arrangements described herein provide an
cilicient, scalable, and convenient system for accurately
capturing lineage information for data, generating libraries
or components that may be used to generate processes for
execution, validate quality and accuracy of data, and the
like. The arrangements described aid in efliciently using
computing resources by reusing generated source code (e.g.,
via libraries) and by linking run time events to mapping data
in order to accurately and efliciently validate data, confirm
results of an executed process are as expected, provide a
visual indication of lineage, and the like.

FIG. 4 depicts an 1llustrative operating environment in
which various aspects of the present disclosure may be
implemented 1n accordance with one or more example
embodiments. Referring to FIG. 4, computing system envi-
ronment 400 may be used according to one or more 1illus-
trative embodiments. Computing system environment 400 1s
only one example of a suitable computing environment and
1s not mtended to suggest any limitation as to the scope of
use or functionality contained in the disclosure. Computing
system environment 400 should not be interpreted as having
any dependency or requirement relating to any one or
combination of components shown 1n 1llustrative computing
system environment 400.

Computing system environment 400 may include
dynamic lineage validation computing device 401 having
processor 403 for controlling overall operation of dynamic
lineage validation computing device 401 and its associated
components, including Random Access Memory (RAM)
405, Read-Only Memory (ROM) 407, communications
module 409, and memory 415. Dynamic lineage validation
computing device 401 may include a variety of computer
readable media. Computer readable media may be any
available media that may be accessed by dynamic lineage
validation computing device 401, may be non-transitory, and
may include volatile and nonvolatile, removable and non-
removable media implemented 1n any method or technology
for storage of information such as computer-readable
istructions, object code, data structures, program modules,
or other data. Examples of computer readable media may
include Random Access Memory (RAM), Read Only
Memory (ROM), FElectronically Erasable Programmable
Read-Only Memory (EEPROM), tlash memory or other
memory technology, Compact Disk Read-Only Memory
(CD-ROM), Dagital Versatile Disk (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium that can be used to store the desired information and
that can be accessed by computing device 401.

Although not required, various aspects described herein
may be embodied as a method, a data transier system, or as
a computer-readable medium storing computer-executable
istructions. For example, a computer-readable medium

US 10,698,834 B2

13

storing 1nstructions to cause a processor to perform steps of
a method 1n accordance with aspects of the disclosed
embodiments 1s contemplated. For example, aspects of
method steps disclosed herein may be executed on a pro-
cessor on dynamic lineage validation computing device 401.
Such a processor may execute computer-executable instruc-
tions stored on a computer-readable medium.

Solftware may be stored within memory 415 and/or stor-
age to provide instructions to processor 403 for enabling
dynamic lineage validation computing device 401 to per-
form various functions. For example, memory 4135 may store
software used by dynamic lineage validation computing
device 401, such as operating system 417, application pro-
grams 419, and associated database 421. Also, some or all of
the computer executable instructions for dynamic d lineage
validation computing device 401 may be embodied in hard-
ware or firmware. Although not shown, RAM 405 may
include one or more applications representing the applica-
tion data stored in RAM 405 while dynamic lineage vali-
dation computing device 401 1s on and corresponding soit-
ware applications (e.g., software tasks) are running on
dynamic lineage validation computing device 401.

Communications module 409 may include a microphone,
keypad, touch screen, and/or stylus through which a user of
dynamic lineage validation computing device 401 may
provide mput, and may also include one or more of a speaker
for providing audio output and a video display device for
providing textual, audiovisual and/or graphical output.
Computing system environment 400 may also include opti-
cal scanners (not shown). Exemplary usages include scan-
ning and converting paper documents, €.g., correspondence,
receipts, and the like, to digital files.

Dynamic lineage validation computing device 401 may
operate 1n a networked environment supporting connections
to one or more remote computing devices, such as comput-
ing devices 441 and 451. Computing devices 441 and 451
may be personal computing devices or servers that include
any or all of the elements described above relative to
dynamic lineage validation computing device 401.

