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MEASURING DEFECTIVITY BY EQUIPPING
MODEL-LESS SCATTEROMETRY WITH

COGNITIVE MACHINE LEARNING

FIELD OF THE INVENTION

The present 1mnvention relates to defectivity inspection,
and more particularly, to techniques for measuring defec-
tivity using model-less scatterometry with cognitive
machine learning.

BACKGROUND OF THE INVENTION

Current defectivity mspection technology 1s very compli-
cated and takes several steps. For instance, an immcoming
waler first undergoes an optical beam inspection. The optical
beam inspection detects by capturing images of waters using,
different wavelengths of light. Select defects (1dentified via
the optical beam 1nspection) are then imaged using, e.g.,
top-down scanning electron microscope (SEM) i1maging.
From the 1images, the defects are then classified. This clas-
sification 1s usually done by eye by a user visually inspecting
the results. The results are then stored for future reference.
As such, the current inspection technology 1s extremely time
consuming, and has a low throughput.

Further, the optical inspection 1s likely to fail in detecting
defects on heavily defective walers. For instance, defects are
detected based on regions appearing differently 1n the
images from one die/chip to another on the same water, 1.¢.,
the diflering regions are the defects. However, with a high
defect density the same defects can occur from die to die on
the same water, and thereby escape detection.

The top-down SEM 1mages may also fail to detect all of
the defects identified by the optical inspection due to water
misalignment. Specifically, misalignment can result in the
SEM capturing images of the watfer oflset from the regions
where the optical inspection found defects.

Further, the optical inspection may be able to detect
buried defects. However, because the defects are buried, the
top-down SEM images may not be able to image them.
Thus, these defects would not be identified through the
pProcess.

Accordingly, improved defectivity mspection techmques
that are less time-consuming and less labor-intensive,

increase throughput, and which are adaptive to detecting
new defects as they arise would be desirable.

SUMMARY OF THE INVENTION

The present invention provides techmques for measuring,
defectivity using model-less scatterometry with cognitive
machine learning. In one aspect of the invention, a method
for defectivity detection 1s provided. The method includes:
capturing scanning electron microscope (SEM) images of
defects from a plurality of traiming waters; classifying type
and density of the defects from the SEM 1mages; making
training scatterometry scans of a same location on the
training walers as the SEM images; training a machine
learning model to correlate the training scatterometry scans
with the type and density of the defects from the same
location 1n the SEM 1mages; making scatterometry scans of
production wafers; and detecting defectivity in the produc-
tion waters by measuring the type and density of the defects
in the production waters using the machine learming model,
as trained, and the scatterometry scans of the production
wafers.
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In another aspect of the invention, a system for defectivity
detection 1s provided. The system includes at least one
processor device, coupled to a memory, the processor device
being implementable to: obtain SEM 1mages of defects from
a plurality of training waters; classity type and density of the
defects from the SEM images; obtain training scatterometry
scans of a same location on the training waters as the SEM
images; train a machine learning model to correlate the
training scatterometry scans with the type and density of the
defects from the same location 1 the SEM images; obtain
scatterometry scans of production waters; and detect defec-
tivity 1in the production wafers by measuring the type and
density of the defects in the production wafers using the
machine learning model, as trained, and the scatterometry
scans of the production waters.

A more complete understanding of the present invention,
as well as further features and advantages of the present
invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram 1llustrating an exemplary methodol-
ogy for training a machine learning model for defectivity
detection according to an embodiment of the present inven-
tion;

FIG. 2 1s a diagram 1illustrating an exemplary methodol-
ogy for using the trained machine learming model for defec-
tivity detection according to an embodiment of the present
imnvention;

FIG. 3 1s a diagram 1llustrating an exemplary system for
defectivity detection according to an embodiment of the
present invention;

FIG. 4 1s a diagram 1illustrating an exemplary apparatus
for performing one or more of the methodologies provided
herein according to an embodiment of the present invention;

FIG. 5 1s a scanning electron microscope (SEM) image of
an exemplary die (Die 23) having defects according to an
embodiment of the present invention;

FIG. 6 1s an SEM image of an exemplary die (Diec 43)
having defects according to an embodiment of the present
invention;

FIG. 7 1s an SEM 1mage of an exemplary die (Die 51)
having defects according to an embodiment of the present
invention;

