12 United States Patent

Serebrin

US010693850B2

(10) Patent No.: US 10,693.850 B2
45) Date of Patent: Jun. 23, 2020

(54) MANAGING NIC-ENCRYPTED FLOWS FOR
MIGRATING GUESTS OR TASKS

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(60)

(1)

(52)

(58)

Applicant: Google Inc., Mountain View, CA (US)

Inventor: Benjamin Charles Serebrin,
Sunnyvale, CA (US)

Assignee: Google LLC, Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 36 days.

Appl. No.: 14/708,685

Filed: May 11, 2015

Prior Publication Data

US 2015/0326542 Al Nov. 12, 2015

Related U.S. Application Data
Provisional application No. 61/991,784, filed on May

12, 2014.

Int. CI.
HO4L 29/06
HO4L 9/08
GO6F 9/455

U.S. CL

CPC

(2006.01)
(2006.01)
(2018.01)

HO4L 63/045 (2013.01); GO6F 9/455
(2013.01); GO6F 9/45558 (2013.01);

(Continued)

Field of Classification Search
CPC . HO4L 63/045; HO4L, 9/0822; HO4L 63/0428;

HO4L 63/61; GO6F 9/45558; GO6F
2009/45577;, GO6F 2009/45587

(Continued)

iMost server 110

Guest 14
proe e
: Paciet | Poelot Facked
S T 2 3
b I
Panked Packat Facket
4 s 3

———

Appiteation 128

(56) References Cited
U.S. PATENT DOCUMENTS

5,748,738 A * 5/1998 Bisbee G06Q) 20/00
380/30
6,574,733 B1* 6/2003 Langford GOG6F 21/606
713/193

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101984631 A 3/2011
CN 102163266 A 8/2011
(Continued)

OTHER PUBLICATTONS

Kassner, M., “Next Generation Firewalls: It’s all about tuples™, I'T
Security, Nov. 28, 2011. pp. 1-6.*

(Continued)

Primary Lxaminer — longoc Iran

(74) Attorney, Agent, or Firm — Lerner, David,
Littenberg, Krumholz & Mentlik, LLP

(57) ABSTRACT

An example of a system and method implementing a live
migration of a guest on a virtual machine of a host server to
a target server 1s provided. For example, a host server may
utilize a tlow key to encrypt and decrypt communications
with a target server. This flow key may be encrypted using
a recerve master key, which may result 1n a receive token.
The receive token may be sent to the Network Interface
Controller of the host server, which will then encrypt the
data packet and forward the information to the target server.
Multiple sender schemes may be employed on the host
server, and various updates may take place on the target
server as a result of the new location of the migrating guest
from the host server to the target server.

13 Claims, 8 Drawing Sheets

Target servar 150

Cuest 224 (varget server 158)
| 7
| Patcket ?

!
!
|
i
A T T

L P Apptication 128

Motwors INatace Controlar 120

s Encevpt data packet using Fow Kay
+ Sand Receive Toxeah daiz packsl
| and encapsuiation infoymation

gl Byl byl Cwrfm

i i

§
!
1
t L} L] [L]
- v Decryrm fsla packe! using Fiow sey
._._._F.

Patwark irterizcs Controliss 140

w [eoryph Recsive tokeain 1o obiam
B ey

e

PO S S S NN P PR N S U S VI S U S S S Y SF VR 9

US 10,693,850 B2

Page 2
(52) U.S. CL 2012/0173866 Al*™ 7/2012 Ashokccooevnin. GO6F 21/575
CPC ... HO4L 9/0822 (2013.01); HO4L 63/0428 . . 713/150
(2013.01); GOGF 2009/4557 (2013.01), GogF~ ~ 0179909 ALT 72012 588l HO4L£§?§;
2009/45587 (2013.01); HO4L 63/061 2013/0061047 Al* 3/2013 Sridharan HO041. 45/586
(2013.01); HO4L 2463/062 (2013.01) 713/162
(58) Field of Classification Search 2013/0191648 A1™ 772013 Bursell GOﬁFﬁ@?gg
USPC S ST T TSNP - 713/160 2013/0243197 Al* 97013 Sherwood . HO4T. 9/0%
See application file for complete search history. 180/277
2013/0283362 Al* 10/2013 Kress ..cooevvveinevinnnn, GO6F 21/44
(56) References Cited 726/7
2014/0007092 Al* 1/2014 Barbee GOO6F 9/4856
U.S. PATENT DOCUMENTS 718/1
2014/0033201 Al1* 1/2014 Dawkins GO6F 11/1484
6,912,655 B1* 6/2005 Zucker HO4L 9/065 718/1
380/277 2014/0115175 Al1* 4/2014 Lublin GO6F 9/4856
6,986,046 B1* 1/2006 Tuvell GO6F 21/6218 709/228
380/283 2014/0201302 A1* 7/2014 Dube GO6F 12/084
7,412,059 B1* 8/2008 Pauker HO4L 12/58 709/212
380/277 2014/0208111 Al1* 7/2014 Brandwine HO4L 63/0428
7,802,001 B1* 9/2010 Petry ..coooeevvviininnnnnn, GO6F 15/16 713/171
709/223 2014/0215561 Al* 7/2014 Roberson HO4L 63/08
8,745,185 B1* 6/2014 Saloc............ HO4L 63/0428 726/3
709/223 2014/0281509 Al1* 9/2014 Angelo GO6F 21/602
8,854,972 B1* 10/2014 Li ...coovvvivvvinnnnnn. HO041. 47/12 713/164
370/235 2014/0289728 Al* 9/2014 Mitsunobu GO6F 9/45558
9,258,271 B1* 2/2016 Anderson HO4L 61/2517 718/1
2002/0143885 Al* 10/2002 Ross, Jr. G06Q 10/107 2014/0297979 Al1* 10/2014 Baronovvuuiin.. GO6F 3/0647
709/207 711/162
2003/0039358 Al* 2/2003 Scheidt HO4L 9/0869 2014/0331058 Al1* 11/2014 Heyner GO6F 21/602
380/277 713/185
2003/0142364 Al* 7/2003 Goldstone HO4L 63/0435 2015/0067330 Al1* 3/2015 Khancoooovevininn, HO41. 9/3013
358/402 713/168
2004/0062399 Al1* 4/2004 Takase HO041. 63/062 2015/0088586 Al* 3/2015 Pavlasoooo....... GO6F 9/45558
380/277 705/7.25
2004/0125957 Al1* 7/2004 Rauber HO41. 65/607 2015/0089010 Al* 3/2015 Tsirkin ..oooovenvnnnenn, GO6F 12/126
380/259 709/212
2005/0039034 Al1* 2/2005 Doyle HO41. 9/0825 2015/0146539 Al* 5/2015 Mehta .oocovvvvenvnnnnnn, HO041. 47/125
713/193 370/237
2007/0027812 Al1* 2/2007 Ogawa GOOF 21/10 2015/0212846 Al1* 7/2015 Tsirkin GO6F 9/45558
705/57 711/114
2007/0073879 Al* 3/2007 Overby, Jr. HO4L 63/0236 2015/0242159 A1* 82015 Tsirkin .oooovovvvvinnin, GO6F 3/0647
709/225 711/162
2007/0185982 Al* 8/2007 Nakanowatarl GOo6F 21/10 2015/0254441 Al1™* 9/2015 Sansococovveveerrnns GO6F 21/41
709/223 726/9
2008/0052781 Al* 2/2008 Bogot HO4L 63/0428
726/26 FOREIGN PATENT DOCUMENTS
2010/0265949 Al1* 10/2010 Cervantes H041. 47/10
370/392 N 103051510 A 4/2013
2010/0332456 Al1* 12/2010 Prahlad GO6F 3/0649 WO 2004027622 A2 4/2004
| 707/664 WO 2013090035 A1 6/2013
2011/0099318 Al1* 4/2011 Hudzia GO6F 9/45533
711/6
2011/0202765 Al* 82011 McGrane GO6F 21/53 OTHER PUBLICATIONS
2012/0017031 Al* 1/2012 Mashtizadeh . GO6F g}j%gg International Search Report and Written Opinion for Application
T11/6 No. PCT/US2015/030193 dated Aug. 18, 2015.
2012/0084570 Al* 4/2012 Kuzin ... GO6F 21/41 International Preliminary Report on Patentability for PCT Applica-
713/182 tion No. PCT/US2015/030193 dated Nov. 24, 2016.
2012/0114119 Al* 5/2012 Ahujaoco.......... HO41. 63/0853 Notification of First Oflice Action for Chinese Patent Application
3R80/44 No. 201580022858.0 dated Jan. 30, 2019.
2012/0130936 Al* 5/2012 Brownoooocoveviil GO6N 5/048 Notification of the Second Oflice Action for Chinese Patent Appli-
706/52 cation No. 201580022858.0 dated Jul. 3, 2019.
2012/0151476 Al* 6/2012 Vincent GO6F 9/45558
718/1 * cited by examiner

