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COMPUTERIZED DEVICE AND METHOD
FOR PROCESSING IMAGE DATA

FIELD OF THE INVENTION

The present mvention relates to a computerized device
and to a method for processing 1mage data. The technical
field of the present invention 1s the processing of image data,
like medical image data. For example, said medical image
data may be optical coherence tomography data provided by
an optical coherence tomography scanner (OCT scanner).

BACKGROUND

In particular, a key driver for vision loss in retinal diseases
such as neovascular age-related macular degeneration 1s the
accumulation of retinal edema or flmd. Out of the two
components of retinal edema, intraretinal cystoid fluid (IRC)
leads to severe vision loss. Conversely, recent evidence
suggests that subretinal fluid (SRF) may be associated with
better visual acuity. A precise classification, quantification
and prediction of IRC and SRF may be of great importance
for disease management. Similarly, a wide spectrum of other
quantifiable morphologic objects may be present 1n the
retina, which may be relevant for visual function, diagnosis,
disease management and prediction of visual function.

A conventional method for processing optical coherence
tomography data for automatic cyst detection 1s described in
reference [1]. But, the method described 1n reference [1] has
disadvantages in the calculating speed and in the necessary
accuracy.

Accordingly, it 1s an aspect of the present imnvention to
improve the processing of image data, like optical coherence
tomography data.

BRIEF SUMMARY OF THE INVENTION

According to a first aspect, a computerized device for
processing image data 1s proposed. The computerized device
comprises a recerving unit which 1s configured to receive
optical coherence tomography data (OCT) of a tissue of a
patient, a providing unit which 1s configured to provide a
prediction model for processing the optical coherence
tomography data (OCT), and a processing unit which 1s
configured to process the received optical coherence tomog-
raphy data (OCT) using the prediction model for providing
at least one prediction parameter for predicting prospective
objects of the tissue and/or prospective features allocated to
the tissue. The patient may be a human or an animal. The
tissue may be a human or animal tissue, for example a retina.

By processing the optical coherence tomography data by
means of said prediction model, the present computerized
device provides the beneficial technical effect of calculating
said prospective (or future) objects of the tissue and/or said
prospective (or future) features allocated to the tissue with a
higher accuracy.

In particular, the optical coherence tomography data are
provided by an optical coherence tomography scanner (OCT
scanner) which 1s capable to scan the tissue, for example a
retina of a human being or an animal.

The computerized device may be a computer or an
embedded system, for example. The embedded system may
be part of a scanner or may be coupled with that.

In an embodiment, the receiving unit 1s configured to
receive a plurality of different optical coherence tomography
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data (OCT) of one patient at diflerent times and/or a plurality
of different optical coherence tomography data (OCT) of
different patients.

Thus, the present computerized device may use 1ntra-
patient information and inter-patient information advanta-
geously.

In a further embodiment, the providing umit i1s configured
to normalize all the received optical coherence tomography
data (OCT) by transtforming all the received optical coher-
ence tomography data (OCT) into a joint reference coordi-
nate system.

In particular, the optical coherence tomography data
(OCT) are 1n the form of longitudinal scans. To compensate
anatomical and scanning position variations, the longitudi-
nal scans are transformed into said joint reference coordinate
system. Said joint reference coordinate system may be also
denoted as joint reference space. In this joint reference
space, spatio-temporal features are extracted from the OCT
data describing the development of the underlying retinal
structure and pathology, which may be finally used to predict
clinical vaniables, such as objects and features. e.g. visual
acuity and treatment response.

In a turther embodiment, the object includes at least one
of an intraretinal fluid, an intraretinal cystoid fluid (IRC), a
subretinal fluid (SRF), a druse, a pseudodruse, a retinal
layer, a choroidal layer, a pigment-epithelial detachment, a
hyperreflective focus, a subretinal hyperreflective matenal, a
hemorrhage, a vitreous membrane, an epiretinal membrane,
and a retinal vessel.

In a further embodiment, the computerized device com-
prises a determining unit for determining objects in the
tissue by processing the optical coherence tomography data
(OCT) using a convolutional neural network (CNN).

E.g., the determining unit includes a further computerized
device as described 1n the EP application 15157253 .4. The
content of said EP application 15157253 .4 1s incorporated
by reference to the present patent application.