FIG. 8 1s an SEM 1mage of an exemplary die (Die 0)
having defects according to an embodiment of the present
invention;

FIG. 9 1s an SEM image of an exemplary die (Die 32)
having defects according to an embodiment of the present
invention;

FIG. 10 1s an SEM 1mage of an exemplary die (Die 59)
having defects according to an embodiment of the present
invention;

FIG. 11 1s an SEM image of an exemplary die (Die 2)
having defects according to an embodiment of the present
invention; and

FIG. 12 1s a plot combining scatterometry scans from the
die in FIGS. 5-11 according to an embodiment of the present
invention.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
vy

ERRED

Provided heremn are techmiques for measuring defects
using model-less scatterometry and cognitive machine
learning (ML )-based on a correlation between scatterometry
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spectral features and defect types/densities. Defects occur
randomly during semiconductor fabrication. Thus, there 1s
no way to build a model to mimic the structures being
measured. Advantageously, the present techniques do not
rely on models (1.e., the present process 1s model-less).
Namely, the present techniques correlate raw scatterometry
data with scanning electron microscope (SEM) 1mages of
defect type and density to train the machine-learning process
to 1dentily these defects during subsequent wafer scans.
Thus, no model 1s needed for comparison.

Further, with proper training the present scatterometry
and machine learning-based techmiques are much simpler
than the conventional defectivity inspection technology
which, as described above, involves optical inspection of a
waler, top-down SEM 1maging of select defect regions of the
waler, and manual classification by a user. As such, the
present techniques are less costly to implement and offer a
much higher throughput as compared to the conventional
technology. Further, the present scatterometry and machine
learning-based techniques will not fail even when the defect
density 1s high.

Generally, the present technmiques involve two main
phases, first a cognitive machine learming model traiming
phase, and second an in-line measurement phase using the
trained machine learming model. Advantageously, as will be
described in detail below, the model 1s adaptive to learning
new defects 1f and when they arise during the measurement
phase.

Training Phase: The model training phase of the present
techniques 1s now described by way of reference to meth-
odology 100 of FIG. 1. In this first phase, a significant
number of (training) walers (see “water flow™) will go
through both traditional (optical inspection and SEM) mea-
surement (see step 102) and scatterometry measurement (see
step 106). The scatterometry measurement (step 106) will be
performed on the same spot on the waler as the optical
ispection/SEM measurement (step 102) such that direct
correlations can be made 1n machine learning (ML) model-
ing step 110 between the defect types and densities extracted
in step 104 from the optical inspection/SEM measurements
and the raw spectra extracted in step 108 from the scatter-
ometry measurements. By way of this training phase, a
trained defect prediction machine learning model 1s obtained
in step 112. To quantily the number of training waters, there
are two criteria. First, the number of training watfers has to
provide enough statistical significance, e.g., 100. Second,
the training wafers have to include a majority of the defect
types and the typical variation of each type of defects.

If during the measurement phase (see below) a new detect
1s detected, the model 1s adaptive to learn the new defect.
Thus, the present machine learning model 1s constantly
evolving to accommodate new defects as they arise. As such,
with use and suflicient training, the model will be able to
measure a vast number of defects.

Specifically, during the model training phase, each (train-
ing) wafer first undergoes optical inspection and SEM defect
measurement 1n step 102. For clanity of description, the
walers used during the training phase may also be referred
to herein as “training” waters so as to distinguish them from
the walers measured during semiconductor production, 1.¢.,
the “production wafers,” via the tramned machine leaning
model—see below. This distinction 1s however somewhat
arbitrary since, as will be described below, training occurs
anytime new spectra are encountered.

According to an exemplary embodiment step 102
involves using optical beam inspection to capture images of
the walers using different wavelengths of light. Suitable
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optical beam 1maging tools are commercially available, for
example, from KLA-Tencor Corporation, Milpitas, Calif.
The 1images taken of different (i.e., two or more) dies on a
waler are compared by the tool to identily defects. Namely,
when comparing the 1mages, those spots on the wafer that
appear differently from one die to another are typically
indicative of defects. The term “die” (or the plural form
“dies”), as used herein, refers to individual integrated cir-
cuits formed on a water. For instance, during production,
many copies of the circuit are typically formed on a common
waler. The water 1s then divided up into individual dies, each
die containing a copy of the circuit.

