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ADAPTIVE AND INTERCHANGEABLE
NEURAL NETWORKS

INCORPORAITON BY REFERENCE TO ANY
PRIORITY APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/940,762, filed on Nov. 26, 2019, and

titled “ADAPTIVE AND INTERCHANGEABLE NEU-
RAL NETWORKS.” The entire disclosure of the above-
identified provisional application 1s hereby made part of this
specification as 1f set forth fully herein and incorporated by
retference for all purposes, for all that it contains.

Any and all applications for which a foreign or domestic
priority claim 1s 1dentified in the Application Data Sheet as

filed with the present application are hereby incorporated by
reterence under 37 CFR 1.57.

BACKGROUND OF THE INVENTION

Technical Field

This invention relates to self-adapting/self-adjusting neu-
ral network system. Observing a different environment/
condition/situation under which the neural network system
finds 1itself operating from a previously observed environ-
ment/condition/situation, the system automatically reconfig-
ures one or more neural networks—reconfiguring may

include using a different set of coellicients for a neural
network running within the neural network system.

Description of the Related Art

As 1llustrated 1n FIG. 1, a conventional Neural Network
(NN) 101 recerves an input (a single vector, 1n this example)
at an mput layer 102, and transforms it through a series of
one or more hidden layers 103. Each hidden layer includes
a set of “neurons” or “nodes,” where each neuron 1s con-
nected to all neurons 1n the previous layer (e.g., the mput
layer or another hidden layer), and where neurons 1n a single
layer tunction completely independently and do not share
any connections. The last tully-connected layer 1s called the
“output layer” 105, where each of the neurons 1n the output
layer can provide a portion of the output information (or
signal), and 1n classification applications the output layer
information (or setting(s)) represents the class scores (e.g.,
the score of the input(s) being classified). Based on the class
scores, an output of the neural network can be determined as
the class having the highest score. In other neural networks,
the output may consist of an indication of the class having,
the highest score as the one selected and a confidence level
of the selected class for given mput data being the correct
one based on the relative scores with other classes. This
confidence level 1s referred to as an output confidence level,
herein.

As 1llustrated 1n FIG. 2, a “convolutional” Neural Net-
work 201 can take 3D images as mput, for instance. In
particular, unlike the neural network described 1n connection
with FIG. 1, the layers of a convolutional neural network
have neurons arranged 1n 3 dimensions: width, height,
depth. Note that the word depth here refers to the third
dimension of an activation volume, not to the depth of a full
neural network, which can refer to the total number of layers
in a network. The neurons 1n a layer can be configured to be
connected to a small region of the layer before it, instead of
all of the neurons 1n a fully-connected manner. The convo-
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2

lutional neural network reduces the full 1image into a single
vector of class scores 203, arranged along the depth dimen-

S1011.

Neural networks have been employed to operate 1n com-
plex and widely varying settings (e.g., diflerent environ-
ments, conditions, situations, and/or etc.). As such, ever
increasing quantities of train data sets have been used to
train prior art neural networks to operate 1n as many different
settings as possible. When the size of training data set 1s
increased to include tramning data samples from many dii-
ferent settings, a prior art neural network can begin to lose
its accuracy and can encounter a catastrophic memory loss,
which causes the neural network to cease to operate as 1t was
originally designed and trained {for.

SUMMARY OF THE INVENTION

Various aspects of the present invention includes mmven-
tive features and embodiments to allow neural network
systems of the present invention to maintain or increase
operational accuracy in controlling a machine while being
able to operate 1n various diflerent settings. In particular, a
set of tramning data i1s collected over each of at least two
different settings (e.g., a setting can be an environment, a
condition, a situation, or the like in/under which a machine
1s to operate). Each setting can have its own characteristics.
In some embodiments, these characteristics can be defined
using a set of ranges of values. Examples of types of
characteristics for the settings can be time, geographical
location, and/or weather condition, etc. Using the training
data set, a neural network having a particular structure can
be tramned for a given setting, which results in a set of
coellicients for the particular neural network. For each
setting, the characteristics for the setting are associated with
the corresponding coeflicients and/or the corresponding neu-
ral network structure trammed with the training data set
collected in/under the setting. Information relating to the
characteristics, coeflicients, and neural network structures
for various settings can be stored in a database management
system.

Operating in/under a setting, a neural network that has the
coellicients and neural network structure associated with a
set of characteristics corresponding to the setting, the neural
network would yield optimal results for which 1t 1s designed/
trained. In operation, various characteristics of the setting
are monitored since the machine can move into or the
environment/condition/situation may change to a new set-
ting. That 1s, the setting may change from one setting to a
new setting—the neural network coeflicients and/or neural
network structure (or the neural network executable module
having the structure and/or the coeflicients) associated with
the new setting can be retrieved from a database manage-
ment system. A new neural network can then be mstantiated
with those coeflicients and may become operational, while
the old neural network becomes inactive (e.g., becomes
non-operational or terminated). In other words, various
embodiments of the present invention allow adaptively
changing the neural network(s) based on changing settings
(e.g., changes 1n environment, condition and/or situation).

First variations ol preferred methods of controlling a
machine iclude a process (or steps of), without requiring a
particular order or sequence, storing at least two sets of
neural network coeflicients, each being different from the
others with one or more characteristics of a setting, associ-
ating each of the at least two sets of neural network
coellicients with at least one set of one or more ranges of
values, receiving first data from one or more mput devices
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of the machine, selecting one from the at least two sets of
neural network coeflicients based on the first data and the at
least one set of one or more ranges of values. The methods
of the various embodiments may also include the steps of
instantiating a neural network with the selected one from the
at least two sets of neural network coeflicients, and control-
ling an aspect of the machine using an output from the
instantiated neural network. As indicated above, the use of
“step” herein when referring to a portion of a process does
not itsell indicate any particular sequence or order of the
process portions, unless otherwise indicated explicitly or as
required by the context of the described process.

First variations of preferred methods of controlling a
machine may also include, without requiring a particular
order or sequence, the steps of associating a plurality among
the at least two sets of neural network coeflicients with a
second set of one or more ranges of values, and/or storing
information relating to a neural network structure associated
cach of the at least two sets of neural network coellicients.
The methods may further include the step of selecting one
from the at least two sets of neural network further com-
prises the step of matching the first data with one of the at
least one set of one or more ranges of values. The matching
step can further comprises the steps of comparing the first
data with the at least one set of one or more ranges of values;
and 1dentifying the selected one of the at least one set among
one or more ranges of values that has the first data fall within
its ranges of values, wherein the neural network coeflicients
matched with the selected one are generated by using
training data set collected within the corresponding particu-
lar setting.

Second vanations of preferred methods of controlling a
machine may include the steps of, without requiring a
particular order or sequence, storing at least two sets of
neural network coetlicients, each being different from the
others with one or more characteristics of a setting, associ-
ating each of the at least two sets of neural network
coellicients with one or more characteristics of a setting,
receiving first data from one or more mput devices of the
machine, selecting one from the at least two sets of neural
network coethlicients based on the first data and the one or
more characteristics of settings, instantiating a neural net-
work with the selected one from the at least two sets of
neural network coetlicients, and controlling an aspect of the
machine using an output from the instantiated neural net-
work. Wherein, each of the one or more characteristics of
settings 1s defined with a range of values.

Second vanations of preferred methods of controlling a
machine may also include the steps of, without requiring a
particular order or sequence, storing information relating to
a neural network structure associated each of the at least two
sets of neural network coetlicients. The step of selecting one
from the at least two sets of neural network coeflicients
turther comprises the step of matching the first data with the
one or more characteristics of settings, which may further
include the steps of comparing the first data with the one or
more characteristics of settings, wherein each of the one or
more characteristics of settings 1s defined with a range of
values, and 1dentifying the selected one of the one or more
characteristics of settings that the first data fall within the
ranges of values.

Various embodiments of preferred methods of controlling
a machine may further include, without requiring a particu-
lar order or sequence, the steps of storing a set of one or
more 1mput range values associated each of the at least two
sets of neural network coetlicients, comparing the first data
with the one or more iput range values associated with the
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selected one from the at least two sets of neural network
coellicients, and selecting a new set among the at least two
sets of neural network coelflicients 1t the first data 1s outside
the input range values. In other vaniation, the methods may
include the steps of storing a set of one or more output range
values associated each of the at least two sets of neural
network coeflicients, comparing the output with the one or
more output range values associated with the selected one
from the at least two sets of neural network coeflicients, and
selecting a new set among the at least two sets of neural
network coeflicients 11 the output 1s outside the output range
values.

First variations of preferred apparatuses of controlling a
machine may include a database management system stored
with at least two sets of neural network coeflicients being
different from each other, at least one set of one or more
ranges of values with one or more characteristics of a
setting, and each of the at least two sets of neural network
coellicients being associated with at least one set of one or
more ranges of values; and means for controlling coupled to
receive lirst data from one or more mput devices of the
machine, wherein the means for controlling includes means
for selecting one from the at least two sets of neural network
coellicients based on the first data and the at least one set of
one or more ranges of values, and means for instantiating a
neural network with the selected one from the at least two
sets of neural network coetlicients, wherein the neural
network 1s configured to generate an output being used to
control an aspect of the machine.

Second variations of preferred apparatuses of controlling
a machine may include a database management system
stored with at least two sets of neural network coetlicients
being diflerent from each other with one or more character-
istics of a setting, at least one set of one or more ranges of
values, and each of the at least two sets of neural network
coellicients being associated with at least one set of one or
more ranges ol values, and a controlling device that 1s
coupled to recerve first data from one or more input devices
of the machine, arranged to select one from the at least two
sets of neural network coethlicients based on the first data and
the at least one set of one or more ranges of values, and
arranged to instantiate a neural network with the selected
one from the at least two sets ol neural network coeflicients,
wherein the neural network i1s configured to generate an
output being used to control an aspect of the machine.

In the first and second variations of preferred apparatuses,
the database management system may further store a plu-
rality among the at least two sets ol neural network coetli-
cients associated with a second set of one or more ranges of
values, and information relating to a neural network struc-
ture associated each of the at least two sets of neural network
coellicients. In these embodiments, the database manage-
ment system can be configured to match the first data with
one of the at least one set of one or more ranges of values,
to compare the first data with the at least one set of one or
more ranges of values, and to identity the selected one of the
at least one set among one or more ranges of values that has
the first data fall within 1ts ranges of values.

Third vanations of preferred apparatuses of controlling a
machine may include a database management system stored
with at least two sets of neural network coeflicients being
different from each other, at least one setting having one or
more characteristics with one or more characteristics of a
setting, and each of the at least two sets of neural network
coellicients being associated with the at least one setting
having one or more characteristics, and a controlling device
that 1s coupled to receive first data from one or more input
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devices of the machine, arranged to select one from the at
least two sets of neural network coeflicients based on the
first data and at one least one setting having one or more
characteristics, and arranged to instantiate a neural network
with the selected one from the at least two sets of neural
network coeflicients, wherein the neural network 1s config-
ured to generate an output being used to control an aspect of
the machine.

Fourth varnations of preferred apparatuses of controlling a
machine may include a database management system stored
with at least two sets of neural network coetlicients being,
different from each other with one or more characteristics of
a setting, at least one setting having one or more character-
1stics, and each of the at least two sets ol neural network
coellicients being associated with the at least one setting
having one or more characteristics, and means for, coupled
to receive first data from one or more 1nput devices of the
machine, selecting one from the at least two sets of neural
network coetlicients based on the first data and at one least
one setting having one or more characteristics, and 1nstan-
tiating a neural network with the selected one from the at
least two sets of neural network coeflicients, wherein the
neural network 1s configured to generate an output being
used to control an aspect of the machine.

In the third and fourth variations of preferred apparatuses,
the database management system may further store each of
at least one setting having one or more characteristics 1s
defined with a range of values. The database management
system also can be configured to match the first data with
one of at least one setting having one or more characteristics,
and may be further configured to compare the first data with
the at least one setting having one or more characteristics
defined with a range of values and to i1dentity the selected
one of the at least one set among one or more ranges of
values that has the first data fall within 1ts ranges of values.

In vaniations of preferred apparatuses of controlling a
machine, the database management system can further store
a set of one or more input range values associated each of the
at least two sets of neural network coetlicients and the
instantiated neural network with the selected one from the at
least two sets of neural network coellicients, and the appa-
ratuses can further include a first trigger event detector
arranged to compare the first data with the one or more 1input
range values associated with the selected one from the at
least two sets of neural network coetlicients and to send a
signal to the controlling device to select a new set among the
at least two sets of neural network coeflicients 11 the first data
1s outside the mput range values. The database management
system can also store a set of one or more output range
values associated each of the at least two sets of neural
network coeflicients and the instantiated neural network
with the selected one from the at least two sets of neural
network coetlicients, and further includes a second trigger
event detector arranged to compare the output with the one
or more output range values associated with the selected one
from the at least two sets of neural network coeflicients and
to send a signal to the controlling device to select a new set
among the at least two sets of neural network coeflicients 1f
the output 1s outside the output range values.

For the various preferred embodiments, the neural net-
work structure can be one of a convolutional neural network,
a feed forward neural network, a neural Turing machine,
Hopfield neural network, and Boltzmann machine neural
network. In these embodiments, a setting can be one of a
temperate urban region, a desert rural region, a forested
mountain region, and a coastal city and/or can be one of
environment, condition, and situation in/under which the
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machine operates, and the information relating to the at least
two sets of neural network coeflicients 1s stored 1n a stan-
dardized format to allow access by electronic devices manu-
factured by different manufacturers or electronic devices
belonging to different manufacturing entities. Also, the
neural network coethicients matched with the selected one

can be generated by using training data set collected within
the corresponding setting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram illustrating a prior art
neural network with hidden layers;

FIG. 2 1s a schematic diagram illustrating a prior art
convolutional neural network;

FIG. 3 1s an illustration depicting a node on a nodal layer,
the node receiving mput from nodes from the previous nodal
layer;

FIG. 4 1s a block diagram illustrating an example pre-
ferred embodiment of an automated machine with a coetl-
cient DBMS;:

FIG. 4a 1s a flow chart diagram illustrating steps per-
formed by a preferred example embodiment of a setting
change detector and controller;

FIG. 456 1s a timing diagram 1illustrating steps performed
by a preferred example embodiment of a setting change
detector and controller:

FIG. 4¢ 1s a ttiming diagram 1llustrating steps performed
by a preferred example embodiment of a setting change
detector and controller that has a predicting setting feature;

FIG. 5 1s a block diagram illustrating an example pre-
terred embodiment of a controller that can allow a plug-in
architecture.