The further computerized device comprises a further
providing unit which 1s configured to provide a convolu-
tional neural network (CNN) for processing the optical
coherence tomography data, and a further processing unit
which 1s configured to process the received optical coher-
ence tomography data using the convolutional neural net-
work for identifying at least one certain object in the tissue

The at least one certain object identified 1n the retina by
processing said optical coherence tomography data using the
convolutional neural network may include intraretinal cys-
toid fluids (IRC) and subretinal fluids (SRF).

The further processing unit 1s configured to process the
received optical coherence tomography data using the con-
volutional neural network for outputting resulting image
data. Said resulting 1mage data may include the received
optical coherence tomography data, wherein the at least one
identified object 1s 1dentified and/or marked 1n said optical
coherence tomography data. For example, the resulting
image data may include the optical coherence tomography
data, intraretinal cystoid fluids (IRC) (1in particular including
their positions and volumes) and subretinal fluids (SRF) (in
particular including their positions and locations).

By processing the optical coherence tomography data by

means ol said convolutional neural network, the further
computerized device provides the beneficial technical effect
of calculating said resulting image data faster and with a
higher accuracy.
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In particular, the convolutional neural network (CNN) 1s
a hierarchically structured feed-forward neural network hav-
ing one or more pairs of convolutional layers and succeeding
max-pooling layers.

In further embodiment, the further processing unit 1s
configured to localize the certain object 1 the optical
coherence tomography data.

The locations of the certain objects 1n the optical coher-
ence tomography data may be part of the resulting image
data. For example, in the resulting image data, the certain
objects are marked in the optical coherence tomography
data, e.g., by a certain color.

In a further embodiment, the further processing unit 1s
configured to quantily a volume of the certain object 1n the
optical coherence tomography data.

The quantities of the certain objects in the optical coher-
ence tomography data may be part of the resulting image
data.

In a further embodiment, the further processing unit 1s
configured to process the received optical coherence tomog-
raphy data using the convolutional neural network for iden-
tifying intraretinal cystoid fluid and subretinal flud in the
received optical coherence tomography data.

In a further embodiment, the further processing unit 1s
configured to segment and to classily the intraretinal cystoid
fluid and the subretinal fluid 1n the recerved optical coher-
ence tomography data.

In particular, the further processing unit 1s configured to
automatically and highly accurately segment and discrimi-
nate between normal retinal tissue, intraretinal cystoid fluid
and subretinal fluid 1n retinal optical coherence tomography
data. This may enable precise structure-function correlations
based on optical coherence tomography data on large scale.
In this regard, the further processing unit uses said convo-
lutional neural network to capture characteristic visual
appearance patterns and classily normal retinal tissue,
intraretinal cystoid fluid and subretinal flmd. In particular,
the convolutional neural network may be trained by the
providing unit 1in a supervised manner. In an experiment, the
applicant trained the convolutional neural network using
approximately 300,000 two-dimensional image patches
extracted from 157 optical coherence tomography image
volumes. In this experiment, all image patches were sampled

at random positions. 73.43% of the patches show healthy

tissue, 8.63% show IRC and 17.94% show SRF. Details for
that are described 1n the EP application 15157253 4.

In a further embodiment, the further processing unit 1s
configured to localize each of the intraretinal cystoid flmd
regions and to localize each of the subretinal fluid regions in
the optical coherence tomography data.

In particular, localization information for the locations of
the itraretinal cystoid fluid and further localization infor-
mation for the locations of the subretinal fluid may be
incorporated to the resulting 1image data.

In a further embodiment, the further processing unit 1s
configured to quantily a volume of each of the intraretinal
cystoid tluid regions and to quantily a volume of each of the
subretinal fluid regions 1n the optical coherence tomography
data.

In particular, a quantity or volume of each of the intrareti-
nal cystoid fluid regions and a further quantity or a further
volume of each of the subretinal fluid regions may be
incorporated into the resulting image data.

In a further embodiment, the optical coherence tomogra-
phy data are spectral-domain optical coherence tomography
1mages.
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In a turther embodiment, the providing unit 1s configured
to train the prediction model on a design matrix having N
rows and M columns, wherein each of the N rows 1s
allocated to one of N patients and each of the M columns 1s
allocated to one of M features, wherein each of the M
features 1s allocated to at least one of the objects of the
tissue.