Semiconductor water processing typically involves a
number of processes that are carried out to fabricate devices
such as dies/chips and/or other integrated circuits on the
waler. Variations in the process (such as exposure time,
dose, etc.) as well as external factors (such as contamination
with dust or other particles) can lead to defects such as
teatures of the device that are produced outside of their
specified tolerances. Typically, the fabrication involves a
large number of steps that build on one another. Thus,
defects that occur in one step can have a costly eflect 1n
terms of time, production cost, effort, etc. on later steps in
the process. Thus, detection of these defects as early in the
process as possible 1s key to preventing costly mistakes that
can lead to out-of-specification waters. As such, 1t 1s notable
that the present technmiques can be implemented during
multiple different points in the fabrication process to detect
defects as they occur. For instance, the model training (as per
methodology 100) and inline scatterometry measurements
(as per methodology 200—see below) can be performed at
multiple points during the fabrication process.

In that regard, during the model training phase, if 1t 1s
assumed that the dies being used are subject to the same
manufacturing processes then ideally (1f no defects occur)
the dies should appear the same during the optical mnspec-
tion. To look at 1t another way, the source for variation from
die to die 1n a common process tlow are assumed to be the
result of defects in the waters. Thus, when comparing
images of the dies, any differences can be attributed to these
defects.

The next process performed in step 102 1s to capture
top-down SEM images of those defects identified by the
optical mspection. The top-down SEM 1mages are used 1n
step 104 to characterize the types of defects that are occur-
ring and their density. Namely, the optical mspection pro-
vides the opportunity to comprehensively scan the entire
waler and home 1n on speciiic spots on the water that include
defects. A more detailed analysis of the defects (1.e., type and
density) 1s then obtained for those specific spots on the watfer
via the top-down SEM images. By way of example only, the
types of defects that may occur during semiconductor pro-
cessing can include, but are not limited to, misaligned
features, features that are out of specification such as layers
that are too thick or too thin, patterning variations, unwanted
epitaxial growth, etc. For instance, during deposition, pat-
terning, etc. varations can occur from one watler to another
(1inter-wafer vaniation) and/or within the same wafer (intra-
waler variation). For example, exposures at the center and
edges of the watler can oftentimes vary from one another. If
the difference 1s large enough, the result can lead to defective
devices. Further, with the scaling of device dimensions, the
impact of inter/intra waler variations becomes increasingly
more significant.

The density of the defects refers simply to the number of
defects detected per unit area of the waler. Knowing the
defect density 1s important as 1t provides a metric to quantity
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the severity of the defects for each given spot on the water.
Further, as provided above, areas of high defect density pose
a challenge for traditional defectivity measurement pro-
cesses as individual defects can merge with one another.
However, advantageously, the present techniques enable one
to accurately discern spots on the waters having diflerent
defect densities. Notably, scatterometry 1s not image-based,
1.€., scatterometry 1s a spectroscopic technique, so scatter-
ometry does not involve comparing two (or more) images to
find defects. Thus, scatterometry scans will reveal statistical
information about defects, e.g., defect density and average
defect size. If defects merge, the output will be smaller
defect density, and larger average size.

According to an exemplary embodiment, defects are
classified from the SEM images using an automated detec-
tion process. By way of example only, processes such as
component tree and amisotropic kernel may be employed for
detection. See, for example, Kim et al., “Automatic Defect
Detection from SEM Images of Walers using Component
Tree,” Journal of Semiconductor Technology and Science,
vol. 17, no. 1, pgs. 86-93 (February 2017) (using component
tree representations), and Zontak et al., “Detect detection in
patterned waters using anisotropic kernels,” Machine Vision
and Applications, vol. 21, 1ssue 2, pp. 129-141 (February
2010) (using anisotropic kernel reconstruction), the contents
of each of which are incorporated by reference as 11 fully set
forth herein.

Scatterometry optical critical dimension (CD) measure-
ments are then made 1n step 106 of the same spot(s) on the
walers from which the top-down SEM images were taken
(in step 102). Scatterometry 1s a metrology technique that
can be employed to measure the surface properties of the
walers, 1n a non-contact manner, using a beam of light
directed at the surface of the walers. Specifically, a scatter-
ometer (see below) 1s used to direct light (from a light source
of the scatterometer) onto the same spots on the surface of
the waters 1 the water flow (see FIG. 1) from which the
top-down SEM 1mages were captured in step 102. The light
returned from those spots on the surfaces of the watfers 1s
then captured by a light detector of the scatterometer. The
light captured by the light detectors will vary depending on
the surface geometry of the walers and how they scatter
different wavelengths of the light. Suitable scatterometers
for use 1 accordance with the present techniques are com-
mercially available, e.g., from KLA-Tencor Corporation,
Milpitas, Calif. and from Nova Ltd., Rehovot, Israel.

