US010685279B2

a2y United States Patent (10) Patent No.: US 10,685,279 B2

Oliner et al. 45) Date of Patent: Jun. 16, 2020
(54) AUTOMATICALLY GENERATING FIELD (58) Field of Classification Search
EXTRACTION RECOMMENDATIONS CPC i, GO6F 16/26; GO6F 16/254
See application file for complete search history.

(71) Applicant: SPLUNK INC., San Francisco, CA

(US) (56) References Cited

U.S. PATENT DOCUMENTS

(72) Inventors: Adam Jamison Oliner, San Francisco,

CA (US); Nehi Huu Nguyven, Union 5,542,006 A * 7/1996 Shustorovich G06K 9/32
City, CA (US); Jacob Leverich, San 382/156
Francisco, CA (US): Zidong Yang 5,841,946 A * 11/1998 Naitococcccc..... GOGF 17/10
: " " " 706/62
Millbrae, CA (US) 0,021,304 B2 4/2015 Tonouchi
_ _ 10,310,615 B2 6/2019 Lee et al.
(73) Assignee: SPLUNK Inc., San Francisco, CA (US) 2004/0024773 Al 2/2004 Stoffel et al.
2009/0030860 Al1* 1/2009 Leitheiser HO041. 45/08
(*) Notice: Subject to any disclaimer, the term of this 706/20
patent 1s extended or adjusted under 35 (Continued)

U.S.C. 154(b) by 492 days.

OTHER PUBLICATIONS
(21) Appl. No.: 15/420,754

_ Non-Final Oflice Action dated Jul. 23, 2019 in U.S. Appl. No.
(22) Filed: Jan. 31, 2017 15/276,693, 11 pages.

(65) Prior Publication Data (Continued)

US 2018/0089561 A1 Mar. 29, 2018 Primary Examiner — Syed H Hasan

(74) Attorney, Agent, or Firm — Shook, Hardy & Bacon,

L.L.P.
Related U.S. Application Data (57) ABSTRACT
(63) Continuation-in-part of application No. 15/276,693, Systems and methods include obtaining a set of events, each
filed on Sep. 26, 2016. event 1n the set of events comprising a time-stamped portion
of raw machine data, the raw machine data produced by one
(51) Int. CL or more components within an information technology or
GO6EF 17/00 (2019.01) security environment and reflects activity within the infor-
GO6N 3/04 (2006.01) mation technology or security environment. Thereafter, a
GO6F 1626 (2019.01) first neural network 1s used to automatically identify variable
GO6F 16/25 (2019.01) text to extract as a field from the set of events. An indication
(52) U.S. CL of the varnable text 1s provided as a field extraction recom-
CPC GO6N 3/0454 (2013.01); GO6F 16/254 mendation, for example, to a user device for presentation to
(2019.01); GO6F 16/26 (2019.01); GO6F d USCT.
222172151 (2013.01) 30 Claims, 35 Drawing Sheets

OBTAIN A SET OF TRAINING DATA HAVING CHARACTER

2302 A STRINGS —_—

' J

TRAIN A FORWARD NEURAL NETWORK BY OBTAINING
CHARACTERS OF THE CHARACTER STRINGS ONE
2304 ~~ CHARACTER AT A TIME AND PREDICTING A NEXT

CHARACTER

v

TRAIN A REVERSE NEURAL NETWORK BY OBTAINING
CHARACTERS OF THE CHARACTER STRINGS ONE
CHARACTER AT A TIME AND PREDICTING A NEXT

CHARACTER

v

5308 —~ USE THE FORWARD NEURAL NETWORK AND THE REVERSE
NEURAL NETWORK TO IDENTIFY VARIABLE TEXT WITHIN
THE CHARACTER STRINGS

l

5310w~ PROVIDE THE IDENTIFIED VARIABLE TEXT AS A FIELD
EXTRACTION RECOMMENDATION

2306 -~

US 10,685,279 B2
Page 2

(56)

U.S. PATENT DOCUM

2011/0066585 Al*

2015/0347859 Al*

2016/0350655 Al*
2019/0310715 Al

OTHER PUBLICATIONS

References Cited

3/2011 Subrahmanyam
12/2015 Dixonoeeeenn,

12/2016 Welsscoooeeeevennnnn,

10/2019 Lee et al.

EINTTS

GO6N 7/005

706/52

G0O6K 9/186

382/138

GO6N 3/088

Final Oflice Action dated Apr. 28, 2020 in U.S. Appl. No. 15/276,693.

11 pages.

* cited by examiner

U.S. Patent Jun. 16, 2020 Sheet 1 of 35 US 10,685,279 B2

l .
CLIENT DEVICES 102 | 100
HOST DEVICES 106 /

CLIENT
APPLICATIONS 110

HOST

APPLICATIONS 114

 MONITORING
COMPONENT 112
NETWORKS DATA INTAKE AND
FIG] 104 QUERY SYSTEM 108

DATA DATA DATA
SOURCE SOURCE SOURCE

202 202 202

E DATA INTAKE e et e R ;
i AND QUERY FORWARDER
. SYSTEM 108 204 — i
E INDEXER INDEXER INDEXER | !
i DATA DATA DATA | i
: STORE STORE STORE| ¢
i 208 208 208 i
E — i

nn

U.S. Patent

302

304

306

308

310

312

314

316

318

Jun. 16, 2020 Sheet 2 of 35 US 10,685,279 B2

RECEIVE DATA
ANNOTATE DATA WITH METADATA
FIELDS
PARSE DATA INTO EVENTS
DETERMINE TIMESTAMPS FOR
EVENTS
ASSOCIATE TIMESTAMPS AND OTHER
METADATA FIELDS WITH EVENTS
TRANSFORM EVENTS
IDENTIFY KEYWORDS IN EVENTS
UPDATE KEYWORD INDEX
STORE EVENTS IN DATA STORE

FIG. 3

U.S. Patent

402

404

406

408

410

Jun. 16, 2020 Sheet 3 of 35 US 10,685,279 B2

SEARCH HEAD RECEIVES QUERY
FROM CLIENT

SEARCH DETERMINES WHAT
PORTIONS OF THE QUERY CAN BE

DISTRIBUTED TO INDEXERS

SEARCH HEAD DISTRIBUTES
PORTIONS OF QUERY TO INDEXERS

INDEXERS SEARCH DATA STORE
FOR QUERY-RESPONSIVE EVENTS

SEARCH HEAD COMBINES ANY
PARTIAL RESULTS OR EVENTS TO

PRODUCE FINAL RESULT

FIG. 4

g Ol 008

ddAddS
1d0ddNsS

US 10,685,279 B2

" '05:02:20.L€2:01:7 102 . ¢ AUM iPalre) JopIo AN, :APOG Y/ 9GHES L obeSSaW 1oadns