In a further embodiment, the M features include at least
one of a size of one of the objects, a volume of one of the
objects, a location of one of the objects, a retlectivity of one
of the objects, a texture of one of the objects, a polarization
or retardation mformation of one of the objects, a distribu-
tion of the objects relative to each other, a visual acuity of
one of the patients, a retinal sensitivity of one of the patients,
a contrast sensitivity of one of the patients, a visual field of
one of the patients, an age of one of the patients, a sex of one
of the patients, and characteristics of treatments of one the
patients.

In a further embodiment, the computerized device
includes an obtaiming unit for obtaining the features from the
received optical coherence tomography data (OCT).

In a further embodiment, the features are spatio-temporal
features.

In a further embodiment, the providing unit is configured
to normalize the features of the received optical coherence
tomography data (OCT) by transforming them into the same
jomt reference coordinate system as the normalized optical
coherence tomography data (OCT).

In a turther embodiment, the providing unit 1s configured
to train the prediction model on the design matrix using the
normalized optical coherence tomography data (OCT) and
the normalized features.

In a further embodiment, the at least one prediction
parameter includes at least one of a visual function at the
same time point or 1n the future, one of the objects 1n the
future, one of the features in the future, a recurrence of a
certain disease, a recurrence interval of the disease, an
appearance of a future OCT 1mage, a derived feature of the
tuture OCT 1mage, a development of a visual function over
time, a treatment response, a time to a next recurrence, a
time to a next required treatment, a likelihood of success of
a single treatment, and a time to a next required follow-up
examination. Treatments may include for example antian-
giogenic substances (ranibizumab, aflibercept, bevaci-
zumab), steroids (triamcinolone, dexamethasone implants)
or vitreolytic agents (ocriplasmin).

In a further embodiment, the prediction model 1s a mul-
tivariate sparse generalized linear model, in particular a
sparse logistic regression for binary decision outcomes, a
sparse multinomial regression for nominal outcomes, an
clastic net regularized linear regression for continuous out-
comes or sparse Cox regression for survival outcomes, a
random forest model or a mixed effects regression model.
Aspects of the mixed eflects regression model are described
in reference [9].

In a further embodiment, the receiving unit 1s configured
to rece1ve the optical coherence tomography data (OCT) of
the tissue and clinical data related to the patient, and wherein
the processing unit 1s configured to process the recerved
optical coherence tomography data (OCT) using the
received clinical data and the prediction model for providing
the at least one prediction parameter for predicting the
prospective objects of the tissue, the prospective features
allocated to the tissue and/or prospective clinical data related
to the patient.

In a further embodiment, the clinical data related to the
patient includes at least one of a treatment of the patient, a
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time of treatment of the patient, a treatment response of the
patient, a visual acuity of the patient, a retinal sensitivity of
the patient, a contrast sensitivity of the patient, a visual field
of the patient, an age of the patient, and a sex of the patient.

The respective unit, e.g. the providing umt or the pro-
cessing unit, may be mmplemented in hardware and/or 1n
software. If said unit 1s implemented 1n hardware, 1t may be
embodied as a device, e.g. as a computer or as a processor
or as a part of a system, e.g. a computer system. If said unit
1s 1mplemented in software 1t may be embodied as a com-
puter program product, as a function, as a routine, as a
program code or as an executable object.

Any embodiment of the first aspect may be combined
with any embodiment of the first aspect to obtain another
embodiment of the first aspect.

According to a second aspect, a method for processing
image data 1s proposed. The method includes a step of
receiving optical coherence tomography data (OCT) of a
tissue of a patient, a step of providing a prediction model for
processing the optical coherence tomography data (OCT),
and a step of processing the received optical coherence
tomography data (OCT) using the prediction model for
providing at least one prediction parameter for predicting
prospective objects of the tissue and/or prospective features
allocated to the tissue.

In particular, the present computerized device and the
present method are adapted to predict future clinical param-
eters, objects or features of the retina based on a series of
OCT mmages and clinical parameters. Outcome variables
may be for instance the occurrence of certain objects such as
retinal cysts observed in future OCT 1mages, or whether the
retina of a patient will exhibit recurring edema in diseases
such as Retinal Vein Occlusion (RVO), or that time-point at
which the recurrence will occur.