The results of the scatterometry measurements are spectra
of wavelength and reflectance data for each of the wafers 1n
the training data set. Exemplary scatterometry spectra are
provided below. Via the machine learning process, these
spectra will be correlated with the defects (type and density)
detected using the SEM images from step 102.

As provided above, the scatterometry measurements will
be performed in step 106 on the same location(s) of the
waler of which the SEM 1mages (from step 102) are taken
in order to enable training the machine-learning process to
correlate the raw spectral (scatterometry) data with the
corresponding defects (1.e., type and density) in the SEM
images. According to an exemplary embodiment, the raw
spectral data obtained 1n step 108 from the scatterometry
measurements 1mcludes spectral data from both bright field
(BF) and angular dark field (ADF) channels. BF channels
are sensitive to regular patterned structures, and thus can be
used to measure critical dimensions (CD) of regular pat-
terned structures. The presence of 1rregular/random struc-
tures can also cause BF spectra change, but in very low
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sensitivity. ADF channels, on the other hand, are sensitive to
random or irregular features, e.g., defects, roughness, etc.
The machine learning process 1s then trained 1n step 110
to model correlations between the raw spectra (e.g., BF and
ADF channel) data from the scatterometry measurements
and the defect data (e.g., defect type and density) from the
SEM 1mages. The goal of the model training phase 1s to
produce a trained machine learning model that can be
subsequently used (1n a measurement phase) to recognize/
detect defects (e.g., defect type and density) in waters based
only on their scatterometry spectra (i.e., without needing to
obtain top-down SEM 1mages of the waters). See step 112.
Further, as will be described 1n detail below, the machine

learning process has self-adaptive capabilities to newly
untrained spectra as they occur.

In general, machine learning involves making deductions
based on characteristics learned from (training) data. With
the present techmques, the training data for the machine
learning process includes the scatterometry data as features
and the defects (type and density) as labels. The machine
learning process 1s then tramned to determine, based on
scatterometry data, the defects (type and density) that are
likely present. Thus, scatterometry data will be the mput to
the trained machine learning process and the defect (type
and density) will be the output. Machine learning 1s applied
to the tramning data set and acquires the capability of
identifving defects when given an mput scatterometry spec-
tra.

Suitable machine learning processes include, but are not
limited to, simple linear regression approaches, or advanced
processes such as neural network or regression tree-based
nonparametric regression methods, or Bayesian parameter
optimization methods. Neural network-based nonparametric
regression 1s described, for example, 1 Herbert K. H. Lee,
“A Framework for Nonparametric Regression Using Neural
Networks,” Duke University (September 2000) (16 total
pages), the contents of which are incorporated by reference
as 1f fully set forth herein. Regression tree-based nonpara-
metric regression techniques are described, for example, 1n
J. R. Quinlan, “Induction of Decision Trees,” Machine
Learning, 1:81-106 (1986), the contents of which are incor-
porated by reference as if fully set forth herein. Bayesian
parameter optimization 1s described, for example, 1n Snoek
et al., “Practical Bayesian Optimization ol Machine Learmn-
ing Algorithms,” Conference of the Neural Information
Processing Systems Foundation (December 2012), the con-
tents of which are incorporated by reference as 1 fully set
forth herein.

A significant number of wafers (subject to both SEM-
based mspection and scatterometry measurement) are
needed as the tramning set to train the machine learming
process. The size of the training set will depend, for
example, on the performance of the (trained) model when
evaluated against measured defects, with an accuracy target
being greater than 90%. To use a simple example, say for
instance that 100 waters are employed which include detects
and a range of defect densities. A subset of those wafers
(e.g., 80 walers) are used to train the machine learning
model. Once trained, the remaining (e.g., 20 walers) are
used to test the model by comparing the output from
machine learning model with the measured defect informa-
tion for the 20 waters. If the model accuracy 1s >90%, then
the model 1s ready to use. On the other hand, 11 the model
accuracy 1s <90%, then the training process can be repeated,
¢.g., with 100 new training waters, until the requisite accu-
racy 1s achieved. Further, once installed in the production
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line, the machine learning model will become more and
more accurate because of adaptive learning.

