US010691655B2

12 United States Patent

(10) Patent No.: US 10,691,655 B2

Le et al. 45) Date of Patent: Jun. 23, 2020
(54) GENERATING TABLES BASED UPON DATA (56) References Cited
EXTRACTED FROM TREE-STRUCTURED U.S. PATENT DOCUMENTS
DOCUMENTS T -
_ _ _ _ 6,381,580 Bl 4/2002 Levinson
(71) Applicant: Microsoft Technology Licensing, LLC, 6,611,843 Bl /7003 Jacobs
Redmond, WA (US) 7,072,896 B2 7/2006 Lee et al.
7,136,868 B2 11/2006 Sonkin et al.
. : - : 7,698,634 B2 4/2010 Bhatia et al.
(72) Inventors: Vu l\i[mh Le, K-lrklandj W{& (US); 8639727 B2 17014 Hui of al
Sumit Gulwani, Sammamish, WA 8,732,178 B2* 5/2014 Holmes GOGF 17/2247
(US); Ranvijay Kumar, Sammamish, 707/755
WA (US); Chiu Ying Cheung, 2007/0067397 AL* 3/2007 Trano...... G06Q 10/107
Redmond, WA (US) | . 709/206
2008/0172408 Al 7/2008 Meliksetian et al.
: 2009/0063957 Al 3/2009 Tamu
(73) Assignee: Microsoft Technology Licensing, LLC, 2011/0029673 Al 2/2011 J;I;}Ly;am
Redmond, WA (US) 2014/0040868 Al 2/2014 Gao et al.

(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 6352 days.

WO 2014035539 Al 3/2014

(21) Appl. No.: 15/299,312

OTHER PUBLICATTIONS

(22) Filed: Oct. 20, 2016
“International Search Report and Written opinion issued in PCT

(65) Prior Publication Data Application PCT/US2017/056438”, dated Jan. 26, 2018, 12 Pages.

US 2018/0113887 A1 Apr. 26, 2018 (Continued)

Primary Examiner — Kris E Mackes

(51) Int. CI. (74) Attorney, Agent, or Firm — Medley, Behrens &

GO6F 16/25 (2019.0:

) Lewis, LLC
GO6F 16/215 (2019.01) SIS,
GO6F 16/83 (2019.01) (57) ABRSTRACT
GO6F 16/22 (2019.01)
(52) U.S. CL Various technolog:lez pertaining ‘gj extracting databianiodeg
CPC GO6F 16/215 (2019.01); GO6F 16/2282 I a free-structured document and generating a table base

upon the extracted data are described herein. In a first
embodiment, the table 1s generated without requiring 1nput
from a data cleaner. In a second embodiment, the table 1s

(2019.01); GO6F 16/258 (2019.01); GO6F
16/83 (2019.01)

(58) Field of Classification Search generated based upon examples set forth by a data cleaner.
CPC e GO6F 16/238
See application file for complete search history. 20 Claims, 13 Drawing Sheets
| TREE-STRUCTURED DOCUMENT |, ~—108
| RECORD 1 202
| 202_/ Lo
FIELD1-1 |
&
L
R o o 226~
FELD 1P | | Lkt R
A, . CONVERTER COMPONENT |
|| RECORD2 | N SSR——— | |
vy, 212 | SCHEME SELECTOK |
P - AN
® ¢ .l oo [_conversionscHEmEs |
o s)T |
@ | FRED2Q e
-] i |
s e
CONVERSION SCHEME S
RECORD M
206~ 216
FIELD M-1 |
»
. o
FIELD M-R

US 10,691,655 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2014/0324839 Al 10/2014 Sayers et al.
2015/0095312 Al 4/2015 Gulwan et al.
2015/0254530 Al 9/2015 Gulwamn et al.
2016/0042015 Al1* 2/2016 Landau GO6F 16/211
707/803

OTHER PUBLICATIONS

Le, et al., “SmartSynth: Synthesizing Smartphone Automation
Scripts from Natural Language”, In Proceeding of the 11th annual
international conference on Mobile systems, applications, and ser-

vices, Jun. 25, 2013, 13 pages.

Hall, Tim, “XMILTable: Convert XML Data into Rows and Columns
using SQL”, Retrieved on: Sep. 16, 2016 Available at: https://oracle-
base.com/articles/misc/xmltable-convert-xml-data-into-rows-and-
columns-using-sql.

* cited by examiner

1 "Old

QTT

US 10,691,655 B2

Sheet 1 of 13

911

LNINOJINOD
YIZISTHLNAS
AVYOO0YUd

A}

zzi-+1 L__

Ol1~

N 32410S VIVQ

Jun. 23, 2020

901

dvingvi

80T—| | LNIWNNDOQ
N G3¥NIONYLS

1 3I2HN0OS VIVQ
70T

~1dul

U.S. Patent
4

L —— S - .-. MHO _“
w - - w - - - H

Viva ” _ ONISS300Hd

e s e e s s s s e s e e e s e e e s e s s s e e e i i

NOILVIddV

0Ll vowamw

1 y0553704d

FO0IA3A ONILLNAWNOD

¢ Ol

US 10,691,655 B2

R S S S S S A SO T SO S S A SO S S S T T SUR S T T S S T S S S S S S S S SO S SO SO T S SAR S T SO U S S S S S S S SO T S SRS S S SO S S SU SO S SR U SO S SN S S S SN SO S S U SN S SO S S

Sheet 2 of 13

T INIHIS NOISHIANOD

TTTTTTTTTTTTTTTTTTT

0Z¢ ININOJdINOD
d012313S INIHOS

g S S Syl Sy St gl Sy Ty Syl Sagft St Tl SUge SR St SA TR Tt S SR Syt T S Syt Sy St Sglt S Syt Sglt MU Syfet Sl U St St EAg SR St Tt A Syt SO S Syt Syt S Sglt SAe Syt Shglt S Syt Sl SR SRt Sl SO TR St St A Sy S S Syt Sy St Sgls SOy St Shgpe Sy

ININOJINOD ¥3LH3IANOD

Jun. 23, 2020

l/mmm 44

U.S. Patent

iiiiiiiiiiiiiiiiii

TTTTTTTTTTTTTTTTTT

4N Q1313
grz—"

- G131

917—" 907
m A Q¥OD3IY

TR T T SR T T A SO T S SO TS TU SO TS T SUg RO S SO U SO N SO SR N SO e SO T SO SO TS T U SO S TUJ SO S SO U MU N T S S T e S T i

0-7 G1313 @

° @

"
—

C TzanEd

\I@ON

¢ Ju003d

I-1 a13i4 |

WON |\\i _______ \..INDN

- TQ¥0DR

US 10,691,655 B2

Sheet 3 of 13

Jun. 23, 2020

U.S. Patent

¢ Ol

womn\&

30¢ VYO0
Q3ZISTHLNAS

14023
IDVAONYT

214103dS NIVINOJ
Ni SINVYHEDOUd

T T T T T T T T T T W T T W T T W T

d3ZISIHLINAS NVED0Ud

peT—"

20¢
R

(S)31dNL IdINYX3

LININND0Jd
A38Nn10NY1S
-34dl

US 10,691,655 B2

Sheet 4 of 13

Jun. 23, 2020

0y

FAILL FH1 40 %00T IN3S3dd
AL IHL 40 %00T INISIHd] s | []
AL 3HL 30 %00T LNISTHd{ A NOLLVIOIA | [
SW3LE € SNIVINQOD | 123180 13A31 WS
SNOILYIOIA |
JNIL IHL 40 %08 IN3S3IYUd | diz-daINMmo | [

FIAL FHL 40 %0¢% IN3S3Hd | 3GNLIDNOT ~

AL dHL 40 %08 LN3534d| 340D 1WiSQd
FINLL FHL 40 %08 IN3S3Hd | ALD

JNIL 3HL 40 %08 LNISIHd | SS3daay

FAHL dHL 40 %001 LN3S3dd | INVYN

FNLL FHL 40 %08 LIN3S3dd | ai SsSanisng

AL FHL 40 %06 INISIHd | 3dAL |
AL FHL 40 %06 INJSI™Hd | 3iva |

SWELIOL ¥ SNIVINOD
SLLI 000P SNIVANQGD | AVYHEV 13A41-dOL

JHOW 8 MOHRS

-

R T S SR S S A SO S S SO SN S SO S SO SO T T SUR SO T SO S SR T S

T N

P S S R T T TN S T S S S S e S T

R R R R R R R R M R R B R W R B R M D R N R B

PR S REE SR S RPN SPLF SR SR SPLF SR SP SRR S S

JNIL IHL 40 %08 IN3ISIHd | 3400S |

B

PR S SE U SR SR WP SR SR RPN PN SPF SP SPLF R UP RPN SR RE UPL SR SR SR SR SR SRR SR SR SR SR SR SR SR SR SPLF S SR SRR SR RP SPL SR P SPR SR SR S