605 d| Jawolisnn W/om

\f,

ot

T

-

N 2085

= JHVM3I1ddiiN

s T fUoIo2UU0D %

|00d 818840 10U P|N0) :uodaax3gpea(]1a2i1n0say000d82IN0Sal UOWWOD 2I00|goM o

= ‘uondaox31oSpeaquonIauu0n) syisualxa-ogpl-oibojgom i/ﬂ

e

~ ’SMOJ||0) U0NASOX3L 9GS2 H Pale) §9/86 WA JNSpoob gm 066:21:10 £2 190 ‘

m_ dl 1SNy GOC

- 10G
ddV 43d4d0O

" °2'001L°001°001+°99/86(/95YE2 88\ H01E2-01-F7102° HIAHO

105 h
dl Jsawoisny H0C

U.S. Patent

US 10,685,279 B2

Sheet 5 of 35

. 16, 2020

Jun

U.S. Patent

V9 Ol

Bo| ssea08e; Lmmm,/ :dIZ BlBDIE1IOIN] = 82IN0S

SIMO0OM PBUIqWOD SSa20e = 8dA180inos

L MMM = 1S0Y

vE 1 .G'9EG/URIeS O 801706 L/eWoIyD (0X08L) 8y
)y OB [9IU] (YSOUIORIN) 0°G/B|I1ZOW., . LOE-SAH-HS

871S9AS=AINOISSASM8 L-1SI=P|WBHMUIPIO/ 1SOd. [96:02:81:¥102/4dy/82] - - L1 #91°9€2°281

OO0 PaUIgUIOD ssadoe = adAleoinos Dopssadoe/pmmm/ dIZ BlEDIELIOIN] = 90IN0S MMM =]SO

906 .G 9EG/UBIES S+ +80 1°0°6 L/8WOIYD (03089 &I “TINLHM) G°9 MM

SIBINQIMMM/20NU, 2522 002 1L dLLH 101ES44aV0 | 4487S90S=AINOISSIASM"860D-OV-S8=PIToNp0]
d9G1-1SI=p|walgueo0lppe=Uoc|joe;,0p Ued; 139, [96:02:81:¥102/4dy/82] - - L1'+91°9€2281

O OCOM PBUICLUOD $$3008 = odA1e0in0s | Do sseoor/gmmmy/ diz BlED[ELIOIN] = 90IN0S m ZMMM = 1S0OU
Gl .G 9EG/URIES OF
780 1°0°61/8WO0IYD (0X08L) 8yl ' Aaemelddy ($9 MOM {19 LN SOMPUIM) 0'G/ell

ZON, b 1~ LSH=R|WBIEMUIP|0/W 0D mwgmma:g@za MMANANY, GO9L 002 W 1L dLLH £11LESHHAYL.
44/71S9dS=AINOISSIASM ey - 1SI=P|Wail Mulp[o/ 139, [91:22:8 L+ 1 02/4dy/82] - - GL'681°G02' 16

9 ¢ v & 2 . ADIcf)

809 1S!7 SlUsA3

(XeN " 6 8 L ~ abed 194 02

Wd 000°9%-02:9
v1/8S/v

Wd 000°9%-02-9
v1/8e/v

Wd 000°'81:22-9
V1/82/v

H spled IV =

A JEULIO ~ 1807

09 elnulw alep #
g Aepw aiep #
pg INOY Sjep #
+Q0 1 duao v
g pjliobees v

+001 seliq #

G uonoe v
SP19I4 Bulsaisiu|

| odAleounos v
¢ 90IN0S ¥

£ soy v
Spel4 PRlooeg

909 Jeqsp!S spjai

SpIel4 epiH »

G09 auiwI]
SUOJINQ UOIIOE Y2Jeag

Lo Jad noy |

10109|9S 9poWl Youeag

~ SPON Lews §

u e

350|0

219 193014 abuey awi]

"AVIIES €~ _nusw Se 9Aeg

Puipioday B Usiedg

100|0S8(] %

09 Sqe] S)NSeYy Yoseas

UONOSRS 0] LUO0Z 4 INC) W00 —

UOHEZI[ENSIA SONSIEIS

200 Jeg yosess

A BUIBLUI | JeLUO-

(618°9¢) Sweay

(Nd 000°20:61:Z ¥1/0E/¥ @1042q) Sjuane 618°9E »

F o

sawebdnolenng |

JoJeag MaN v

SPJROQUSE(] SMaly suodey 10AId E

009 U8819g YoJeas

US 10,685,279 B2

47 Ol

% Nd 000°GY:-CC-| ¥ 1/6S/V G/62¢ A CAMMM

o Nd 000°Lv:CE- L ¥ 1/6S/V G6G 2¢ A GNMMM

\& n

= Nd 000°¥¥:CC-| ¥ 1/6S/V Lgd e A | MAAMA

Qs _

@nu Nd 000°9v:CC-| ¥ 1/6S/V AZANS A~ SO|ES JIOpuUdA
N 000°Ly:cE-| ¥ 1/6S/Y 628 6 A~ AS|lew

¢ a1epdn 1se $ JUNno9 1L $ 1SOH

Q

—

\&

o

=

X Arewwing eleq

U.S. Patent

685,279 B2

2

Sheet 7 of 35 US 10

Jun. 16, 2020

U.S. Patent

00L

VL Ol

‘Blep 8yl ozuewwns " awl AQ slallelay do |, pue sialieley ‘soyoteas Bunum
0] ‘S1BIS 10 Leydawlll &yl ‘pueLIwod do |, oY1 suodal yamnb Jo 181 © 10) INoyum souew pue spiall aidiynuw
yoJeas buiwiojsuel] e as gel SludAa ayl ul pial Aue uo 10 Buisn suoneziensia pue ss|gel pling
7] SpUuBW WO yoieag wtoo_mm MoINY 10Al

= E 1SS Aue bunelsuab 1,usI UoIeas INoA @
70/ ~ (67) sbeionod ﬁlmmm_ e yumspeld @ | [suered \ (0s8'89)) swweng

C0/ ~ () spield paiogles O Dboeg:2:6 v1/2g/L 2l0jeq) SlUBAD 0G8'89] A
20/ ~(z6)sprei4 v O