Measurement Phase: During the measurement phase, the
trained machine learning model (from methodology 100)
and scatterometry data are used for defect detection 1n
walers during semiconductor fabrication. See, for example,
methodology 200 of FIG. 2. Advantageously, for those
defects which the machine learning model has been trained
to recognize, the trained model needs only the scatterometry
spectra (obtained 1n step 202) for defect detection.

As described above, the present scatterometry measure-
ment 1nvolves capturing spectra of light diffracted by the
surface geometry of the waters. Scatterometry scans are fast
(c.g., a scan of the entire wafler can take from about 2
minutes to about 3 minutes, and ranges therebetween). As
such, there 1s not much of a difference (time-wise) if the
scatterometry scans are performed of whole water or only
individual locations, 1t just depends on the purpose. For
istance, as provided above, during the training phase the
scatterometry scans are confined to the same locations on the
waler captured i the SEMs. Similarly, training performed
on the fly during the measurement phase (e.g., when new
spectra 1s encountered—see below) might use scans local-
1zed to the defect locations 1n the SEMs. On the other hand,
more comprehensive scans ol the entire water might be
performed during the measurement phase to get a better
assessment of the full wafer topography. Further, since the
scatterometry scans are fast, 1t 1s feasible to scan each water
in the semiconductor fabrication process—see “water tlow,”
potentially at multiple different points 1n the process. Thus,
according to an exemplary embodiment, scatterometry scans
are made 1n step 202 of at least a portion of each wafer 1n
the semiconductor fabrication process. Also, scatterometry
scans are preferably made for each of the wafers at multiple
points along the process flow. In that case, each wafer 1s
scanned more than once during the fabrication process.

A pre-screening process 1s used to determine whether the
scatterometry spectra (obtained 1n step 202) 1s in range of the
training data set (1.e., whether the machine learning model
has been trained to recognize this spectra/detect). If not, the
training phase 1s reiterated on the fly, such that the machine-
learning model can learn this new detect.

Namely, 1n step 204 (pre-screening), a determination 1s
made as to whether the scatterometry measurements from
step 202 of a given water are within range of the training
data used to train the machine learning process. See meth-
odology 100, described above. The notion here 1s that the
machine learming process has to have already been trained
(via the training data) 1n order to recognize the scatterometry
data. For new spectra, not in the range of the traiming data,
additional training will be needed—which 1s what the pre-
screening seeks to 1dentity.

Assume, for example, that 10,000 spectra are used to train
the machine learning model. If the training spectra are
consolidated into a common scatterometry plot, they will
produce a band having upper and lower boundaries. When
newly collected spectra are 1n between the upper and lower
boundaries, they are within range (of the training data) and
the machine learning model can “understand” and analyze
the new spectra. On the other hand, any of the newly
collected spectra that are outside of the band defined by the
upper and lower boundaries are not within range, and those
walers need to go through SEM mapping measurement for
machine learning model training.

Thus, 1f 1t 1s determined in step 204 that, no (N) the
scatterometry measurements from the given wafer are not
within the range of the traiming data, then the machine
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learning model needs to be trained to recognize these new
defects. The same process as described above 1s then per-
formed to train the machine learning model to recognize the
‘new’ spectra. Namely, as provided above, training involves
making (1n this case ‘new’) optical inspection and SEM
measurements (see step 208) and scatterometry measure-
ment (see step 210) of a same location on the wafer. It 1s
notable that 11 the scatterometry scan (from step 202) 1s
localized to a location of the water that can be captured via
SEM (see above), then rescanming the wafer n step 210
might not be necessary.

The results of the SEM analysis (1.e., defect type/density)
and the scatterometry scans (i.e., raw spectra (BF and ADF
channels)) obtained in step 212 are then fed into the machine
learning model which correlates the defect types/densities
extracted from the SEM and the raw spectra extracted from
the scatterometry measurements. As such, the machine
learning model 1s now trained to recognize the new spectra.

The machine learning model can then determine defect
type/density, and average defect size from the scatterometry
scans alone (1.e., no SEM imaging 1s needed) including the
new spectra which 1s 1t now trained to recognize. These
results are output in step 214. Optionally, the data from the
SEM analysis (1.e., defect type/density) and the scatterom-
etry scans (1.e., raw spectra (BF and ADF channels) used 1n
the training can also be provided 1n step 216.