' IAIOYS LYVLS

U.S. Patent

US 10,691,655 B2

Sheet 5 of 13

Jun. 23, 2020

U.S. Patent

G 'Old

_—20S

YOV

£ NOLLSIODONS
¢ NOLLSIOONS
T NOLLSIOONS
Q149 ALdING

| JNIL IHL 40 %00T LN3SIHd[aT NOLVIOIA | [

il il e alle -

FNLL 3HL 40 %00T IN3S3Hd| 2530 |
INIL IHL 40 %00T LIN3ISIHd] dsiy |

R R R R R D R R U D R R U R R R R R R R R R S U R R S D W D S R R U R R SR R R R S g ag

SIANIFLE € SNIVINGD | 123780 13A3T 43S

{ mzo:ﬂms |
INIL FHL 40 %08 INISIYd [diz-aanmoe] [

FWIL 3HL 40 %0€ IN3IS3¥d | 3aniiivi | [|
INIL IHL 30 %08 INISIYd[IT63 WISOd]

JINLL IHL 40 %08 IN3ISTd [S53uaay | [

JNIL IHL 40 %08 IN3IS3IHd | ai ssaNisng | [

apFapaniSapity

P

S3LNGIYLLY 9T OL 0T SNIVINQD | SSaNisng | { |

tapFentapSantepSenfepSantenFanfapSantanSan'

FNIL FHL 40 %06 IN3S3Hd | 3dAL | {

INIL IHL 40 %06 IN3SI™d | 3va | [

FNIL IHL 40 %08 IN3SIYd [3035 | [
SALI OL ¥ SNIVINOD [1380 13A31 PIE

e e e s i e s s e e e s e e e s i e e s e e e e e e el e e e s e e i i e e el e s e e e s e e e e e e e e s e e i e e e e e e e e e e e s s s s s e i e i s s s e s s e s e s e e e e i s s e i s e s e s i e e s s s e e s e

L 018D ALJINT

e S R R

US 10,691,655 B2

Sheet 6 of 13

Jun. 23, 2020

U.S. Patent

06

06

06

06

06

86

86

86

69

$9

&9

59
59

9
9

59
59

FNILL 3HL 30 %001 IN3IS3dd|
FNL 3HL 40 %00T INJS3Hd|

e Sl

SR S S SR SR T SO S S

PR S S SR S T S S T S S S S S S S S SO S S SO S S T

INWIL 3HL 40 %00T IN3ISIHd] df NOVIOIA | []

antanfenfenienienfenionionionfenionianfaniontanionfanfonfanfanfenianfanfanfonionfenionionfan e ionfonfanfonfen s fanfonfan e foniaefanfonioniae e fonfonfan i ionfonian oo ianfanfenfan e fanfen e fanienfen e fonienfen e fontanfanfanfonfan oo fan e fonton e e fonioe e iesieeies e ieefen e i fan e o i fen e fanfen e e feniee e fonfee e i oot iaefentan o ianten e fanteefee o e fee e fen e e e feeten e fenten fan i fen e fan e e fan fenfee et feefe et Se e e Se fepn e Sape fape! tanienienieniontenianfanionfasfanfeniosfenfenionfenfaniosfenfanianionfonfanionian s fanfonfaefanfeniaefanfonfonfen e iasfonfonianionfanfanfanfan e fanfanfaefanfoniae e fonienienfeniosfen i ionfonion oo fan e fanfonfaefanfonioe e fanienfen e ioefonfonianfonfan oo fan e fanfenfae e fenfee e fonfenfen e fesfenfonianfonfan o fonten e fantenfae e feniee e fanifen e e feefenfanianfenian o i ten e fanfen e e fenfee e fen e e e iee et iaefenten o i e e fan e e e S fee e fe e fe e e Sepn Sepn S e Sape

Flunl.ufﬁ
o

A T NOLLSIODONS |

NOHd LYVIS

§00L

US 10,691,655 B2

Sheet 7 of 13

Jun. 23, 2020

06 | 06 | 06 | EvSYE INIL 3HL 40 %00T IN3SIMd [D53a_] []

L o L o B B o o B B o o o o

06 | 06 06 GYTERG JAL JHL 40 %00T IN3SIYd] s | [

TP _ - JAHL 3HL 40 %00T LN3SIdd[ar NOLLVIOIA | [
6 | 29 o cEpBoL SI3LI € SNIVINOD | _103rgo A yis | [

9 | s9 | 99 6YECTT ENOILVIOI
59 | 59 G9 EYERLY JAIL 3HL 40 %08 INISIYd [diZ-sanmo] [
9 | §9 | S9 | TIZVED o JYOW 8 MOHS
T t m T FAIL FHL 40 %0€ IN3ISIdd | 3GNLIONOT |

69 | $9 | §9 zepcTz || T T T e —

59 | $9 | 99 CTEB6S JNIL IHL 40 %08 INISTHd[A0 Wisod
8% | 86 | 86 GEYSBT INILL IHL 40 %08 INISIHd [T ALD

FNLL dH 30 %08 LN3SIHd [SS3dday

FNLL 3HL 40 %00T INJSIHd | SNVYN | |
HAILL 3HL 40 %08 IN3S3Yd | ai ssaNisng | X

S3LNGIYLLY 9T OL OT SNIVINOD [Ssanisng | R
FINHL FHL 30 %06 IN3S3Yd | 34AL | X
X

P T T T U T T e W T T W g S gy wgr g

FAHL IHL 40 %06 IN3IS3Yd | 31vd

I e e e e e e e e e i e

B O U

T _ _ INIL 3HL 40 %08 IN3SIYd [¥0>s] B
6L | O | 6L | DOSEVSS |1 O SW3LIOL ¥ SNIVINOD [103780 3A31 s | IR

IdAL | 3dAL | 3HOOS { Al SSINISNG _ SN LI 000 SNIVINGD | Aviuv BAT 40l 1l

ooy opyompu g ompuy oy ey ooy gy oy sy oy oy oy gy by ooy oy g oo gy ooy oy by ooy gy gy o oo o g g by g g e ompuy oy gy oy sy gy ooy gy by ooy gy oo oo o oo oy gy gy ey gy ooy gy by o ooy oo boupy oy o by vupay o b b

A1 NOILLS3IDOHNS | -WOYL 1YVLS HOYYIS

U.S. Patent

US 10,691,655 B2

Sheet 8 of 13

Jun. 23, 2020

'Ol

V\loo B

vOv

GEVSEL

FNIL FHL 30 %001 IN3S3dd | 283d | |]

T

INILL 3HL 40 %00T LN3SIHd] di NOILYIOIA |

FNIL 3HL 40 %08 LN3S3Hd | dIZ-HINMO |

PRSP RPL RSP SR R SRR SR SR SR SR SR SR SR SR SR SPLF SR SP SPL SR SR SPL SR SP SR S
e e e eyl e e ey S eyl S eyl S Sl S i e e i S e e

JHON 8 MOHS
FJINILL 3HL 40 %0€ IN3S3Hd | 3anuoNoT | [

SNOILVIOI

£2592T
VEZEYS
9SEYIS

3

0V

U.S. Patent

US 10,691,655 B2

Sheet 9 of 13

Jun. 23, 2020

V\l_oom

06 | 06 06 EVSYET | IAL IHL 40 %00T IN3S3I¥d| ds3a |

8 | 86 86 £EVS6T
9 | S9 59 6YECTT

.............. et et Rt e e ol]