12POIN Ble(] B Sk 2SI 0] ayl| NOA PINOM SPI21 UIIYAA

A OPON Lews § =5 T ¢ B

9s0|0

lBUISUl =Xapul

UoJeag MaN v

SOy slodoy 10AI- E

ASY 9AEG

SPIold 199[|9G
buiioday ¥ yolesg

0L

VAR

A BLI0G aobedisd oz

US 10,685,279 B2

v ee)

Xopu v
jUspl v
SOy v
oncib »
<P
sdAnusas v
ouCZ dlep v
IEDA DlED #
Aepm alep v
DUODOS Blep #
UILUQLLE 31Bp #
I.l\.‘ O _‘ .N SHILILY Plep #
_. _‘ N ABRDLY 91D #
IOy aep #
NG #
LIBUOCLIOD &
diuayo v
SO1AQ ¥ ANALNY

30N © ol

80/ ~ ‘ N () JUOAT §O JUN0D m.m -

SINjEA ULLUIYOD) § SMOY UdS

80/~ (+] =

SULLNION) 3|08 | 1011

Sheet 8 of 35

Jun. 16, 2020

71 UOIBILSLUND0

pOYSIEW SIUBAR P0G 2ES 10 P0G ELS

GOL TE
J0Ald MON T

U.S. Patent

US 10,685,279 B2

Sheet 9 of 35

Jun. 16, 2020

U.S. Patent

GOL

71 UOIBILSLUND0

DL Dl

H N =y JWBAT 1O JUNOT) m.,u |

SSNEA UL O |

(4]

SULLINGOD) 1108 |

OLL

A BUE04 a 0bedasd oz

°lge ¢, PRY

E SaA 32101

| A~ HNERR(] oS

SROI iy

|BUGIAO Elslzh

jusuodwod

SRR

poYdIEW SIUBAS H0S'CEE IO POSELE

10Ald MSN T

Y)

dZ 2l

A eUI0d aobedusd oz

US 10,685,279 B2

b AASIA
g1
< paLoRd

8 Ol POYIE M

Sheet 10 of 35

LE64Y SIS
12514 sHesMosusn

| Bijuonxapu)
OO ASOGISAIRSIE]SIE]
1 lsfeugyAiQnaligsseqeleq

FOAONIONY

._H _.N. ‘ mu _vN - N () WBAF JO JINoN W.,m |

Jun. 16, 2020

weuodiuon &

SaNEA U O | S0y S

- oL} iy
1 LOIJRILSLINDO(] SULLNOD WO | SOUI
Ve T ¢ m pOLIEW SWUBAS POSZIE IO YOS LS

GOL

A UOREISDY A ”_.O\’._& gmz @

U.S. Patent

US 10,685,279 B2

Sheet 11 of 35

Jun. 16, 2020

U.S. Patent

3 Ol

S199d Wo0J} PoAISaL S)|nsal sielsald auy) a1ebaibby

‘peay yaieas Aq pajnosox3
1SOY AF 1uNn09 sielsaud | 10418, YyoJeas
08— :5199d 0] JUSS

]SOy Ag Uno9 siels | ,Jols, Yyoiess
208—> :4yoseasg [euibuQ

V6 Ol

US 10,685,279 B2

/1 INT POM . 9L Infeny
| e — Nd 002t | Weoo:gk| Wd 00:2i b [T
P SHOMIBU e _ wnipaw [:
: AJIUED] ‘<’< \ _ugam _”_ p o :
P | I0dPUS meem _ . BU iUl O m
S 0 || siE —|
i 0L Z ' Ty
_ * 7 I
- LI D | =106
er)
-~ 02 -
= m
-
,_w JNIL A9 SLNIAT J1dV.LON AONGDHN A9 SLINIAF 319V.LON
e offe Wy
75
,\.mom
— . O e
*€8L K9k gesvl 2e9
S V4 N
n__.. SISO IBIOE 1O Juatiad 18uBiy 10O AliOADS WNIpBy IUNON B0 nan 1 e
= A3HOLYd ATINA SLSOH DAV LSOH / SAILLINIGVHIANTNA S1SOH FT1aVHINTNA mzo_Homu_z_m_mq%qz 06
A ¢ v SL U119
~ 106

WnaGH |18j0g KRINOHD 1IC | WO 181G OO jB1G “ NG _m__ﬂ_._.

S41dVLION LidNv SIT1dV.ION ALLLNAQH SAT9V.LION MHOMLAN SA19VLON LNIOdUNS S319vLONSS3DOV

006 MAIA SHOLVOIANI A=A

U.S. Patent

d6 Ol

US 10,685,279 B2

SHElop MOIA bouBISSEUN a MSN a UBIH @ a (SOO-AFASNY) O PSBIDIBA (1BUSiA) JUNDIYY a SSANDY 2197/ u N
- NV 000" 6E:00:1 1
SHIOP MOIA ouBisseun ~ M3N « ubiH (7) ~ {S00-1LSOH) UQ paiv|ad {SqWoD) JUNCOdY a S$SB00Y o197/ m (]
SUZIOP MON e o ~ MON » uBH () » (900-A3ATHOD) U PaIBIEQ (Neq) WNooDY « ssoooy NWVOUOEERO)) (4] [
- _ NV 0D0'6E:00:1 1
SHRIOD MOIN poUBISSBUN & M3N ~ b @ » {100-SOd+Q0Hd) uQ palsiag (Agauld) Wnoddy ~ $$00Y . B [
SHELOP MIIA poubiss mu__“ a MBN a YBiY @ a POIOBID(UGHEIIJUBYINY IXBLIED|Y)) 9IN3BSU| a SS200Y NV mmo.nm%mwﬂm @ (1
\f
¢,
a NV 000 COE LY
fm SHRION MOIA pouBissEUn a MSN & UBIH @ a PRIDBID(UGHEINUSYINY IXBLIED[D) 0 2INTIISU| a SS90y 21 /97 B 1
ol
— JETI snje Aousbl sl HIEWOQ iyl suoid 08|&
- 0 €IS N Ml A1iN06S 1 O ejes
>
K
7 p, Buiyoew 62z (18 1pg | SiusAs peloeas 1p | wxeu g & 8 L 9 & v € 2 H Aside (B PReesun R o108
—— tOti] LUOESN
P16 1LSI'T SLINAAA o (2102 ‘92 1SNBNY NV 02:62: L 1 01 G2 1SNBNY N 02:62: | L LOK) (SWIN-[eel) MOPUIM INOY $Z B Ul SUAS §23
- BHIO 2102
- ow-eoy | | 9g by ung)
= NV 00:8 NV 00:9 AV 00
» e I
/D-,, — SARR OF 18E
— ozt| €16 INITINIL e e S e 2
— Moy | = je S1EOS JEOU as1a8a(] [M] LONOBISS O] WO no Woo s
h U | gl « 8 "] R } (] jooes O} wooz Ry i 70 piH [¥]