US 10,693,850 B2

Sheet 1 of 8

BEEL LB EEE REE AEEa BEA RS W

Jun. 23, 2020

U.S. Patent

AoM a0id Dusn 1eied giep dADan e
ASHM MO
B0 O] US| 2AIS08Y 1dAIDa]

9F { uoneEdjddy

e WasAT Bungiado

061 sanias 1abieg

UORBULUOI uonensdrIUL pue
1eyard BIED UG SARIBY USSR =
Aoy 204 Buisn 19uord eiep dADUT e

0T 1 JSHONUDT BOBUSIUE OGN

Q7 4 waisAs buneedo

o
FRRIE A

9 G
L) I B

Z b
IBNIE A M IRAIE A

$Z1 18an9)

{34 1 1Ay I80H

US 10,693,850 B2

Sheet 2 of 8

Jun. 23, 2020

U.S. Patent

L
¥
¥

;

R e b b e b e e ke kb ek e e b e b e e e e e e ek e e b e b e b e e e e e e e e ke e b e e e e e e e e R e e b e b e e e e e e e e e e e R e e e e e e e e e R e e b e b e e e e

UOHEBLLIOME UoREINSdRIUD pue
1e%ord BIED ‘USHO] DAISOSY PUSE e

Aoy a0id BLsn dioed Biel JADUT »
RCT SUGHMTIISUY

ADY UORGAIOUT Joisely e
8ZC BB

£ 7 AIOUESIAE

77 {SHDESSI0IA

G071 (DIN) RIBD SORUDIU] NIOMIBN

i - R,

| . | B ﬁﬁwﬂwww«m .. M

zaziseno | | peziseno | | pzi 1seng
._ P m

27T osinadiy

o
&
o

ZLE (51108880044 |

A, .,

{1{ | IBAIST 150OH

T
¥
¥
b

. W' Satats wa'st Saats wetste Fata's 'a's'st vYa's's 'sa's’ vas's 'aias’ yasta Cw's'st yea'sta a's's’ atata Cws’sl patsa Cw's's wi'a'sfa Cats'n wa'sta Satats wiasta Saatn wa'sta Sata's wa'afa Saatn wa'sts Satas wa's? Va's's w'a'st Patatn wiats’ Fats’s wast wats's s's'st va's's st vats'n wia's" va'sta Ca'n's wats’s ns'sn wa'mts

US 10,693,850 B2

Sheet 3 of 8

Jun. 23, 2020

U.S. Patent

{Konon paMmoye
‘eyep uotemsdesus {1y

30 184 I} 1 oidng

{sananh DamoLR
o 184 ‘Biep uoaemhsdesus {1yl M3} | sidng

011 IBAIDS 1SOM

Qo] DUNRUISUE] | jepUasn

US 10,693,850 B2

Sheet 4 of 8

Jun. 23, 2020

U.S. Patent

P T T e e e]
... w
;

:

:

:

:

:

” w

3 w

mmx Q)4 Dunsn jonoed giep ARG ¢ w
Aoy Mol W

VIGO0 O} UBNO L BAIS0oy A *| W

B0 SUGHONISUY W

“ :

:

W.

W

W

m

W

w

w

_ _ W
m m m
BLLERRG | 0LV SRRD Y 1Rt Iseng | |
m ” ~ 1
259 JosinasdAH W

W

190198 yabie w

Ao UORAAIRG JSISEIY = ”
ooy Bjed |

£Ob AIDLLDIN

Za (8105880014

091 (DIN) pie soBpU] soMmaN |

L Ui BT
i
i

¥ N4

114 4

Lopemsdesu
N.mﬁa w

i hatpigt gl igigly Rpigigt il Bl gt iglaiyt it Gipiply Wiyt gt il Rpipdpd pipiud Bpindyt pigint il iyt

Ao 014 Buisn ned eiep wlAnug
ASSE #0143 AliLan

HON0 | BAISOSY ﬁmﬁo Q
a0 | puss 1dADS] ~ BigED
BTE mswﬁgmmm

A9y UORGAIDUT IBSIRBIY
See iR

P8 ASOUSSWY

ZEE {3H088a201d

OZ4 {OIN} DR 208U HICAISN

grziseng | |ogziseng| |) seng
A)

mmm Ema‘mwamz

mm\ w 1BDAISS wmmx

b T o T o L R S O e T L I Y e P O B o G T o R o O o B s SRR o R o R L T o R e O o R L PR I e I o R O e T o L I e R o o I A I o R o O B e N B R L R s I e R o U T

' ReeE satew wee sleet CYas'r ReR. R B SRR CeRr eRss srlss B sess e s's's rlee 'Ba's wia'st des's w'e' se'sw wee sasl Jee's e reee e sweh sees el

US 10,693,850 B2

Sheet 5 of 8

Jun. 23, 2020

U.S. Patent

aa'n paats CSaais aws saah daista sats sa's’ deise Cwia's aais’. patse Jaisn aas aaielh Jdaie's aaeis aiais’ saiea Sais'as Ea's’ paists et ase's . seiau de's’s wats satau deisin aia's ala's’ vaiss Seiate aa'n saies dateia eis's aiaisl sanla ". e waiat daie's aels siels’ saista Caists se's’ seiau de's's wats’ sty Pais's wias wate vaisla aiss aiais . saist Ja's's