FAL FHL 40 %08 IN3IS3Hd{ 3002 IV.ISOd |

IALL IHL 40 %08 INISIUd AP 1 [

PRI ST R U SR SR SRR SR SR SR SR SR SP SPLF SR SR SPL SR SP SPL SR S NP a

] m INIL FHL 40 %08 IN3ISIUd [Ssaaaav | [

86 36 86 £25971 FWILL 3HL 40 %06 LN3S3Hd | 3dAL | X

apFepepFepSepFepFepSepFepFepSepSepfepSapSapSal

ol | oL | vezere | JNLL FHL 40 %06 LNISTHd [3iva W
e | JNIL IHL 40 %08 INISTHd [F9005 |1 X
oL | OF | o | 9%EW9s |y OF SINILI OL ¥ SNIVANOD [103780 1BAT1PIE | I

e e e e e e e e e e e s e s e b e s s b e s e e e s s e e s e e s b s s s b i s e s o s

3dAL | 3dAL | 3400S | Gf SSINISNA | SIILI 000F SNIVANOD [Avuav aATTd0L il

y gy gy s oy ooy ey ey s s s s s gy sy s by e g b b g g

LN T NOLLSTIOONS | [INOYd LYVIS HOYV3S

U.S. Patent

US 10,691,655 B2

Sheet 10 of 13

Jun. 23, 2020

U.S. Patent

O1 5id

R R T m.qm.mﬂmm m_\/:l_x MIl_r nmo mu\mwoo._” Pzwmmm& - Umm_g VHA
,,,,,,,,,,,,,,,, N@ 06 06 06 CH7E8R6 | FiIALL IHL 40 %00T IN3S3Yd! s g

T ae T eenas | |3WIL3HL 40 %00T 1NISIYI[ATNOUVIOA] B
I — SINGLL E SNIVINOD | 10380 13AIT YIS |

6V€717 SNOVIOIA | X

ooy oy g g oo g g o g gy oy oy s by oy oy g by e g b g b b

S G9 g9 | g9 €H€8/9 AL IHL 40 %08 IN3ISIUd [diz-danmo |]

QG
L
LN
)
.)
-
(S}
-
Y

T D
o0
.y
o0
G
O
N
0
Ch

vi §)
o)
™
L

_ O
1)
O
N
Lo

T170eh " FYOW B MOHS

PR S D S S N D SR D S DR B D S B S S B B S S S B B S L e S SR

FNIL FHL 40 %0€ LINIS3¥d | 3aNLBONOT | |

—— _ N..ﬁ 11111111111111111111111111 m @ ,,,,,,,,,,,, mw - + . m& o Nm__wm._..‘N M_E_n_r MI.._' n_o &OM szmmm&rm.ﬂﬂdh_bﬂg

QT 59 39 |89 (1ES368 JNILL IHL 40 %08 IN3ISIHJ[3000 1viS0d |

LM 3
o)
H
Wy
L0
D
LN
0

PR SRy

ot | <t

_‘ FNLL FHL 40 %08 IN3SIHd| af SSaNisng

SILNGRHLLY 9T OL OT SNIVINOD | ssanisng | i

76977 FJIALL IHL 40 %06 INISIUd [FdiL | X

HET7CHE JNIL 3HL 40 %06 IN3SIYUd | __3iva | X

111111111111111111111111111 VAT 3T 40 %209 T MICIY RO w H
Soepoc - INIL IHL 40 %08 INISTHd [F0005 | X

pEpSpSplplpSplptpSeSelptelplplelelpSplelplpielelpSpieiglplaiglellelelalebatl

Z €e
MSIY 1 Q1 NOLLYIOIA

Stk SW3LI OL ¥ SNIVINOD {_123r8013A31pie | I
i 55dNi5N4 SINILI 000F SNIVINOD

[N T NOLLSIDONS | -WOHd LdViS HJOdV 43S

U.S. Patent Jun. 23, 2020 Sheet 11 of 13 US 10,691,655 B2

1102

START

1100
y

1104
w RECEIVE TREE-STRUCTURED DOCUMENT ;

:

RECEIVE A REQUEST TO GENERATE TABULAR DATA
BASED UPON THE TREE-STRUCTURED DOCUMENT

oo '

SELECT A SCHEME FROM AMONGST A PLURALITY OF
POTENTIAL SCHEMES

111

GENERATE THE TABULAR DATA USING THE SCHEME
SELECTED FROM AMONGST THE PLURALITY OF SCHEMES

1
N

FIG. 11

U.S. Patent Jun. 23, 2020 Sheet 12 of 13 US 10,691,655 B2

1202

~1200
¥

1204

RECEIVE TREE-STRUCTURED DOCUMENT

1206\1

RECEIVE A SELECTION OF A PORTION OF THE TREE-
STRUCTURED DOCUMENT

RECEIVE EXAMPLE TUPLES THAT CORRESPOND TO THE
SELECTED PORTION OF THE TREE-STRUCTURED
DOCUMENT

1208 A
N

1230~ . S
5 CONSTRUCT A PROGRAM IN A DOMAIN SPECIHFIC
LANGUAGE THAT CREATES THE EXAMPLE OQUTPUT TABLE
5 FROM THE PORTION OF THE TREE-STRUCTURED

DOCUMENT

R R R R R D R R R D R R R R S R R R R R R R S R R R S R R S S R R R D R R R R S S W R SR R S S D R R S D R R S S R D D R R R S S R S S M R g R R R R R R R R R D R R R D R R B R SR S M R S S N D S D R R S R R R S R S D R R S R R S R R R S g R R S B R S S R R B R R R M R S S N R S R g g

1212-
"\r Y

APPLY THE PROGRAM OVER AN ENTIRETY OF THE TREE-
- STRUCTURED DOCUMENT TO GENERATE AN OUTPUT
TABLE

FIG. 12

U.S. Patent Jun. 23, 2020 Sheet 13 of 13 US 10,691,655 B2

“/,fm1300

1302~ 1304~
PROCESSOR MEMORY
130¢&
INPUT < ™ OUTPUT
INTERFACE INTERFACE

1310 1308~ | DATASTORE 131"

FIG. 13

US 10,691,655 B2

1

GENERATING TABLES BASED UPON DATA
EXTRACTED FROM TREE-STRUCTURED
DOCUMENTS

BACKGROUND

As computing devices have become ubiquitous, the vol-
ume of data produced by such computing devices has
continuously increased. Organizations often wish to obtain
insights about their processes, products, etc., based upon
data generated by numerous data sources, wherein such data
from the data sources may have diflerent formats. To allow
for these 1nsights to be extracted from data, the data must
first be “cleaned” such that a client application (such as an
application that 1s configured to generate visualizations of
the data) can consume and produce abstractions over the
data.

Currently, data 1s often serialized into a tree-structured
document, such as JSON, XML, etc. Often, an organization
will employ an individual, referred to herein as a “data
cleaner”, to extract data encoded in tree-structured docu-
ments and place such data in a format (e.g., tabular) that can
be consumed by certain applications for processing. Utiliz-
ing conventional approaches, the data cleaner can write a
customized script that receives the tree-structured document
as mput, extracts data from the tree-structured document,
and constructs a table based upon the extracted data (e.g.,
where at least some of the data extracted from the tree-
structured document may be further processed prior to a cell
in a table being populated with a value). Writing a script,
particularly when the tree-structured document is not 1n a
relatively simple format and/or when somewhat complex
processing 1s to be undertaken on data extracted from the
tree-structured document, can be cumbersome and requires
programming expertise. Therefore, 1t can be ascertained that
extracting data encoded 1n a tree-structured document and
creating a table based upon the extracted data can be
labor-intensive.

SUMMARY

The following 1s a brief summary of subject matter that 1s
described 1n greater detail herein. This summary 1s not
intended to be limiting as to the scope of the claims.