FIG. 6 1s a flowchart 1llustrating various process steps for
the system level shown 1n FIG. 5;

FIG. 7 1s a flowchart illustrating various process steps for
the neural network shown 1n FIG. 5;

FIG. 8 1s a flowchart illustrating various process steps for
the PISA module shown 1n FIG. §;

FIG. 9a 1s a diagram 1illustrating a two-dimensional deci-
s1on space with two potential classification groupings;

FIG. 95 1s a diagram 1illustration a two-dimensional deci-
sion space with multiple boundary condition regions;

FIG. 10a 1s a diagram illustrating a one-dimensional
decision space with two potential classification groupings;

FIG. 105 1s a flow chart illustrating a set of steps in using,
boundary conditions 1n a control system;

FIG. 11 1s a block diagram illustrating an example pre-
terred embodiment of an automated machine with a trigger-
ing event detector; and

FIG. 12 1s a block diagram illustrating an example pre-
terred embodiment of an automated machine with a trigger-
ing event detector with the TED signal from the SCDC.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE ASPECTS

The detailed description of various exemplary embodi-
ments below, 1n relation to the drawings, 1s mtended as a
description of various aspects of the various exemplary
embodiments of the present invention and is not intended to
represent the only aspects 1n which the various exemplary
embodiments described herein may be practiced. The
detailed description includes specific details for the purpose
of providing a thorough understanding of the various exem-
plary embodiments of the present invention. However, it will
be apparent to those skilled in the art that some aspects of the
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various exemplary embodiments of the present immvention
may be practiced without these specific details. In some
instances, well-known structures and components are shown
in block diagram form in order to avoid obscuring various
examples ol various embodiments.

Although particular aspects various exemplary embodi-
ments are described herein, numerous variations, combina-
tions and permutations of these aspects fall within the scope
of the disclosure. Although some benefits and advantages of
certain aspects are mentioned, the scope of the disclosure 1s
not intended to be limited to particular benefits, uses or
objectives.

1. Neural Networks

Some aspects of various exemplary embodiments are
described by referring to and/or using neural network(s).
Various structural elements of neural network include layers
(input, output, and hidden layers), nodes (or cells) for each,
and connections among the nodes. Each node 1s connected
to other nodes and has a nodal value (or a weight) and each
connection can also have a weight. The mitial nodal values
and connections can be random or uniform. A nodal value/
welght can be negative, positive, small, large, or zero after
a training session with traiming data set. The value of each
of the connection 1s multiplied (or other mathematical
operation) by its respective connection weight. The resulting
values are all added together (or other mathematical opera-
tion). A bias (e.g., nodal value) can also be added (or other
mathematical operation). A bias can be a constant (often -1
or 1) or a variable. This resulting value 1s the value of the
node when activated. Another type of nodes are convolu-
tional nodes, which can be similar to atorementioned nodal
features, are typically connected to only a few nodes from a
previous layer, particularly adapted to decode spatial infor-
mation in i1mages/speech data. Deconvolutional nodes are
opposite to convolutional nodes. That 1s, deconvolutional
nodes tend to decode spatial information by being locally
connected to a next layer. Other types of nodes include
pooling and interpolating nodes, mean and standard devia-
tion nodes to represent probability distributions, recurrent
nodes (each with connections other nodes and a memory to
store the previous value of 1itseltl), long short term memory
(LSTM) nodes that may address rapid information loss
occurring 1n recurrent nodes, and gated recurrent units nodes
that are a variation of LSTM node by using two gates:
update and reset.

A neural network can be a feediorward network that
includes multi-level hidden layers with each layer having
one or more nodes. In some exemplary embodiments of the
present invention, a neural network can be a recurrent neural
network etther forward moving only 1n time or bi-directional
as including forward moving components and backward
moving components. Some exemplary aspects of the present
invention contemplate using a recursive neural network that
can configure itself adaptively with different number of
layers with different number of nodes for each layer depend-
ing on given tramning data. In some embodiments of the
present invention, the recursive neural network 1s a configu-
ration of a neural network created by applying the same set
of weights recursively over a structured mnput (producing a
structured prediction over variable-size mput structures) or
a scalar prediction on it by traversing a given structure in
topological order.

In some aspects, various exemplary embodiments con-
template taking advantage of the nonlinearity of a neural
network, which may cause loss functions to become non-
convex. In other words, neural networks are typically trained
by using training data set on 1iterative, gradient-based opti-
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mizers that would drive the cost function to a very low value.
In some exemplary aspects of the present invention, when
training data set can be preprocessed to develop character-
1stic by large linear regression, support vector machines with
gradient descent can be used to train a neural network.

For computing the gradient (e.g., 1n feed-forward neural
networks), 1n some exemplary embodiments contemplate
using backpropagation, while another method such as sto-
chastic gradient descent can be used to perform learning
using this gradient. In some aspects of the present invention,
the backpropagation can also be applicable to other machine
learning tasks that involve computing other derivatives, e.g.,
part of the learning process, or to analyze the learned model.

In some exemplary embodiments, neural networks may
undergo regularization (and, optionally, optimization for
neural network training) during a training session using
training data set. In some aspects of the present invention,
regularization contemplates to be modification to the neural
network to reduce its generalization error. The optimization,
in some exemplary embodiments, can use continuation
methods. This option can make optimization more eflicient
by selecting 1initial points causing the local optimization
cllorts in well-behaved regions of training data set space. In
another exemplary embodiment, the optimization can use a
stochastic curriculum, e.g., gradually increasing the average
proportion of the more dithcult examples 1s gradually
increased, whereas 1n a conventional training a random mix
of easy and diflicult examples 1s presented to neural nets to
be trained.

In some exemplary embodiments, supervised training or
unsupervised training (or combination thereof) can be
employed to train a given neural network. The unsupervised
training allows a neural network to discern the input distri-
bution/pattern on 1ts own. In some exemplary embodiments
of the unsupervised training, each layer of a neural network
can be trained individually unsupervised, and then the entire
network 1s trained to fine tune.

In some exemplary aspects of present invention, the input
data are sampled so that the neural network can be more
ciliciently trained. In this example embodiment, sampling
can be performed by using statistical methods to approxi-
mate the mput distribution/pattern such as Gibbs sampling.
The Gibbs sampling 1s an example approach in building a
Markov chain, which 1s an example method to perform
Monte Carlo estimates.

The above described various types of nodes are used 1n a
number of different example neural network structures, such
as the feedforward neural network described in connection
with FIG. 1. Other example neural network structures
include: a Hopfield network, a network where every neuron
1s connected to every other neuron; a Boltzmann machines,
which 1s similar to the Hopfield network but with some
nodes used as input/output nodes and others remain hidden
nodes; and a Restricted Boltzmann machine. These three
example neural network structures can include Markov
chains used as preprocessors.

Another example set of neural network structures include
deep convolutional neural networks and deconvolutional
networks, which use the convolutional and deconvolutional
nodes described above. The convolutional/deconvolutional
networks can be combined with feedforward neural net-
works. For instance, generative adversarial networks can be
formed by two different neural networks such as a combi-
nation of a feedforward neural network and convolutional
neural network, with one trained to generate content related
information (e.g., feature extraction) from mput data and the
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other trained to use the content related information to
determine the content (e.g., 1dentifying objects in 1images).

Another example group of neural network structures
includes: recurrent neural networks that use the recurrent
nodes described above, LSTM use the alorementioned
LSTM nodes, gated recurrent units having an update gate
instead of other gate of LSTM, neural Turing machines that
have memories separated from nodes, bidirectional recurrent
neural networks, and echo state networks having random
connections between recurrent nodes.

Yet another example group of neural network structures
includes: deep residual networks which 1s a deep feedior-
ward neural networks with extra connections passing input
from one layer to a later layer (often 2 to 5 layers) as well
as the next layer, extreme learning machines that 1s a
teedforward neural network with random connections but
not recurrent or spiking. In some implementations the deep
feedforward neural network has more than five layers.
Regarding a spiking neural network, liquid state machines
are similar to extreme learning machines with spiking nodes,
such as replacing sigmoid activations with threshold func-
tions and each node has a memory capable of accumulating.

Other example structures include support vector machines
that finds optimal solutions for classification problems,
self-organizing neural networks such as Kohonen neural
networks. Another example set of neural network structures
includes: autoencoders configured to automatically encode
information, sparse autoencoders that encode information 1n
more space, variational autoencoders are pre-injected with
an approximated probability distribution of the input train-
ing samples, denoising autoencoders that train with the input
data with noise, and deep belief networks are stacked
structures of autoencoders. The deep beliel networks have
been shown to be effectively trainable stack by stack.

In some embodiments, the neural network may include a
neural network that has a class of deep, feed-forward arti-
ficial neural networks that use a vanation of multilayer
perceptrons designed to require minimal preprocessing and
may also use hidden layers that are convolutional layers (or
CNN), pooling layers, fully/partially connected layers and
normalization layers. Some embodiments can be referred to
as shift invariant or space invariant artificial neural networks
(SIANN), based on their shared-weights architecture and
translation imvariance characteristics. A neural network may
seli-train (e.g., Alphago Zero) such as by using re-enforce-
ment learning. Variations on this embodiment include the
deep Q-network (DQN) which 1s a type of deep learning
model that combines a deep CNN with Q-learning, a form
of remnforcement learning. Unlike earlier reinforcement
learning agents, DQNs can learn directly from high-dimen-
sional sensory inputs. Variation on this embodiment include
convolutional deep beliel networks (CDBN) which have
structure very similar to the CNN and are trained similarly
to deep beliel networks. These extensions exploit the 2D
structure ol 1mages, like CNNs do, and make use of pre-
training like deep belief networks. Further variations on this
embodiment include time delay neural networks (TDNN)
which allow timed signals (e.g. speech) to be processed
time-invariantly, analogous to the translation invariance
offered by CNNs. The tiling of neuron outputs can cover

timed stages. It should be noted that the above-mentioned
neural networks can be trained using training data sets using,
the unsupervised learning, the supervised learming, or the
reinforcement learning steps.
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2. Nodal Coetlicients and Database Management System for
Such Coeflicients

FIG. 3 illustrates an example of nodal coeflicients (or
nodal weights—nodal weights and nodal coetlicients can be
used interchangeably 1n the context of various embodiments
of the present invention, and they can be shortened to
coellicients or weights) for a node 1n a feed-forward neural
network. In this particular example, there are “n” number of
coellicients per a node 321 including a bias coeflicient 323.
The output 325, a___, 1s an output ot a function applied to the
sum 329 () of (1) a bias value (1*b) and (11) each output
from the previous layer of nodes (a,, a,, . . ., a, 1n FIG. 3)
with each multiplied by a certain weight (W,, W,, ..., W,
in FIG. 3) that can be a negative/positive number or zero.
The function 327 (e.g., z—g) applied to the sum can be
predefined. Using a set of equations, these can be expressed

ds.

Hout = g(Z)

The weights are determined by training the given neural
network with a traiming data set, which can include multiple
input and output data pairs. In some preferred embodiments,
training data set 1s for self-learning neural networks.
Although the preferred embodiment i FIG. 3 depicts a
teedforward neural network structure that sums the bias and
cach output from the previous layer multiplied by a coetl-
cient, and then applying a function to the sum, other pre-
terred embodiments contemplate the use of various 1) neural
network structures (examples described 1n Section 1 above),
11) arrangements regarding which nodes on which previous
layers (e.g., not just immediately previous layer but a sub-set
or all previous layers) would be connected, and/or 111) other
operation(s) can be used (e.g., multiplication operation
instead of or 1n addition to the summing operation).

As noted above, prior art neural networks have been
trained and/or employed to operate 1n complex and widely
varying settings. A “setting” as used herein, refers generally
to any particular environment or location, such as a particu-
lar condition, environment, situation and/or etc. In various
embodiments of the present invention, rather than or in
addition to training a neural network with ever increasing
quantity of training data sets to cover various settings, a
neural network coethicient set for a neural network structure
1s trained using a training data set collected for a particular
setting. Non-exhaustive various example types of character-
istics of various settings may include:

For vehicles, drones, missiles, etc.:

Geographical environments: high population density city,
medium population density city, suburbia areas, rural
regions, plain regions, mountainous areas, coastal
areas, etc.

Weather conditions—raining, snowing, clear day, windy
day, foggy, etc.

Situations—amount of surrounding traiflic,
ahead, wild animals present, etc.

For speech recognition machines:

Geographical: Midwestern, southern, north eastern, etc. in
the US

Recognizable accents: Midwestern, Northeastern, South-
ern, etc. 1 the US

For facial recognition machines:
Geographical: continents, countries, cities, rural areas,

etc.

accident




US 10,691,133 Bl

11

Ethnic background: Northern African, Sub-Saharan Afri-

can, Norther European, Southern European, Eastern
European, Northeast Asian, Southeast Asian, Middle
Fastern, etc.

For an assembly line application:

Type of objects to be sorted or type of operations to be

performed on objects

For target 1dentification 1n mailitary applications:

Diflerent targets and/or 1n different environments or situ-

ations, some examples are: a. for targeting tanks/artil-
lery pieces/missile launchers on the surface of desert v.
in forested regions from aircrait/drones, b. for targeting
drones/aircraft on a sunny day, full moon/no moon
night, or rainy day/night from the surface

Characteristics of a setting can also relate to conditions of
the sensors that generate mnput to neural networks, as
examples: the age of sensors; the manufacturer of sensors; or
the different products lines/periods even from the same
manufacturer. That 1s, new and many-years old sensors from
the same manufacturer and same production line may give
rise to having to use two diflerent sets of coellicients and/or
neural network structure. In some embodiments, a setting,
can 1mclude a sensor being 1n a non-working condition. In
these example embodiments, one set of coeflicients with a
neural network structure can be trained under/in the setting,
that full collection of sensors/devices functioning optimally,
and other sets of coethicients with different neural network
structures trained under/in the settings when one or more
sensors/devices are malfunctioning.