815 {~

SUDYO |
RIS

SIBGUWINN | suayoy

M
%
M
by

SUIQAG
puag
Apiig AUG-pRaXd

maatUnN |
QC% uonRIaUsn) |
2T AdoD ansn puss UBNG | LSS 0] shanhul

Srptepiy Tatpiear aatal. Jptai, ovaiawyl el gepiealn Sptaia CaRRANAR RRANAR, aNaNy TRNRRRY . gRaaln, aialy aaial aNaRRR eaiealy Spaiva CaFaRRR WRaSal, Sepiepirg ralaiay GRaial, aiaiy vaayt aaial. Jepirat, Waiate CaRaNal WWairal, Sepiepig rpirpiegy

QIO @mmﬁaﬁm

FEggsggsggsgggigngséggéggigngsggsgggéggsga

zz) 0snRdAN

TN FaFa®, TAVARE MANE T FFAFL TR AN Fa€aF. TIFE WA FaFaa TaFaFa AR SETAN TAFANA WY aFRR NN, TMTANE #

011 19AI8S 1S0M

JOREINYUOG DUKS-LBO-S58GAG-S T

US 10,693,850 B2

ggg -
§ ;
i ;
: M
§ :
§ :
i o _ A SUORBLLIDILY :
0 ; SR UDNBULONY | “ _ m | AW AUDRELLOU m
S | vogensdesus Qi mo L] Sy = 18| < m uoneinsdeous "al Mol "Ll M4l = 18 M
- | | _ m
e § _m | N3iAd £ eNiIE M
.m : DA {UCIBULIONE . _ HMAL Amammwﬁﬁﬁ w
_w. P TR LIV o | U Y ERIT 127 S i Tingt it = 1 |
7 _W uonpgnsdeous Ot Mol liu] M4l = 18 _ ” HoREINSABIUT "(I MO “Lidl Ml = 18 M
_w | | M
”w | < _ YN {UonBULIOM M
| LB ULDIL | | Py € 1 _ :
S | desua ‘C & QMMMM vw 4} W | S LOREMSABedUT O Mo TLM] Ml = 18 M
< _ BoRinsauatid G MGl > F = ”m |
“ M i = 261 JasiniadAM M
~ | —
= ; nG1 Jorses el L
- e e

SIE0ON UadQ] BUsy
TSPUSS DUREIBY 107 SUSYO 1 10 UCHEID

U.S. Patent

US 10,693,850 B2

Sheet 7 of 8

Jun. 23, 2020

U.S. Patent

£ Ao

ABS MO IBAIDS 180K
UERG] BAISDONM IBAIBS ISDH

Aoy 014 1ains 18biey
LBHO L ealeaey jantes 1afine g

STYILLIE A JOAIDT w_,mm._.mm.m. ¥ L SEBIPOY 4 BAIDBY SO e

UGHBURLIOIU 18aias 1eBie A LIONBUHOR J8AJSS 150H
AV SBE

A el w e e gl e, vplgied ek W Rl vy ek ek bl npleled e
.
]
¥
a
]

M R, W R R, L W W ST RO, W T ST W T G R W R ST R R R T T R T ST T T ST

R MRt Sataty wtats piats Patst Tatats

o o e S—

| ¥Z1 159N0 “
Ly
2T L JOBINBUAH

0} } J9AISS 18OH |

C8L s8ng) 084 18805 Q4435900

Zob 10SIAIedAM

054 Jonies ebiey

‘wata wiatn ety Patet Taiaia aiats Patat Safafa Tstetx et patst Satsta wiats

TOAIS00M DUNBIDIA 10l SUSH0 | 10 uoneImm

US 10,693,850 B2

Sheet 8 of 8

Jun. 23, 2020

U.S. Patent

“““

IBA9S 19DIe] 0] HOBBUUD UoRBINBSdEIUS DUR LB}
‘BA1809) "IX0Ed BIRD SU] SPUSS 121CRRE MICAMIBY By} a//, -

g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
¥
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
;

e e L L L e L)

USNC | SAIBIBY
2L U1 ASYE M014 SU SRIBINSCEIUS DU AR A0id
Buisn pyoed aiep sy sidAous odepe uoaiau el fmmm

ttt

(OO UDND Y
m&mwm&m&w@mﬁmmmummmﬁmxkﬂmﬁfmﬁammmﬁﬂ mﬂ

.....

mmﬂmﬁ UBNO L PUSS B ﬂmm 12D jedepR HIOMIBU BYL ffmmm

.
1
:
1
:
1
’
1
:
1
v
1
]
:
1
:
1
’
1
:
1
:
1
’
1
:
1
v
1
’
1
:
1
:
1
’
1
:
1
:
1
]
:
1
:
1
’
1
:
1
:
1
’
1
:
1
v
1
]
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
]
:
1
:
1
’
1
:
1
:
1
’
1
:
1
v
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
1
ﬁ%‘f‘fﬁ%‘fﬁ‘fﬁ%%‘f‘%".
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
1
’
1
:
1
:
[

1.._I.__I.._I.._I.._I.._I._.I.._I.__I.._I.__I.._I...I.._I.__I.__I.__I.._I.._I.._I.._I._.I.._I.__I.._I.__I.._I.._I.._I.._I.__I.._I.__I.._I.__I.._I...I.._I.._I.__I.__I.__I.._I.._I.._I.__I.._I.__I.._I.__I.._I.._I.._I.._I.__I.._I.__I.._I.__I.._I...I.._I.._I.__I.._I.__I.._I.__I.._I.__l-.. ee

1DAIDS IS0U BUL Wi DalBIDOSSE Jadene
AI0MGRU B O USXO] Pluas sl SRUBS JOAISS IS804 3]+
| /é%

1
L)
1
1
L)
!
L)
L)
1
1
L)
1
L)
1
1
1
L)
1
1
L)
!
L)
1
1
1
L)
1
1
L)
!
1
L)
1
1
L)
1
L)
1
1
1
L)
1
1
L)
!
1
L)
1
1
L)
1
1
1
1
1
L)
1
1
L)
1
L)
L)
1
1
L)
1
1
L)
1
% 1
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
L)
1
1
‘I
L

it e L L)

A JOISEW JSPUSS DUR 'USNO] SAIBDBY AW MOld
B UG DOSBQ US| DUSS B sojrisuall 1BAIss IS0 BUL 4w
08

US 10,693,850 B2

1

MANAGING NIC-ENCRYPTED FLOWS FOR
MIGRATING GUESTS OR TASKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of the filing
date of U.S. Provisional Application No. 61/991,784, filed

May 12, 2014, entitled MANAGING NIC-ENCRYPTED
FLOWS FOR MIGRATING GUESTS OR TASKS, the

disclosure of which 1s hereby incorporated herein by refer-
ence.

BACKGROUND

The migration of guests on Virtual Machines (VMs) from
a host server to a target server may a Tect more than the
location of the data, but the various external computing
devices that interact with the guests and servers as well.
Advances 1n technology have addressed some i1ssues asso-
ciated with naive migration, which could effectively pause
guest performance until migration 1s complete. In this
regard, brownout and blackout phases may be employed to
reduce the pause time of the guest so that the only pause 1s
during the blackout phase to transfer the dirty pages. If
encryption 1s employed among the various servers and
computing devices, then each server and computing device
may need to know the different encryption and decryption
keys associated with the target server.