Described herein are various technologies pertaining to
extracting data from tree-structured documents and gener-
ating tables based upon the extracted data. In a first approach
for extracting data from a tree-structured document and
generating a table based upon the extracted data, no mput
from a data cleaner 1s required. With more specificity, a
computing device can execute a data cleaning tool, wherein
the data cleaning tool loads a tree-structured document
therein. Exemplary tree-structured documents include JSON
documents, XML documents, and other similar documents.
The data cleaning tool can be configured to ascertain a
structure of the tree-structured document, and can be further
configured to construct a schema based upon the structure of
the tree-structured document. For instance, when ascertain-
ing the structure of the tree-structured document, the data
cleaning tool can identily a number of nodes 1n the tree-
structured document, depths of nodes 1n the tree-structured
document, a number of fields 1n records of the tree-struc-
tured document, a number of field instances 1n fields,
whether or not field instances include records (e.g., a recur-
sive array), and so forth. Further, the data cleaning tool can
access a computer-implemented model of user behavior that
indicates how one or more of the data cleaner, an end-user,

10

15

20

25

30

35

40

45

50

55

60

65

2

previous users 1n a certain division of an enterprise, the
general population, or some other user group have previ-
ously constructed tables based upon tree-structured docu-
ments that have similar structures to the tree-structured
document loaded 1nto the data cleaning tool.

The data cleaning tool may then select a conversion
scheme from amongst a plurality of conversion schemes
based upon the structure of the tree-structured document and
the computer-implemented model of user behavior. Addi-
tionally or alternatively, the data cleaning tool can select the
conversion scheme from amongst the plurality of conversion
schemes based upon explicit mput set forth by the data
cleaner. Exemplary processes corresponding to a conversion
scheme that can be performed by the data cleaning tool
include, but are not limited to, merging field instances of
different lists 1n the tree-structured document (where the lists
have equivalent lengths and are at a same depth 1n the
tree-structured document), taking a cross product of multiple
lists 1n the tree-structured document (where the lists have
equivalent lengths and are at a same depth in the tree-
structured document), amongst other processes. Thus, the
data cleaning tool extracts data from the tree-structured
document and constructs a table based upon the extracted
data by 1) ascertaining the structure of the tree-structured
document; 2) constructing a schema based upon the struc-
ture; 3) selecting a conversion scheme (e.g., based upon
previous user behavior and/or explicit input); and 4) apply-
ing the schema and the conversion scheme to the tree-
structured document to generate an output table.

A second approach for extracting data encoded in a
tree-structured document and generating a table based upon
the extracted data involves receiving at least one example
from the data cleaner pertaining to a desired output table.
With more specificity, the data cleaming tool can load a
tree-structured document therein. In such an example, the
tree-structured document may have a relatively complex
structure, or the data cleaner may wish to perform compli-
cated extraction of data from the tree-structured document
and/or complicated processing over extracted data. An
exemplary complicated extraction includes extracting sub-
strings of field instances in the tree-structured document.
Exemplary complicated processing over extracted data
includes combining string values from multiple fields 1n the
tree-structured document, merging values of different field
names possibly using some delimiter into a single column in
an output table, efc.

In such a scenario, the data cleaning tool can receive input
from the data cleaner, wherein the mput describes the intent
of the data cleaner by means of examples. The data cleaning
tool, responsive to receipt of such examples, can construct a
program that i1s consistent with the examples. A program 1s
consistent with the examples when the program, upon
receiving a portion of the tree-structured document that
corresponds to the examples as mput, will output an output
table that does not violate the examples. For instance, the
data cleaning tool can utilize program synthesis techniques
to search a domain specific language for the program that 1s
consistent with the examples set forth by the data cleaner.
The data cleanming tool can then expose the program to the
data cleaner for review and editing, if desired.

In some cases, the data cleaning tool may i1dentily mul-
tiple programs that are consistent with the examples set forth
by the data cleaner (1in view of at least a portion of the
tree-structured document that corresponds to the examples).
In such a case, the data cleaning tool can rank the programs
based on at least one ranking criterion, wherein ranking
criteria include, but 1s not limited to, the size of the programs

US 10,691,655 B2

3

(c.g., smaller programs tend to be preferred over larger
programs), complexity of the programs, (e.g., simple pro-
grams tend to be preferred over complex programs), etc.

Further, when the data cleaning tool determines that the
examples provided by the data cleaner are ambiguous, the
data cleaning tool can output prompts to the data cleaner
requesting additional examples or constraints that can be
used to select from among the many high-ranked programs
synthesized from the underlying domain-specific language.
For instance, the data cleaning tool can request that the data
cleaner provide additional entries 1n an example table. In yet
another example, the data cleaning tool can request a nega-
tive constraint from the data cleaner, 1n case 1t ends up
extracting too many records/rows in the output table. Once
the data cleaning tool has i1dentified (and selected) at least
one program that 1s consistent with the examples set forth by
the data cleaner, the data cleaning tool can cause a processor
to execute the program, where the program 1s provided with
an entirety of the tree-structured document as 1nput, and the
program (based upon the mput) outputs an output table.

The above summary presents a simplified summary in
order to provide a basic understanding of some aspects of the
systems and/or methods discussed herein. This summary 1s
not an extensive overview ol the systems and/or methods
discussed herein. It 1s not intended to i1dentify key/critical
clements or to delineate the scope of such systems and/or
methods. Its sole purpose i1s to present some concepts 1 a
simplified form as a prelude to the more detailed description
that 1s presented later.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram of an exemplary
system that 1s configured to extract data encoded 1 a
tree-structured document and generate tabular data based
upon the extracted data.

FIG. 2 1s a schematic that illustrates generation of a table
based upon a tree-structured document.

FIG. 3 1s another exemplary schematic that illustrates
generation of a table based upon an example table set forth
by a user with respect to a tree-structured document.

FIGS. 4-10 depict exemplary graphical user interfaces
that pertain to generation of tabular data based upon a
tree-structured document.

FIG. 11 1s a flow diagram that illustrates an exemplary
methodology for generating tabular data based upon data
extracted from a tree-structured document.

FIG. 12 1s a flow diagram that illustrates an exemplary
methodology for constructing a program that, when pro-
vided with a tree-structured document as input, generates a
table as output.

FIG. 13 1s an exemplary computing system.

DETAILED DESCRIPTION

Various technologies pertaining to extracting data from a
tree-structured document and generating a table based upon
the extracted data are now described with reference to the
drawings, wherein like reference numerals are used to refer
to like elements throughout. In the following description, for
purposes ol explanation, numerous specific details are set
torth 1n order to provide a thorough understanding of one or
more aspects. It may be evident, however, that such aspect(s)
may be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form in order to facilitate describing one or
more aspects. Further, 1t 1s to be understood that function-

10

15

20

25

30

35

40

45

50

55

60

65

4

ality that 1s described as being carried out by certain system
components may be performed by multiple components.
Similarly, for mnstance, a component may be configured to
perform functionality that 1s described as being carried out
by multiple components.

Moreover, the term “or” 1s intended to mean an inclusive
“or” rather than an exclusive “or.” That 1s, unless specified
otherwise, or clear from the context, the phrase “X employs
A or B” 1s intended to mean any of the natural inclusive
permutations. That 1s, the phrase “X employs A or B” 1s
satisfied by any of the following instances: X employs A; X
employs B; or X employs both A and B. In addition, the
articles “a” and “an” as used 1in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from the
context to be directed to a singular form.

Further, as used herein, the terms “component” and “sys-
tem” are intended to encompass computer-readable data
storage that 1s configured with computer-executable instruc-
tions that cause certain functionality to be performed when
executed by a processor. The computer-executable mstruc-
tions may include a routine, a function, or the like. It 1s also
to be understood that a component or system may be
localized on a single device or distributed across several
devices. Further, as used herein, the term “exemplary”™ 1s
intended to mean serving as an illustration or example of
something, and 1s not intended to indicate a preference.

Described herein are various technologies pertaining to
extracting data encoded 1n a tree-structured document and
generating a table based upon this extracted data. Data 1s
often serialized into tree-structured documents, such as
JSON documents, XML documents, and some webpages.
Several computer-executable applications, however, are
unable to directly process tree-structured documents;
instead, such applications require that data be in tabular
format. Hence, described herein are technologies that facili-
tate extracting data from a tree-structured document and
then generating a table based upon such extracted data,
wherein the table includes the data extracted from the
tree-structured document. Furthermore, such technologies
reduce the burden on the data cleaner, as the data cleaner
need not write a one-oil script to extract data encoded 1n a
tree-structured document and place the extracted data in a
table.