In various embodiments of the present invention, a train-
ing data set can be separately collected from each setting
in/under which the automated machine 1s to operate. For
example, one training data set can consist of data collected
using various sensors 1n a setting that can be characterized
as a desert area, country side, and during day time with no
wild amimal activities. Another setting for a training data set
can be characterized as data collected from a desert area, a
suburban region, and during night time with some wild
ammal activities. A different setting for another training data
set can consist of data collected using various sensors 1n a
large city environment, during night time, and with a large
number of pedestrians. For each of these different training
set, a particular neural network—setup with a neural net-
work structure—is trained. A trained neural network results
in a set of coeflicients (that 1s each node ends up with
coellicients after a training session) for the particular setting
in/under which training data set 1s collected. It should be
noted that in some preferred embodiments, 1n addition to
having a training data set for each setting, similar settings
can have the same set of coellicients and neural network
structure (e.g., downtown New York City and downtown
Boston can use the same set of coeflicients, sand dunes 1n the
Sahara Desert and sand dunes 1n the Death Valley can use the
same set of coetlicients, etc.).

In an exemplary preferred embodiment to describe a
coeflicient set, a neural network can be a feedforward
network and can have an input layer (e.g., five nodes), an
output layer (e.g., three nodes), and five hidden layers with
five nodes each. In this structure, the example neural net-
work has 25 nodes among the hidden layers. Using the nodal
coellicient example depicted i FIG. 3, each hidden layer
node and each output layer node can have five weights/
coellicients including a bias weight value 1n the example
neural network. Once a set of coetlicients are determined
from training using the data set collected in a particular
setting, such a set 1s associated with characteristics to the
setting (as exemplified above: desert, daytime, countryside,
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etc.) as described below 1n connection with Table 1 (and also
may further described in connection with Tables 2 and 3). In
this preferred exemplary embodiment, all stored coeflicient
sets are for a feedforward network having an input layer
(five nodes), an output layer (three nodes), and five hidden
layers with five nodes each. To store information/data relat-
ing to a large number of different settings, a database
management system can be employed. By segmenting set-
tings, each setting may exhibit a constant/consistent envi-
ronment, condition, and/or situation, and a neural network
trained for a specific setting may become more accurate
within the trained setting.

It should be noted that in some other preferred embodi-
ments of the present invention, the database can include
coellicient sets with different neural network structures
depending on the optimal structure for different settings. For
instance, a number of sets of coeflicients can be for feed-
forward networks, while other sets can be for back propa-
gation networks or other neural network structures such as
those provided above 1n Section 1, for example.

In some preferred embodiments, 1n addition to the coet-
ficients, the database can store:

More information about the neural network structure such
as the type of structure, the number of layers, the
number of nodes on each layer, nodal connection
information between and/or within each layer, and/or
other information to define a neural network; and/or

Executable modules of neural networks having the neural
network structures and corresponding coeflicients.

The automated machine can broadly refer to a machine
that 1s to be controlled by a control mechanism, with some
human 1ntervention 1f necessary. Examples of an automated
machine can be appliances (e.g., ovens, refrigerators) with
automated controllers (e.g., Internet of Things, “IoT” con-
trollers), a speech generator, a speech recognition system, a
facial recognition system, an automated personal assistant
(e.g., Alexa by Amazon, Inc., Ski by Apple, Inc.), an
autonomous vehicle, a robot, a target recognition system
(e.g., mn military defense applications such as missiles and
drones), and etc. Also, an automated machine does not
necessarily mean a completely automated manual-less
machine that requires no human intervention, but i1t may
require a qualified person to take over the control (e.g.,
driving) under certain circumstances.

In one example preferred embodiment illustrated 1n FIG.
4, automated machine 401 may include a machine-to-be-
controlled (“MTBC”) 403, a machine controller (*MC”)
403, and a setting change detector and controller (“SCDC”)
407. The system 1illustrated 1n FIG. 4 also includes a coet-
ficient database management system (“C-DBMS”) 409,
which 1s depicted as located outside the automated machine
401 while operationally coupled thereto. Note that in such an
embodiment, the C-DBMS 409 can be located at a remote
server and coupled to communicate with the automated
machine. In some other preferred embodiments, a sub-set or
the whole of the C-DBMS 409 can be co-located with an
automated machine 401 or can be considered as a part of the
automated machine. In yet another embodiment, the whole
of the C-DBMS 409 can be co-located with the automated
machine 401 and implemented on hardware or firmware for
fast accesses of the information stored therein.

In FIG. 4, the MTBC 403, MC 405, SCDC 407 and
C-DBMS 409 are described as individual modules. As such,
they can be located remote from each other. For instance, in
an example windmill embodiment, the machine can be the
components of a wind-turbine, the MTBC 403 can be
located proximate to or on the wind-turbine to recerve mput
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from input devices (e.g., wind speed sensor) and to control
the speed of the generator, the angle of the blades, the
rotation of the wind-turbine. Continuing with the windmall
example, the MC 405 and the SCDC 407 can be located at
the base of the windmill for the ease of access, and the
C-DBMS 409 can be located at a server located remote from
the windmuill. It should be noted 1n some preferred embodi-

ments, the MTBC 403, MC 405, SCDC 407 and C-DBMS
409 are one whole module rather than individual modules.
It should also be noted that, although the MTBC 403 is
named as “machine to be controlled,” MTBC 403 preferably
may include various interfaces to receive data from various
sensors and/or devices and various interfaces to send control
information to components (e.g., motors, actuators, loud

speakers) 1n controlling the automated machine on which the
MTBC 403 1s to control.

It should be noted that the MTBC 403, MC 405, SCDC
407 and C-DBMS 409 can be implemented on/as hardware,
firmware, software modules or combination of them. In case
of being software modules, those modules can be 1mple-
mented as virtual machine(s) and/or software container(s).

Input data 419 generated by the MTBC 403 is sent over
to the MC 405 to be processed (e.g., inferenced) by an ImNN
421. The MC 405 generates control data 415, which 1s sent
over to the MTBC 403. The MC 405 also generates status
data 413 for the SCDC 407, and the SCDC 407 uses a signal
for the MC 417 to control the life cycle of the ImNN 421
(c.g., instantiate, terminate, run, and etc.) The values of
setting data 411 are sent from the MTBC 403 to the SCDC
407. In various embodiments of the present invention, the
values of setting data 411 (although ““of” 1s used, 1n various
embodiments of the present invention, the values can be also
described as “on” setting data 411 as on a data bus or
obtained “from™ the setting data 411 as in from shared
memory) can be seen as data collected/captured/sensed by
various of sensors relating to the setting (e.g., environment,
condition, situation, and etc.). The values of the setting data
411 can be referred to as setting characteristic values.

In FIG. 4, the MTBC 403 1s coupled with the MC 403 via
the input data 419 and control data 415, the MC 405 and the
SCDC 407 are coupled with the status data 413 and signal
tor MC 417, the MTBC 403 and the SCDC 407 are coupled
with the setting data 411, and the SCDC 407 and C-DBMS
409 are coupled with two directional arrows 421 and 423—
the coupling 421 sends queries from SCDC 407 to the
C-DBMS 409 and the coupling 423 sends results of the
queries to the SCDC 407. These above-mentioned coupling
mechanisms, and those 1llustrated 1n FIGS. 11 and 12 below,
provide communication mechanisms to send and/or receive
data and/or control signal(s). The coupling mechanism can
be implemented using, for example, shared memory, sockets
(in socket communication) and/or hardware implemented
data/control signal buses. In particular, the mput data 419
sends data from various sensors/devices located in the
MTBC 403 to the MC 405, control data 415 sends data to
control various controllable components interfacing with the
MTBC 405, the status data 413 sends data from the MC 405
about the status of the ImNN(s) 412, the signal for MC 417
1s the data to control the ImNN(s), and the setting data 411
sends data from various sensors/devices in the MTBC
403—that 1s, the setting characteristic values.

With respect to the MTBC 403, 1t includes (or has
interfaces to) various iput sensors/devices, communication
devices and machine control devices, such as a thermometer,
pressure sensor, compass, altimeter, gyroscope, accelerom-
cter, 1mage sensor, cameras, video cameras, magnetometer,
light detectors (e.g., visible, infra-red, ultra-violet), barom-
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cter, humidity measuring device, radiation sensor, audio/
sound sensor, €.g., microphone, geographical positions sys-
tem (GPS) device, ground to surface distance (GSD) device
and/or etc. From these input sensors/devices various setting
characteristic values can be obtaimned. For example, the
temperature from a thermometer, air pressure (e.g., of a tire)
from a pressure sensor, magnetic North from a compass,
altitude from an altimeter, orientation information from a
gyroscope, acceleration information from an accelerometer,
images from an 1mage sensor or camera, video frames from
a video cameras, magnetic field information from a magne-
tometer, ambient light variation information from light
detectors, atmospheric/ambient air pressure from a barom-
cter, humidity level from humidity measuring device, radia-
tion level from a radiation sensor, voice from audio/sound
sensor, geospatial information from a GPS device.

In an autonomous land vehicle example, the MTBC 403
may include (or interfaces to) a number of sensors and
internal computing devices, with the following examples, to
control the vehicle while traveling in traflic with other land
vehicles. Sensors for collecting external surrounding infor-
mation 1nclude one more front view cameras (e.g., digital
camera), a night vision camera(s), a Ifront object laser
sensor(s), front and rear millimeter radars and sensors, an
ambient light sensor, pedestrian/animal detecting IR
sensor (s), a side view camera(s) on each side, a night vision
camera(s) on each side, a proximity sensor(s) on each side,
a panoramic/wide angle view sensor(s) (e.g., 100 degrees,
180 degrees, and/or 360 degrees view digital cameras), a
LIDAR sensor, a tire pressure sensor for each mounted tire,
a wheel speed sensor for each wheel, a rear view camera(s)
(e.g., digital camera), and/or a review view night vision
camera(s). As used herein, a “camera” 1s a broad term and
refers to any ol a number of 1imaging devices/systems that
collect data representative of an “image” (e.g., a one or
multi-dimensional representation of information) with one
or more sensors (e.g., film or one or more electronic sen-
sors), unless the context of the usage indicates otherwise.
The number of cameras and sensors having various views
may be mounted on an autonomous land vehicle so that,
preferably, there are no gaps or blind spots either going
forward or backward. Sensors can also include GPS devices,
gyroscopes, and etc. that give the direction, velocity, and/or
location mformation of the automated machine.

Moreover, sensors for collecting operational information
and having interfaces with the MTBC 403 include a driver
drowsiness sensor, steering angle sensor, a throttle (e.g., gas
pedal) pressure sensor, and/or a bread pedal sensor. In
addition to sensors, the autonomous vehicle may also
include communication devices to send and receive data
from a network (e.g., cell phone network, Wi-F1, GPS and/or
other types of communication networks that provide secured
communication method) and from other vehicles wvia
vehicle-to-vehicle communication networks (e.g., VANETs)
that provides secured communication links. These devices
may also interface with the MTBC 403.

The autonomous vehicle may be configured to include or
to intertace with a communication device (e.g., a cell phone,
radio, or the like) on 1ts own within to interface with the
MTBC 403 or include a docking system to connect to a
communication device. If the autonomous vehicle includes
a docking system to connect to a cell phone and has no other
means ol connecting to the cell phone network, such a
vehicle may provide an additional anti-theft feature by
disabling the automated driving function or disabling the
entire driving function without being connecting to the
communication network with the communication device.
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Machine control devices interfacing with the MTBC 403
for the autonomous land vehicle may include (or include
interfaces to) adaptive cruise control, an on-board
computer(s), one or more control chips and/or control
mechanisms to control the breaking, throttle, and steering
wheel systems. Machine control devices interfacing with the
MTBC 403 for a drone having fixed wings may include
mechanisms to control elevator(s), flap(s), and/or aileron(s),
in addition mechanisms to control the thrust(s) and the ruder.
I a drone has rotor(s), the MTBC 403 may include (or has
interfaces to) a control mechamism for the rotor(s). Machine
control devices within the MTBC 403 for a missile with
acrodynamic devices (e.g., canard(s), wing(s), and/or
tail(s)), may include (or has interfaces to) control mecha-
nisms for those devices. Machine control devices within the
MTBC 403 for a robot may include (or has interfaces to)
control mechanisms for various actuators (e.g., pneumatic
actuators, hydraulic actuators, and/or electric actuators.) For
a speech generator, a control mechanism (or interface
thereto) may control input to loud speakers. Automated
machines such as drones, missiles, robots or the like can
include various types sensors/devices or interfaces thereto as
described above for particular use of those machines. It
should also be noted that a cell phone can be an automated
machine as used herein since a cell phone can have sensors
(e.g., microphone(s), camera(s)) to generate input to a facial
recognition system, a finger print recognition system, a
speech recognition system, or a speech generator.

Continuing on with FIG. 4, the MC 403 can include one
or more 1mplementation neural network (ImNN). At the
initial stage, i a preferred embodiment, the SCDC 407 can
instantiate an ImNN with a default neural network structure
with a default set of coellicients—e.g., a fork ImINN process
1s created with a default set of coeflicients with a default
neural network structure, via the signal for the MC 405, as
shown in FIG. 4. In this embodiment, the automated
machine can start i1ts operation with the default arrange-
ments. As the SCDC 407 receives the setting characteristic
values from the MTBC 403, 1t determines whether to keep
the default set or to query the C-DBMS 409, which 1s
described 1n more detail in connection with Table 1 (and also
may be further described 1n connection with Tables 2 and 3).

In another preferred embodiments, as 1llustrated in FIG.
da, control data 415 1s not sent to MTBC 403 or input data
419 1s not inferenced by MC 405 until:

a. (step 451) recerves values of setting data 411 relating to
the setting characteristics from the MTBC 403,

b. (step 452) quernies the C-DBMS 409 with the received
setting characteristic values which (step 433) returns A) a set
of coeflicients and/or a neural network structure associated
with the received setting characteristic values or B) the
neural network executable module (or a pointer thereto)
having the structure and/or the coeflicients—based on the
information stored in the C-DBMS 409,

c. (step 454) instantiates a new ImNN using A) the set of
coellicients and/or the neural network structure or B) the
neural network executable module, and

d. the new ImNN becomes operational.

Various sensors/devices on the MTBC 403 can generate
input data to be sent to the MC 405, which 1n turn use the
input data to generate control data after conducting infer-
ences on the input data. Here, all or a subset of input data can
be inferenced on by the ImNN utilizing the set of coellicients
and the neural network structure used 1n instantiating the
ImNN.

Some ol the sensors/devices on the MTBC 403 may
generate the setting characteristic values for the SCDC 407.
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These sensors/devices can be the same sensors/devices, a
subset of sensors/devices, or a diflerent set of sensors/
devices (that may include a subset of sensors/devices) on the
MTBC 403 or elsewhere on the automated machine that
generates input data. The SCDC 407 can continually or
periodically (e.g., every fraction of a second, a second, a
minute, or etc.) receive the setting characteristic values—
individually, sub-set at a time, or all at once with/without a
notice signal (e.g., an iterrupt signal)—trom the MTBC
403. The notice signal notifies the SCDC 407 that a set of
setting characteristic values are prepared and will follow.