SIN0Y § 1887 sjuaae buiymeul gge A

GOINLIU DY 188

SN 6| 156 ¢l6 Ad13d1d 3ONVH dNIL
H16 SA13I4 MOPUIM N0 2] [4] L
31N9gid11V LoIeas -90UBUISAOD) UBWOP AIIN0SS
LNAAIONI L I [] [
x=111H L1IOUMO) AouaBin SNIBIS

ASUOINDY | MBIABH JUSDIOU)

06 AdVOdHSLYA MdIAGY LNJAIDNI

U.S. Patent

US 10,685,279 B2

Sheet 14 of 35

Jun. 16, 2020

U.S. Patent

llllllllllllll
lllll

lllll

> "

D6 Ol

JAON SIHL
104145

SANVdXd

4AON SIHL
S10414S
450

cto

US 10,685,279 B2

Sheet 15 of 35

Jun. 16, 2020

U.S. Patent

dé Ol

ONINHVM - e

VOLLIHD - —

- LN3OY3d
NOLLYZITILNFHOO
NdD IFOVHIAY d

S¥6 SNNIW NMOA-T11Nd

I-MSY L HSINI QU TX A
I-MSY 1 HSINIA-|OHIX Al
I-MSY.L HSINIZ-|OHIXdA
I-MSYL HSINIH-OHTXdA

I-MSY 1L HSINIF-—-IOHTXdA
& IOVSSIN

« IXZAN Gl

JIAI L
cLoc
0Z AON (M
Nd 00- | Nd 0021 NV 00 L1 WV C0:0F
G&
0%
Gl
.._..r.,._._.__..._... ..,.._._..._,._.__.mL-.-#...r_._n.__._mu ‘_.‘_v_.,-n.__.__.._T OD _..
GCl

WOD ANNTIS AS L0SIXSH-SddY
WOO AN IS AS L0SIXEH-8ddV
WOOHUNMIdS AS FOSIXSI-SddV
NOOMNM IS AS 10GIXSF-SddV
WOO MNMIdS'AS 10SIXS3-5ddaV

— 1SOH

plbel gl Lok 8.9 S+t ezg[L]Aud»
N3 DOTI/XS3 IN3O3Y

SdiY

0LE'GO:0G:EL €1/02/ 11
0LE'BO:0G:EL E1/0T/ 11
GZE 8O:0G:EL €1/02/ L1
622 ¥1:0G:EL €1/02/ 11
18E L0 EL €102/ 1)

—=]I

N) < W

|

081 TNOD MNNTAS AS L0SIX S -SddVY WOHA BE-WA-QVOTONILYHDIN - Wd 0LV 08411 €1/0T/1)

E SHIMHYIN AV1dSIC

B JOVHIAY || a [NOLLYZIILNIHOO NdO IOVHIAY |(& Q3LVO3HOOV | & NdD

. — I —.—)

ANIHOVIN TYNLLEIA JLVHDIN MSVYL Wd 00168 v L E1/04/11

WOOMNM IS AS LOGIXSI-5dd¥ LSOH 440 8HNA-OVO T DNILLVYEDIN NG 019 1e-pP L EL/04/ 1L

o M = i

8L-NA-OVOT HO4 NOLLYOO TV 408N083H A3DNVHD NG 06828 vv-1 €1/0S/ 11
YHO WOO UNMIdS AS 106IXS3-Sdd¥ NO JOVYSN idO 1SOH WAYTY NG 008 1861 EL/0S/EL |

¥ JOVSSIN —=i

«I1XaN S v € 2[1] A3ud »
SLNIAI ANV SHSVL LINFOIY |

U.S. Patent Jun. 16, 2020 Sheet 16 of 35 US 10,685,279 B2

1000

\\ DATA DATA DATA
SOURCE SOURCE SOURCE

202 202 202

FORWARDER FORWARDER
204 204

CLIENT NETWORK
1002 1004

CLOUD-BASED DATA INTAKE
AND QUERY SYSTEM 1006

SYSTEM SYSTEM
INSTANCE INSTANCE
1008 1008

FIG. 10

US 10,685,279 B2

Sheet 17 of 35

Jun. 16, 2020

U.S. Patent

— viLE HAHLO
9Lt SIWAdY HO dOOAVYH

1 Ol

chbb |
SS4004dHd

dtld

L]

OLEL

SSIDOHd|
e

Uy01T

(MAs)
JOIA3A IN3ID

c0¢c

¢ 40dN0sS ¢0c 40dNOS | | 20c 40dNOS
V.iv{ VAR E

ARvE

¥0c

HAddVMEOA

80¢
4HOLS V1VQ

90¢ d3aX3ANI

¥0c
H34dHVMHOA

” mEO._.w <._.¢D

wom a=AXA0NI

801 W3LSAS

AHINO ANV IMVLNI V.1VA

Oct XHdOMLAN

aGrol 1

(INIT ANVININOD)
3O0I1A3A LN3ID

ey0l 1]

(g3am)
30IA3A LN3ITO

U.S. Patent Jun. 16, 2020 Sheet 18 of 35 US 10,685,279 B2

1200
/

Select a Data Model

- 4 Data Models ~1201
> (Bulercup Games Sales)~1202]

> [e Aot ogs SAWPLE
> | Splunk's Infernal Server Logs - SAMPLE
- lest

FIG. 12

1300
f

Select an Object

4 Back

6 Objects in Buttercup Game Sales ~1301

- Buttercup Games Web Store Events
- HTTP Success

- Failed Purchases
- HTTP Client Error
- HTTP Server Error

B
FIG. 13

Dl

US 10,685,279 B2

NAAAN] A 66°'G BpNox) jo apejg A|OH
v, 8162 9| 6661 7102 buiund
G9'CLES GE | 662 sliqa(ooedg ubluag
R4, 18 66172 |enbag jeuld
- L9 LG9V £ee 6661 2101anD NIS
o 0S'L¥29 0S 6672 sLiopBury 21001paN
= |
= 5‘\ L3¢ 66'1¢C 953210 JO PHOM
y— . ,
= S0} [€8G/9 691 66'6S SULIBAJOM BU) MO
W
@nu 10°8G6. 66 | 66°6% 'solg o)|eiuebuey
£/°1106 GOP 1 L22 POV i 18ysnID) Weal(
a soseyoind |njsSsanong Jo JUnon A 5UeU JoNpoId
—
m.- ——ma —ema anan
3 801id JO WNG i S ""$8800NG JO WNOY SWeu 1oNpold
6-..., i} il it
J SaNfeA uwnod (0t T\\i Smoy H1dg
= cov1—>
—