With reference now to FIG. 1, an exemplary system 100
that facilitates extracting data encoded 1n a tree-structured
document and generating a table based upon the extracted
data 1s 1llustrated. The system 100 1s described 1n the context
ol an enterprise receiving data from various data sources, i1t
1s to be understood, however, that aspects described herein
are applicable to a personal computing context, where an
individual user may desire to extract data from a ftree-
structured document and generate a table based upon the
extracted data. Accordingly, the description below pertain-
ing to the enterprise environment i1s not intended to limait
aspects described herein to any particular context.

The system 100 includes a data store 102, wherein the
data store 102 can retain data received from a plurality of
data sources 104-106. For instance, the data sources 104-106
can be or include web pages, computer-executable applica-
tions, or the like. As shown, the data store 102 can include
a tree-structured document 108, wherein the tree-structured
document 108 1s recerved from one of the data sources 1n the
plurality of data sources 104-106. For example, the tree-
structured document can be a JSON document, an XML
document, or other suitable tree-structured (hierarchical)
document. The tree-structured document 108 includes an

US 10,691,655 B2

S

array of records, where each record has at least one field, and
the field has at least one field instance. Thus, 1t can be
ascertained that a field can include several field instances,
thereby forming a list. A length of the field indicates a
number of field entities that form the list. Additionally, a
field instance can include a record, which (as noted above)
includes at least one field. Further, a field instance can
comprise a value, wherein the value can be alphabetic,
numeric, alphanumeric, etc.). In a non-limiting example,
then, the tree-structured document 108 can include a record,
where the record comprises two fields, and where each of the
fields includes a list of field instances.

The system 100 further comprises a computing device 110
that 1s 1n communication with the data store 102. The
computing device 110, while not shown, may include the
data store 102, may be able to access the data store 102 by
way of a network connection, etc. The computing device 110
includes a processor 112 and memory 114, wherein the
memory 114 has a data cleaning tool 116 loaded therein. The
data cleaning tool 116, when executed by the processor 112,
can be configured to perform tasks related to discovering
data, normalizing the data, correcting the data (e.g., remove
null values), enriching the data, validating the data, and
publishing the data for consumption by a client application.
The computing device 110 1s operated by a data cleaner 118
who 1s tasked with cleaning data for an enterprise. For
example, the computing device 110 can be operated directly
or indirectly by the data cleaner 118. In other words, the
system 100 may also include a client computing device (not
shown) that 1s operated by the data cleaner 118, wherein the
client computing device 1s 1n communication with the com-
puting device 110 such that actions of the computing device
110 can be based upon mnput received from the data cleaner
118 at the client computing device.

Generally, the data cleaming tool 116 1s configured to
extract data encoded 1n the tree-structured document 108
and generate tabular data 120 (e.g., a table that comprises
columns and rows). The data cleaning tool 116 can cause the
tabular data 120 to be stored 1n the data store 102 or other
suitable data repository. The data cleaning tool 116 1s
configured to employ various approaches when extracting
data from the tree-structured document 108 and generating
the tabular data 120 based upon the data extracted from the
tree-structured document 108. In a first exemplary approach,
when extraction of data from the tree-structured document
108 and subsequent processing of such data, as desired by
the data cleaner 118, i1s somewhat predictable or non-
complex, the data cleaning tool 116 can extract data from the
tree-structured document 108 and generate the tabular data
120 automatically and without the data cleaner 118 needing
to provide examples as to the output format of the tabular
data 120. In a second exemplary approach, when extraction
of data from the tree-structured document 108 and genera-
tion of the tabular data 120 1s more complex, or the
tree-structured document 108 has a complex structure, the
data cleaning tool 116 can be configured to receive examples
(such as some example tuples for the intended output table
from the data cleaner 118) and can construct a program that,
when the tree-structured document 108 1s received as input
to the program, the output generated by the program 1s
consistent with the examples provided by the data cleaner
118, ¢.g., the output generated by the program includes the
example tuples. The data cleaning tool 116 includes a
converter component 122 that 1s configured to perform the
first approach and includes a program synthesizer compo-
nent 124 that 1s configured to perform the second approach.
Utilizing either approach, the data cleaning tool 116 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

configured to output the tabular data 120 based upon the
tree-structured document 108.

The system 100 further includes a client computing
device 125 operated by an end-user 126. The client com-
puting device 125 includes a processor 128 and memory
130, wherein the memory 130 has a processing application
132 loaded therein that 1s executed by the processor 128. In
this example, the processing application 132 i1s unable to
process the tree-structured document 108; however, the
processing application 132 1s able to process the tabular data
120. Accordingly, the processing application 132 can cause
the tabular data 120 to be loaded into the memory 130, and
the processing application 132, when executed by the pro-
cessor 128, can process the tabular data 120 1n accordance
with mnput from the end-user 126.

With reference now to FIG. 2, an exemplary schematic
illustrating operation of the converter component 122 of the
data cleaning tool 116 1s illustrated. The tree-structured
document 108 1s loaded into the memory 114. In the
exemplary schematic shown in FIG. 2, the tree-structured
document 108 includes an array of m records 202-206.
Further, the records 202-206 are depicted as including a
plurality of fields. It 1s to be understood, however, that a
record may include a single field. In the exemplary tree-
structured document 108, the first record 202 includes fields
208-210, the second record 204 includes fields 212-214, and
the mth record 206 includes fields 216-218. As indicated
previously, one or more of the fields 208-218 can include a
single field instance, while others of the fields 208-218 may
include multiple field instances (e.g., a list). Further, a field
can include a record, which 1n turn can have a plurality of
fields.

The tree-structured document 108 1s loaded into the
memory 114, and the data cleaning tool 116 determines a
structure of the tree-structured document 108. For example,
the data cleaning tool 116 can 1dentily a depth of each record
and field 1n the tree-structured document 108 (e.g., a number
of nodes from a top-level record in the tree-structured
document 108 to a record), a number of records at each level
in the hierarchy of the tree-structured document 108, a
number of fields 1 each record, a length of lists 1n fields of
the tree-structured document 108, etc. Responsive to ascer-
taining the structure of the tree-structured document 108, the
data cleaning tool 116 can build a schema the corresponds to
the tree-structured document 108. The schema can be a
recursive data/type definition made up of sequence/array or
struct/record constructs.

The converter component 122 includes a scheme selector
component 220 that 1s configured to select a conversion
scheme from amongst a plurality of conversion schemes
222-224 to “flatten” the schema into an output table 226.
Each conversion scheme in the conversion schemes 222-224
can be a process or set of processes for extracting data from
the tree-structured document 108 and constructing the out-
put table 226 based upon the data extracted from the
tree-structured document 108. In non-limiting examples, the
first conversion scheme 222 can be configured to search
through the records 202-206 that include fields that comprise
lists, and for a record that includes several fields that
comprise lists of the same length, merge 1tems across these
lists and include them 1n a column 1n the output table 226.
The list merge operation mvolves taking a pair of lists and
generating a list of pairs of matching elements from the two
lists. In another example, conversion scheme s 224 can be
configured to search through the tree-structured document
108 for records that have several fields comprising lists of
the same length, and take cross products of such lists (where

US 10,691,655 B2

7

the cross product 1s taken from lists that belong to the same
record). In yet another example, one of the conversion
schemes can be configured to merge field instances of lists
of 1dentical length that are at the same level 1n the tree-
structured document 108, regardless as to whether or not
they belong to the same record. Other exemplary schemes
will be readily contemplated by one skilled 1n the art.

As dicated previously, the scheme selector component
220 can select a conversion scheme from the plurality of
conversion schemes 222-224 based upon the ascertained
structure of the tree-structured document 108, as some
conversion schemes will be more well-suited for tree-struc-
tured documents of certain structures than others. Addition-
ally, the scheme selector component 220 can select a con-
version scheme from amongst the plurality of conversion
schemes 222-224 based upon formats of tables previously
generated by the data cleaner 118 (or other users) from
tree-structured documents that have a structure similar to the
tree-structured document 108. Therefore, for example, if the
data cleaner 118 has previously taken cross products of lists
in tree-structured documents of a certain format when cre-
ating output tables, the scheme selector component 220 can
select conversion scheme s 224 when the user wants to
extract data from tree-structured documents of that format.
Hence, it can be ascertained that a model of user behavior
can be built and utilized by the converter component 122 to
select a conversion scheme from a plurality of conversion
schemes 222-224, wherein the converter component 122
selects the conversion scheme responsive to a tree-structured
document being loaded 1nto the memory 114 of the com-
puting device 110. The model of user behavior can model:
1) behavior of the data cleaner 118; 2) behavior of end-users
that are to consume the table 226 (e.g., such as the end-user
126); 3) behavior of users 1n general; 4) behavior of users 1n
a division of an enterprise, etc. In still yet another example,
the data cleaner 118 can provide manual mput as to which
of the conversion schemes 222-224 1s to be applied to the
tree-structured document 108. As shown below, a graphical
user 1nterface can iclude a drop-down menu, where differ-
ent conversion schemes can be selected by the data cleaner
118 resulting 1n formation of different tables based upon the
data encoded 1n the tree-structured document 108.