I1, on the other hand, it 1s determined 1n step 204 that, yes
(Y) the scatterometry spectra (from step 202) are within the
range of the training data, then no further training 1s needed.
In step 206 the (trained) machine-learning model 1s then
used to determine defect type/density, and average defect
size from the scatterometry scans alone (i.e., no SEM
imaging 1s needed). The results are output 1n step 214.

FIG. 3 1s a diagram illustrating an exemplary defect
detection system 300. System 300 may be configured to
perform the steps of methodology 100 of FIG. 1 and/or the
steps of methodology 200 of FIG. 2. As shown i FIG. 3,
system 300 includes an optical beam 1maging tool 302, an
SEM 310 and a scatterometer 320. Fach of these compo-
nents 1s shown 1n relation to the production flow of waters
330 through the system 300. It 1s to be understood, however,
that FIG. 3 illustrates only one possible configuration con-
templated herein for the defect detection system 300. For
instance, the various components can be implemented 1n any
order relative to the water process flow. Further, one or more
additional components may be integrated into system 300 1n
accordance with the present techniques.

As shown 1n FIG. 3, the optical beam 1maging tool 302
includes an 1mage sensor 304 that is configured to capture an
image ol each of the wafers 300 in the waler tflow. The
images from the optical beam 1maging tool 302 can be
transmitted to a server 340 for analysis and/or to a database
350 for storage. As described above, the 1mages from the
optical beam 1imaging tool 302 are compared from one wafer
300 to another. Wafer locations (x,y) that appear differently
from one 1mage to another are indicative of defects. Those
(defect) locations (x,y) are then analyzed (1.e., to determine
defect type and density) using the SEM 310. The data from
the SEM 310 can be uploaded to the server 340 for analysis
and/or to the database 350 for storage.

For the machine learning process, the scatterometer 320 1s
then used to capture scatterometry scans of the same loca-
tions (x,y) as the SEM 310. As shown in FIG. 3, the
scatterometer 320 includes at least one light source 322 and
at least one light detector 324. The way in which light
produced by the light source(s) 322 and captured by the light
detector(s) 324 1s scattered depends on the surface geometry
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(including defects) of the waters 330. In this exemplary
embodiment, the scatterometer 320 hardware 1s equipped
with an adaptive cognitive machine learning (ML) module
326 that 1s configured to correlate results (1.e., defect type/
density) from the SEM 310 and the scatterometry scans from
the scatterometer 320 during the training phase (see, for
example, methodology 100 of FIG. 1—described above),
and to detect defects from the scatterometry scans from the
scatterometer 320 during the measurement phase (see, for
example, methodology 200 of FIG. 2—described above).
Thus, as shown 1n FIG. 3, scan data from the scatterometer
320 can be uploaded to the server 340 for analysis and/or to
the database 350 for storage. The scatterometer 320/ML
module 326 can also retrieve data (such as the defect results
from the SEMs) from the server 340 and/or the database 350
when needed for training.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
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of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
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may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Turning now to FIG. 4, a block diagram 1s shown of an
apparatus 400 for implementing one or more of the meth-
odologies presented herein. By way of example only, appa-
ratus 400 can be implemented as the server 340 and/or as the
machine learning (ML) module 326 in system 300 of FIG.
3, and can be configured to perform one or more of the steps
of methodology 100 of FIG. 1 and/or one or more of the
steps of methodology 200 of FIG. 2. For mstance, apparatus
400 may be configured to obtain SEM images (1.¢., from the
SEM 310) of defects from the traiming wafers; clasmfy he
type and density of the defects from the SEM images; obtain
training scatterometry scans (1.¢., from the scatterometer
320) Of the same location on the training walers as the SEM
images; train the machine learning model to correlate the
training scatterometry scans with the type and density of the
defects from the same location in the SEM 1mages; obtain
scatterometry scans (1.e., from the scatterometer 320) of the
production walers; and measure the type and density of the
defects 1n the production waters using the machine learning
model, as trained, and the scatterometry scans of the pro-
duction wafers.

Apparatus 400 includes a computer system 410 and
removable media 450. Computer system 410 includes a
processor device 420, a network interface 425, a memory
430, a media interface 435 and an optional display 440.
Network interface 425 allows computer system 410 to
connect to a network, while media interface 435 allows
computer system 410 to interact with media, such as a hard
drive or removable media 450.