An embodiment of the present method may include the
following steps a) to ¢):

a) Each OCT mmage 1s transferred into a joint (or com-
mon) reference coordinate system via image registration
(normalization) to compensate for the variation 1n scanning
positions within follow-up scans, scanning resolutions, and
to compensate for the variation 1n retinal anatomy between
patients.

b) Spatio-temporal features describing the underlying
disease, such as total retinal thickness, change 1n total retinal
thickness over time, interretinal cyst (IRC) and subretinal
fluid (SRF) are extracted. These features are transformed 1n
the joint reference coordinate system.

¢) Based on the spatio-temporal features and outcome
variables from a training dataset a sparse or non-linear
regression model 1s trained, which can be applied on a new
series of OCT 1mmages to predict the outcome variable for
that subject.

In the following, the steps a) to ¢) are described 1n more
detal:

a) Joint Reference Coordinate System:

The retinal OCT 1mages are normalized by transforming,
the data into a joint reference coordinate system by first
aligning the intra-patient follow-up scans based on the
vessel structure visible in OCT 1mages, followed by an
inter-patient alignment via landmarks visible 1n OCT and
fundus 1mages.

First, motion artifacts are reduced in OCT 1mages intro-
duced by patient movement during acquisition by the
method described 1n reference [2]. To obtain landmarks for
the 1ntra-patient follow-up registration automatic vessel seg-
mentation 1s performed on the OCT 1images. Parameters for
the athine registration are generated by applying Coherent
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Point Driit (see reference [3]) to the segmented retinal vessel
point sets, as described 1n reference [4].

The inter-patient alline registration 1s performed by align-
ing the fovea center and the optic disc center position, where
the fovea center 1s the origin of the new coordinate system,
and the optic disc center position defines the rotation and
scaling. The optic disc position 1s set 1n the joint coordinate
system to 5.6 degree from the horizontal axis, and the

distance optic disc to fovea center to 4.3 mm, which are
population means [Rohrschneider 2004, Lujan et al. 2008].
The foveal center landmark (center of the fovea pit) i1s
determined automatically using a method described 1n ret-
erence [5]. Since 1n macular centered OCT 1mages the optic
disk 1s not visible, the corresponding fundus or SLO image
acquired at the same time 1s used. The disc 1s detected by
applying a circular Hough transformation with varying radni
and picking the radius with the highest response. The center
of the circle 1s defined as the center of the optic disc. Right
eyes are mirrored, 1n order to align their anatomy with scans
from the left eye.

After these steps all scans within a subject and 1n between
subjects are normalized to a joint reference coordinate
system centered at fovea.

b) Spatio-Temporal Features 1n the Joint Reference Coor-
dinate System:

Spatio-temporal features are extracted from the follow-up
OCT 1mmages, transiformed into the reference coordinate
system (or space) and pooled into a vector per subject. Such
features can be for instance the total retinal thickness map,
which 1s the distance between the 1nner limiting membrane
(ILM) surface, and the retinal pigment epithelium (RPE).
These layers are identified using a graph-based surface
segmentation algorithm (see reference [6]). Other features
are change of thickness over time as the difference of two
subsequent thickness maps, IRC and SRF maps for several
layers 1n the retina, where each pixel in the map represents
the height of the IRC or SRF. These maps are transformed
into the joint coordinate system by applying the correspond-
ing ailine transformation of the OCT onto the map.

Additional features such as summary statistics (total cyst
volume, area etc.) as well as clinical vanables like age, sex,
number of treatments may be added to the feature vector.

These feature maps for each acquisition timepoint and the
additional features are concatenated into a feature vector
with the size M. Finally, these feature vectors for each of the
N subjects are pooled into a design matrix X € R¥*Y, where
cach row represents a feature vector of a subject, and each
column 1s etther a distinct spatio-temporal anatomical posi-
tion 1n the retina, i the feature 1s based on a map like the
thickness map, or summary features like cyst volume, or
clinical varniables.