Subsequent to the ImNN becoming operational (“the
currently operational ImnNN”), the automated machine may
move ito or may be encountering a diflerent geographical
region, environment, or situation (e.g., the time of the day,
weather, etc.). The information relating to the environment,
condition, situation, and/or etc. (i.e., setting characteristic
values) 1s recerved by the SCDC 407 as noted above. IT a
change 1n the setting 1s sensed (e.g., day turns to evening,
sunny to cloudy, country side environment to suburban
environment), the C-DBMS 409 1s queried, using the current
set of the setting characteristic values.

More specifically, 1n some embodiments of the present
invention, the SCDC 407 may determine to query the
C-DBMS 409 based on one or more sensor/device data. For
example, the SCDC 407 can be prearranged such that when
weather changes from warm to cold (e.g., with specific
temperature threshold), the C-DBMS 409 1s queried using
the current set of setting characteristic values received from
the MTBC 403. In another example, when output of a clock
indicates a sunset time according to the seasonal and geo-
graphical location information, the C-DBMS 409 1s queried
using the current set of setting characteristic values recerved
from the MTBC 403. In another example, the output from a
light sensor can be used to cause the SCDC 407 to query
C-DBMS 409 using the current set of setting characteristic
values received from the MTBC 403. In some other pre-
terred embodiments, the SCDC 407 can determine to query
the C-DBMS 409 periodically (e.g., every minute, certain
number of minutes, tens of minutes, etc.) using the current
set of setting characteristic values recerved from the MTBC
403. In yet some other embodiments, the SCDC 407 can
determine to query the C-DBMS after elapse of a certain
amount of time since the last query to the C-DBMS 409
using the current set of setting characteristic values recerved
from the MTBC 403. In some other embodiments, the
SCDC 407 can determine to query each time a set of setting
characteristic values are received from the MTBC with the
notice signal using the current set of setting characteristic
values recerved from the MTBC 403. Various events
described above that causes querying the C-DBMS 409 can
be used individually or a combination thereof.

It should be noted that, after instantiating a new ImNN
and having it process through input data to start generating
output may take a number of clock cycles—a transition
phase. The currently operational ImNN can be designated as
a to-be-terminated ImNN during the transition phase. In
some embodiments, as illustrated in FIG. 45, duning the
transition phase, the to-be-terminated ImNN (that can be
referred to as the old ImNN) can continue to run until a new
ImNN 1s properly initiated (e.g., another fork created and
instantiated with the coetlicient set) and becomes opera-
tional (e.g., recerving input data and generating output data).
In these embodiments, subsequent to (or simultaneous with)
the new ImNN becoming operational, the to-be-terminated
ImNN can be terminated. In another embodiment, during the
transition phase, the to-be-terminated ImNN can be termi-
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nated at the end of the phase but run slowly (e.g., generating,
output every other clock cycle)—in this example, the to-be-
terminated ImNN may not generate optimal output during
the transition phase.

In another example embodiments, the next setting may be
predicted. That 1s, as a vehicle moves from a country side
towards a city, the SCDC 407 can be configured to predict
the approaching city setting (e.g., by calculating the speed,
the direction, and GPS information) and can be configured
to instantiate a new ImNN with the city characteristics
before the actual arrival at the city (e.g., with A) a new
neural network executable module or B) the coellicients
and/or structure, queried from the C-DBMS 409—that 1s,
queried with predicted setting characteristic values). In these
example embodiments, the new ImNN can start inferencing
the input data and generating output at or before the vehicle
crosses the city boundary from the country side. In other
words, the new ImNN may run simultancously with the
current ImNN, but the output from the current ImNN may be
used to control such a vehicle, as illustrated 1n FIG. 4¢. As
the vehicle crosses from a country side into a city environ-
ment, the output from the new ImNN may be used to control
the vehicle while the current ImNN (that can be referred to
as the old ImNN) 1s terminated. The new ImNN may run
until a new setting 1s detected or predicted. In these embodi-
ments, the length of the transition phase can be shortened. In
FIGS. 45 and 4¢, time flows from the left side to the nght
side.

Similar embodiments to shorten the transition phase can
be contemplated with, for example, changing time (e.g.,
predicting the day time changing to evening time or night
time changing to morning time), weather (e.g., approaching
storm), temperature (e.g., from weather forecast), traflic
congestion (e.g., from tratlic report), and etc. It should also
be noted that if the approaching setting 1s not predictable
with certainty (e.g., weather forecast), multiple ImNNs case
be pre-instantiated (e.g., based on possible approaching
weather patterns).

Although FIG. 4 15 explicitly showing one ImNN instan-
tiated as part of the MC 405, 1n various embodiments of the
present invention, more than one ImNN can be instantiated
and become operational. In some preferred embodiments,

various ImNNs (that 1s, they may have same/diflerent sets of

coellicients and/or same/diflerent neural network structures)
can be connected serially such that output from one ImNN
are further inferenced by another ImNN. In some other
preferred embodiments, various ImNNs can be connected in
parallel such that input from one mput source can be
inferenced by various multiple ImNNs. Intermittent between
vartous ImNNs, there can be logic/algorithm inserted to
turther process data, in some preferred embodiments (e.g.,
adding, combining, multiplying, and thresholding outputs
from the various ImNNs). In the case of multiple ImNNs, the
SCDC 407 has the corresponding control mechanisms for
cach of the instantiated ImINN.

The C-DBMS 409 can include searchable information
associated with each setting. That 1s, for each setting, the
C-DBMS 409 can include mformation on ranges of setting
characteristic values (which can also be referred to as setting
characteristic value ranges) and an associated set of coetli-
cients and/or neural network structure. The C-DBMS 409
can be searched based on the setting characteristic values to
find a set of coeflicients and/or neural network structure for
a given setting characteristic values.

Table 1 below illustrates a table of searchable entries for
the purpose of illustrating information that can be stored and
organized into a database, such as the C-DBMS 409. Various
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embodiments of the present invention contemplate using one
or more of the database types: text based, document based,
hierarchical, relational, or object-oriented database manage-
ment systems. Also, Table 1 illustrates one-to-one relation-
ship between the sets of setting characteristic value ranges
and sets of coellicients/neural network structures. Each entry
1s numbered as #1, #2, #3, . . ., #n. Various embodiments of
the present invention allow many-to-one or one-to-many
relationships between the set of setting characteristic value
ranges and the set of coetlicients/neural network structures.

TABLE 1
Am- Coet-
Entry bient ficient
# Time Location Weather Temp . Structure Array
1 Day 1% Sunny  Above feedforward 1% set
time Ranges freezing of
range of Lati- coel-
tudes ficients
Longi- [ ... ]
tudes
2 Day 2™ Cloudy Above feedforward 279 set
time Ranges freezing of
range of Lats + coef-
Longs ficients
[...]
3 Night 3™ Rain Above Back 37 set
time Ranges freezing propagation of
of Lats + coef-
Longs ficients
[...]
I Eve- N# Sunny  Freezing Restricted N set
ning Ranges Boltzmann  of
twi- of Lats + coef-
light Longs ficients

[ ]

Although Table 1 illustrates various pieces of information
(e.g., setting characteristic value ranges, coetlicients, and
structure) that are placed 1n one location (that 1s, Table 1),
various embodiments of the present invention contemplated
other embodiments 1 which the pieces of information can
be located 1n remote locations from each other but linked for
the database to function.

Table 1 above depicts various information that can be
stored in C-DBMS 409. The top row lists example setting
characteristic types: time, location, weather, ambient tem-
perature. The top row also lists descriptive names for other
columns: structure and coeflicient array. The top row 1is
provided for the ease of explaining various columns of
information. In this example, the Time refers to mput from
a clock, the location refers to latitude and longitude from a
GPS device, the weather refers to information from a
barometer, a light sensor and/or a moisture sensor, and the
ambient temperature refers to input from a thermometer.

The descriptive names “Structure” refers to a neural
network structure, and “Coellicient Array™ refers to a set of
nodal coeflicients for the neural network structure. In vari-
ous preferred embodiments, the information contained 1n the
columns of Coellicients Array and Structure combined 1is
suflicient to mstantiate corresponding neural network(s) for
the associated setting.

In first example preferred embodiments, each of the
entries has a neural network structure, which may include a
pointer to an executable module 1n a library of compiled sets
of executable modules of neural networks. For instance, a
library for Table 1 could include pointers to the executable
modules of neural networks for teedforward, back propaga-
tion, and Restrict Boltzmann types (although other types can




US 10,691,133 Bl

19

be also included). For a specific example, using entry #1, the
“feedforward™ 1in the column designated as the Structure can
be a pointer to a particular version of a feedforward neural
network executable module trained with training data set
from the associated setting. The SCDC 407 can use the
executable module and the set of corresponding coetlicients
in entry #1 to instantiate the feedforward neural network.

In second example preferred embodiments, the executable
neural network modules may could already have been
compiled with a specific set of nodal coeflicients. For these
example executables, the column 1 Table 1 designated as
Coellicients Array may not be necessary—the pointers to the
associated neural network executable module may be sui-
ficient to 1nstantiate the specified neural network, since these
modules already have the coeflicients compiled therein.
Although the first and second examples of preferred embodi-
ments above have been described in terms of computer
programs/libraries, the library of neural networks can be
implemented 1 hardware, firmware or combinations of
hardware, firmware and software modules. In addition,
instead of pointers, the modules themselves can be stored on
the database as entries.

In various other preferred embodiments, the entries for the
Structure entry may include information relating to the type
of neural network and its basic layout, for example, nodal
layers—input, output, hidden—and types of nodes, such as
input node, hidden node, memory node, different memory
node, convolutional node, probabilistic node, and etc. sui-
ficient to generate automatically the corresponding execut-
able neural network module—which then can be instantiated
with the corresponding set of coetlicients. In some of such
preferred embodiments, the generated executable module
then can be stored in the C-DBMS 409 for later use. It
should also be noted that some executable neural network
modules can be compiled with their corresponding coetli-
cients, while other executable neural network modules can
be complied without coetlicients already specified (for these
embodiments, the entries 1n the “Coetlicients Array” may be
needed. It should be noted that a database (e.g., the C-DBMS
409) can be configured to store a mixture of entries that have
pointers to neural network modules with/without coetli-
cients already compiled therein, neural network modules
rather than pointers, or information suflicient to generate
executable neural network modules.

Returming back to Table 1, for each of numbered entries,
ranges ol values are provided for each setting characteristic
type. For example, in some implementations the time can
have a range indicated in hour, days, weeks, or months, or
a range of a certain portion of a day (e.g., day time or night
time). In some 1mplementations, the location can have a
geographic range, for example, latitudes and/or longitudes to
indicate a particular region (e.g., a desert area bound by a set
of latitudes and/or longitudes that can be compared with
GPS data from the MTBC 403). In some implementations,
the location can have other types of ranges, for example, a
designated or predetermined (or predefined) area, {for
example, the northern hemisphere or the southern hemi-
sphere, a country, a continent, or a region of the world. In
other words, for each entry (e.g., an enftry representing a
setting) each type of characteristics (e.g., Time, Location,
Weather, and Temperature) of a setting 1s defined with a
range of setting characteristic values, which can be referred
to as a range of values.

Various sensors/devices on the MTBC 403 may generate
setting characteristic values which are matched with each
entry—determining 1f the values recerved on setting data
411 fall within the ranges provided. For example, the setting
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characteristic values can be: a clock indicates 10 AM, a GPS
may input latitudes and longitudes that fall within the 1*
ranges, a light detector may indicate sunny, and a thermom-
cter mputs 10 degrees Celsius. In this example the received
values on setting data 411 fall within the setting character-
1stic value ranges of the first entry. In this case, the associ-
ated set of neural network coeflicients is the 1% set of
coellicients and the associated neural network structure 1s a
teedforward neural network of the entry designated as #1.
Another set of setting characteristic values may match with
one of ranges defined for entries #2, #3, . . ., #n.

In sum, Table 1 can be described as each entry (e.g., #1,
#2, #3, . . ., #n) having setting characteristic value ranges
that corresponds to characteristics of a setting. For example,
if the 1°* Ranges of Latitudes Longitudes may cover a desert
area boundaries, this means the characteristics of entry #1
can be a setting that 1s a desert area, daytime, above freezing
and sunny.

Although the selection process 1s described above as
using the setting characteristic values and the setting char-
acteristic value ranges, 1n other various embodiments of the
present invention, the selection process can be performed by
probabilistic algorithms. That 1s rather than search only for
the entry that the setting characteristic values fall within the
setting characteristic value ranges, proximity to those ranges
can be calculated. The entry being the closest (e.g., having
the largest number of the setting characteristic values {fall
within the given setting characteristic value ranges) to the
setting characteristic values can then be selected.

Even though, the setting characteristic values are defined
using numerical ranges of values 1 Table 1, in other
preferred embodiments, other methods can be used to rep-
resent ranges. For example, 1n some embodiments 1image(s)
can be used to represent the ranges (e.g., images of grey sky
to represent the ranges of cloudy sky). In this example, the
images representing the ranges can be further processed to
turn them 1into a set of numerical values or use them as
images 1n matching images received from a camera.

In some embodiments of the present invention, a subset of
the setting characteristics can be used to locate the coetli-
cient arrays. In another preferred embodiment, more types of
setting characteristic values from diflerent sensors/devices
can be added as indicated by the column with ... ” (e.g.,
traveling speed, language spoken, ethnic group, and etc.)
Also, 1n some embodiments, the column for the structure
may not be necessary 1t all neural networks to be employed
have the same structure.