Now referring to FIG. 3, an exemplary schematic depict-
ing operation of the program synthesizer component 124 1s
illustrated. The program synthesizer component 124 1s gen-
erally configured to construct more complicated extraction
scripts than those represented by the conversion schemes
222-224 utilized by the converter component 122. For
example, the data cleaner 118 may wish to extract a sub-
string or substrings of field instances in the tree-structured
document 108, or may wish to combine substrings of field
instances of different records, or merge values of different
field names mnto a same column 1n an output table using
some delimiter. In operation, the tree-structured document
108 1s loaded into the memory 114 and is accessed by the
data cleaning tool 116. The data cleaner 118 can review the
tree-structured document 108 and can provide examples of
tuple(s) 302, where the tuples 302 are to be included 1n an
output table. The data cleaner 118 can additionally or
alternatively provide other suitable example constraints. The
example tuples 302 are based upon data in a portion of the
tree-structured document 108. Accordingly, the data cleaner
118 describes his or her intent by means of examples.

The program synthesizer component 124 receives one or
more examples set forth by the data cleaner 118, such as the
example tuples 302. Other examples may also be provided
by the data cleaner 118 including, but not limited to, one or

10

15

20

25

30

35

40

45

50

55

60

65

8

more example tuples 1n the output tables that correspond to
data 1n the tree-structured document 108, one or more
constraints defined by the data cleaner 118, negative
examples set forth by the data cleaner 118 (e.g. “do not
include substring A from field 2-1 1n an output column”™),
and so on. Responsive to receipt ol at least one example
(such as the example tuples 302), and optionally responsive
to receipt ol an identification of a portion of the tree-
structured document 108 that corresponds to the at least one
example, the program synthesizer component 124 can
search through programs 1n a domain specific language 304
and 1dentily one or more programs that are consistent with
the at least one example set forth by the data cleaner 118. In
other words, the program i1dentified by the program synthe-
sizer component 124, when receiving the portion of the
tree-structured document 108 that corresponds to the
example tuples 302, will be consistent with the example
tuples 302. The program synthesizer component 124 can
utilize any suitable technique to search through the programs
in the domain specific language 304 and i1dentily a synthe-
s1zed program 306 that 1s consistent with the examples set
forth by the data cleaner 118. For instance, the program
synthesizer component 124 can utilize program synthesis to
search through the programs in the domain specific language
304 and construct the synthesized program 306.

In many cases, the program synthesizer component 124
may construct several programs that are consistent with the
examples set forth by the data cleaner 118. When the
program synthesizer component 124 identifies several pro-
grams that are consistent with mput examples, the program
synthesizer component 124 can rank the programs according
to at least one ranking criterion. Exemplary ranking critenia
includes, but 1s not limited to, a size of the program, a
complexity of the program (e.g. fewer nested loops are
preferred versus more nested loops), etc. Further, the pro-
gram synthesizer component 124 can rank programs as a
function of the model of user behavior described above. For
instance, users i a domain of the end-user 126 1n an
enterprise may typically wish to create tables of a certain
format, and one of the synthesized programs created by the
program synthesizer component 124 may be consistent with
both the example output table 302 and the typical format
desired by users 1n the division of the enterprise. The
program synthesizer component 124 may, thus, rank such
program more highly than another program, where the
another program 1s also consistent with the example output
table 302 but may be inconsistent with previous formats.

Still turther, the program synthesizer component 124 can
expose the synthesized program 306 to the data cleaner 118.
The synthesized program 306 may be exposed in editable
form, such that the data cleaner 118 1s able to review the
synthesized program 306 and edit the synthesized program
306, 1f desired. Further, the data cleaner 118, when review-
ing the synthesized program 306, can determine that the
synthesized program 306 will not provide an output table as
desired. In such case, the data cleaner 118 can expand upon
the example tuples 302 or provide additional constraints to
the program synthesizer component 124. The program syn-
t

nesizer component 124 may then renew the search through
the programs 1n the domain specific language 304 to con-
struct new programs based upon the updated example set
forth by the data cleaner 118.

Responsive to the program synthesizer component 124
constructing the synthesized program 306, the entirety of the
tree-structured document 108 can be provided as 1input to the
synthesized program 306. The synthesized program, when
executed by the processor 112, extracts data from the

US 10,691,655 B2

9

tree-structured document 108 and generates an output table
308 that includes a plurality of columns, wherein entries 1n
the output table 308 are based upon data extracted from the
tree-structured document 108 by the synthesized program
306. When reviewing the output table 308, the data cleaner
118 may ascertain that the synthesized program 306 has
extracted incorrect field mstances from the tree-structured
document 108. In such case, the data cleaner 118 may
provide further examples to the program synthesizer com-
ponent 124 (which may be negative examples indicating that
a certain field instance 1s not be extracted from the tree-
structured document 108). The program synthesizer com-
ponent 124 may then re-perform the search through the
programs 1n the domain specific language 304 and construct
several programs that are consistent with the examples set
forth by the data cleaner 118. Further, the program synthe-
s1zer component 124 can rank these programs and can select
the most highly ranked program from amongst the ranked
programs.

Now referring to FIG. 4, an exemplary graphical user
interface 400 1s illustrated. The graphical user interface 400
includes a first portion 402 and a second portion 404. The
first portion 402 includes a representation of a tree-struc-
tured document. The representation of the tree-structured
document can also include information about records, fields,
and field instances, 1n the tree-structured document, such as
a number of fields that a record includes, a percentage of
fields that have certain field instances, etc. The second
portion 404 of the graphical user interface 400 1s configured
to depict a table constructed based upon the tree-structured

document represented 1n the first portion 402 of the graphi-
cal user interface 400.

Now referring to FIG. 5, another exemplary graphical
user interface 500 1s depicted. In the exemplary graphical
user interface 500, a pulldown menu 502 1s selected,
wherein a plurality of selectable suggestions are displayed
responsive to the pulldown menu 502 being selected. These
suggestions correspond to the conversion schemes 222-224
described above with respect to FIG. 2. The data cleaner 118
can select a suggestion from the plurality of suggestions
(e.g. “Suggestion 17). Now referring to FIG. 6, another
exemplary graphical user interface 600 1s depicted, wherein
the second portion 404 1ncludes a table, and wherein entries
of the table are populated with data based upon data
extracted from the tree-structured document represented 1n
the first portion 402 of the graphical user interface 600. As
can be ascertained, application of the first suggestion with
respect to the tree-structured document results 1n three fields
(with field names score, date, and type) being selected 1n the
tree-structured document, wherein the table shown in the
second portion 404 includes field instances extracted from
such fields.

Turning to FIG. 7, another exemplary graphical user
interface 700 1s 1llustrated showing further user interaction
with the representation of the tree-structured document
shown 1n the first portion 402. In this example, the data
cleaner 118 indicates that a recursive array has been
selected, and that a field 1n the recursive array has also been
selected. This results 1n field 1nstances 1n the selected field
to be represented as a column in the table shown in the
second portion 404. Accordingly, through input of the data
cleaner 118, field instances from the tree-structured docu-
ment represented 1n the first portion 402 of the graphical user
interface 700 have been placed 1 a column in the table
shown in the second portion 404 of the graphical user
intertace 700.