SUMMARY

Aspects of the disclosure provide a computer imple-
mented system and method. The method includes preparing,
using one or more processors, to send information to a target
computing device, the information including at least a tlow
key and a first data packet of a plurality of data packets;
generating, using the one or more processors, a receive
token by encrypting the flow key using a recerve master key;
encrypting the first data packet using the tflow key; and
sending the encrypted first data packet and receive token to
the target computing device.

In an additional example, the method includes sending the
information to a network adapter; storing, on the network
adapter, the information and the receive token as a tuple, the
tuple corresponding to a flow ID; and sending the receive
token, flow key, first data packet, and encapsulation infor-
mation as a tuple to the target server. In another example, the
method may include generating a send token by encrypting,
the receive master key, tflow key, and first data packet using,
a send master key, wherein the send token encapsulates the
receive master key, tlow key, and first data packet; sending,
the send token to a network adapter; and decrypting, on the
network adapter, the receive master key, flow key, and data
packet. In that example, the method may further include
retrieving a send token from a first table; copying the
retrieved send token in a second table; and sending the
copied send token to the network adapter. In a further
example, the first and second tables include a reliability
number, the reliability number corresponding to the send
token, and the method further comprising: updating the send
token associated with the first table; incrementing the reli-
ability number associated with the send token of the first
table 1n response to the update. Moreover, in this example
the method may further include checking the reliability
number corresponding to the send token in the first table
betore copying the send token 1n a second table; storing the

10

15

20

25

30

35

40

45

50

55

60

65

2

reliability number in the second table; veritying, after copy-
ing the send token, the reliability number corresponding to
the send token 1s the same 1n the first and second tables; and
when the reliability number 1s not the same, retrieving the
send token again. Even more so, the method may further
include sending the copied send token to the network
adapter when the reliability number 1s the same. As another
example, the method 1ncludes recerving, at a target comput-
ing device, the encrypted first data packet and receive token;
decrypting the receive token using the receive master key;
identifying the flow key in response to decrypting the
receive token; and decrypting the first data packet using the
identified flow key.

Another aspect of the disclosure provides a system com-
prising a host computing device. The host computing device
may include memory and one or more processors configured
to prepare miformation for sending to a target computing
device, the information including at least a flow key and a
first data packet of a plurality of data packets; generate a
receive token by encrypting the flow key using a receive
master key; encrypt the first data packet using the flow key;
and send the encrypted first data packet and receive token to
the target computing device.

As another example, the one or more processors of the
host device may send the information to a network adapter;
store, on the network adapter, the information and the
receive token as a tuple, the tuple corresponding to a flow
ID; and send the receive token, flow key, first data packet,
and encapsulation information as a tuple to the target server.
As another example, the system may generate a send token
by encrypting the receive master key, flow key, and first data
packet using a send master key, wherein the send token
encapsulates the receive master key, flow key, and first data
packet; send the send token to the network adapter; and
decrypt, on the network adapter, the receive master key, tlow
key, and data packet. In that example, the system may
turther The receive a send token from a first table; copy the
retrieved send token 1n a second table; and send the copied
send token to the network adapter. In a further embodiment
of that example, the first and second tables include a
reliability number, the reliability number corresponding to
the send token, and the one or more processors are further
configured to: update the send token associated with the first
table; increment the reliability number associated with the
send token of the first table 1n response to the update. As an
additional example, the system may check the reliability
number corresponding to the send token in the first table
before copying the send token 1n a second table; store the
reliability number 1n the second table; verity, after copying
the send token, the reliability number corresponding to the
send token 1s the same 1n the first and second tables; and
when the reliability number 1s not the same, retrieve the send
token again. In the opposite scenario of the previous
example, the system may send the copied send token to the
network adapter when the reliability number 1s the same.
Finally, as another example the system may receive, at a
target computing device, the information and the receive
token; decrypt the receive token using the receive master
key; i1dentity the flow key in response to decrypting the
receive token; and decrypt the first data packet using the
identified tlow key.

Another aspect of the disclosure provides a system com-
prising a target computing device. The target computing
device may include memory and one or more processors 1n
communication with the memory. The one or more proces-
sors may be configured to receive a receive token and an
encrypted data packet from a host computing device decrypt

US 10,693,850 B2

3

the receive token using the receive master key; identity a
flow key 1n response to decrypting the receive token; and
decrypt the data packet using the identified tlow key.

In a further example, the one or more processors of the
target computing may be further configured to send an
indication to an external computer of a migration of a guest
virtual machine from a host computer to the target comput-
ing device; and send an IP address associated with the target
computing device. As another example, the one or more
processors of the target computing device may be further
configured to receive a receiver flow key associated with the
host server; calculate a new recerver tlow key based on the
receive master key associated with the target computing
device; and send the new recerver flow key to the external
computer. Finally, as another example the one or more
processors are further configured to encrypt data packets
using the identified flow key when communicating with the
external computer.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s an example migration of a packet of a guest in
accordance with aspects of the disclosure.

FIG. 2 1s a block diagram of a Network Interface Con-
troller (“NIC”) residing on host server in accordance with
aspects of the disclosure.

FIG. 3 1s an example of tuples being transierred from the
NIC of a host server to the NIC of the target server in
accordance with aspects of the disclosure.

FI1G. 4 1s an example Send Token scheme used to transmit
data packets from the host server to the target server in
accordance with aspects of the disclosure.

FIG. 5 1s an example of copying enqueued packets with
generation numbers 1n accordance with aspects of the dis-
closure.

FIG. 6 1s an example calculation to transform the master
key of the host server to the master key of the target server
in accordance with aspects of the disclosure.

FIG. 7 1s an example of the target server notifying a
transmitting server ol the migration i accordance with
aspects of the disclosure.

FIG. 8 1s a flow diagram illustrating an aspect of the
disclosure.

DETAILED DESCRIPTION

The technology relates generally to migrating guests of a
virtual machine from a host server to a target server, while
avoiding disruptions in connectivity and continuing to prop-
erly encrypt data. For example, a virtual machine on a host
server may need to migrate to a target server. In this
scenari1o, the hypervisor associated with the host server may
collaborate between the guest server and the network inter-
tace controller (NIC), and ultimately with the target server.

The host server may use a tlow key to encrypt and decrypt
communications between the host server and target server.
When the migrating guest 1s involved, the flow key may be
encrypted by a receive master key, which may result 1n a
receive token. As one example, the process may take place
on a hypervisor of the host server. The hypervisor may then
send the receive token (along with the encapsulated tlow key
therein) to the NIC of the host server. The NIC may then
encrypt the data packet using the flow key, and send the
encrypted data packet, receive token, and encapsulation
information to the target server.

The host server may employ two different schemes of
sending the receive tokens and data packets to the target

10

15

20

25

30

35

40

45

50

55

60

65

4

server. In a first scheme a transaction table may be imple-
mented, where tuples indexed by corresponding flow 1den-
tifiers are stored. The tuples may store, for example, the
receive token, 1n which case the tuples may be sent to the
target server as 1s. In the second scheme, a Sender Token
scheme may be implemented. In a Send Token scheme, the
hypervisor, as one example, encrypts the receive token using
a Sender Master Key, which results in a Send Token. The
hypervisor may then send the Send Token to the NIC of the
host server. The NIC may decrypt the Send Token, 1dentily
the tlow key and receive token, use the tlow key to encrypt
the data packet, and then transmit everything, except the
Send Token, to the target server.