In some preferred embodiments, the C-DBMS 409 can
also include a process map for each setting. In various
embodiments of the present invention, a process map can be
a neural network worktlow, a neural network schema, or a
neural network descriptive document. In an example, a
process map can include multiple ImNNs (each with a
corresponding A) sets of coellicients and/or a neural network
structure associated with the data values or B) the neural
network executable modules (or pointers thereto) having the
structure and/or the coetlicients) connected serially, 1n par-
allel, or in combination with possible mntermittent logic/
algorithm, as 1llustrated with an example 1n Table 2 (that 1s,
the “n” entry therein). In these preferred embodiments, the
C-DBMS 409 query results 1n a process map. The SCDC
407 interprets the process map and instantiates neural net-
works 1n accordance with the process map.
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TABLE 2
En- Am-
try Loca- Weath- bient Coeflicient
#  Time tion er Temp . Structure Array
1 Day 1¥ Sunny  Above feedforward 1% set
time Ranges freez- [ ... ]
range of ing
Lati-
tudes
Longi-
tudes
2 Day 274 Cloudy Above feedforward 279 set
time Ranges freez- [ ... ]
range of Lats + ing
Longs
3  Night 3 Rain Above Back 379 set
time Ranges freez- propagation [...]
of Lats + ing
Longs
n Eve- N7 Foggy  Above Map: Array for
ning Ranges freez- Input to two the first
twi- of Lats + ing feedforward feedforward
light Longs neural Array for
networks the second
sSum the feedforward
output from  Array for
the two the back
nets then propagation
the sum to
a back

propagation

In some embodiments, the entries that populate the

C-DBMS 409 are made 1n such a way that there 1s 1) no
overlap between the possible setting characteristic values
between different settings and 11) no null space between or
outside the possible setting characteristic values between
different settings. In these embodiments, when a query 1is
made to the C-DBMS 409 by the SCDC 407 with the
received setting characteristic values from the MTBC 403,
one entry will be matched among the entries on the
C-DBMS 409 and the information (e.g., A) the pointer to
one matching neural network executable module or B) the
values of a set of the coeflicients and neural network
structure thereot) will be sent back to the SCDC 407. An
example of these embodiment 1s entries for 48 contiguous
States—each entry defining the ranges of longitudes and
latitudes for a State. In this embodiment output from a GPS
device should fall into one of the 48 entries, and there 1s no
null space between the ranges for the States. If the GPS 1s
to operate within the 48 States, there 1s no null space outside
thereof.

In some other embodiments, there can be some null
spaces between or outside the possible setting characteristic
values. An example of these embodiments 1s an entity
training neural networks for automated machines that are to
operate within large cities. Such a set of entries may have
null spaces outside the large cities. In these embodiments a
null value will be sent back to the SCDC 407, when a set of
setting characteristic values falls into a null space. The
SCDC 407 in turn can instruct the currently operational
ImNN to continue to operate. There can be other instructions
such as stop operating the entire automated machine, or send
a signal for an augmented manual operation. More on the
input sample data being outside the mput sample space 1s
described below 1n connection with FIG. 11.

In some other embodiments, there can be overlaps
between the possible characteristic values. The overlaps can
be partial or complete. If the C-DBM 409 1s queried with a
set of setting characteristic values that falls within such an

10

15

20

25

30

35

40

45

50

55

60

65

US 10,691,133 Bl

22

overlap, the C-DBMS 409 can return more than A) one
neural network executable modules or B) one set of coel-
ficients and neural network structures. An example of these
embodiments 1s an entry for large cities and entry for the
downtown of the large cities. These two entries could
overlap. In these embodiments, the SCDC 407 can deter-
mine to use one of the more than one set returned from the
C-DBMS 409. In one example, the SCDC 407 can use the
set that cover the largest geographical area or use the set that
cover the smallest geographical area. This feature of using
geographical setting characteristic value ranges to address
overlaps can be applied to other setting characteristics
and/or a combination thereof.

In some embodiments, a neural network confidence level
for each entry can be included as another column to, e.g.,
Table 1. The confidence level for each entry represents the
confidence level for the neural network that 1s instantiated.
For ease of reference, this confidence level i1s referred to as
a neural network (NN) confidence level, which 1s different
from an output confidence level. As noted above, an output
confidence level 1s the confidence level of the selected class
(1.e., output) for given mput data being the correct one based
on the scores of other classes. An NN confidence level can
be determined based on probabilistic analysis of the traiming,
data set. For example, traiming data set having a narrow
distribution among mput sample values may be given a
higher NN confidence level compared with another training
data set having a broad distribution among its input sample
values or vice versa depending on settings and/or applica-
tions. In another example, 1n some embodiments a traiming
data set 1s associated with a testing data set. The NN
confidence level can be the score of correct outcomes of a
particular neural network after inferencing with such a
testing data set.

In the embodiments with NN confidence levels, the
entries returned by the C-DBMS 409 because of the overlap
may also have the NN confidence levels. The SCDC 407 can
use the values of the NN confidence levels, e.g., pick the
entry with the highest NN confidence level.

It should be noted that different parts of the embodiments
of the present invention can be implemented by difierent
manufacturing entities. That 1s, the sensors and various
components on the MC 405 can be manufactured by one or
more entities, while the C-DBMS 409 entries can be popu-
lated by other manufacturing entities. In other words, this
allows some manufacturers to concentrate on i1mproving
sensors and such, while allowing other manufacturers/enti-
ties to concentrate on improving the accuracies of ImNNs.
For these example embodiments, the electronic format of the
entries for the C-DBMS 409, the type of database manage-
ment system used, and others may be specified (e.g., stan-
dardized) such that the C-DBMS 409 can be populated,
queried, receive results of queries, and updated by different
entities. Another aspect of these advantages of the present
invention may be that the user of the SCDC 407 1s allowed
to test the accuracy of the entries 1n the C-DBMS 409 to
accept or reject after testing. In some embodiments, an NN
confidence level can be assigned to each of the entries in the
C-DBMS 409.

Without storing the coetlicients for diflerent settings on a
database management system, numerous neural networks
can be deployed on the automated machine (1.e., the coel-
ficients already fixed for each deployed neural network as 1n
example embodiments described above 1n connection with
Table 1). However, such arrangement requires numerous
neural networks and may not be adaptable to new settings
without updates to the deployed neural networks.
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In some embodiments, the controllers—MC 405, SCDC
407, and C-DBMS 409 can be setup as standalone processes
communicating with inter-process communication (IPC)

protocols, as described 1n more detail below 1n connection
with FIG. 5.

3. Plug-in Smart Architecture (PISA)

Various preferred embodiments described above can be
implemented on a computing machine, for example, as a set
of modules on a processor. FIG. 5 illustrates such an
example preferred embodiment, which 1s described in terms
of modules created using various memory spaces on a
processor and 1n terms of various aspects of the operations
of the modules. Each module can be considered as an
individual machine when being operational (e.g., executing

stored instructions) on a processor. In particular, a system
module 501 (an example embodiment of the MTBC 403)

may initiate a PISA module 503, which 1s an example
implementation of the SCDC 409. This imitiation can be
performed by creating a fork 504 by a control process 573,
which 1n some embodiments control the status and/or the
operations of the PISA module 503 and the neural network
module 507. The system module 501 can also imitiate the
input data stream 305 and 1nitiate the output data stream 507
with a handle (e.g., a pointer) for the input stream 505 and
another handle for the output stream 507, respectively.
The system module 501 created 1n memory space 503 can
include interfaces to send/receive input/output to/from vari-
ous sensors/devices such as a light-detecting and ranging
radar (LIDAR) 551, global positioning system (GPS) 553,
inertial measurement umt (IMU) 555, camera sensors 357 or
the like. The system module 501 can have 1ts own control-
ling algorithms relating to sensing 539 (receiving data from
various 1nput sensors/devices, perception 561 that analyzes
the recerved data, decision 563 for making decisions based
on the perceptions, and/or planning 563 to carry out the
decisions. Output from all or subparts of the controlling
algorithms can form a part of the input data stream 503, 1n
addition to various sensors/devices with which the system
module 501 1s configured to interface. The various steps can

be performed on real-time operating system (OS) 567 and on
a Graphical Process Unit (GPU) 569 and/or Floating Points

Graphical Accelerator (FPGA) 571.

The PISA module 503 may perform the following tasks:

a. Gets the System State 513 (e.g., the values of the
current setting characteristic values 1n FIG. 4) through,
for example, the PISA Bus Library 508, which can be
a library of interfaces that allows the PISA module 503
to iterface with the Neural Network module 507 and
the system module 501 1n carrying out various func-
tions/algorithms/routines as described 1n this Section.

b. PISA Database Control 505 1s configured to interface
with (including querying) a Configuration Library 506
(e.g., C-DBMS 409). The Configuration Library 506
contains various neural network Coetflicients Array and
Structures (e.g., Table 1). Based on the System State
values, the corresponding neural network coeflicients
and/or neural network structure(s) are retrieved from
the Configuration Library 506. In turn, the retrieved
neural network coeflicients and/or neural network
structure(s) are used to instantiate a neural network
module 507.

c. PISA Business Logic 509 can send/receive the status
information of the neural network module 507 (e.g., the
MC 403). The neural network module 507 can be
created by a fork 508 1n a new memory space as well
as assigned with a listening socket 511. This socket 511
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can be used to share current status of the neural network

module 507 with the PISA module 503.

d. PISA Bus Lib 508 may continually poll for the current
System State
1. IT the System State changes to a diflerent state (that

15, the setting changes) from the previous state, the

following may occur:

1. The PISA (Business Logic) 509, which contains
various functions/algorithms/routines as described
in this Section, mnitiates a kill process through the
status socket or

2. The PISA (Business Logic) 509 initiates a suspend
process through the status socket or

3. The PISA (Business Logic) 509 mitiates an update
system configuration process through the status
socket.

4. Step b above may be followed by the above 1 or
2 Or 3 processes.

1. If the System State does not change, no action 1s
taken.
¢. PISA (Business Logic) 509 can review the status

from the Neural Network module 507 and com-
municates status to the System module 501 via the
PISA Bus Lib 508.

Neural Network module 307 (instantiated via a fork 510
from the PISA module 503) may perform the following
tasks:

a. The Neural Network module 507 mnitiates a neural
network dynamically linked library (NN DLL) 517
(e.g., ImNN 1n FIG. 4) within the module’s memory
address space;

b. The PISA Bus Lib 508 establishes connection to
System Input Stream 303;

c. The PISA Bus Lib 508 establishes connection to
System Output Stream 507,

d. PISA Xmitter 523 establishes the Status Socket 511
back to the PISA module 503;

¢. The NN DLL 3517 may perform the following:

1. The NN DLL 517 processes data from System Input
Stream 505 to generate results for System Output
Stream 507 via the PISA Bus Lib 508 (that 1s,
performs inferences on the Input Stream);

11. NN DLL 3517 pushes status via the PISA Xmutter 523
through the Status Socket 511 on regular intervals to
the PISA module 503;

111. NN DLL 317 processes requests from the PISA

module 503 as requested to include:

1) Kill current NN DLL 517 process

2) Suspend current NN DLL 517 process

3) Update system configuration

It should be noted that in some preferred example
embodiments, the PISA Bus Lib 508, the PISA Bus Lib 521
and another PISA Bus Lib (not shown) on the system
module 501 can be the same set of interface routines/
managers. In other example preferred embodiments, the
PISA Bus Lib on the system module can have the largest set,

a subset of which 1s included in the PISA Bus Lib 508, and
in turn a subset of which 1s included 1n the PISA Bus Lib
521.

FIG. 6 illustrates various preferred steps performed by the
system module 501. In step 601, raw data (as received from
the system module 501 but the system module 501 may have
performed some operations the data) from various sensors/
devices are collected. In step 603, system state 1s generated
(predefined output data from various sensors and/or devices
interfacing with the system module 501). In step 605, the
stored system state becomes available to be shared with
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other modules. In step 607, system input data 1s generated
(predefined output data from various sensors and devices
interfacing with the system module 501, and not necessarily
the same data compared with the system state generated in
step 603). In step 609, the input data stream 1s generated,
which 1s the system input stream 505 1n FIG. 5. In step 611,
the output data stream (the system output stream 507 in FIG.
5) 1s obtained from the neural network module 507. In step
613, system output data 1s generated. In step 615, the
generated system output data i1s processed to be used 1n
controlling various components interfacing with the system
module 501.

FI1G. 7 1llustrated various pretferred steps performed by the
neural network module 507, with step 701 as a starting point.
In step 703, information 1s read for the neural network to be
instantiated such as neural network coeflicients and/or neu-
ral network structure(s). The neural network coethicients/
structure(s) can be part of the signal for MC 417, illustrated
in FIG. 4, and can be stored in memory as in step 705. A
neural network can be initiated with the read the neural
network coeflicients/structure(s) in step 707—in the
example of FIG. 5 only one neural network 1s instantiated
that 1s designated as NN DLL and designated as ImNN in
FIG. 4. Once mitiated, the NN DLL starts its operations—
including reading mmput data stream (step 709). The mput
data stream (step 733) 1s recerved from the system module
501, for example. The NN DLL then performs the function
of inferencing (step 713) on the 1nput data stream. After each
inferencing performed on each set of mnput data stream, the
NN DLL can 1ssue a status to indicate the inference was
normal or not.

When the status of the inferencing performed 1s checked
in step 713, 111t 1s not a normal operation (the branch marked
with “-~1" for step 713), the status 1s checked for an error in
step 715. If there 1s error, the error code 1s written out, step
717. The error code 1s sent over the status socket 511 1n step
755. If there 1s no error code, the status 1s checked for a
warning code, step 719. If there 1s a warning code, the
warning code 1s written out, step 721. The warning code 1s
sent over to the status socket 311 1n step 755. If there 1s no
warning, the status 1s checked from information to be sent
back to PISA 503. If there 1s information, the information 1s
written out, step 725. The information 1s sent over to the
status socket 511 in step 755.

When the status of the inferencing performed 1s checked
in step 713, 11 1t 1s a normal operation (the branch marked
with “0” for step 713), an operational flag 1s checked (step
731). The operational flag set based on the “set action” 757
received from the PISA. If the operational flag 1s set to be
on, the “Y” branch 1s taken and the NN wrapper writes the
output of the instantiated neural network as output data
stream (step 710) to be read by the system 501 (step 751).
I1 the operational flag 1s set to be off, the “IN” branch 1s taken
and the NN 1s terminated in step 733, which ends the
operation of the NN wrapper in step 735. Here, an example
ol an error code 1s generated when an unrecoverable error
has occurred and the NN DLL 517 1s to be terminated. An
example of a warning code 1s generated when a recoverable
error has occurred and a warning message 1s to be sent to the
PISA module 503. An example of an information code 1is
when the NN DLL 517 completes a task without an error.