SW IV

- - N “npoid 0| IseyBIH & N

suwno) uds | Loy |—7

S19}]14

=] UOIIBIUBWINDO(T

aold AQ awel onpoad 4 1Iseybiy

olelFle)(aedue) (e 000720615 £1/23/6 010/00) a0 996

00% |

A SoseyoINd |NsssooNg m “_.O>_& >>®_/_ @

U.S. Patent

A BLIOG avabiedisd oz

US 10,685,279 B2

¢ O 0 0 0 G 0 0 ¥ O 0 0 9 MIIA

G G 0 G 0 G 0 0 0 ¢ 0 0 | Stk

T G 0 0 G 0 ¢ 0 O ¥ G 0 0 T SHRI0S]D

m G G 0 G 0 G 0 0 ¥ G 0 0 S payae

- G 0 0 0 0 Q 0 0 0 G 0 0 g1 A APIYINRM

m G 0 0 G 0 G G 0 ¥ G 0 0 é jossacidbule)

‘_nlh G 0 0 G 0 0 0 0 0 G 0 0 A FBIUAMIOYSBUD

lnﬂ_w CLB 9£9¢1 LB.LE) Y086 P1EH epie Yoz lo GLB Gi6 818l CLB | 0 SOHION

2 0 O 0 0 0 G 0 0 TLYT sbiesrasusol

0 0 0 0 0 0 0 0 1 BriuoDxepul

0 G 0 0 0 G 0 0 & UOIADSI{]

m 0 G 0 0 0 G 0 0 c9% SEOQIDAIDSIEGDR]

m 0 O 0 0 0 0 {) 0) P labeueAlopalcleseaeie(

& 0 0 0 0 o 0 0 0 y JOAOINING

J & wlaLodwico
=
-

weuodhuos i

- N 0 USAT O JUNOD

S3Ne A LLINIOND smMoy IS

- ﬂ sy iy
Z] UONBILSLUNDO SULLN|OD oS 51814
L T ¢ I DOUDIELL SUDAS POO'GLL'L JO POOOLLYY

00G1 . o

JOAld MSN B |

U.S. Patent

1030 JUsAZ Jo JUNOG

000°GE 00008 000'6Z 00002 Q0061 Q0001 000°G 0
| SN0 Mo
| |] ovonweis
A ! “a 1ouonesun| puabien
BICIRIODSD _

A by | uomsod pusbe

-

US 10,685,279 B2

v ood [NaLoED |
e wdniyy] A Siayi0 dnoly ! S10|00) XBIN
spuosas yselans [
n._nl."‘. 18npayasyIEss 9|1 4PSYIIEM, E N
Acusunsucayaless {7 ® PIol]
A elep yoless suijeal 7]
o ananb [;08s900.40u1R 10109
‘_nl_,u ounedd]
L Indniuy edAeoines sed] =
¥’ Inanyy xapuiad] e
naniyl isoy iad
dew 7]
Janjes-Aojaep [] euonNdo | seael
— suoIpauuea-Aodap] obesosual:T
2 = o o] v
o fijuanxepu|
.
= UOSI)
n__. A 18I0 Wwaag Jjounon # | pigld
.m OO@ _. asouapIasiEdale

IR Jeg) SIXy-A

sbruepAlopasasearle((81861) 810y-X

JOROININONG

VT ¢ m Il POLDIBLL SIUOAR POS'ZIES 10 P0G ZLES

10Ald MoN @)

U.S. Patent

US 10,685,279 B2

Sheet 22 of 35

Jun. 16, 2020

001

U.S. Patent

0082

0092 00t 0022

L1 Dl

0002 0081 009°1

001

ploipue-g|igow-en [}
suoydi-s|igow-en [}

pedi-s|igow-en [

Alagpioeig-angow-ern [

podi-angow-en [}

vy T ¢ m I

A UOlBISY esin) | ATUsY oreg|

HETE]S)

0P

0GP
004
=
@
R
©
e
®
0ss E
©
&y
o
o
@
<
009 ”
A P8I0 WA o unod # | pleld
059
ruondo 1 anjea xep
obuey s i

(INd CD08S:61:9 $1/9¢/6 ©10)a0) SJUDAS 012 I8 A

10Ald MoN 11

US 10,685,279 B2

Sheet 23 of 35

Jun. 16, 2020

U.S. Patent

Vgl Ol

Puipoday ® yoseas

vosit- e

¢ goM

pazuobsaieoun

B|S8]

o sinoes | PoINIONAS
pdoyp welsAg BuneladQ |

UOHMS ™ 00810 A1UNO8S B YIOMIBN

SNOBUEB||BISIN

IBIN0J 00SIO

w3

uoiieolddy

BSe 00Si0

18008N|Q

\

~ ©0dA] 80In0S 108198

SpleogUseQ SuSY SINsler-1E Slasele(] JOIROg

008 F\A

US 10,685,279 B2

Sheet 24 of 35

Jun. 16, 2020

U.S. Patent

dgl Ol

puinoday ¥ yosess

E

10)08dSsuU| SNIBA

g-utalied

H908 |
pIe dO-T-NI% ¥ 887227247 §2:20:00 ¥Z Lhe

9081}
J-uislied
P& TUMOQ-M-INITI% V867227 74T 1120100 vZ Lhi

49081
9-uialied
butpJaemod sni1eis d4iS TT® SALVISINOd-M-dIS% ¥ 04722 24T 1S:20°00 +vZ (e
908 | g-uJolied
=000 ¥ Lhi
19081} 7181 UOHIRLIXT PPV p-uselEd
burLpaemiod sni1eis 4j§ At oniea siduee b:20°00 ¥Z Lng

O@Ow] FFANI eA O 5

g-uislied
buLp.Jemtod snieils d1§ 100 ¥Z Lh{
d9081| "BNEBA SJJWIBS B LU DIBY B 10BAXA 7-U18])Bd
V9081 ¢1e AA-T-ANTW ¥ L7722 7241 v2:¢0:00 ¥¢ Lhi
spietd O cl8l J-uislied
SPIBI POIVEIXS SSEI00IJ UOTIDBITXT MEIA O _.m | PUNO4 suiglied 1uaAg anbiun |