According to another example, the hypervisor may copy
a Send Token to a separate table every time a Send Token 1s
retrieved from a read-only array. Generally, the NIC may
receive the Send Tokens, which requires the NIC to access
the Direct Access Memory (“DMA™) of the hypervisor,
which can take time. Therefore, by the hypervisor copying
the Send Tokens when a request 1s made to the read-only
array, the NIC may not have to access the DMA as often,
thereby increasing performance.

Generation numbers may also be implemented 1n the
read-only array. In this regard, the generation numbers may
increase every time a send token 1s updated. Thus, when the
hypervisor copies the send token, the hypervisor may also
verily that the generation number has not changed after the
copying of the send token. If the generation number 1s the
same, then the hypervisor knows the send toke 1s the same.
If the generation number 1s different, then the send token
may have been updated, and thus the hypervisor may access
the read-only array again.

Once the target server recerves the receive tokens and data
packets from the host server, the target server may decrypt
the information. For instance, the target server may use its
own Receive master key to decrypt the receive token and
identify the flow key. Using the flow key the target server
may then decrypt the data packet.

In addition to decrypting the receive tokens and data
packets, the target server may calculate the flow keys. The
use of tlow keys 1s bi-directional, 1n that flow keys are used
to send data and to receive data. Thus, for sending data, the
flow key of the migrating guest does not need to change,
since the flow keys associated with external computing
devices are the same. However, for receiving data the tlow
key of the migrating guest may need to change because the
location of the guest 1s no longer at the location of the host
server, but the target server. Thus, this receiving tlow key
should be recalculated to conform to the target server, and
then be sent to the external computing devices.

A system administrator may decide to migrate a live
virtual machine to another server without delaying or paus-
ing trathic. This may be necessary, for example, to reboot a
host server, update a host server, or load balance the virtual
machines for efliciency purposes.

Example 100 of FIG. 1 depicts a high-level view of guest
124 migrating from host server 110 to target server 150.
Although guest 124 maintains the same operations and
functionalities when migration 1s complete, FIG. 1 depicts
guest 124 as becoming guest 224 1n order to distinguish
between its operation on the host server and 1ts operation on
the target server. Thus, when guest 124 begins migrating to
target server 150, guest 124 effectively becomes guest 224
on target server 1350.

As shown i example 100 of FIG. 1, guest 124 has
operating system 126 and application 128 which operate on
guest 124. The operating system 126 and application 128

US 10,693,850 B2

S

may perform particular functions and handle certain pro-
cessing tasks. In addition, each guest 1s not limited to host
server 110, but may be implemented across multiple servers
(not shown) for more eflicient processing.

Host server 110 and target server 150 can be at various
nodes of network 190 and capable of directly and indirectly
communicating with other nodes of network 190. Although
only a couple computing devices are depicted i FIG. 1, 1t
should be appreciated that a typical system can include a
large number of connected computing devices, with each
different computing device being at a different node of the
network 190. The network 190 and intervening nodes
described herein can be interconnected using various pro-
tocols and systems, such that the network can be part of the
Internet, World Wide Web, specific intranets, wide area
networks, or local networks. The network can utilize stan-
dard communications protocols, such as Ethernet, WiF1 and
HTTP, protocols that are proprietary to one or more com-
panies, and various combinations of the foregoing. Although
certain advantages are obtained when information 1s trans-
mitted or received as noted above, other aspects of the
subject matter described herein are not limited to any
particular manner of transmission of information.

Data packets associated with guest 124 may be transferred
from host server 110 to target server 150. When all of the
data packets of guest 124 are transierred to target server 150,
then guest 224 1s tully developed and migration of guest 124
1s complete. For example, Packet 1 of FIG. 1 1llustrates the
transfer of one data packet from host server 110 to target
server 150. As discussed in more detail below, Network
Interface Controller (“NIC”) 120 may encrypt the data
packet using a flow key and then send the data packet along
with other information to target server 1350. Once data
Packets 1-6 are transierred to target server 150, migration 1s
complete. Accordingly, guest operating system 136 and
application 138 may run on the target server 150. While only
a few data packets are shown here, it should be understood
that significantly more data packets may be transferred
before migration 1s complete.

FIG. 2 illustrates an example system 200 1in which the
teatures described above may be implemented. It should not
be considered as limiting the scope of the disclosures or
usefulness of the features described herein. As shown, host
server 110 includes one or more processors 212, memory
214 including instructions 216 and data 218, and NIC 120.
Host server 110 also includes hypervisor 222 with guest 124.
While migration of only guest 124 1s discussed, it should be
understood that host server 110 may be operating multiple
guests at any time, and the same principles may be applied
to migration of such guests. For example, guests 280 and
282 may also be running on the host 110.

Memory 214 may store information that 1s accessible by
the processors 212, including the mstructions 216 that may
be executed by processor 212 and the data 218. The memory
214 may be of any type of memory operative to store
information accessible by the processors 212 including a
non-transitory computer-readable medium, or other medium
that stores data that may be read with the aid of an electronic
device, such as a hard-drive, memory card, read-only
memory (“ROM”), random access memory (“RAM™), digi-
tal versatile disc (“DVD™) or other optical disks, as well as
other write-capable and read-only memories. The systems
and methods herein may include different combinations of
the foregoing, whereby different portions of the instructions
and data are stored on different types of media.

The 1nstructions 216 may be any set of instructions to be
executed directly (such as machine code) or indirectly (such

10

15

20

25

30

35

40

45

50

55

60

65

6

as scripts) by the processors 212. For example, the instruc-
tions 216 may be stored as computer code on the computer-
readable medium. The instructions 216 may be stored in
object code format for direct processing by the processors
212 or 1n any other computer language including scripts or
collections of independent source code modules that are
interpreted on demand or compiled 1n advance.

The data 218 may be retrieved, stored or modified by the
processors 212 1n accordance with the instructions 216. For
instance, although the system and method 1s not limited by
any particular data structure, the data 218 may be stored 1n
computer registers, 1n a relational database as a table having
a plurality of different fields and records, extensible markup
language (“XML”) documents or flat files. The data may
also be formatted 1n any computer-readable format.

The one or more processors 212 can be any conventional
processor, such as a commercially available CPU. Alterna-
tively, the processor can be a dedicated component such as
an ASIC or other hardware-based processor. Although not
necessary, the host server 110 may include specialized
hardware components to perform specific computing pro-
cesses, such as decoding video, matching image frames with
images, distorting videos, encoding distorted videos, etc.
faster or more ethiciently. As another example, the one or
more processors 212 may be responsible for handling basic
system instructions 216 including running applications, han-
dling calculations and computations, and processing inputs
from devices such as a keyboard, mouse, microphone, etc.
The processors may receive queries from computing devices
(not shown) and process those queries, for example, by
accessing memory 214, retrieving the queried information,
and sending the information to the requesting computing
device.