Processor device 420 can be configured to implement the
methods, steps, and functions disclosed herein. The memory
430 could be distributed or local and the processor device
420 could be distributed or singular. The memory 430 could
be implemented as an electrical, magnetic or optical
memory, or any combination of these or other types of
storage devices. Moreover, the term “memory” should be
construed broadly enough to encompass any information
able to be read from, or written to, an address in the
addressable space accessed by processor device 420. With
this definition, information on a network, accessible through
network interface 425, 1s still within memory 430 because
the processor device 420 can retrieve the information from
the network. It should be noted that each distributed pro-
cessor that makes up processor device 420 generally con-
tains 1ts own addressable memory space. It should also be
noted that some or all of computer system 410 can be
incorporated 1nto an application-specific or general-use inte-
grated circuit.

Optional display 440 1s any type of display suitable for
interacting with a human user of apparatus 400. Generally,
display 440 1s a computer monitor or other similar display.

The present techniques are further described by way of
reference to the following non-limiting examples. FIGS.
5-11 provide SEM 1mages of defects (silicon germanium
(S1Ge) nodules) 1in different die, 1.e., Die 23, Die 43, Die 51,
Die 0, Die 32, Die 39 and Die 2, respectively. S1Ge nodules
are the result of unwanted growth during S1Ge epitaxy. The
scatterometry scans for each of the die are combined 1nto a
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single plot shown 1n FIG. 12. As provided above, for training,
purposes, the scatterometry scans are performed at the same
location on the waters as the SEM. In this example, this
location corresponds to specific die on the wafers. As shown
in FIG. 12, the scans can be used to el

ectively discern defect
density and average defect size. As provided above, 1i/when
defects merge, the output will be smaller defect density, and
larger average size. Referring to FIG. 12 for instance, the
scans of dies 0, 2 are different from dies 51, 59 1n a region
around 260 nanometers (nm), but they overlap with dies 51,
59 1n another region around 430 nm. Thus, the defect density
in dies 0, 2, 51, 59 1s stmilarly heavy, which 1s why their
scans have similar feature in the region around 430 nm.
However, in dies 0, 2, the defects merge, resulting 1n a larger
defect size, which contributes to the peak-like feature 1n the
region around 260 nm in dies 0, 2.

If the scans 1 FIG. 12 are used as the tramning data set,
then any spectra that are outside of the band defined by the
upper and lower boundaries of the spectra are not within
range. See FI1G. 12.

Although 1illustrative embodiments of the present inven-
tion have been described herein, 1t 1s to be understood that
the mvention 1s not limited to those precise embodiments,
and that various other changes and modifications may be
made by one skilled 1n the art without departing from the
scope of the invention.

What 1s claimed 1s:

1. A method for defectivity detection, comprising the
steps of:

capturing scanning electron microscope (SEM) images of

defects from a plurality of training waters;
classitying type and density of the defects from the SEM
1mages;

making training scatterometry scans ol a same location on

the training waters as the SEM 1mages;

training a machine learming model to correlate the training

scatterometry scans with the type and density of the
defects from the same location 1n the SEM 1mages;
making scatterometry scans of production waters; and
detecting defectivity 1n the production waters by measur-
ing the type and density of the defects 1n the production
walers using the machine learning model, as trained,
and the scatterometry scans of the production wafers.

2. The method of claim 1, further comprising the steps of:

capturing optical beam 1mages of the traimning wafers;

identilying one or more locations, containing the defects,
that appear diflerently in the optical beam 1mages of the
training walers; and

capturing the SEM 1mages of the defects from the one or

more locations of the training wafers.

3. The method of claim 1, wherein the scatterometry scans
of the production wafers are made of one or more 1ndividual
locations on each of the production wafers.

4. The method of claim 1, wherein the scatterometry scans
of the production waters are whole watfer scans made of each
of the production waiers.

5. The method of claim 1, wherein the scatterometry scans
of the production waters are made at diflerent points during
a semiconductor fabrication process.

6. The method of claim 1, further comprising the step of:

determining whether the scatterometry scans of the pro-

duction walers are within a range of the training
scatterometry scans.