A SIIBAD Q00" L aiduieg

|81e0[e :10J0BIIXT ploi-

SPIBOCLSE(SLolY Sele-1E slesele(oIBag

008 F\A

US 10,685,279 B2

Sheet 25 of 35

Jun. 16, 2020

U.S. Patent

9181

o8l Ol

[ct]eusNmeusen

11e puUMO(-M-3INI'lp v 0L I 24T 9¥-054-8C

<

LhE

burpiemdo snieils 415 €19 JSNLVISIHOd-M-dISH ¥ 80T 22 24T S6:667E7

dN-T-MNITW v 92 72 2T 9T:00:00

vio JUMO(-M-OINIIK ¥'88 JI7 24T TZ-TO-C0

gLe

X4

v

Ve

Lni

LD

LnE

0Z® (T LT SETG-00

0@ JUMOQ-M-3INTIE ¥ vOL 22 2417 BETG:-00

ce YAA-TI-INIME ¥°9£°22°ZLT T¥:T0:00

84

ve

|44

LN

LnE

LN

c1o [UMGG-MINT 1 v88°72° 24T £¥:T0:00

butpJdemaod snieis dIS 1072 JSNLYISLIYOd-M-dISk ¥ ¥0T 22 24T ¥S:T0:00

Lo AN-1-ANLMpe ¥ 27277 €41 £0-40-00

/84

vZ

|24

LN

LnE

R

cZo JAN-I-JNIK v°28°22°2ZT S8T:20:00
P QdN-T-3INIT V' 88°Z2°ZZT SZ:720:00
o PUMOQ-M-INIW v 86722 24T TV:Z0:00

SNIVISIHOd-M-dlSk ¥ 02 22 24T 15:20:00

£ JUMO(-M-JINI'Ip ¥ 9L 70 24T $5:20-00

buLpJemiod sn1e1s 41S TI®°

i e o

DULpJEMIO] SNIELS 41S 1§D

pprepieh

SNIVISIYOd-M-d1SK ¥ 8922 24T £5:20:00
BuLpJaemiod snieils diS ve |SNIVISI¥0d-M-d1lSkK v 86 72 2ZZT SO'£0:00

£l QAN-I-JNIg v 2 07 4T #2-:£0:00

= = sinjuishily

44

124

&4

124

124

&4

(24

144

LnE

L0

Lnf

LPE

LnE

Ln{

P

LnE

928 1 ~Cars ooy)|

SIDIOBIEYD §

17431

© SIBIOBIBYD
sooeds Z DUB 1 181DBIEYD
1ABIRUD AUR

: S1810BIBLD A

“QPNoUl JOU pUB Je pug ¢

_ 9y MON BPY _

SIBLOBIBYD §

ek " el el el el e el I el Il el Il el I Il Il el ek ek Il el el e el ok

bkl el e e il B e

18108180 AuB

cc8i

kel il 'l e il

- PUEB SJBI0BIBUD DIOM

L 1080X8 1910RIBLO AUR A

el ekl el e s

I0RNXT 2

_ By MON PRY _

Yo

L LT S —— T PTT R TFTEFITFITIT LY

18108180 AuR

k"™l 3l e Il el e 'l el el il el ks

SI0IOBIBUD Q7

oL "l SIBIORIBYD

Wkl 7 el el e e e I B e Bl

o, B PUR S80RAS § A

Wl il bl W

“JoyE UBIS)

b’ B

US 10,685,279 B2

Sheet 26 of 35

Jun. 16, 2020

U.S. Patent

d8l Dl

E

TR NI ¥
ﬂb\n_._,,, mt_“ .ﬂu/ﬁ fﬁ% /ﬁ /..wh_"/ﬁ /,_0*{.__. _f.n:_.. mﬁi
081~ | xoBoy

suolissaldxy 1einbay poleisusn

g-uisyed

pTo dn-I-INIK v°88°22 24T §2:20:00 ¥Z Lhe
L-uislied

Lo

UMO(]-M-HNI I ¥ 8674 LT 1v-20-00 v Lhi
g-uielied

buLpJe

UOLIELXT PPY

b v 04722 2LT 1S:20:00 ¥Z Ihe
G-ulslied

iy i il

b enepeicwes Ik V0L 227 24T $5:20:00 ¥Z Lng

ASeE!
p-Lislied
_ lopooe _ SWeN pleld

buLp. W ¥°89°77°24T 2S:20:00 vZ Lpf
JoP8 1L bunsix3 ol ppy c-uislied

buLpJsemiod snlels s - M- (v Q677" S0 n

- ALY LS LHOd-M-d LS —— dev8l Lp 5 d1S P JSAIVISII0d-M-d1Sk v 86 72 ZLT S0:£0:00 +Z Lhi
%t SE UMOG-M-MNIT Vor8i 7GR | Z-uIdlied

%G V€ An-1-XINI Bs odA]
= 0G8 L e1e {dn-I1-INTW v 272" 2/T ¥2:€0:00 vZ Nh(
SONIEA ¢ speld L L-tiatied
0E81
,mouown_wm_ SNEA SPISl4 PRIUENXS SSBID0IT UOTDBIIXT FBTA PUNO4 SWaned JWeag enbiun zZ¢
(o) (om0) /S1EO[E 10}0BIXT PIdI

mc_toﬁ._mE X Uaiesys spIROGUSEq suolY suoday SlosRE(] LIRS

008 F\A

US 10,685,279 B2

Sheet 27 of 35

Jun. 16, 2020

U.S. Patent

481 Ol

Jev8L

dcv8l
AR S
RASEI 14 2]

%G Ve

puinoday ¥ yoesy

ﬁg.ﬁx,ﬂ.‘??&au&

oy " O 4 : : %
. s Y47 . 7 { & i LN AR

- 08 1<adAl>, 88 1OM-IFHNINYe -

069 UAA0-M-HNETY

0@ <adh%

029 1ON-1-MNI%

" BLIPIBMIC SNIBIE o | S ()52 1 <Q0A}>%, Buiplemic. snBJS o 1S 1029 'SNIVISLHOd-M-diS% n
n BUipIEMIO] SNIZIS 1S 113 1 <adAl»9, Buipieasog sniels 41S 99 'SNLVIS1H0d-M-d1S% —
- ——— AR P R L - ‘

£10 1UMOG-M-3INIT2% n

— C 10 1 COUATS U, mams—— e eeeeeereeeteemmeems et - -
N €19 0N1-MNIMT% n

E’i‘i vrajy, 5

- DuipIemia-] sniRls |15 18 1<adAl>Y, SIUOAD €/ Buipieaiod smels 419 189 'SMAVISIHOd-M-d1S% -