Host server 110 may utilize Ethernet cards or network
adapters to connect to network 190, such as NIC 120. NIC
120 may be responsible for sending data packets to and
receiving data packets from another server, such as from
Host server 110 and Target server 150. NIC 120 may also be
capable of encrypting data packets before sending and
decrypting data packets after receiving, such as by using
public and private keys.

In this regard, although FIG. 2 functionally 1llustrates the
processors, memory, guest virtual machines and other ele-
ments of host server 110 as being within the same block, the
processors, computer, computing device, or memory can
actually comprise multiple processors, computers, comput-
ing devices, or memories that may or may not be stored
within the same physical housing. For example, the memory
can be a hard drive or other storage media located 1n a
housing different from that of host server 110. Accordingly,
references to a processor, computer, computing device, or
memory will be understood to include references to a
collection of processors, computers, computing devices, or
memories that may or may not operate in parallel. For
example, the host server 110 may include server computing
devices operating as a load-balanced server farm. And
although some functions described below are indicated as
taking place on a single computing device having a single
processor, various aspects of the subject matter described
herein can be implemented by a plurality of computing
devices, for example, communicating information over net-
work 190.

FIG. 2 illustrates an encryption scheme implemented
when transferring tlow keys and data packets 230 from the
host server 110 to a target server. In this regard, data packets
associated with guest 124 are sent to NIC 120 (or other
network adapter) of host server 110 so the NIC can encrypt

US 10,693,850 B2

7

the data packets and send information to the target, as
discussed in more detail below. As shown 1 example 200 of
FIG. 2, NIC 120 includes one or more processors 223 and
memory 224 including data 226 and instructions 228. The
processor 223, memory 224 including data 226 and instruc-
tions 228 may be similar to processors 212, memory 214,
instructions 316, and data 218 of host server 110 as
described above with respect to FI1G. 1. Processors 223 may
also be responsible for encrypting and decrypting data
packets and flow keys 1n addition to sending and receiving,
data packets and flow keys.

The flow keys may be implemented as part of an encryp-
tion scheme between the host server and target server. For
example, as shown 1n example 200 of FIG. 2 a data packet
may be sent from the hypervisor of host server 110 to NIC
120. In this scenario, the NIC 120 may encrypt a Flow Key
using a Receive Master Key associated with the target
server, which may generate a Receive Token. Thus, the
Receiver Token may be calculated according to the follow-
ing formula: {Flow Key}Receive Master Key=Receive
Token. Accordingly, the Receive Token 1s the Flow Key 1n
encrypted form. The NIC of the target server 150 knows the
Receive Master Key, and 1s thus capable of decrypting the
Receive Token to obtain the flow key, aspects of which will
be discussed further below.

As a first approach to sending Receive Tokens, flow keys,
and data packets, a Transaction Table may be implemented.
FIG. 3 illustrates example Transaction Tables 310 and 320.
The Transaction Tables may be implemented to send the
multiple Receive Tokens and data packets to the target
server. The transaction table may be implemented, for
example, on the NIC of the host server, but managed by the
hypervisor. As another example, the Transaction Table may
be managed by the kernel of host server 110. The host server
kernel, for instance, may manage the transier of the data
packets by utilizing the Transaction Table.

As shown 1n FIG. 3, the Transaction Table 310 includes
Flow IDs and tuples. Each tuple 1s indexed by a correspond-
ing Flow ID. As shown in the tuple associated with Flow 1D
1, each tuple is comprised as follows: {Flow Key, Receive
Token, [encapsulated information], [list of allowed queues]
1. It should be noted that the tuples discussed herein include
a Receive Token for the purposes of migration, but in
situations not including migration, a Receive Token 1s
unnecessary and may not be present. A similar tuple forma-
tion as 1 Tuple 1 applies to Tuple 2 through Tuple N and
their corresponding Flow IDs.

According to one example, each tuple set may be sent
from the host server to the target server. For instance, as
illustrated by arrows 330, 332, and 334, Tuples 1, 2, and 3
transier from host server 110 to target server 150. However,
the corresponding Flow IDs associated with each tuple do
not transfer. When the target server receives the tuples, each
received tuple may be stored using a new corresponding,
Flow ID created by the target server.

In a second approach to sending the Receive Token and
data packets, a Send Token scheme may be implemented.
FIG. 4 illustrates the host server 110 sending data and
information to target server 150. In this regard, target server
150 contains one or more processors and memory that
includes data and instructions (not shown). The processors,
memory, data, and instructions of the target server may
function similarly as described above with regard to the
processors 212, memory 214, mstructions 216, and data 218
of host server 110. In addition, NIC 160 may be one example
ol a network adapter which sends and receives data packets,
such as to host server 110 or a separate computing device

10

15

20

25

30

35

40

45

50

55

60

65

8

(not shown). Guest 224 may also operate similarly as the
guests described with respect to host server 110, including
an operating system and application. The hypervisor 462
may also be responsible for interoperating guests, such as
guest 224, with the various components and hardware of
target server 150, such as the processors and memory. As
another example, the hypervisor may refer to any code
responsible for running, managing, or migrating the guest
virtual machines.

In the example of FIG. 4, the Send Token scheme 1s
implemented 1n transferring the Receirve Token, flow key
and data packet to the NIC. The Send Token operation may
be used to encrypt the Receive Token, along with the
encapsulated flow key, before sending the Receive Token to

the NIC. Thus, the Send Token scheme allows for the

transfer of data packets and imformation to the NIC that 1s
local to the host server. The Send Token scheme may be set
up, for example, on the hypervisor or the kernel of the host
server. The Send Token operation may then be performed by
either the kernel of the host server, the kernel of the guest,
or the code associated with the guest. For example, guest
124 may have software code that performs the Send Token
scheme.

Unlike the Transaction Table described above, the Send
Token scheme may encapsulate the Receive Token and Flow
Key by using a Send Master Key. In this regard, the Receive
Token may be encrypted 1n addition to the Flow Key, but
using the Send Master Key. For example, the following Send
Token formula may be implemented: Send Token={Flow
Key, Receive Token, [list of allowed queues], [encapsulation
information]Send Master Key}. The generated Send Token
may then be sent to the NIC of the host server. As shown in

example 400 of FIG. 4, the NIC 120 then decrypts the Send
Token to obtain the Receive Token.

There may be advantages in using the Send Token and
Transaction Table schemes. For example, the Send Token
scheme may allow for the transfer of more data, but the
transier of the information may be slower than the Trans-
action Table scheme. On the other hand, although the
Transaction Table scheme may allow for a quicker transfer
of data, there may also be less data transferred because the
transaction table has a limited si1ze as compared to the send
tokens. Thus, the scheme that 1s employed may depend on
the preference of the administrators of the overall system.

Each data packet may be encrypted by the host server NIC
as well. The NIC may encrypt the data packet by using the
Flow Key. Thus, the formula for encrypting the data packet
on the NIC may be as follows: Packet Cryptotext={Packet
Plaintext}Flow Key. The process of the target server
decrypting the encrypted packet and Receirve Token 1is
discussed in more detail below.