The network connections depicted in FIG. 4 may include
Local Area Network (LAN) 425 and Wide Area Network
(WAN) 429, as well as other networks. When used 1n a LAN
networking environment, dynamic lineage validation com-
puting device 401 may be connected to LAN 425 through a
network interface or adapter 1n communications module
409. When used in a WAN networking environment,
dynamic lineage validation computing device 401 may
include a modem 1n commumnications module 409 or other
means for establishing communications over WAN 429,
such as network 431 (e.g., public network, private network,
Internet, intranet, and the like). The network connections
shown are illustrative and other means of establishing a
communications link between the computing devices may
be used. Various well-known protocols such as Transmission
Control Protocol/Internet Protocol (TCP/IP), Ethernet, File
Transter Protocol (FTP), Hypertext Transier Protocol
(HITP) and the like may be used, and the system can be
operated 1n a client-server configuration to permit a user to
retrieve web pages from a web-based server. Any of various
conventional web browsers can be used to display and
manipulate data on web pages.

The disclosure 1s operational with numerous other com-
puting system environments or configurations. Examples of
computing systems, environments, and/or configurations
that may be suitable for use with the disclosed embodiments
include, but are not limited to, personal computers (PCs),
server computers, hand-held or laptop devices, smart

10

15

20

25

30

35

40

45

50

55

60

65

14

phones, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainirame computers, dis-
tributed computing environments that include any of the
above systems or devices, and the like and are configured to
perform the functions described herein.

FIG. 5 depicts an illustrative block diagram of worksta-
tions and servers that may be used to implement the pro-
cesses and functions of certain aspects of the present dis-
closure 1 accordance with one or more example
embodiments. Referring to FIG. 3, illustrative system 500
may be used for mmplementing example embodiments
according to the present disclosure. As illustrated, system
500 may include one or more workstation computers 501.
Workstation 501 may be, for example, a desktop computer,
a smartphone, a wireless device, a tablet computer, a laptop
computer, and the like, configured to perform various pro-
cesses described herein. Workstations 501 may be local or
remote, and may be connected by one of communications
links 502 to computer network 503 that i1s linked wia
communications link 305 to dynamic lineage validation
server 504. In system 300, dynamic lineage validation server
504 may be a server, processor, computer, or data processing
device, or combination of the same, configured to perform
the functions and/or processes described herein. Server 504
may be used to receive mapping documents and/or data,
format data, generate libraries, execute a process, collect run
time data, link run time data to mapping data, generate an
interactive user interface, and the like.

Computer network 503 may be any suitable computer
network including the Internet, an intranet, a Wide-Area
Network (WAN), a Local-Area Network (LAN), a wireless
network, a Digital Subscriber Line (DSL) network, a frame
relay network, an Asynchronous Transfer Mode network, a
Virtual Private Network (VPN), or any combination of any
of the same. Communications links 502 and 505 may be
communications links suitable for communicating between
workstations 501 and dynamic lineage validation server 504,
such as network links, dial-up links, wireless links, hard-
wired links, as well as network types developed 1n the future,
and the like.

One or more aspects of the disclosure may be embodied
in computer-usable data or computer-executable instruc-
tions, such as 1in one or more program modules, executed by
one or more computers or other devices to perform the
operations described herein. Generally, program modules
include routines, programs, objects, components, data struc-
tures, and the like that perform particular tasks or implement
particular abstract data types when executed by one or more
processors 1 a computer or other data processing device.
The computer-executable instructions may be stored as
computer-readable 1nstructions on a computer-readable
medium such as a hard disk, optical disk, removable storage
media, solid-state memory, RAM, and the like. The func-
tionality of the program modules may be combined or
distributed as desired 1n various embodiments. In addition,
the functionality may be embodied in whole or in part in
firmware or hardware equivalents, such as integrated cir-
cuits, Application-Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGA), and the like.
Particular data structures may be used to more eflectively
implement one or more aspects of the disclosure, and such
data structures are contemplated to be within the scope of
computer executable instructions and computer-usable data
described herein.