¢) Prediction of Recurrence:

The prediction of the outcome variables 1s proposed as a
multi-vanate sparse generalized linear model (GLM), where
the outcome variable (or function) 1s assumed to be a
weighted linear combination of the input feature vector x:
V=Wa+W; X;+W, X,+ ... W, X,~wWX. The coellicients w are
estimated from the design-matrix X and the corresponding

outcome variables v by minimizing following objective
function:

argmin-— ||y — XW”% + A L grio (W[} + A/ 2 (1 — 11,40) ”W“%

0N
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where the weights w are forced to be sparse by regularizing
them via elastic net (see reference [7]). With this method
continuous variables can be predicted, as for instance visual
acuity or future total retinal thickness. By replacing the

outcome variable y with a function, also other types of s

variables can be predicted, as for instance binary, multino-
mial or survival variables. For binary and multinomial
variables the logit function 1s used, also known as logistic
regression. Survival variables can be predicted by using the
Cox proportional hazard model (see reference [8]). Binary
variables may be for instance 1f a patient will sufler from a
recurring edema within a follow-up period, and survival
outcomes may describe the (relative) risk of having an
edema at a specific timepoint. The objective function of the
clastic net regularized logistic regression 1s:

N
argminz log(1 + exp(—y;w! x;)) +

Axl lmﬁg # ||W||1 + /1/2 + (1 — 11}’&1‘50) * ”W”%

Respectively the coeflicients for the Cox proportional
hazard model are obtained by minimizing the regularized
negative partial log-likelihood:

argmin— Z (J:rw —lo g(z exp(x J-w)]] +

=D JER;

l*llraﬁﬂ * ”Wlll + /1/2* (1 _ 11}’&1‘50) * ”W”%

where D 1s the set of indices of patient events and R, 1s the
set of indices of individuals which are at risk at timepoint t..

According to a third aspect, the invention relates to a
computer program comprising a program code for executing
the method of the second aspect for processing image data
when run on at least one computer.

In the following, exemplary embodiments of the present
invention are described with reference to the enclosed
figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic block diagram of a first
embodiment of a computerized device for processing image
data;

FIG. 2 shows a schematic block diagram of a system
including the computerized device of FIG. 1, an optical
coherence tomography scanner and a display;

FIG. 3 shows a schematic block diagram of a second
embodiment of a computerized device for processing image
data;

FIG. 4 shows a schematic block diagram of a third
embodiment of a computerized device for processing image
data; and

FIG. 5 shows an embodiment of a sequence of method
steps for processing image data.

Similar or functionally similar elements 1in the figures
have been allocated the same reference signs 1f not other-
wise 1ndicated.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

(Ll

In FIG. 1, a schematic block diagram of a first embodi-
ment of a computerized device 100 for processing image
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data, 1in particular optical coherence tomography data OCT
of a tissue, e.g. of a retina or of a skin, 1s depicted. Moreover,
FIG. 2 shows a schematic block diagram of a system
including the computerized device 100 of FIG. 1, an OCT
scanner 200 for providing the optical coherence tomography
data OCT and a display 300 for displaying a result, for
example prediction parameters calculated by the computer-
1zed device 100.

The computerized device 100 of FIG. 1 and FIG. 2
includes a recerving unit 110, a providing unit 120 and a
processing unit 130. For example, the computerized device
100 of FIG. 1 1s embodied as a computer or as an embedded
system.

The receiving unit 110 1s configured to receirve optical
coherence tomography data OCT of a tissue of a patient, 1n
particular of a retina. The patient may be a human or an
animal.

For example, the optical coherence tomography data OCT
are spectral-domain optical coherence tomography images.

The providing unit 120 1s configured to provide a predic-
tion model PM for processing the optical coherence tomog-
raphy data (OCT). For example, the prediction model PM 1s
a multivaniate sparse generalized linear model, 1n particular
a sparse logistic regression for binary decision outcomes, a
sparse multinomial regression for nominal outcomes, an
clastic net regularized linear regression for continuous out-
comes or sparse Cox regression for survival outcomes.
Alternatively, the prediction model PM may be a random
forest model.

The processing unit 130 i1s configured to process the
received optical coherence tomography data OCT using the
prediction model PM for providing at least one prediction
parameter PP for predicting prospective objects O of the
tissue and/or prospective features F allocated to the tissue.

The objects O may include at least one of an intraretinal
fluid, intraretinal cystoid fluud (IRC), a subretinal fluid
(SRF), a druse, a pseudodruse, a retinal layer, a choroidal
layer, a pigment-epithelial detachment, a hyperreflective
focus, a subretinal hyperretlective material, a hemorrhage, a
vitreous membrane, an epiretinal membrane, and a retinal
vessel.