FI1G. 8 1llustrated various pretferred steps performed by the
PISA module 503 with step 801 as a starting point. The box
800 depicts a set of system state values that are read when
the Get System State 513 1s performed. In step 803, the input
system state (e.g., setting characteristic values) 1s read. The
input system state includes the set of system state values
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(box 800) and status information from the NN wrapper 1n
step 755. If 1t 1s determined that a new set of neural network
coellicients and/or structure are needed based on the mput
system state, then in step 8035 1s performed—that 1s, the
values of the mput system state 1s sent (in step 807) to the
coellicient DBMS (step 809) which outputs the neural
network coeflicients and/or neural network structure asso-
ciated with the mput system state, 1n step 811. An instruction
to istantiate 1s sent over to the neural network module (in
step 813) along with the aforementioned coellicients and/or
structure mnformation 813. The neural network module then
sends a status information 817, which 1s received in step
819.

When the status 1s checked 1n step 821, if 1t 1s not a normal
operation (the branch marked with “-1” for step 821), the
status 1s checked for an error 1n step 823. If there 1s error, the
error code 1s written out, step 825. The error code 1s written
as a system status in step 827. If there 1s no error code, the
status 1s checked for a warning code, step 823. If there 1s a
warning code, the warning code 1s written as a system status
in step 827. If there 1s no warning, the status 1s checked from
information code. If there 1s information code, the informa-
tion 1s written as a system status in step 827. Here, an
example of an error code 1s generated when an unrecover-
able error has occurred and the NN DLL 517 1s to be
terminated. An example of a warmning code 1s generated
when a recoverable error has occurred and a warning mes-
sage 1s to be sent to the PISA module 503. An example of
an mformation code 1s when the NN DLL 517 completes a
task without an error.

The system status 1s interpreted to determine an action 1n
step 829, and the determined action 1s sent 1 831 to
determine 1f the neural network module 1s to continue to
inference—and to the NN Module. If it 1s determined to
continue, the PISA module continues to execute. If it 1s
determined to terminate, then the PISA module 1s termi-
nated.

The pseudo-computer program provided in the section
below 1s an example preferred implementation of the present
invention. In particular, PISAController pertorms the fol-
lowing steps:

a) determines, using the command line arguments, the NN
implementation class name and potentially a setting/co-
ellicient set database implementation class name.

b) imitializes a class called PISANN. Note that the imple-
mentation class name which 1s capable of both inheriting the
PISANN class and implementing the PISAlnterface. This
ensures that access to the methods 1s available to the
PISAController main section and ensures that the correct
methods are completely implemented by the dependent
section(s).

¢) dynamically loads the primary NN and 11 specified, the
setting/co-etlicient set database. The resulting dynamaic allo-
cation does not require pre-compiled knowledge of the class.
Also, PISAController has no need to have the insight into
the inter-workings of the dynamically loaded neural network
(NN).

d) determines 1f the PISANN has been pre-trained or
trained on 1nstantiation. If not, the main class 1s exited since
the incoming NN needs to be trained prior to execution in
this embodiment.

¢) determines 1f the PISANNDatabase 1s available and
connects to the NN database. If not available, 1n this
embodiment, a default database 1s provided to the PISANN-
Database for use during operations.

1) mitiate PISAlnputDataHandler based on the command
line arguments. All input data can be pulled directly from the
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PISAlnputDataHandler. This class can be modified to sup-
port multiple sources (e.g. database, files, real-time feeds,
sensor feeds).

o) 1nitiate PISAOuputDataHandler based on the com-
mand line arguments. All output data can be pushed directly
into the PISAOutputDataHandler. This class can be modi-
fied to support multiple sources (e.g. database, files, real-
time feeds, sensor feeds).

h) mitiate PISAEvent based on the command line argu-
ments. This class can be modified to support multiple system
event types (e.g. change in settings from location-based
sensors or GPS, change 1n settings from temperature sen-
sors, etc.). The PISAEvent can be evaluated at any time
during system processing. In this embodiment, the
PISAEvent 1s check on each iteration of new 1nput data.

1) runs through input data gathered from the PIS Alnput-
DataHandler performing inference with the PISANN where
inference results are placed into the PISAOutputDataHan-
dler. For each iteration, the PISAEvent i1s checked for an
updated status. If a PISAEvent has a changed status, new
coeflicients are retrieved from the PISANNDatabase,
applied to the PISANN, and processing continues with the
current PISAInputDataHandler and PISAOutputDataHan-
dler. If no coethcients are available, the PISAController
terminates. In this example embodiment, the PISACon-
troller continues to run until the data provided stops being
produced from the PISAlnputDataHander.

/* Main driver program for TOPController */
import java.lang.reflect. Constructor;
import java.lang.reflect. Method;
import java.util.®;
public class PISAController {
public static void main(String[] args) {
// Initialize the input NN, NN database
String mputNNClassName = null;
String mputNNDatabaseName = null;
boolean hasDatabase = false;
// Check the main arguments
if (args.length > 2) {
inputNNClassName = new String(args[1];
inputNNDatabaseName = new String(args[2]);
hasDatabase = true;
} else if (args.length > 1) {
inputNNClassName = new String(args[1];
inputNNDatabaseName = new String(“DDB.class™);
}else {
System.out.println(*“*PISA requires class name.”);
System.exit{—1);
h

try
// Initialize primary PISA NNs

PISANN pisaNN = null;

PISANNDatabase databaseNN = null;

// Generate the PISA NN object from the ClasslLoader

PISAClassLoader pisaCL = new PISAClassLoader( );
pisaNN = pisaCL.invoke(inputNNClassName,

“getNN");

// Get default trained NN

if ({(pisaNN.getNNtrained( ))) {
System.out.println(*“PISA requires a trained network.”);
System.exit(—1);

h

// If PISAController configuration has a database,

// create an instance of database and connect.

// Generate PISANNDatabase object from the Classl.oader

PISAClassLoader pisaCL = new PISAClassLoader( );
databaseNN = pisaCL.invoke(inputNNDatabaseName,

“getDB™);
// Connect to the database using the default class name
// which contains the name of the database connection.

try {
databaseNN.connectDB( );

h
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-continued

catch (Exception e) {
e.printStackTrace( );
System.exit(—1);
h

// Initialize PISA 1nput data
PISAInputDataHandler inputData = new
PISAInputDataHandler(args[0]);
// Check on the input data class
if (inputData == null) {
System.out.println(*PISA requires an imput data
stream.”);
System.exit(—1);
h
// Check on size of input data stream.
if (inputData.getInputSize( ) <= 0) {
System.out.println(*PISA requires an imput data
stream.”);
System.exit(—1);
h
double[] inputs = new double[inputData.getInputSize( )|;
// Initialize PISA output data
PISAOutputDataHandler ouputData = new
PISAOuputDataHandler(args[O]);
// Check on the output data class
if (ouputData == null) {
System.out.println(*PISA requires an output data
stream.”);
System.exit(—1);
h
// Check on size of input data stream.
if (outputData.getOutputSize( ) <= 0) {
System.out.println(*PISA requires an output data
stream.”);
System.exit(—1);
h
double[] outputs = new double[ouputData.getOuputSize( )];
int cyclelndex = 0;
// Initialize PISA settings change events
PISAEvent pisabEvent = new
PISAEvent (args[0]);
// Inmitialize output data
double[] outputNN = null;
// Continually loop over input data
/ Output results to the outputData handler.
1 until end of input data or
/ until pisaEvent has changed
/ if pisaEvent, then

i get new coeflicients

/ if new coeflicients possible
i update the NN

/ else

// terminate NN and exit
/ continue

while (cycleIndex >= 0) {
// Get 1input data
inputs = mputData.getInput(cyclelndex);

try {
// Perform 1nference using pisaNN

outputs = pisaNN.inferenceNN(inputs);
// Perform setting check
if (pisaEvent.hasChanged( )) {

// Pull new coeflicients based on the new event
// apply the coeflicients to the NN
double[] coeflicients;

try {
coeflicients = databaseNN.getCoeflicients(
pisabEvent.getEvent( ),
pisabEvent.getEventDetails( ));
h
catch (Exception e) {
// No coeflicients found for event and
// settings change
e.printStackTrace( );
System.exit(—1);
h

try {
pisaNN.setCoeflicients(coeflicients );

h

catch (Exception e) {
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-continued

// Coeflicients are not a match for NN
// Or error applying coeflicients to the

e.printStackTrace( );
System.exit(-1);

h
+else {

outputData.setOuput(outputNN};

h
h

catch (Exception e) {
e.printStackTrace( );

h

cycleIndex++;
if (cycleIndex > inputData.getCycleMax( )) {
cyclelndex = 0;

h
h
h
h

// Catch all errors.
catch (Exception e) {
e.printStackTrace( );
System.exit(—1);
h
h
h

4. Boundary Conditions of Input and Output Spaces

FI1G. 9a graphically 1llustrates a simplified decision-mak-
ing space 301 that shows both the mput data space and
output results from neural networks. In particular, outer
polygonal boundary 303 may depict the entire input sample
space (e.g., the decision-making space) 1in two dimensions,
and two smaller circles, 305 and 307, located therein may
depict validated output classes. A neural network can be
constructed (e.g., instantiated having a given set of coetli-
cients and a particular neural network structure) and trained
using sample mnput data, either supervised or unsupervised,
to classity mput data into output categories. It should be
noted that 1n some preferred embodiments, output can be
generated from a node(s) of an output layer or a node(s)
from a layer between an mput layer and an output layer.
Here, structuring a neural network includes selecting an
appropriate neural network structure (e.g., convolutional

neural network, CNN) and providing an adequate number of

nodes and layers of nodes for the given classification goal.
In one example embodiment, the sample space may repre-
sent two features from a set of images, the polygon 303
representing the entire range 1 which values of those two
features can take for the sample images. Continuing with the
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example, one class 305 can be 1images that have pictures of 50

cats, and the other class 307 can be images that have pictures
of dogs. Here, a neural network can be constructed and
trained using training sample images to inference (e.g.,
classity) whether an 1mage contains a picture of a cat, a dog,
both, or neither. The mput space bound by 303 can be
considered for the entire sample space of one particular
setting. In one example, a different setting may have input
sample space that does not overlap with the space 303.
Under this example, the mput samples themselves may
indicate a different setting that requires A) a new neural
network executable module or B) a new set of coellicients
and/or neural network structure—that 1s, when examining
input samples, 1 i1t 1s outside the sample space for a given
setting, this may indicate a need to query a database (e.g.,
C-DBMS 409). In one example, the mput space 303 may
represent the entire mput space for images collected 1n a
desert setting. In such an example, when the setting changes
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to a forested region, the 1mages collected i1n the forested
region may not fall within the mput space 303.

In some embodiments of the present invention, boundary
conditions 1n the output space 1s used in operating/control-
ling neural networks, ImNNs. In connection with FIG. 95, a
set of boundary conditions can be described as allowing the
output of a neural network to be only within a certain
range—<e.g., Region A 351, although the input data can be
anywhere within the entire sample space as depicted 1in FIG.
9a. Referring back to FIG. 9b, 11 an output from a neural
network constructed and trained to inference classes located
within Region A, the output can be used in a subsequent
processing, described below in connection with FIG. 12
below. However, 1 output of such a neural network 1s
outside of Region A (e.g., Region B 353 or Region C 355 of
FIG. 9b), the output can be discarded and not used. In
another simplified depiction of FIG. 10a, the decision-
making can be illustrated as a function 1n a one-dimensional
space. In this simplified version, the boundary conditions are
depicted as a range 1001 1n which an output from a neural
network 1s checked against.

Continuing on with the above output space description, 1n
a simplified example, a neural network 1003 structured to
inference mput data 1002 to generate output can be 1nstan-
tiated. The output can be checked to determine against the
output breach boundary cognition(s). If “no,” the output is
forwarded to the next step 1007 to be used by a machine to
be controlled (e.g., MTBC 403). If “yes,” this can be
considered an event to query the C-DBMS and/or the output
1s not forwarded to the next step.

The step of determining the severity of breaching the
boundary conditions can be illustrated in connection with
FIG. 9b. That 1s, in some embodiments of the present
invention, multiple sets of boundary conditions can be
imposed. In the preferred example embodiment of shown 1n
FIG. 95, three regions are shown. The first region 1s referred
to as Region A 351, in which the output from a neural
network would have been forwarded to the next step in the
processing chain. Output falling within Region A 351 1s
considered as not breaching the boundary conditions and/or
satistying the boundary conditions. The second region 1s
referred to as Region B 353, 1n which the output could be
considered as breaching (e.g., violating or exceeding) the
boundary conditions but not harmiul to the machine or
anyone/anything surrounding the machine. In this case, the
output can be 1gnored/discarded and not forwarded to the
next step 1n the processing step. The third region 1s referred
to as Region C 355, in which the output breaches the
boundary conditions to such an extent that 1t could cause
harm to the machine or to someone/something surrounding
the machine. In such a case, the machine can be shut down
immediately or the user can be notified that the machine
needs to be used in 1ts manual mode. In another example
embodiment of the present invention, 1f the boundary con-
dition 1s severely breached as Region C 3355, a presumption
can be made that the machine to be controlled 1s 1n a new
setting. In this example, a database (e.g., the C-DBMS 409)
can be queried to obtain A) a set of coellicients and/or a
neural network structure associated with the recerved data
values or B) the neural network executable module (or a
pointer thereto) having the structure and/or the coeflicients
from the database that may match with the current setting
characteristic values.

In an exemplary embodiment, a speech generator can be
equipped with various features of the present invention. In
particular, an exemplary preferred speech generator can be
coupled to a user identifier such as a speech recognition
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system. Initially, the speech generator can be set to generate
using a default setting (e.g., the predominant language of the
geographical location 1n which the generator 1s placed) or a
previous setting (e.g., the language spoken by a previous
user). During the operation, the speech recognition system
can be configured to determine the speech of the current
user. IT the language used by the current user 1s diflerent
from the default/previous setting (that 1s, outside the mnput
sample space for the predominant language or the language
of the previous user), the speech recognition system can be
turther configured to i1dentify the language the user (e.g.,
English, German, French, etc.). If the user 1s speaking 1n a
language different from the default/current setting, the
C-DBMS 409 can be queried for the user’s language,
selected and loaded for generating speech 1n the language of
the user. In some embodiments, the C-DBMS 409 can be
queried for each new user.