In the example of FIG. 4, host server 110 sends the
generated Receive Token and encrypted data packets to
target server 150. In this scenario, information 420 includes
a data packet, Receive Token, and Encapsulation Informa-
tion. The encapsulation information may include, for
example, the source location and destination information. It
should be noted that, 1f the Send Token scheme 1s 1mple-
mented (as opposed to the Transaction Table), the Send
Token stays local to the host server; thus, neither the Send
Token nor Send Master Key i1s transierred to the target
server. However, once the NIC of the host server 1s ready to
send the gathered imnformation, both schemes send the same
tuple of mformation to the target server. Target server 1350
includes NIC 160 which includes one or more processors
462, memory 464, data 466, and instructions 468, all of

US 10,693,850 B2

9

which may operate similarly as discussed above with respect
to processors 223, memory 224, instructions 226, and data
228 of NIC 120.

When target server 150 receives information 420, the
target server decrypts the Receive Token as illustrated in
FIG. 4. NIC 160 of target server 150 may decrypt the
Receive Token by using 1ts own Receive Master Key. After
the Receive Token 1s decrypted and the Flow Key 1s
obtained, the NIC may then decrypt the data packet using the
Flow Key, as the host server encrypted the data packet using
the Flow Key. Once the packet payload 1s decrypted, the
packet may be sent to the hypervisor, guest 224, or operating,
system associated with guest 224.

Referring back to the scenario where Flow IDs and tuples
are used to transier data from the host server to the target
server, the target server may organize the receirved informa-
tion. For instance, similar to the Transaction Table on the
host server, the target server may generate a similar table
that corresponds to the Flow IDs and tuples of the host
server. The Flow ID numbers may not be the same, but a
similar scheme may be used, such as arranging the tuples so
that each tuple corresponds to a particular Flow ID.

In the scenario where a Send Token scheme 1s utilized on
the host server, a read-only array may be implemented. The
read-only array may be implemented, for example, on the
hypervisor or guest, and the Sending Software of the hyper-
visor, guest kernel, or guest user code may manage the
read-only array. The Sending Software may be responsible
for sending the Send Token to the NIC. As one example,
there may be a request for data in a cell of the read-only
array, unrelated to migration.

FIG. 5 provides an example 500 of the hypervisor access-
ing the read-only array and loading 1t into 1ts queue (i.e.,
Enqueue to Send Token 520). When this occurs, a copy 1s
made 1to a separate queue (1.e., Send Queue Copy 522).
The orniginal request for the information may then travel to
the NIC which will transmit the information to the appro-
priate computing device (not shown). When migration from
the host server to the target server takes place, the NIC does
not need to access the read-only array a second time,
because the Send Token 1s already stored in the Sending
Software, as shown 1n FIG. 5. The advantage of copying the
Send Tokens 1n this situation reduces the latency for the NIC
to retrieve the Send Tokens as opposed to accessing the
DMA again.

Generation numbers may be stored 1n the read-only array
to determine the reliability of the Send Token. For instance,
since the time of the copy of the Send Token into the Send
Queue Copy 522, the Send Token may have been updated.
Thus, the Send Token stored in the Send Queue Copy 522
may not be the most recent version of the Send Token. As
shown 1n FIG. 5, Generation Numbers that correspond to the
Send Token are stored 1n the read-only array. In this regard,
the Sending Software may check the Generation Number to
determine whether or not there has been an update. Every
time the hypervisor updates a Send Token, the hypervisor
may update the Generation Number by a given value. In one
example, the Generation Number may be increased by a
value of 1. By way of example only, the Sending Software
may check the Generation Number associated with a par-
ticular Send Token, such as ST1 of FIG. 5. The Sending
Software may check the Generation Number prior to copy-
ing the Send Token, and then re-check the Generation
Number after copying the Send Token. The Sending Soft-
ware may store in memory the identified Generation Num-
bers after each check. If the Generation Number 1s different
than the first check, then the Sending Software may re-try by

10

15

20

25

30

35

40

45

50

55

60

65

10

retrieving the Send Token a second time and checking the
Generation Number 1n a similar process.

The NIC 1s responsible for sending the data to the target
server. For example, once the Send Token scheme discussed
above 1s performed, the NIC may retrieve the Send Token
from the Sending Software. As discussed above, the NIC
may decrypt the Send Token to obtain the Receirve Token,
encrypt the data packet, and then send everything to the
target server. The target server may then decrypt the Receive
Token and data packet as discussed above.

The Send Tokens of the Host Server are updated to
correspond to the Master Key of the target server. The
update may occur, for instance, on the hypervisor of the
target server. The update may occur during the brownout
and/or blackout phase of the migration. As another example,
the Send Token update may occur on the host or target
servers as a way to expedite the process.

FIG. 6 1s an example 600 of the recalculation of the Send
Token on hypervisor 462 of target server 150. In order to
recalculate the Send Token using the Master Key of the
target server, the following formula, as one example, may be
implemented: Send Token={Flow Key, Receive Token, [en-
capsulated information]} Target Server Master Key. This or
a similar formula should be applied to each Send Token that
the target server receives.

Belore, after or during the update of the Send Tokens on
the target server, external computing devices may be
updated as well. This may occur during the brownout or
blackout phases. For example, the external computing
devices may still be communicating with the guest on the
host server, but the guest has migrated to the target server.
Thus, the information that the external computing devices
were using to communicate with the guest on the host server
should change to correspond to the new host server (1.¢., the
target server).

In example 700 of FIG. 7, target server 150 alerts external
computing device 710 of the migration. In addition, target
server 150 sends External Computing Device 710 the IP
address of the target server and the Receive Token of the
target server, and the updated Flow Key of the target server.
The transmittal of the IP address will allow the external
computing device 710 to know the location of the target
server 150. For instance, as shown 1n FIG. 7 the external
computing device 710 may update memory 712 by replacing
the host server information with the target server informa-
tion. The Receive Token and Flow Key will allow the
external computing device to encrypt and decrypt data with
the target server. For example, the external computing
device 710 may use the updated Flow Key to encrypt data
packets that it sends to the target server. In addition, as
shown 1n FIG. 7 the external computing device 710 sends an
acknowledgement of the migration to target server 150. The
target server may alert all external computing devices asso-
ciated with Send Tokens that the target server has received.

According to another example, the Flow Keys may adapt
to the target server like the Send Token discussed above. For
instance, Flow Keys are bi-directional, thereby requiring
two tlow keys. One direction 1s when the guest sends data,
and a second direction 1s when the guest receives data. In
this regard, 1f the Flow Key 1s associated with the migrating
sender then the Flow Key may not need to change. Con-
versely, 1f the Flow Key 1s associated with the migrating
receiver then the Flow Key may need to change. As one
example, the Flow Key associated with a migrating sender
can continue using the Flow Key of the external computing
device, thereby permitting successtul communication. Suc-
cessiul communication occurs because the target server can

US 10,693,850 B2

11

use the Flow Key of the external computing device when
sending the data. Thus, the external computing device does
not change, even with a guest migrating to a diflerent server.
In another example, however, the Flow Key associated with
a migrating receiver requires the external computing device
to learn the Flow Key of the target server. This 1s so the
external computing device can encrypt the packet using the
Flow Key of the correct server. For this to work the
migrating receiver may send the Flow Key associated with
the target server to the external computing device that
wishes to communicate with the target server. The external
computing device may then generate a Receive Token using
the Flow Key of the target server.