The features F may include at least one of a size of one
of the objects, a volume of one of the objects O, a location
of one of the objects O, a reflectivity of one of the objects
O, a texture of one of the objects O, a polanzation or
retardation information of one of the objects O, a distribu-
tion of the objects O relative to each other, a visual acuity of
one of the patients, a retinal sensitivity of one of the patients,
a contrast sensitivity of one of the patients, a visual field of
one of the patients, an age of one of the patients, a sex of one
of the patients, and characteristics of previous treatments of
one the patients.

The at least one prediction parameter PP may include at
least one of a visual function at the same time point or in the
future, one of the objects O 1n the future, one of the features
F 1n the future, a recurrence of a certain disease, a recurrence
interval of the disease, an appearance of a future OCT
image, a derived feature of the future OCT 1mage, a devel-
opment of a visual function over time, a treatment response,
a time to a next recurrence, a time to a next required
treatment, a likelthood of success of a single treatment, and
a time to a next required follow-up examination.

In particular, the recerving unit 110 may be configured to
receive a plurality of different optical coherence tomography
data OC'T of one patient at different times and a plurality of
different optical coherence tomography data OCT of difler-
ent patients. Moreover, the providing unit 120 may be
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configured to normalize all the received optical coherence
tomography data OCT by transforming all said received
optical coherence tomography data OCT 1nto a joint refer-
ence coordinate system.

The providing unit 120 may be configured to train the
protection model PM on a design matrix having N rows and
M columns, wherein each of the N rows allocated to one of
N patients and each of the M columns 1s allocated to one of
M features.

In FIG. 3, a schematic block diagram of a second embodi-
ment of a computerized device 100 for processing image
data, in particular optical coherence tomography data OCT
of a tissue, 1s shown.

The second embodiment of the computenized device 100
of FIG. 3 includes all features of the first embodiment of
FIG. 1. Additionally, the second embodiment of the com-
puterized device 100 of FIG. 3 has a determining unit 140
and an obtaining unit 150. The determining unit 140 1s
configured to determine objects O 1n the tissue by processing
the optical coherence tomography data OCT using a con-
volutional neural network (CNN).

Moreover, the obtaining unit 150 1s configured to obtain
the features F from the received optical coherence tomog-
raphy data OCT. In this regard, the providing unit 120 may
be configured to normalize the features F of the recerved
optical coherence tomography data OCT by transforming
them into the same joint reference coordinate system as the
normalized optical coherence tomography data OCT.

Furthermore, the providing unit 120 may be configured to
train the prediction model PM on the design matrix using the
normalized optical coherence tomography data OCT and the
normalized features F. The design matrix may have N rows
and M columns. Each of the N rows may be allocated to one
of N patients and each of the M columns may be allocated
to one of M features F, wherein each of the M features 1is
allocated to at least one of the objects O of the tissue.

FIG. 4 shows a schematic block diagram of a third
embodiment of a computerized device 100 for processing
image data. The third embodiment of the computerized
device 100 of FIG. 4 includes all features of the first
embodiment of FIG. 1. Additionally, the receiving unit 110
of FIG. 4 1s configured to receive not only the optical
coherence tomography data OCT of the tissue, but also
climical data CD that are related to the patient.

The clinical data CD related to the patient may include at
least one of a treatment of the patient, a time of treatment of
the patient, a treatment response ol the patient, a visual
acuity of the patient, a retinal sensitivity of the patient, a
contrast sensitivity of the patient, a visual field of the patient,
an age ol the patient, and a sex of the patient.

In this regard, the processing unit 130 of FIG. 4 1s
configured to process the received optical coherence tomog-
raphy data OC'T using the received clinical data CD and the
prediction model PM {for providing the at least one predic-
tion parameter PP for predicting the prospective objects O of
the tissue, the prospective features F allocated to the tissue
and prospective clinical data CD related to the patient.

In FIG. 3§, a sequence of method steps for processing
image data OCT 1s depicted. The method of FIG. § includes
the following method steps 501-503:

In step 501, optical coherence tomography data OCT of a
tissue of a patient, 1n particular of a human or animal tissue,
for example of a retina or of a skin, are received.