Similarly, a facial recognition system can be set to 1den-
tify a user by using a default setting (e.g., the predominant
cthnic group 1n the geographical location 1n which the facial
recognition system 1s placed) or a previous setting (e.g., the
cthnic group of a previous user). During the operation, the
tacial recognition system can be configured to determine the
cthnic background of the current user. If the ethnic back-
ground of the current user 1s different from the default/
previous setting (that 1s, outside the input sample space for
the predominant ethnic group or the ethnic group of the
previous user), the facial recognition system can be further
configured to i1dentity the ethnic background of the current
user. If the current user belongs to an ethnic group diflerent
from the default/current setting, the C-DBMS 409 can be
queried for the current user’s ethnic group, selected and
loaded for facial recognition. In some embodiments, the
C-DBMS 409 can be queried for each new user. A neural
network traimned with training data set for a narrowly defined
setting (e.g., ethnic groups for facial, language, and/or
regional accents in speaking languages) may yield more
accurate results than a neural network trained with broad,
disparate settings.

Some embodiments of the speech generator may include
an implementation neural network constructed and trained to
generate signals/data that can become human understand-
able phrases, sentences, and etc. when played on a loud-
speaker. That 1s, when the ImNN of the speech generator
outputs one of forbidden words, the trigger event detector
recognizes 1t as a forbidden word (e.g., outside output
boundary condition), and does not forward the output of the
speech generator to a loudspeaker and/or terminates the
currently running ImNN and instantiates a new ImNN
having a different set of coeflicients and/or different neural
network structure.

Although boundary conditions have been 1llustrated 1n
connection with one-dimensional decision space, two-di-
mensional decision space, speech generation, facial recog-
nition contexts, the use of boundary conditions can be also
expressed 1n terms of triggering events (that 1s a triggering
event being a form of breaching a boundary condition), 1n
terms of hard operating limitations of the machine being
controlled, and/or 1n terms of using output confidence levels
of the outputs of neural networks for given settings. In
addition to expressing boundary conditions as triggering
events, boundary conditions can also be viewed as expres-
sions of the competence range in which a given neural
network 1s constructed and trained to operate per a particular
setting. Also, a diflerent way to define boundary conditions
can be 1n term of the output confidence level 1n connection
with a given output from a neural network. In one example
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preferred embodiments, 1f the output confidence level of an
output of a neural network falls below a predetermined level
(e.g., below 60%), such an output can be discarded and/or A)
a new neural network executable module or B) a new set of
coellicients and/or structure can be searched and selected. In
another example preferred embodiments, if the output con-
fidence levels of two or more outputs of a neural network are
similar (e.g., the same or only different marginally as 1n less
than 5%), such a set of outputs can be discarded and/or A)
a new neural network executable module or B) a new set of
coellicients and/or structure can be searched and selected.
5. Triggering Event Detector

As shown 1n FIG. 11, in some preferred embodiments of
the present invention, a triggering event detector (TED)
1131 1s included. In these embodiments, an MTBC 1103, an
SCDC 1107, an MC 1105, an ImNN 1121, and a C-DMBS
1109 have features/Tunctions/capabilities of the MTBC 403,
the SCDC 407, the MC 405, the ImNN 421, and the
C-DMBS 409, respectively, as described above in connec-
tion with FIG. 4. Also coupling mechanisms can be included
such as: input data 1119 (two paths shown i FIG. 11),
control data 1115 (two shown 1n FIG. 11), status data 1113,
a signal for MC 1117 have features/Tunctions/capabilities
input data 419, control data 415, status data 413, a signal for
MC 417, respectively, as described above 1n connection with
FIG. 4. In addition, the MTBC 1103, the SCDC 1107, the
MC 1105, the ImNN 1121, and the C-DMBS 1109 (and the
coupling mechanism) are configured to work with the TE
1131 as described below.

The TED 1131 receives the input data from the MTBC
1103 and control data from the MC 1105. In various embodi-
ments of the present invention, the mput data and control
data sent to TED 1131 can be synchronmized. That 1s, the
input data to the MC 11035 that caused certain control data to
be generated by the MC 1105 aiter a process delay can be
sent to the TED 1131 at the same time (or associated with
cach other) to be processed by the TED 1131. A triggering
event can relate to mput sample(s) being detected to be
outside the input sample space for a particular setting and/or
output data breaching the boundary conditions (either for a
particular setting or a universal breach). In FIG. 11, if a
triggering event 1s detected, a signal 1133 send a notice to
the MTBC 1101 and/or SCDC 1107. The notice can be an
instruction to discard the output (synchronized with the
input that caused the triggering event), or the notice can be

an 1nstruction to lower the NN confidence level that is
instantiated on the ImNN 1121 (e.g., the SCDC 1107 notifies

the CDMS 1109 to store the lowered confidence level for the
corresponding A) neural network executable module or B)
set of coetlicients and/or 1ts structure. In another preferred
embodiment, upon receiving such a signal, the MTBC 1103
collects the setting characteristic values and sends them to
the SCDC 1107, which 1n turn queries the C-DBMS 1109. In
another preferred embodiment, upon receiving such a signal
from the TED 1131, the SCDC 1107 uses the setting
characteristic values to query the C-DBMS 1109.

As such, a trigger event detector 1s an example of mecha-
nism(s) in detecting/sensing boundary conditions. In some
embodiments, the triggering event detector 1s implemented
using a neural network that 1s constructed and trained to
detect one or more of triggering events or a type of events.
In other embodiments of the present invention, a set of
logical steps 1n algorithms/heuristics can be used to detect
one or more triggering events or a type of events. In some
preferred embodiments, similar to the mput sample space,
the output space can also be defined by range of values. In
these embodiments, logic to detecting a triggering event
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determines if the control data (1.e., output of the MC 1105)
1s outside the predefined output space. In yet some embodi-
ments, the TED 1131 can have a neural network and a set of
logical steps.

TABLE 3
Input
Entry Ambient Sample Boundary
# Time Location Weather Temp space Conditions
1 Day time 1% Ranges of Sunny  Above Input Output ranges
range Latitudes freezing ranges AND/OR
Longitudes structure
& coeflicient
array
2 Day time 2"¢ Ranges Cloudy Above Input Output ranges
range of Lats + freezing ranges AND/OR
Longs structure
& coeflicient
array
3 Night 37? Ranges of Rain Above Input Output ranges
time Lats + Longs freezing ranges AND/OR
structure
& coeflicient
array
n Evening N” Ranges Sunny Freezing Input Output ranges
twilight of Lats + ranges AND/OR
Longs structure

& coetlicient

array

As 1llustrated 1n Table 3 above, 1n some preferred embodi-
ments, setting characteristic value ranges can also be asso-
ciated with input sample space (e.g., defined by the ranges
of input sample values) and output boundary conditions. In
particular, an input space ranges 1s defined for a given neural
network of Coellicients Array and Structure. The input
ranges are used as described 1n connection with FIG. 11 (and
not necessarily the output boundary conditions in that fig-
ure). Various preferred embodiments described below in
connection with FIG. 12, the input boundary conditions, and
output boundary conditions may be used.

In particular, the preferred embodiments 1n connection
with FIG. 12 may include an MTBC 1203, an SCDC 1207,
an MC 1205, an ImNN 1221, and a C-DMBS 1209 have
features/functions/capabilities of the MTBC 1103, the
SCDC 1107, the MC 1105, the ImNN 1121, and the
C-DMBS 1109, respectively, as described above 1n connec-
tion with FIG. 12. Also coupling mechanisms can be
included such as: mput data 1219 (two paths shown in FIG.
12), control data 12135 (two shown 1n FIG. 12), status data
1213, a signal for MC 1217 have features/functions/capa-
bilities mput data 419, control data 415, status data 413, a
signal for MC 417, respectively, as described above 1n
connection with FIG. 4. In addition, the MTBC 1103, the
SCDC 1107, the MC 1105, the ImNN 1121, and the
C-DMBS 1109 (and the coupling mechamism) are config-
ured to work with the TED 1131 as described below. In

addition, the MTBC 1203, the SCDC 1207, the MC 1205,
the ImNN 1221, and the C-DMBS 1209 (and the coupling
mechanism) are configured to work with the TED Data 1235
and data on TED Output 1233 as described below.

While A) the neural network executable module or B) the
coellicients and structure are used by the SCDC 1207 to
instantiate the ImNN 1221 in the MC 1205 for a particular
set of setting characteristic value ranges, the corresponding
input space ranges and output boundary conditions can be

loaded on to the TED 1231 (via the TED Data lines 1235
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shown 1n FIG. 12). In the embodiments that use a neural
network, the coeflicient set and the neural network structure
to be used 1n the TED 1231 are also sent to the TED 1231.
Upon receiving the data from the SCDC 1207, TED 1231

Coeflicient
. Structure Array

feedforward 1% set[...]
feedforward 2" set [...]
Back 3get[...]
propagation

Restricted N”set[...]
Boltzmann

can 1mplement specific configurations. Preferred exemplary
embodiments contemplate, triggering event as:

Incorrect/abnormal type: Output(s) being out of operating,

bounds/limitations—examples:

In a retrigerator controller, the controller attempts to raise
the temperature of iridge above the recommended
operational temperature

In an oven the controller attempts to raise the temperature
above a recommended operational temperature

In an oven and/or stove, turn on the oven and/or stove
during a time or condition when 1t has been designated
for non-use (for example, between 1 am and 6 am, or
when no one 1s at home, e.g., when a sensor determines
that no one 1s home)

In a speech generator, curse words or other mnappropriate
words are generated

In a controller for a driverless car, the controller 1ssues a
lane change command after receiving a proximity
warning

In an 1mage generator, inappropriate images are generated

In an 1mage display apparatus, mappropriate 1images are
displayed

In a controller for a robot, a command to harm a human
being 1s created

In a printer controller, a counterfeit currency or counter-
feit signature 1s generated

Security Breach Type:

In a controller for a refrigerator (or another system for
example a video camera system) repeated information
requests to particular websites

An authorized access to personal information

An attempt to adjust or replace or otherwise modily the
controller

An attempt to cause a denial of service attack on a remote
device

While running two virtual machines on an autonomous
machine with substantially 1dentical ImNNs on each
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virtual machine, one set of ImNNs start generating
output data deviating from the output of the other set of
ImNNs

Unauthorized usage level type: In an automated personal
assistant embodiment, when a user 1s assigned to a G-rated
search results only, the personal assistant generates results
that are 1n R-rated category.

Going back to FIG. 12, when a triggering event 1s
detected, the TED 1231 sends a signal over TED Output
1233 to the MTBC 1203 and/or the SCDC 1207. This signal
indicates that a triggering event 1s detected and an action 1s
required to be taken. In one preferred embodiment, upon
receiving such a signal, the MTBC 1203 collects the setting,
characteristic values and sends them to the SCDC 1207,
which 1n turn queries the C-DBMS 1209. In another pre-
terred embodiment, upon receiving such a signal from the
TED 1231, the SCDC 1207 uses the setting characteristic
values to query the C-DBMS 1209. In other embodiments,
il a triggering event 1s detected, TED Output 1233 send a
notice to the MTBC 1201 and/or SCDC 1207. The notice
can be an 1instruction to discard the output (synchronized
with the input that caused the triggering event), or the notice
can be an istruction to lower the NN confidence level that
1s 1nstantiated on the ImNN 1221 (e.g., the SCDC 1207
notifies the CDMS 1209 to store the lowered confidence
level for the corresponding A) neural network executable
module OR B) the coeflicients and/or 1ts structure.

In some preferred embodiments, when such a triggering,
event signal 1s recerved the SCDC 1207 keeps the informa-
tion about the entry of the C-DBMS 1209 that caused the
triggering event. SCDC 1207 then updates that entry in the
C-DBMS 1209. The updates can include lowering the NN
confidence level of the entry (if the entry has an NN
confidence level column as described above i connection
with the C-DBMS 1209), remove the entry, and/or mark 1t
for evaluation manually ofi-line.

Various components/devices of the SCDC and MC (de-
scribed above 1n connection with FIGS. 4, 11 and 12) can be
implemented on a chip, a chup-set, ASIC, Al server (e.g.,
DGX-1 by Nvidia), and/or firmware. This 1s, for example, to
prevent a potential security breach (e.g., a virus attack)
and/or to provide a baseline from which to re-boot. In other
words, 1n some exemplary embodiments, the logic and/or
neural network(s) located 1n the SCDC 1s not modifiable or
adjustable by or at the autonomous machine, but only
re-deployable, modifiable, and/or adjustable by an autho-
rized system of the original manufacturer of the autonomous
machine. It should be noted in some embodiments, such a
SCDC can run on one thread (e.g., on one virtual machine),
while ImNN(s) can run on another thread (e.g., another
virtual machine) on a general-purpose processor or a graphi-
cal accelerator/processor (e.g., implemented on solid-state
devices such as a chip, a chip-set, ASIC).

In various embodiments of the present invention, the
SCDC and the ImNN(s) can be co-located on a device (e.g.,
a general-purpose computer, a controller chassis, an ASIC,
chipset, etc.). Although the implementation of some of the
preferred embodiments are described 1n terms of solid-state
devices (e.g., semiconductor chips), portions ol some pre-
terred embodiments being implemented on an optical com-
puter device or quantum computing device 1s also contem-
plated. It should be noted that the SCDC can also be
implemented on an Al server (for example, DGX-1 by
Nvidia), and/or firmware deployed on a server computer, a
processor specifically adapted to allow eflicient running of
neural networks also referred to as neural network proces-
sors. The ImNN(s) can also run on a processor (e.g., a
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general-purpose processor, or graphical accelerator/proces-
sor, digital processor or processors specifically adapted to
allow eflicient running of neural networks also referred to as
neural network processors). As noted above, the SCDC can
be implemented (e.g., on a server) remotely located from the
ImNN(s) (e.g., on a client(s)).

In some embodiments of the present invention, the struc-
ture(s) of the ImNN(s) are not modifiable once deployed on
an automated machine, for security reasons and/or for efh-

ciency. In such an embodiment, only the coeflicients for the
nodes are stored in the C-DMBS and would be used by the

SCDC to modily the ImNN(s). In other words, the infor-

mation relating to the structures (e.g., type of neural net-
work, number of nodes and layers, and nodal connection

information) 1s not needed to be stored 1n the C-DMBS {for

these embodiments, since the neural network structure of the
ImNN(s) 1s not modifiable. The structures of the ImINN(s)

for these embodiments can be implemented on fixed hard-
ware/firmware that cannot be changed once deployed.