Various aspects described herein may be embodied as a
method, an apparatus, or as one or more computer-readable

US 10,698,834 B2

15

media storing computer-executable instructions. Accord-
ingly, those aspects may take the form of an entirely
hardware embodiment, an entirely software embodiment, an
entirely firmware embodiment, or an embodiment combin-
ing software, hardware, and firmware aspects 1n any com-
bination. In addition, various signals representing data or
events as described herein may be transferred between a
source and a destination in the form of light or electromag-
netic waves traveling through signal-conducting media such
as metal wires, optical fibers, or wireless transmission media
(e.g., air or space). In general, the one or more computer-
readable media may be and/or include one or more non-
transitory computer-readable media.

As described herein, the various methods and acts may be
operative across one or more computing servers and one or
more networks. The functionality may be distributed 1n any
manner, or may be located in a single computing device
(e.g., a server, a client computer, and the like). For example,
in alternative embodiments, one or more of the computing
platforms discussed above may be combined 1nto a single
computing platform, and the various functions of each
computing platform may be performed by the single com-
puting platform. In such arrangements, any and/or all of the
above-discussed communications between computing plat-
forms may correspond to data being accessed, moved,
modified, updated, and/or otherwise used by the single
computing platform. Additionally or alternatively, one or
more of the computing platforms discussed above may be
implemented 1n one or more virtual machines that are
provided by one or more physical computing devices. In
such arrangements, the various functions of each computing
plattorm may be performed by the one or more virtual
machines, and any and/or all of the above-discussed com-
munications between computing platforms may correspond
to data being accessed, moved, modified, updated, and/or
otherwise used by the one or more virtual machines.

Aspects of the disclosure have been described in terms of
illustrative embodiments thereof. Numerous other embodi-
ments, modifications, and variations within the scope and
spirit of the appended claims will occur to persons of
ordinary skill 1n the art from a review of this disclosure. For
example, one or more of the steps depicted 1n the 1llustrative
figures may be performed 1n other than the recited order, one
or more steps described with respect to one figure may be
used 1n combination with one or more steps described with
respect to another figure, and/or one or more depicted steps
may be optional 1n accordance with aspects of the disclo-
sure.

What 1s claimed 1s:
1. A dynamic lineage validation computing platiorm,
comprising;
at least one hardware processor;
a communication interface communicatively coupled to
the at least one hardware processor; and
memory storing computer-readable instructions that,
when executed by the at least one hardware processor,
cause the dynamic lineage validation computing plat-
form to:
receive a mapping document including mapping data
associated with mapping data source locations to
data target locations;
format the mapping data using a data interchange
standard;
receive a plurality of controls associated with the
mapping data;
execute the plurality of controls;

10

15

20

25

30

35

40

45

50

55

60

65

16

determine, based on the executed plurality of controls,
whether one or more controls of the plurality of
controls has been violated;

responsive to determining that one or more controls of
the plurality of controls have been violated, prevent
execution of a process including preventing execu-
tion of an application by the processor;

responsive to determining that one or more controls of
the plurality of controls have not been violated,
execute, based on the mapping data and the plurality
of controls, the process, executing the process
including executing the application by the processor;

after executing the process, monitor the executed pro-
cess to capture run time event data associated with
the executed process;

link the received run time event data to the mapping
data by embedding data into code associated with the
process, wherein linking the received run time data
to the mapping data includes embedding process
version information in the formatted mapping data;
and

validate the mapping data and run time event data
based on the linked run time data and the mapping
data.

2. The dynamic lineage validation computing platform of
claim 1, further including instructions that, when executed,
cause the dynamic lineage validation computing platiform to:

generate, based on the formatted mapping data, one or

more libraries; and

store the one or more libraries.

3. The dynamic lineage validation computing platform of
claim 1, wherein the plurality of controls includes at least
one control including a predetermined acceptable range for
a data value.

4. The dynamic lineage validation computing platform of
claim 1, wherein linking the received run time data to the
mapping data further includes embedding a unique name for
at least one step of the process in the formatted mapping
data.

5. The dynamic lineage validation computing platform of
claim 1, further including instructions that, when executed,
cause the dynamic lineage validation computing platiform to:

generate an interactive user interface providing access to

at least the mapping data and run time event data.