The host server may continue to receive data packets from
external computing devices. For example, this may occur
during the blackout phase, 1n which the external computing
device 1s unaware of the migration. The ability for the host
server to transmit the stray packets may be disabled because
of the blackout phase. In this scenario, the host server may
create a new in-hypervisor queue for the stray data packets,
in which the hypervisor may still encrypt the data packets
betore being placed in the enqueue. The enqueued packets
may be sent to the migrating guest (e.g., guest 124). The
stray packets may then be sent to the target server in the
same manner as described above (e.g., the Send Toke
scheme or through the Transaction Table).

Example 800 of FIG. 8 depicts an example flow diagram
ol an aspect of the above disclosure. For example, at block
802 the host server generates a Send Token based on a Flow
Key, Receive Token, and Sender Master Key. The host
server then sends the Send Token to a network adapter
associated with the host server at block 804. The network
adapter decrypts the Send Token using its own Sender
Master Key, and 1dentifies the Receirve Token as a result at
block 806. At block 808, the network adapter encrypts the
data packet using the Flow Key and encapsulates the Flow
Key 1n the Receive Token. The network adapter then sends
the data packet, Receive Token, and encapsulation informa-
tion to a target server at block 810.

The subject matter described herein 1s advantageous in
that 1s provides a system and method for the live migration
ol a guest virtual machine from one server to another. Much
of the above disclosure may take place during a brownout
phase, so the migrating guest on the host server can still
operate during the migration process. Another advantage
includes the reduced latency involved when the NIC of the
host server retrieves the Send Tokens from the copied queue,
as opposed to accessing the read-only array via the Direct
Memory Access.

As these and other varniations and combinations of the
teatures discussed above can be utilized without departing
from the subject matter as defined by the claims, the
foregoing description of embodiments should be taken by
way of 1illustration rather than by way of limitation of the
subject matter as defined by the claims. It will also be
understood that the provision of the examples described
herein (as well as clauses phrased as “such as,” “e.g.”,
“including” and the like) should not be mterpreted as
limiting the claimed subject matter to the specific examples;
rather, the examples are intended to illustrate only some of
the many possible aspects.

The invention claimed 1s:

1. A method of migrating a guest of a virtual machine
from a host computing device to a target computing device,
the method comprising:

at the host computing device:

10

15

20

25

30

35

40

45

50

55

60

65

12

preparing, using one or more processors, to send infor-
mation to a target computing device, the information
including at least a flow key and a first data packet
ol a plurality of data packets of the guest;
generating, using the one or more processors, a receive
token by encrypting the flow key using a receive
master key;
encrypting the first data packet using the flow key;
generating a send token by encrypting the receive
master key, tlow key, and first data packet using a
send master key, wherein the send token encapsu-
lates the receive master key, the flow key, and the
first data packet;
sending the send token to a network adapter; and
decrypting, on the network adapter, the send token to
1dentily the receive master key, flow key, and the first
data packet;
encrypting, on the network adapter, the first data packet
using the flow key, and
sending, by the network adapter, the encrypted first data
packet and the receive token to the target computing
device;
at the target computing device:
receiving the encrypted first data packet and the receive
token;
decrypting the receive token using the receive master
key:
identifying the flow key in response to decrypting the
recerve token; and
decrypting the first data packet using the 1dentified tlow
key; and
completing migration of the guest to the target computing
device by repeating the preceding steps for remaining
data packets of the plurality of data packets of the
guest.
2. The method of claim 1, further comprising:
sending the information to the network adapter;
storing, on the network adapter, the information and the
receive token as a tuple, the tuple corresponding to a
flow 1ID; and
sending the receive token, flow key, first data packet, and
encapsulation information as a tuple to the target com-
puting device.
3. The method of claim 1, further comprising;:
retrieving a send token from a first table;
copying the retrieved send token 1n a second table; and
sending the copied send token to the network adapter.
4. The method of claim 3, wherein the first and second
tables include a reliability number, the reliability number
corresponding to the send token, and the method further
comprising;
updating the send token associated with the first table; and
incrementing the reliability number associated with the
send token of the first table 1n response to the update.
5. The method of claim 4, further comprising:
checking the reliability number corresponding to the send
token 1n the first table before copying the send token 1n
a second table;
storing the reliability number 1n the second table;
veritying, after copying the send token, the reliability
number corresponding to the send token 1s the same 1n
the first and second tables; and
when the reliability number 1s not the same, retrieving the
send token again.
6. A system for migrating a guest of a virtual machine
from a host computing device to a target computing device,
the system comprising:

US 10,693,850 B2

13

the host computing device, the host computing device
comprising:
a network adapter;
at least one memory storing encryption keys; and
one or more processors in communication with the
memory, the one or more processors configured to:
prepare mformation for sending to the target computing,
device the information including at least a flow key
and a first data packet of a plurality of data packets
of the guest;
generate a receive token by encrypting the flow key
using a receive master key;
encrypt the first data packet using the flow key;
generate a send token by encrypting the receive master
key, the tlow key, and the first data packet using a
send master key, wherein the send token encapsu-
lates the receive master key, the flow key, and the
first data packet;
send the send token to the network adapter; and
decrypt, on the network adapter, the send token to
1dentily the receive master key, flow key, and the first
data packet;
encrypt, on the network adapter, the first data packet
using the tflow key, and
send the encrypted first data packet and the receive
token to the target computing device; and
repeat the preceding steps for remainming data packets of
the plurality of data packets to complete migration of
the guest to the target computing device.
7. The system of claim 6, wherein the one or more
processors are further configured to:
send the information to the network adapter;
store, on the network adapter, the mmformation and the
receive token as a tuple, the tuple corresponding to a
flow ID; and
send the receive token, flow key, first data packet, and
encapsulation information as a tuple to the target com-
puting device.
8. The system of claim 6, wherein the one or more
processors are further configured to:
at least one memory storing encryption

10

15

20

25

30

35

40

14

send the

generate a send token by encrypting the receive master
key, flow key, and first data packet using a send master
key, wherein the send token encapsulates the receive
master key, flow key, and first data packet;

send the send token to the network adapter; and

decrypt, on the network adapter, the receive master key,
flow key, and data packet.

9. The system of claim 8, whereimn the one or more

processors are further configured to:

retrieve a send token from a first table;

copy the retrieved send token 1n a second table; and

send the copied send token to the network adapter.

10. The system of claim of claim 9, wherein the first and
second tables include a reliability number, the reliability
number corresponding to the send token, and the one or
more processors are further configured to:

update the send token associated with the first table; and

increment the reliability number associated with the send

token of the first table 1n response to the update.
11. The system of claim 10, wherein the one or more
processors are further configured to:
check the reliability number corresponding to the send
token 1n the first table before copying the send token in
a second table;

store the reliability number 1n the second table;

verily, after copying the send token, the reliability number
corresponding to the send token 1s the same 1n the first
and second tables; and

when the reliability number 1s not the same, retrieve the

send token again.

12. The system of claam 11, wherein the one or more
processors are further configured to send the copied send
token to the network adapter when the reliability number 1s
the same.

13. The method of claim 1, wherein the target computer
device calculates the tlow key, the flow key being one key
of a bi-directional flow key pair for sending data to and
receiving data from an external computer after migration.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