Any module, routine or any apparatus configured to
perform the functions recited by means described herein or
may be performed by any suitable means capable of per-
forming the corresponding functions. The means may
include various hardware and/or software component(s)
and/or module(s), including, but not limited to, a circuit, an
application specific integrated circuit (ASIC), or processor.
Further, 1t should be appreciated that modules and/or other
appropriate means for performing the methods and tech-
niques described herein can be downloaded and/or otherwise
obtained by a user terminal and/or base station as applicable.
For example, such a device can be coupled to a server to
tacilitate the transier of means for performing the methods
described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM,
a physical storage medium such as a compact disc (CD) or
floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or
providing the storage means to the device. Moreover, any
other suitable techmique for providing the methods and
techniques described herein to a device can be utilized.

As used herein, the term “determining” encompasses a
wide variety of actions. For example, “determining” may
include calculating, computing, processing, deriving, inves-
tigating, looking up (e.g., looking up 1n a table, a database
or another data structure), ascertaining and the like. Further,
“determining” may include receiving (e.g., receiving infor-
mation), accessing (e.g., accessing data in a memory) and
the like. In addition, “determining” may include resolving,
selecting, choosing, establishing and the like.

Also, as used herein, phrases neural network executable
modules, executable modules of neural network, executable
neural network modules mean the same.

The various illustrative logical blocks, modules, proces-
sors and circuits described in connection with this disclosure
may be implemented or performed with a general purpose
processor, a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a field programmable gate
array signal (FPGA) or other programmable logic device
(PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but 1n the alternative, the proces-
sor may be any commercially available processor, controller,
microcontroller or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
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MICroprocessors, One Or more miCroprocessors 1 conjunc-
tion with a DSP core, or any other such configuration.

As one of skill in the art will appreciate, the steps of a
method or algorithm described 1n connection with the pres-
ent disclosure may be embodied directly in hardware, 1n a
soltware module executed by a processor, or 1n a combina-
tion of the two. A software module may reside 1n any form
of storage medium that 1s known in the art, including
memory that may be part of a microprocessor or 1 com-
munication with a microprocessor. Some examples of stor-
age media that may be used include, but are not limited to,
random access memory (RAM), read only memory (ROM),
flash memory, erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only
memory (EEPROM), registers, a hard disk, a removable
disk including removable optical media, and so forth. A
soltware module may comprise a single instruction, or many
istructions, and may be distributed over several different
code segments, among diflerent programs, and across mul-
tiple storage media. A storage medium may be coupled to a
processor such that the processor can read information from,
and write information to, the storage medium. In the alter-
native, the storage medium may be integral to the processor.

The methods disclosed herein may include one or more
steps or actions for achieving a described method. The
method steps and/or actions may be interchanged with one
another without departing from the scope of the invention.
In other words, unless a specific order of steps or actions 1s
specified, the order and/or use of specific steps and/or
actions may be modified without departing from the scope of
the disclosure. The functions described may be implemented
in hardware, software, firmware, or any combination
thereol. If implemented 1n hardware, an example hardware
conilguration may comprise a processing system in a device.
The processing system may be implemented with a bus
architecture. The bus may include any number of intercon-
necting buses and bridges depending on the specific appli-
cation of the processing system and the overall design
constraints. The bus may link together various circuits
including a processor, machine-readable media, and a bus
interface. The bus interface may be used to connect a
network adapter, among other things, to the processing
system via the bus. The network adapter may be used to
implement signal processing functions. For certain aspects,
a user interface (e.g., keypad, display, mouse, joystick, etc.)
may also be connected to the bus. The bus may also link
various other circuits such as timing sources, peripherals,
voltage regulators, power management circuits, and the like,
which are well known 1n the art, and therefore, will not be
described any further.

The processor (e.g., 1mage processor) may be responsible
for managing the bus and general processing, including the
execution of software stored on the machine-readable
media. The processor may be implemented with one or more
general-purpose and/or  special-purpose  processors.
Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software.
Software shall be construed broadly to mean instructions,
data, or any combination thereof, whether referred to as
software, firmware, middleware, microcode, hardware
description language, or otherwise. Machine-readable media
may include, by way of example, random access memory
(RAM), tlash memory, read only memory (ROM), program-
mable read-only memory (PROM), erasable programmable
read-only memory (EPROM), electrically erasable program-
mable read-only memory (EEPROM), registers, magnetic
disks, optical disks, hard drives, or any other suitable storage
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medium, or any combination thereof. The machine-readable
media may be embodied in a computer-program product.
The computer-program product may comprise packaging
materials.

In a hardware implementation, the machine-readable
media may be part of the processing system separate from
the processor. However, as those skilled in the art waill
readily appreciate, the machine-readable media, or any
portion thereof, may be external to the processing system.
By way of example, the machine-readable media may
include a transmission line, a carrier wave modulated by
data, and/or a computer product separate from the device, all
which may be accessed by the processor through the bus
interface. Alternatively, or 1n addition, the machine-readable
media, or any portion thereol, may be integrated into the
processor, such as the case may be with cache and/or general
register files. Although the various components discussed
may be described as having a specific location, such as a
local component, they may also be configured 1n various
ways, such as certain components being configured as part
of a distributed computing system.

In some embodiments, the processing system may be
configured as a general-purpose processing system with one
or more microprocessors providing the processor function-
ality and external memory providing at least a portion of the
machine-readable media, all linked together with other sup-
porting circuitry through an external bus architecture. In
some embodiments, the processing system may be imple-
mented with an application specific integrated circuit
(ASIC) with the processor, the bus interface, the user
interface, supporting circuitry, and at least a portion of the
machine-readable media integrated into a single chip, or
with one or more field programmable gate arrays (FPGAs),
programmable logic devices (PLDs), controllers, state
machines, gated logic, discrete hardware components, or
any other suitable circuitry, or any combination of circuits
that can perform the wvarious functionality described
throughout this disclosure. In some embodiments, the pro-
cessing system may comprise one or more neuromorphic
processors for implementing the neuron models and models
ol neural systems described herein. As another alternative,
the processing system may be implemented with an appli-
cation specific mtegrated circuit (ASIC) with the processor,
the bus interface, the user interface, supporting circuitry, and
at least a portion of the machine-readable media integrated
into a single chip, or with one or more field programmable
gate arrays (FPGAs), programmable logic devices (PLDs),
controllers, state machines, gated logic, discrete hardware
components, or any other suitable circuitry, or any combi-
nation of circuits that can perform the various functionality
described throughout this disclosure. Those skilled 1n the art
will recognize how best to implement the described func-
tionality for the processing system depending on the par-
ticular application and the overall design constraints
imposed on the overall system.

The machine-readable media may comprise a number of
software modules. The software modules include instruc-
tions that, when executed by the processor, cause the pro-
cessing system to perform various functions. The software
modules may 1nclude a transmission module and a receiving
module. Each software module may reside mm a single
storage device or be distributed across multiple storage
devices. By way of example, a soltware module may be
loaded into RAM 1from another storage medium when a
triggering event occurs. During execution of the software
module, the processor may load some of the instructions nto
cache to 1increase access speed. When referring to the
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functionality of a soitware module below, 1t will be under-
stood that such functionality 1s implemented by the proces-
sor when executing 1nstructions from that software module.

Some embodiments may comprise a computer program
product for performing the operations presented herein. For
example, such a computer program product may comprise a
computer-readable medium having mstructions stored (and/
or encoded) thereon, the mstructions being executable by
one or more processors to perform the operations described
herein. If implemented 1n soitware, functions may be stored
or transmitted over as one or more 1structions or code on a
computer-readable medium. Computer-readable media
include both computer storage media and communication
media including any medium that facilitates transfer of a
computer program from one place to another. A storage
medium may be any available medium that can be accessed
by a computer. Thus, in some embodiments a computer-
readable media may comprise non-transitory computer-
readable media (e.g., tangible media). Combinations of the
above should also be included within the scope of computer-
readable media.

What 1s claimed 1s:
1. A method of controlling a machine, the method com-
prising:

storing at least two sets of neural network coetlicients,
cach being different from the others;

associating each of the at least two sets of neural network
coellicients with one or more characteristics of a set-
ting;

receiving first data from one or more input devices of the
machine;

selecting one from the at least two sets of neural network
coellicients based on the first data and the one or more
characteristics of settings;

instantiating a neural network with the selected one from
the at least two sets of neural network coeflicients; and

controlling an aspect of the machine using an output from
the 1nstantiated neural network.
2. The method of claim 1, wherein said each of the one or

more characteristics of a setting 1s defined with a range of

values.

3. The method of claim 2, further comprising storing
information relating to a neural network structure associated
cach of the at least two sets of neural network coellicients.

4. The method of claim 3, wherein the neural network
structure 1s one of a convolutional neural network, a feed
torward neural network, a neural Turing machine, Hopfield
neural network, or a Boltzmann machine neural network.

5. The method of claim 1, wherein the setting 1s one of a
temperate urban region, a desert rural region, a forested
mountain region, and a coastal city.

6. The method of claim 1, wherein selecting one from the
at least two sets of neural network coethcients further
comprises matching the first data with the one or more
characteristics of settings.

7. The method of claim 6, wherein said matching further
COmMprises:

comparing the first data with the one or more character-

istics of settings, wherein each of the one or more

characteristics of settings 1s defined with a range of

values; and

identifying the selected one of the one or more charac-
teristics of settings that the first data fall within the
range of values.
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8. The method of claim 6, wherein the neural network
coellicients matched with the selected one are generated by
using training data set collected within the corresponding
particular setting.

9. The method of claim 1, wherein the first data includes
data from a Global Positioning System.

10. The method of claim 1, wherein the information
relating to the at least two sets of neural network coeflicients
1s stored 1n a standardized format to allow access by elec-
tronic devices manufactured by different manufacturers.

11. The method of claim 1, further comprising:

storing a set of one or more mput range values associated

cach of the at least two sets of neural network coetl-
cients;

comparing the first data with the one or more input range

values associated with the selected one from the at least
two sets of neural network coethicients; and

selecting a new set among the at least two sets of neural

network coeflicients i1 the first data 1s outside the input
range values.

12. The method of claim 1, further comprising:

storing a set of one or more output range values associated

cach of the at least two sets of neural network coetl-
cients;

comparing the output with the one or more output range

values associated with the selected one from the at least
two sets of neural network coeflicients; and

selecting a new set among the at least two sets of neural

network coeflicients i1 the output 1s outside the output
range values.

13. An apparatus for controlling a machine, comprising;

a database management system storing at least two sets of

neural network coelflicients being different from each
other, at least one setting having one or more charac-
teristics, and each of the at least two sets of neural
network coeflicients being associated with the at least
one setting having one or more characteristics; and

a controlling device that 1s coupled to receive first data

from one or more imput devices of the machine,
arranged to select one from the at least two sets of
neural network coeflicients based on the first data and
at one least one setting having one or more character-
istics, and arranged to 1nstantiate a neural network with
the selected one from the at least two sets of neural
network coeflicients, wherein the neural network 1s
configured to generate an output being used to control
an aspect of the machine.

14. The apparatus of claim 13, wherein each of said at
least one setting having one or more characteristics 1is
defined with a range of values.

15. The apparatus of claim 13, wherein the database
management system further stores information relating to a
neural network structure associated each of the at least two
sets of neural network coeflicients.

16. The apparatus of claim 15, wherein the neural network
structure 1s one of a convolutional neural network, a feed
forward neural network, a neural Turing machine, Hopfield
neural network, or a Boltzmann machine neural network.

17. The apparatus of claim 13, wherein the setting 1s one
of environment, condition, and situation 1n which the
machine operates.

18. The apparatus of claim 13, the database management
system 1s configured to match the first data with one of at
least one setting having one or more characteristics.

19. The apparatus of claim 18, wherein the database
management system 1s configured to compare the first data
with the at least one setting having one or more character-
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istics defined with a range of values and to identity the
selected one of the at least one set among one or more ranges
of values that has the first data fall withun 1ts ranges of

values.

20. The apparatus of claam 13, wherein the machine
controlled 1s one of a robot, a vehicle, or a drone.

21. The apparatus of claim 13, wherein the mformation
relating to the at least two sets of neural network coeflicients
1s stored 1n a standardized format to allow access by elec-
tronic devices manufactured by different manufacturers.

22. The apparatus of claim 13, wherein the database
management system further stores a set of one or more input
range values associated each of the at least two sets of neural
network coeflicients and the instantiated neural network
with the selected one from the at least two sets of neural
network coelflicients further configured to receive first data,
and wherein the database management system further
includes a trigger event detector arranged to compare the
first data with the one or more mnput range values associated
with the selected one from the at least two sets of neural
network coetlicients and to send a signal to the controlling
device to select a new set among the at least two sets of
neural network coeflicients if the first data i1s outside the
input range values.

23. The apparatus of claim 13, wherein the database
management system further stores a set of one or more
output range values associated each of the at least two sets
of neural network coeflicients, and further includes a trigger
event detector arranged to compare the output with the one
or more output range values associated with the selected one
from the at least two sets of neural network coeflicients and
to send a signal to the controlling device to select a new set
among the at least two sets of neural network coeflicients 1f
the output 1s outside the output range values.

24. An apparatus for controlling a machine, comprising;

a database management system stored with at least two

sets of neural network coetlicients being different from
cach other, at least one setting having one or more

5

10

15

20

25

30

35

42

characteristics of a setting, and each of the at least two
sets of neural network coellicients being associated
with the at least one setting having one or more
characteristics; and

means for, coupled to receive first data from one or more

input devices of the machine, selecting one from the at
least two sets of neural network coeflicients based on
the first data and at one least one setting having one or
more characteristics, and instantiating a neural network
with the selected one from the at least two sets of neural
network coeflicients, wherein the neural network 1s
configured to generate an output being used to control
an aspect of the machine.

25. The apparatus of claim 24, wherein each of at least one
setting having one or more characteristics 1s defined with a
range of values.

26. The apparatus of claim 24, the database management
system further stores information relating to a neural net-
work structure associated each of the at least two sets of
neural network coethlicients.

277. The apparatus of claim 26, wherein the neural network
structure 1s one of a convolutional neural network, a feed
forward neural network, a neural Turing machine, Hopfield
neural network, or a Boltzmann machine neural network.

28. The apparatus of claim 24, the database management
system 1s configured to match the first data with one of at
least one setting having one or more characteristics.

29. The apparatus of claim 28, the database management
system 1s configured to compare the first data with the at
least one setting having one or more characteristics defined
with a range of values and to 1dentify the selected one of the
at least one set among one or more ranges of values that has
the first data fall within its range of values.

30. The apparatus of claim 24, wherein the information
relating to the at least two sets of neural network coeflicients
1s stored 1n a standardized format to allow access by elec-
tronic devices manufactured by different manufacturers.
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