In step 502, a prediction model PM for processing the
optical coherence tomography data OCT 1s provided.

In step 503, the received optical coherence tomography
data OCT are processed by using the provided prediction
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model PM for providing at least one prediction parameter PP
for predicting prospective objects O of the tissue and/or
prospective features F allocated to the tissue.

Computerized devices may be suitably designed for
implementing embodiments of the present invention as
described herein. Computer program code for carrying out
operations for aspects of the present imvention may be
written 1n any combination of one or more programming
languages, mcluding an object oriented programming lan-
guage such as Java, Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.

In particular, each block of the block diagrams may be
implemented by one or more computer program instruc-
tions. These computer program instructions may be pro-
vided to a processor ol a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

More generally, while the present invention has been
described with reference to certain embodiments, 1t will be
understood by those skilled 1n the art that various changes
may be made and equivalents may be substituted without
departing from the scope of the present invention. In addi-
tion, many modifications may be made to adapt a particular
situation to the teachings of the present invention without
departing from 1ts scope. Therefore, 1t 1s intended that the
present mvention not be limited to the particular embodi-
ments disclosed, but that the present invention will include
all embodiments falling within the scope of the appended
claims.

REFERENCE. NUMERALS

100 computerized device

110 recerving unit

120 providing unit

130 processing unit

140 determining unit

150 obtaining unit

200 computer tomography scanner
300 display

501 method step

502 method step

503 method step

CD climical data

F features

O objects

OC'T optical coherence tomography data
PM prediction model

PP prediction parameter
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The invention claimed 1s:

1. A computerized device for processing 1mage data, the

computerized device comprising:

a recerving unit which 1s configured to receive optical
coherence tomography data of a tissue of a patient, 1n
particular of a retina,

a providing unit which 1s configured to provide a predic-
tion model for processing the optical coherence tomog-
raphy data, and

a processing unit which 1s configured to process the
received optical coherence tomography data using the
prediction model for providing at least one prediction
parameter for predicting future prospective objects of
the tissue and/or future prospective features allocated to
the tissue,

wherein the recerving unit receives a plurality of different
optical coherence tomography data of one patient at
different times and a plurality of different optical coher-
ence tomography data of different patients,

wherein the providing unit carries out a normalization of
the retinal optical coherence tomography i1mages by
transforming the data into a joint reference coordinate
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system by first aligning the mtra-patient follow-up
scans based on the vessel structure visible 1n optical
coherence tomography images, followed by an inter-
patient alignment using the fovea center and the optic
disc center position, where the fovea center 1s the origin
of the new coordinate system, and the optic disc center
position defines a rotation and scaling, and

wherein the processing unit directly extracts from the
optical coherence tomography data spatio-temporal
features, without intervening steps of extracting sum-
mary parameters and/or parameter combination/reduc-
tion.

2. The computerized device of claim 1,
wherein the providing unit 1s configured to normalize all

the received optical coherence tomography data by
transforming all the received optical coherence tomog-
raphy data 1nto a joint reference coordinate system.

3. The computerized device of claim 1,

wherein the objects 1include at least one of an intraretinal
fluad, intraretinal cystoid fluid, a subretinal fluid, a
druse, a pseudodruse, a retinal layer, a choroidal layer,
a pigment-epithelial detachment, a hyperreflective
focus, a subretinal hyperreflective material, a hemor-
rhage, a vitreous membrane, an epiretinal membrane,
and a retinal vessel.

4. The computerized device of claim 3, further compris-

ng:

a determining unit for determining objects in the tissue by
processing the optical coherence tomography data
using a convolutional neural network.

5. The computerized device of claim 1,

wherein the providing unit i1s configured to train the
prediction model on a design matrix having N rows and
M columns, wherein each of the N rows 1s allocated to
one of N patients and each of the M columns is
allocated to one of M features, wherein each of the M
features 1s allocated to at least one of the objects of the
tissue.

6. The computerized device of claim 5,

wherein the M features include at least one of a size of one
of the objects, a volume of one of the objects, a location
of one of the objects, a reflectivity of one of the objects,
a texture of one of the objects, a polanization or
retardation information of one of the objects, a distri-
bution of the objects relative to each other, a visual
acuity of one of the patients, a retinal sensitivity of one
of the patients, a contrast sensitivity ol one of the
patients, a visual field of one of the patients, an age of
one of the patients, a sex of one of the patients, and
characteristics of previous treatments of one the
patients.