£8 :<adAl>%, «— £8 1UMOG-M-MNIT%

&9 L UMOCH-M- NI %

£2 AN YN %

HE so|olled Aejdsiq 7081 odf1 [£] spieid 10088

X SUOIIOBIIXT U0 pasey sbisiy suised

g-uisled

"T72LT §T:T000 ¥ LNC
[-uisled

(LT 1v-40-00 v Lht
9-uielied

(LT T18:-¢6-00 v Lht
G-Lia11Bd

l

(¢ LT ¥5-20:-00 v¢ LnL

0908} trusened

LT 25:20-00 vZ LhE

d908 1 g-uIBliEd
19081

¢ LT S0-£0:00 ¥Z2 0L
Vo0g) Fuensd

22°2LT ¥ZIE0:00 ¥Z 0L
L-uioped

no4 swialied Weaag snbiun z¢

~ SHIBAS Q00" L oiduies

110)0BJIXT P|oI-

oy s1eseIR(] yoieeg

008 F\A

US 10,685,279 B2

Sheet 28 of 35

Jun. 16, 2020

U.S. Patent

181 Ol

%80 Gi
Yol | 6
%l 2 G
%9'C ¢
Yol & 81
%6'C L1
%l Ly
YotV vl
Yl'G b
Y064 LS
%99 N
Yot L 14
%48 o
Y& 0L 0¢
%9Cl e
%128)

SONEA 41

J0)08dsul anjeA

9981

puinoday ¥ yosess

E

suoissaldxg 1einbay paleisusr

d0981

9681

0e8i

odA)

SPield &

SPIRI4 PRIVEIXS

/

V0981

buLpaemiod smels dis P SNLVISIH0d-M-dLS% ¥' 86772 ZLT SO:€0:00 +vZ LN

¢c-Uislied

[E5p :an-1-wi7% v- 2722 241 v2:€0:00 ¥2 L0C

SPIROGUSEQ

~LLi2lled

pPUNO4 Suieled eAg anbiun ¢

A SIIBAS Q00" L aiduwies

|I81e0|e :10J0BIIXT ploi-

sSUolY

suodaY

S1esBlE(]

UDIBog

008 F\A

Dl

US 10,685,279 B2

%80 Buipiemiog snieis 4 13 1088 (<edAl>3y, - Buiplemio, sniels 4 1S 1029 'SNAVISLIHOd-M-d18% -
%l L
%C m Omwm _. Buipiemiod SNEIS 418 <op0o>s (<adA>9 Suipremiog snieis 41 igjo r<sdhy, | | Buipiemio] SNIEIS 1S 19 SMUVIS IHOJd-M-d1S%
%9°C
Y%l C
Ve DuipIemio-] SNIRIS 1S £6 1<adAl>Y, - Buipiesmio] snigis d 16 (29 [SNIVLISLIHOd-M-d18% -
e %6'C
Cop %l v
M % b <adA>Y, - 88 10N MNI%
) %l'G
e Ea—— — 022 (UMCT-M-MNIT%
% SIUBAS 9O |
= <BP008>8 (<BdAI>Y, «— 0z (<adAl>o, 0co _
s 9, %E L 028 ON-1-MNFT%
%GB (Oww 1 | | ,
nONa>a (<adAl>ey,
Y%l O} ”
m o £10 1UMOg-M-MNI%
— %9°C I | 016 1 <a0AL
M %122
~ €12 1ON-1-MNE1% -
[2%
\&
o £8 [UMOT-M-MNF%
n.__. £8 1<GUAI» Y] frrerrammemremmm— ,
—
440 | NO |sepnied Aeidsig vo8 1 opoos [7] odki [F] sped 1pores
X SUOIIORIIXA U0 paseg abisy suioled
@C_ﬁ] OQ@E 0 U Bos oo N roverorarr oo

008 F\A

U.S. Patent

US 10,685,279 B2

Sheet 30 of 35

Jun. 16, 2020

U.S. Patent

61 Ol

SHALSMNTO 40 135 ANOD4S dHL

| 40 d31S5M10 ANOOFS V LNISdHd

S31Md NOILOVHLXd 40

135S dH1L OL d13I4d V 04 —900¢ SAILIHVTINIS AaNINYE31L3A 3HL NO
31Nd NOILOVHLX3 NV daVv d3svd SH3I1ISNT1D 40 13S ANOD3S
vV O1INI SINIAT FHL dNOHD

S1NdAd ONIANOdSIHdOO
HLIM NOILVIOOSSY ¥00c 1M NOILOVHLXA
NI SHA1SMNTO LNISddd dH1 NO d4s5vd S1INdAd 40 ViVQd
IN3JAD NI SAILIHVTINIS ANING313d

Sdidld 40 1345V

HLIM d3LVIOOSSY S31nY 5007 d345M V NO4d4
NOILOVHLIXT 40 13S VY NO 31NYH NOILOVYH1X3 NV JAIFD3H

d4sSvd SINdAI HALSN 1O

SH415M10 40 145 1544
V INOH4 d415M10 LSHId V INJdS3Hd

Olo}

800 |

906 |

706 |

¢06}

US 10,685,279 B2

Sheet 31 of 35

Jun. 16, 2020

U.S. Patent

57| d4ANdNINOD Y
NOILOVHLXE d14l4
02 12— dANIVHL
NOILOVHLXd d1did
9112

1O0L NOILOVHLX4 a4l

IHOLS
V.1V
— 21 17 ~ H3X3ANI
P12

0Llg~| V.Lva IOHNOS

WA1LSAS ONISSI00Hd-LNIAT

¢ Ol

40IAdd

INAITO
400 %%

304dN0OS
v 1 V(901¢

001L¢c

0022 ¢C¢ Dl

(+P\-\HPAOPOOIUSAT > d ¢,)\ UN\v v
Z W9lled 1UBAg

(+P\-HPASOPODILUBAT > ¢ -\ U\]y
| LIS 1UBAT

SUOISSaIdXT Jenbay paleiauan)

SBA IV MOUG

i eENT:EN
Ua3a(] S8 A#iMHHHHLQM&Lms Hmeﬁv LTS TT°@L PUe 11°'9¢° 1181 Us=smMi(
(£09va56%0 =1dS) VS SSIDDR IJ0WAJ punogino uy :33sdl Jeecce9-9lvsvy