10

15

20

25

30

35

40

45

50

55

60

65

10

Now turning to FIG. 8, yet another exemplary graphical
user interface 800 1s i1llustrated, where user interaction with
the representation of the tree-structured document shown in
the first portion 402 1s depicted. In this example, the data
cleaner 118 can select a record from the representation of the
tree-structured document shown in the first portion 402 of
the graphical user interface 800, and can drag the record to
a desired position 1n the table shown 1n the second portion
404 of the graphical user intertace 800. For instance, the data
cleaner 118 can drag the selected record such that field
instances corresponding to the selected record can be shown
in a column or columns at a position in the table selected by
the data cleaner 118, as shown 1n the second portion 404 of
the graphical user interface 800.

Referring to FIG. 9, an exemplary graphical user interface
900 1s depicted, where the data cleaner 118 has indicated that
field instances of the “violations™ record are to be included
in the table 1n the second portion 404 to the immediate to the
right of a “type” column of the table. FIG. 10 depicts a
graphical user interface 1000 that shows a table after the user
has completed the drag-and-drop process. Other approaches
for causing data in the tree-structured document shown 1n
the first portion 402 of the graphical user interface to be
converted to tabular data are also contemplated. For
instance, the data cleaner 118 may set forth voice mput to
indicate that field istances corresponding to a certain record
are to be extracted from the tree-structured document and
placed 1n the table at a specified position or positions therein.
Further, it 1s contemplated that the data cleaner 118 may set
forth voice input as to operations that are to be undertaken
on data extracted from the tree-structured document and
included in the table. In a non-limiting example, the data
cleaner 118 can indicate that field instances corresponding to
records A and B are to be merged and placed after a column
with the title “date”. Natural language processing techniques
can be employed to ascertain the intent of the data cleaner
118, and the data cleaning tool 116 can perform the opera-
tions requested by the data cleaner 118.

FIGS. 11-12 illustrate exemplary methodologies relating
to constructing tables based upon tree-structured documents.
While the methodologies are shown and described as being
a series of acts that are performed 1n a sequence, it 1s to be
understood and appreciated that the methodologies are not
limited by the order of the sequence. For example, some acts
can occur 1n a different order than what 1s described herein.
In addition, an act can occur concurrently with another act.
Further, 1n some instances, not all acts may be required to
implement a methodology described herein.

Moreover, the acts described herein may be computer-
executable instructions that can be implemented by one or
more processors and/or stored on a computer-readable
medium or media. The computer-executable instructions can
include a routine, a sub-routine, programs, a thread of
execution, and/or the like. Still further, results of acts of the
methodologies can be stored m a computer-readable
medium, displayved on a display device, and/or the like.

Now referring solely to FIG. 11, an exemplary method-
ology 1100 that facilitates generating tabular data based
upon data extracted from a tree-structured document 1s
illustrated. The methodology 1100 starts at 1102, and at 1104
a tree-structured document 1s receirved. For instance, the
tree-structured document may be an XML document, a
JSON document, or the like. At 1106, a request to generate
tabular data based upon the tree-structured document 1s
received. This request may be in the form of the data cleaner
118 causing the data cleaning tool 116 to load the tree-
structured document therein.

US 10,691,655 B2

11

At 1108, a scheme from amongst a plurality of potential
schemes 1s selected. This scheme can be selected, for
instance, based upon a structure of the tree-structured docu-
ment. As indicated previously, the data cleaning tool 116 can
construct a schema based upon a structure of the ftree-
structured document, and a scheme from amongst the plu-
rality of schemes can be selected based upon the schema. In
other examples, the scheme can be selected based upon a
model of user behavior, where the model can indicate a
format of a resultant output table desired by the data cleaner
118. At 1110, the tabular data 1s generated using the scheme
selected from amongst the plurality of schemes, and the
methodology 1100 completes 1112.

With reference now to FIG. 12, an exemplary methodol-
ogy 1200 that facilitates constructing a table based upon data
extracted from a tree-structured document 1s illustrated. The
methodology 1200 starts at 1202, and at 1204 a tree-
structured document 1s recerved. Again, this tree-structured
document may be a JSON document, an XML document, or
the like. At 1206, optionally, a selection of a portion of the
tree-structured document 1s received. For example, the data
cleaner 118 can define a portion of a tree-structured docu-
ment that 1s of interest to the data cleaner 118. At 1208,
example tuples are received, wherein the tuples include
includes entries that are based upon data in the selected
portion of the tree-structured document. The example tuples
can include numerous entries. Additionally, while not
shown, at 1208, other examples can be received, such as
constraints or negative examples.

At 1210, a program 1s constructed 1mn a domain specific
language that 1s consistent with the example tuples provided
by the data cleaner. In other words, when the selected
portion of the tree-structured document 1s provided as input
to the program, the program outputs an output table that
includes the example tuples. As indicated previously, 1n
some cases, several programs can be constructed that are
consistent with the example tuples. These programs can be
ranked based upon one or more ranking criteria. Addition-
ally, these programs can be ranked based upon a model of
user behavior. At 1212, the program constructed at 1210 1s
provided with an entirety of the tree-structured document as
input, such that the program outputs a table, wherein the
table includes the example tuples as a portion thereof. The
methodology 1200 completes at 1214.

Referring now to FIG. 13, a high-level illustration of an
exemplary computing device 1300 that can be used 1n
accordance with the systems and methodologies disclosed
herein 1s 1illustrated. For instance, the computing device
1300 may be used 1n a system that 1s configured to extract
data from a tree-structured document and generate a table
based upon the extracted data. By way of another example,
the computing device 1300 can be used 1n a system that
processes tabular data. The computing device 1300 includes
at least one processor 1302 that executes 1nstructions that are
stored 1n a memory 1304. The instructions may be, for
instance, 1nstructions for i1mplementing functionality
described as being carried out by one or more components
discussed above or instructions for implementing one or
more of the methods described above. The processor 1302
may access the memory 1304 by way of a system bus 1306.
In addition to storing executable instructions, the memory
1304 may also store tree-structured documents, tables, efc.

The computing device 1300 additionally includes a data
store 1308 that 1s accessible by the processor 1302 by way
of the system bus 1306. The data store 1308 may include
executable instructions, tree-structured documents, tables,
etc. The computing device 1300 also includes an 1nput

10

15

20

25

30

35

40

45

50

55

60

65

12

interface 1310 that allows external devices to communicate
with the computing device 1300. For instance, the input
interface 1310 may be used to recerve instructions from an
external computer device, from a user, etc. The computing
device 1300 also includes an output interface 1312 that
interfaces the computing device 1300 with one or more
external devices. For example, the computing device 1300
may display text, images, etc. by way of the output interface
1312.

It 1s contemplated that the external devices that commu-
nicate with the computing device 1300 via the mput inter-
face 1310 and the output interface 1312 can be included 1n
an environment that provides substantially any type of user
interface with which a user can interact. Examples of user
interface types include graphical user interfaces, natural user
interfaces, and so forth. For instance, a graphical user
interface may accept mput from a user employing nput
device(s) such as a keyboard, mouse, remote control, or the
like and provide output on an output device such as a
display. Further, a natural user interface may enable a user
to 1teract with the computing device 1300 in a manner free
from constraints imposed by mput device such as keyboards,
mice, remote controls, and the like. Rather, a natural user
interface can rely on speech recognition, touch and stylus
recognition, gesture recognition both on screen and adjacent
to the screen, air gestures, head and eye tracking, voice and
speech, vision, touch, gestures, machine intelligence, and so
forth.

Additionally, while illustrated as a single system, it 1s to
be understood that the computing device 1300 may be a
distributed system. Thus, for instance, several devices may
be 1n commumication by way of a network connection and
may collectively perform tasks described as being per-
formed by the computing device 1300.

Various functions described herein can be implemented 1n
hardware, solftware, or any combination thereof. If 1mple-
mented 1n software, the functions can be stored on or
transmitted over as one or more instructions or code on a
computer-readable medium. Computer-readable media
includes computer-readable storage media. A computer-
readable storage media can be any available storage media
that can be accessed by a computer. By way of example, and
not limitation, such computer-readable storage media can
comprise RAM, ROM, EEPROM, CD-ROM or other opti-
cal disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to
carry or store desired program code in the form of struc-
tions or data structures and that can be accessed by a
computer. Disk and disc, as used herein, include compact
disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk, and Blu-ray disc (BD), where disks
usually reproduce data magnetically and discs usually repro-
duce data optically with lasers. Further, a propagated signal
1s not included within the scope of computer-readable stor-
age media. Computer-readable media also includes commu-
nication media including any medium that facilitates transier
of a computer program from one place to another. A con-
nection, for instance, can be a communication medium. For
cxample, iI the software 1s transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio and
microwave are included 1n the definition of communication
medium. Combinations of the above should also be included
within the scope of computer-readable media.