7. The computerized device of claim 6, further compris-

ng:

an obtaining unit for obtaining the features from the
received optical coherence tomography data.

8. The computerized device of claim 7,

wherein the providing unit 1s configured to normalize the
features of the received optical coherence tomography
data by transforming them into a same joint reference
coordinate system of the normalized optical coherence
tomography data.

9. The computerized device of claim 8,

wherein the providing unit i1s configured to train the
prediction model on the design matrix using the nor-
malized optical coherence tomography data and the
normalized features.
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10. The computerized device of claim 1,

wherein the at least one prediction parameter includes at
least one of a visual function at the same time point or
in the future, one of the objects 1n the future, one of the
features 1n the future, a recurrence of a certain disease,
a recurrence 1nterval of the disease, an appearance of a
future optical coherence tomography image, a derived
feature of the future optical coherence tomography
image, a development of a visual function over time, a
treatment response, a time to a next recurrence, a time
to a next required treatment, a likelithood of success of
a single treatment, and a time to a next required
follow-up examination.

11. The computerized device of claim 1,

wherein the prediction model 1s a multivariate sparse
generalized linear model, 1in particular a sparse logistic
regression for binary decision outcomes, a sparse mul-
tinomial regression for nominal outcomes, an elastic
net regularized linear regression for continuous out-
comes or sparse Cox regression for survival outcomes,
a random forest model or a mixed eflects regression
model.

12. The computerized device of claim 1,

wherein the receiving unit i1s configured to receive the
optical coherence tomography data of the tissue and
clinical data related to the patient, and

wherein the processing unit 1s configured to process the
received optical coherence tomography data using the
received clinical data and the prediction model for
providing the at least one prediction parameter for
predicting the future prospective objects of the tissue,
the future prospective features allocated to the tissue,
and/or prospective clinical data related to the patient.

13. The computerized device of claim 12,

wherein the clinical data related to the patient includes at
least one of a treatment of the patient, a time of
treatment of the patient, a treatment response of the
patient, a visual acuity of the patient, a retinal sensi-
tivity of the patient, a contrast sensitivity of the patient,
a visual field of the patient, an age of the patient, and
a sex of the patient.

14. The computerized device of claim 1,

wherein the objects 1include at least one of an intraretinal
fluid, an 1ntraretinal cystoid fluid, and a subretinal fluid,
a druse, a pseudodruse, a retinal layer, a choroidal layer,
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a pigment-epithelial detachment, a hyper-retlective
focus, a subretinal hyperreflective material, a hemor-
rhage, a vitreous membrane, an epiretinal membrane,
and a retinal vessel, and

the prediction parameter includes at least one of visual
function at the same time point or in the future, a
development of a visual function over time, a treatment
response, a time to a next required treatment, a likel:-
hood of success of a single treatment, and a time to a
next required follow-up examination.

15. A method for processing image data, the method

comprising;

recerving, by a receiving unit, optical coherence tomog-
raphy data of a tissue of a patient, 1n particular of a
retina,

providing, by a providing unit, a prediction model for
processing the optical coherence tomography data, and

processing, by a processing unit, the received optical
coherence tomography data using the prediction model
for providing at least one prediction parameter for
predicting future prospective objects of the tissue and/
or Tuture prospective features allocated to the tissue,

e

wherein the recerving unit receives a plurality of different
optical coherence tomography data of one patient at
different times and a plurality of different optical coher-
ence tomography data of different patients,

wherein the providing unit carries out a normalization of
the retinal optical coherence tomography i1mages by
transforming the data into a joint reference coordinate
system by first aligning the intra-patient follow-up
scans based on the vessel structure visible 1n optical
coherence tomography images, followed by an inter-
patient alignment using the fovea center and the optic
disc center position, where the fovea center 1s the origin
of the new coordinate system, and the optic disc center
position defines a rotation and scaling, and

wherein the processing unit directly extracts from the
optical coherence tomography data spatio-temporal
features, without intervening steps of extracting sum-
mary parameters and/or parameter combination/reduc-

t1on.
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