7. The method of claim 6, wherein at least a given one of
the scatterometry scans ol at least a given one of the
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production wafers 1s outside of the range of the traiming
scatterometry scans, the method further comprising the steps

of:

capturing a new SEM 1mage of the defects from the given

production wafer;

classitying the type and density of the defects from the

new SEM image; and

training the machine learning model to correlate the given

scatterometry scan with the type and density of the
defects from the new SEM image.

8. A non-transitory computer program product for defec-
tivity detection, the computer program product comprising a
computer readable storage medium having program instruc-
tions embodied therewith, the program instructions execut-
able by a computer to cause the computer to:

obtain SEM 1mages of defects from a plurality of traiming,

wafers:

classily type and density of the defects from the SEM

1mages;

obtain training scatterometry scans of a same location on

the training watfers as the SEM 1mages;

tramn a machine learning model to correlate the training

scatterometry scans with the type and density of the
defects from the same location 1n the SEM 1mages;
obtain scatterometry scans ol production wafers; and
detect defectivity 1n the production waiters by measuring,
the type and density of the defects in the production
walers using the machine learning model, as trained,
and the scatterometry scans of the production waters.

9. The non-transitory computer program product of claim
8, wherein the program instructions further cause the com-
puter 1o:

obtain optical beam images of the training wafters;

identify one or more locations, containing the defects, that

appear differently 1n the optical beam images of the
training walfers; and

capture the SEM images of the defects from the one or

more locations of the training wafers.

10. The non-transitory computer program product of
claim 8, wherein the scatterometry scans of the production
walers are made of one or more individual locations on each
of the production wafers.

11. The non-transitory computer program product of
claim 8, wherein the scatterometry scans of the production
walers are whole water scans made of each of the production
walers.

12. The non-transitory computer program product of
claim 8, wherein the scatterometry scans of the production
walers are made at different points during a semiconductor
fabrication process.

13. The non-transitory computer program product of
claim 8, wherein the program instructions further cause the
computer 1o:

determine whether the scatterometry scans of the produc-

tion walers are within a range of the training scatter-
ometry scans.

14. The non-transitory computer program product of
claim 13, wherein at least a given one of the scatterometry
scans ol at least a given one of the production waters 1s
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outside of the range of the training scatterometry scans, and

wherein the program instructions further cause the computer

to:

obtain a new SEM 1mage of the defects from the given

production wafer;
classily the type and density of the defects from the new
SEM 1mage; and

train the machine learning model to correlate the given
scatterometry scan with the type and density of the
defects from the new SEM image.

15. A system for defectivity detection, the system com-
prising at least one processor device, coupled to a memory,
the processor device being implementable to:
obtain SEM 1mages of defects from a plurality of training

wafers:

classity type and density of the defects from the SEM
1mages;

obtain training scatterometry scans of a same location on
the training waters as the SEM 1mages;

train a machine learning model to correlate the training
scatterometry scans with the type and density of the
defects from the same location 1n the SEM 1mages;

obtain scatterometry scans of production watfers; and

detect defectivity in the production waters by measuring,
the type and density of the defects in the production
walers using the machine learning model, as trained,
and the scatterometry scans of the production wafers.

16. The system of claim 13, further comprising:

a SEM configured to capture the SEM images of the
defects from the plurality of training wafers.

17. The system of claim 13, further comprising:

a scatterometer configured to 1) make the training scat-
terometry scans of the same location on the traiming
walers as the SEM 1mages and 11) make the scatterom-
etry scans of the production wafers.

18. The system of claim 15, wherein the processor device

turther implementable to:

obtain optical beam 1mages of the training waters;

1dentify one or more locations, containing the defects, that
appear differently 1n the optical beam 1mages of the
training walfers; and

capture the SEM 1mages of the defects from the one or
more locations of the training wafers.

19. The system of claim 15, wherein the processor device

1s Turther implementable to:

determine whether the scatterometry scans of the produc-

tion walers are within a range of the traiming scatter-
ometry scans.

20. The system of claim 19, wherein at least a given one
of the scatterometry scans of at least a given one of the
production wafers 1s outside of the range of the tramning
scatterometry scans, and wherein the processor device 1s
further implementable to:

obtain a new SEM 1mage of the defects from the given

production wafer;
classity the type and density of the defects from the new
SEM 1mage; and

train the machine learning model to correlate the given
scatterometry scan with the type and density of the
defects from the new SEM image.

1S

¥ o # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