US 10,691,655 B2

13

Alternatively, or 1n addition, the tunctionally described
herein can be performed, at least in part, by one or more
hardware logic components. For example, and without limi-
tation, 1llustrative types of hardware logic components that
can be used include Field-programmable Gate Arrays (FP- 5
(GAs), Program-specific Integrated Circuits (ASICs), Pro-
gram-specific Standard Products (ASSPs), System-on-a-
chip systems (SOCs), Complex Programmable Logic
Devices (CPLDs), etc.

What has been described above includes examples of one 10
or more embodiments. It 1s, of course, not possible to
describe every conceivable modification and alteration of
the above devices or methodologies for purposes of describ-
ing the aforementioned aspects, but one of ordinary skill 1n
the art can recognize that many further modifications and 15
permutations of various aspects are possible. Accordingly,
the described aspects are intended to embrace all such
alterations, modifications, and variations that fall within the
spirit and scope of the appended claims. Furthermore, to the
extent that the term “includes™ 1s used 1n either the detailed 20
description or the claims, such term 1s intended to be
inclusive 1 a manner similar to the term “comprising” as
“comprising” 1s mterpreted when employed as a transitional
word 1n a claim.

What 1s claimed 1s: 25

1. A computing system comprising:

at least one processor; and

memory that stores a data cleaning tool, wherein the data

cleaning tool, when executed by the at least one pro-

cessor, 1s configured to: 30

load a tree-structured document 1nto the memory;

receive a request to generate tabular data based upon
the tree-structured document;

responsive to receiving the request, select a conversion
scheme from amongst a plurality of potential con- 35
version schemes, the selected conversion scheme 1s
configured to generate the tabular data when the
tree-structured document 1s received as mput to the
conversion scheme, wherein the conversion scheme
1s selected from amongst the plurality of potential 40
conversion schemes based upon historic structure of
tabular data 1n an enterprise division of a user who
imtiated the request; and

generate the tabular data based upon the selected con-
version scheme. 45

2. The computing system of claim 1, wherein the con-
version scheme 1s selected from amongst the plurality of
potential conversion schemes based upon a computer-imple-
mented model of user behavior with respect to generation of
tabular data from tree-structured documents. 50

3. The computing system of claim 1, the data cleaning tool
1s further configured to:

prior to selecting the conversion scheme from amongst

the plurality of potential conversion schemes, construct
a schema based upon a structure of the tree-structured 55
document; and

select the conversion scheme from amongst the plurality

ol potential conversion schemes based upon the con-
structed schema.

4. The computing system of claim 1, wherein the tree- 60
structured document comprises a first record and a second
record, the first record includes a first field and the second
record includes a second field, the first field includes a first
list and the second field mncludes a second list of the same
length as the first list, and further wherein the selected 65
conversion scheme 1s configured to merge items 1n the first
list with items 1n the second list such that a row-based entry

14

in the tabular data includes a first item from the first list and
a second 1tem from the second list.

5. The computing system of claim 4, wherein the selected
conversion scheme, when applied to the tree-structured
document, 1s configured to merge items from the first list
with 1tems the second list that are at the same level 1n a
hierarchy of the tree-structured document.

6. The computing system of claim 1, wherein the tree-
structured document comprises a first record and a second
record, the first record includes a first field and the second
record 1ncludes a second field, the first field includes a first
list and the second field includes a second list, and further
wherein the selected conversion scheme 1s configured to
generate a cross product of the first list and the second list,
such that a column in the tabular data includes the cross
product of the first list and the second list.

7. The computing system of claim 6, wherein the selected
conversion scheme 1s configured to generate the cross prod-
uct of the first list and the second list only if the first list and
the second list are at a same depth 1n the tree-structured
document.

8. The computing system of claim 1, wherein the tree-
structured document 1s one of a JSON document or an XML
document.

9. The computing system of claim 1, the data cleaning tool
1s Turther configured to:

prior to selecting the conversion scheme from the plural-

ity of potential conversion schemes, receive, from a
second user, a selection of a portion of the tree-
structured document; and
responsive to receiving the selection of the portion of the
tree-structured document and based upon the portion of
the tree-structured document, select the conversion
scheme from the plurality of potential conversion
schemes.
10. A computer-readable storage medium comprising
instructions that, when executed by a processor, cause the
processor to perform acts comprising;
loading a JSON document into memory;
receiving a request to generate tabular data based upon the
JSON document;

responsive to receiving the request, learning a schema for
the JSON document based upon a structure of the
JSON document;

using the schema, selecting a conversion scheme from
amongst a plurality of possible conversion schemes,
wherein the conversion scheme, when receiving the
JSON document as mput, generates tabular data based
upon at least a portion of the JISON document, wherein
the conversion scheme 1s selected from amongst the
plurality of potential conversion schemes based upon
historic structure of tabular data in an enterprise divi-
ston of a user who 1itiated the request; and

generating tabular data based upon the selected conver-
sion scheme.

11. The computer-readable storage medium of claim 10,
wherein the conversion scheme 1s selected from amongst the
plurality of potential conversion schemes based upon a
computer-implemented model of user behavior with respect
to generation of tabular data from tree-structured docu-
ments.

12. A method executed by a processor of a computing
system, the method comprising:

loading a tree-structured document mto memory of the

computing system;

recerving a request to generate tabular data based upon the

tree-structured document:

US 10,691,655 B2

15

responsive to receiving the request, selecting a conversion
scheme from amongst a plurality of potential conver-
sion schemes, the selected conversion scheme 1s con-
figured to generate the tabular data when the tree-
structured document 1s received as iput to the
conversion scheme, wherein the conversion scheme 1s
selected from amongst the plurality of potential con-
version schemes based upon historic structure of tabu-
lar data in an enterprise division of a user who nitiated

the request; and
generating the tabular data based upon the selected con-
version scheme.
13. The method of claim 12, wherein the conversion
scheme 1s selected from amongst the plurality of potential

conversion schemes based upon a computer-implemented
model of user behavior with respect to generation of tabular
data from tree-structured documents.

14. The method of claim 12, further comprising:

prior to selecting the conversion scheme from amongst

the plurality of potential conversion schemes, con-
structing a schema based upon a structure of the
tree-structured document; and

selecting the conversion scheme from amongst the plu-

rality of potential conversion schemes based upon the
constructed schema.

15. The method of claim 12, wherein the tree-structured
document comprises a first record and a second record, the
first record includes a first field and the second record
includes a second field, the first field includes a first list and
the second field includes a second list of the same length as
the first list, and further wherein the selected conversion
scheme 1s configured to merge items in the first list with
items 1n the second list such that a row-based entry in the

10

15

20

25

30

16

tabular data includes a first 1item from the first list and a
second 1tem from the second list.

16. The method of claim 15, wherein the selected con-
version scheme, when applied to the tree-structured docu-
ment, 1s configured to merge i1tems from the first list with
items the second list that are at the same level 1n a hierarchy
of the tree-structured document.

17. The method of claim 12, wherein the tree-structured
document comprises a first record and a second record, the
first record includes a first field and the second record
includes a second field, the first field includes a first list and
the second field includes a second list, and further wherein

the selected conversion scheme 1s configured to generate a
cross product of the first list and the second list, such that a

column 1n the tabular data includes the cross product of the
first list and the second list.

18. The method of claim 17, wherein the selected con-
version scheme 1s configured to generate the cross product
of the first l1st and the second list only 11 the first list and the
second list are at a same depth in the tree-structured docu-
ment.

19. The method of claim 12, wherein the tree-structured
document 1s one of a JSON document or an XML document.

20. The method of claim 12, further comprising;

prior to selecting the conversion scheme from the plural-

ity of potential conversion schemes, receiving, from a
second user, a selection of a portion of the tree-
structured document; and

responsive to recerving the selection of the portion of the

tree-structured document and based upon the portion of
the tree-structured document, selecting the conversion
scheme from the plurality of potential conversion
schemes.

	Front Page
	Drawings
	Specification
	Claims