6. A method, comprising:

at a computing platform comprising at least one hardware

processor, memory, and a communication interface:

receiving, by the at least one hardware processor and
via the communication interface, a mapping docu-
ment mcluding mapping data associated with map-
ping data source locations to data target locations;

formatting, by the at least one hardware processor, the
mapping data using a data interchange standard;

receiving, by the at least one hardware processor, a
plurality of controls associated with the mapping
data;

executing, by the at least one hardware processor, the
plurality of controls;

determining, by the at least one hardware processor and
based on the executed plurality of controls, whether
one or more controls of the plurality of controls has
been violated;

upon determining that one or more controls of the
plurality of controls have been violated, prevent
execution of a process including preventing execu-
tion of an application by the processor;

US 10,698,834 B2

17

upon determining that one or more controls of the
plurality of controls have not been violated, execut-
ing, by the at least one hardware processor and based
on the mapping data and the plurality of controls, a
process, executing the process including executing
an application by the at least one processor;

alter executing the process, monitor, by the at least one
hardware processor, the executed process to capture
run time event data associated with the executed
Process;

linking, by the at least one hardware processor, the
recerved run time event data to the mapping data by
embedding data into code associated with the pro-
cess, wherein linking the received run time event
data to the mapping data includes embedding process
version information in the formatted mapping data;
and

validating, by the at least one hardware processor, the
mapping data and run time event data based on the
linked run time data and the mapping data.

7. The method of claim 6, turther including;:

generating, by the at least one hardware processor and

based on the formatted mapping data, one or more
libraries; and

storing the one or more libraries.

8. The method of claim 6, wherein the plurality of controls
includes at least one control including a predetermined
acceptable range for a data value.

9. The method of claim 6, wherein linking the received
run time event data to the mapping data further includes
embedding a unique name for at least one step of the process
in the formatted mapping data.

10. The method of claim 6, further including;:

generating, by the at least one hardware processor, an

interactive user interface providing access to at least the
mapping data and run time event data.

11. One or more non-transitory computer-readable media
storing instructions that, when executed by a computing
plattorm comprising at least one hardware processor,
memory, and a communication interface, cause the comput-
ing platform to:

receive a mapping document including mapping data

associated with mapping data source locations to data
target locations;

format the mapping data using a data interchange stan-

dard;

10

15

20

25

30

35

40

45

18

receive a plurality of controls associated with the mapping

data;

execute the plurality of controls;

determine, based on the executed plurality of controls,

whether one or more controls of the plurality of con-
trols has been violated:

responsive to determining that one or more controls of the

plurality of controls have been violated, prevent execus-
tion of a process including preventing execution of an
application by the processor;

responsive to determining that one or more controls of the

plurality of controls have not been violated, execute,
based on the mapping data and the plurality of controls,
a process, executing the process including executing an
application by the at least one processor;

alter executing the process, monitor the executed process

to capture run time event data associated with the
executed process;
link the recerved run time event data to the mapping data
by embedding data into code associated with the pro-
cess, wherein linking the received run time event data
to the mapping data includes embedding process ver-
sion information 1n the formatted mapping data; and

validate the mapping data and run time event data based
on the linked run time data and the mapping data.

12. The one or more non-transitory computer-readable
media of claim 11, further including 1nstructions that, when
executed, cause the computing platiform to:

generate, based on the formatted mapping data, one or

more libraries; and store the one or more libraries.

13. The one or more non-transitory computer-readable
media of claim 11, wherein the plurality of controls includes
at least one control including a predetermined acceptable
range for a data value.

14. The one or more non-transitory computer-readable
media of claim 11, wherein linking received run time event
data to the mapping data further includes embedding a
unique name for at the least one step of the process 1n the
formatted mapping data.

15. The one or more non-transitory computer-readable
media of claim 11, further including 1nstructions that, when
executed, cause the computing platiform to:

generate an interactive user interface providing access to

at least the mapping data and run time event data.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,698,884 B2 Page 1 of 1
APPLICATION NO. : 15/804405

DATED : June 30, 2020

INVENTOR(S) : Raman et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 18, Line 30:
In Claim 12, after “and”, insert --9--

Signed and Sealed this

- o~ L I-." L
.-'.i:éi'.': o

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