7 ¥ uislied luend

'SIUBAD |0 1S1] LOJ] A[BNUBLL SP[e1] JOB)XD
802¢ JO SUCIEDUSLLILLIOOD) 3]0 |IBAR MOINSH

PS10EIIX] PS4 ON S| 9I8Y 1

US 10,685,279 B2

SIULPA ||y MOUG

SNId dJi
7E6 S@3AQ €PI0O:Q UCTIBUND £PP8/TS TEZ SST GT:@pISUI 03} BZTIL/FP 69 @ET T
:9pTSING JOF 97P8TS UOTIIBUUOCD dD]1 UMOPJED] :WTOBTeE -9lVSVY%
g £ wsljed usag
T Yol LLLEEL-P
e %1 0/082.-¥ SHERI IV MOES
o o SP|gid palieiiXy IITADD VN B pPUTY3q
S Tl SrEcle-v 10N ST pus STYL 9ITASP LVYN B PUTYD] ST pus 330WsY :SNIRIS UOTIOBIR(G LVN
MU-J % | O0LES) b LO490IN0S SB L9G] 10BAXT DTIRWOINY Q7 9 TT 0T = dI ‘punoqinoy>s) auwdy = dnoud NZLTETL-9FVSYY%
LISEd JUSA
,_nl_w Y%l LO0SSL-9 dlisa(SE @'l ' ©dl O W0riixy /e HEd E
W o - 072 Lbe
= Yo b 610202-9 d190IN0G s 2802 L g 821 10BIIXT SIUBAT] IV MOUS
S ﬂ\“w_. _.Q_.mmw.m‘;@ @EON.._M@Q s5e m,q._n__mr__ wum.;xw EEQ—D —.._LDH, —.._meﬁ_ mmwﬁ ._”mw__.m_..»_\wum. Nm_N
A 20062 /-9 SUC7S2IN0S SB apISING JoBIIXT S9IAQ 7R:1G9P:Q UOTIeJnp €bP8/8T ¥ZT E€ZT @T:SpISUl 0} 1991/28°8¢¢ ' 1vT 8T1
o LONOBULOM 5. 1B AX +OPLSING G0 PEHLLS UOLJISUUOD g UMODUED] JGPLECELE -9FVSYE
7o b Q01LEEL-9 (UG O5ePERLLS = 7 | wIsned oA
o Y%l 10082./-9 1000104 S8 D1 10BIIXS e
S %I P10Z06-0 oposiueng se piogoc-oeixg | (4 Aouenbeig)iAg os PUNO- SUIBE A3 Bnbiun 95
) k
rD._, SANEeA || Iy 1800y apUSLWILLIODaH SUDNOY g1 - SUOIEPUBLILIOIS] SSI 10
St 1013808U| anpep 0ce SUCIEPUBSLULLIOI O ‘awieu & 1 Bub pue 818N B Ul Blep Buiios|as AQ ‘AjlenuBwl SPISl 10B41XS UBD NOA
-
.m JEYIEEN o @ONN suonepualiwocay (gL a Ble(painpnisun | SIUSA2 000) 9dwes
Nd $0:91:8 18 9102/6/2 s1epdn 1587 %0 rebpapouy ele C SPIPI PRIDRIX £9/°06 SW8AZ]
AHVYININNS VIV
g BUMO SUOISSIULSY JoIeas UORBIICGGY UILIPY 8umO
SONLLLIS

'BlEp 8yl 8J0j0xa JaypnN] 10 SI18i8WRIRG Y} SU)as Ol 4OIBSS JO JOAId W ods) sy} uasd("Lods)
SU1 MBIA 0] SLIBU SUL MONYY “SIUSAS JO/RUE SOIISIIBLIS ‘SUDNBZIENSIA SPNOUI LB puE $aYyd1eas aibuls uo paseq ale suoday

[eso0] [Leres] sieled oPH # [|[eMadl) ZAX

IEMBIl ZAX < 10I0BIIXT P8l < Spjol-

a oy a ApAoy a sbuijes a sslessop @ A |OJAISIVILIPY a Buipodey % yosees

U.S. Patent

US 10,685,279 B2

Sheet 33 of 35

Jun. 16, 2020

U.S. Patent

00€C

NARDI

NOILVANHNINOOHd NOLLOV d.LXH
ATdIA V SV LXHL H'TdVIdVA AIHILLNAdI HHL HAdIAOdd

SONIALS d4LOVAVHD dHL
NIHLIM LXAL A TdVIdVA AdLLNAdAI OL XJOMLAN "TVH(1HdN
ASAHAHA HHL ANV AJdOMLAN "TVI[IAN A4V IO4d dHL dS[]

AdALOVIVHO
LXAN V DNLLOIAHdd ANV HAILL V LV d41LOVIVHD
ANO SONIALS dHLOVAVHO HHL HO SdALOVIVHD
DONINIVLHO Ad AJOMLAN "TVHIAN ASHHJAHI V NIV d.L

dALOVIVHD
LXAN V DNILLOIAdHddd ANV HAILL V LV d4LOVAVHO
ANO SONIELS dHLOVIVHD HHL 4O SHALOVAVHO
ONINIVLHO Ad JJOMLAN "IVAIAN ddVMAMd04d V NIV dL

SONIYLS

dHLOVAVHO DNIAVH VLVA DNINIVIL HO L4S V NIV.LHdO

0lEC

80¢E¢

90¢t¢

14010

¢c0EcC

US 10,685,279 B2

Sheet 34 of 35

Jun. 16, 2020

U.S. Patent

Ve Ol

00%cC

HNIVA A'THIA V SV LXHL

A TdVIAVA HHL LOVALXH OL A'1[1d NOILLOVALXH HH.L A4S

HAHN'IVAd'THIA V
SV LXHALATIVIAVA HH.L LOVILXH OL d'1[1d NOLLOV A LXHd
NV LONILSNOD ‘NOLLDATAS ¥dSN dHL NO ddSvd

NOLLVUNHWNINODHY
NOLLOVALXH A TdId V 40 NOLLOATAS ddS[1 V HAIHdOHd

NOLLVAUNAWNOOHdd NOLLOVALXA A'THI4d V §V

LAdLOO Y04 LXAL ATIVIIVA QAIALLNAAI 9HL AdIAO¥d |

SLNHAH A0 LS AHL WO dd H[1I'IVA

ATAIH V SV LOVILXH OL LXHAL A TdVIdVA AALLNAAI
OL AJOMLAN TV ATAN ANOODHS V 481 ANV HONHIdd4Hd

SINAAH AO LHS HHL WO¥A H1'IVA

ATHIA V SV LOVALXA OL LXHL A TdVIIVA AALLNAAI
OL AJOMLAN "IVAIAN LSdId V AS(1 ANV HONHdHAHd

SLNHAH 40O LdS V NIV.LHO

vIve

clve

Olve

80V ¢

90¥¢

148124

cOvc

US 10,685,279 B2

Sheet 35 of 35

Jun. 16, 2020

U.S. Patent

00S&¢C

0152
22Ge
A1ddNS H3IMOd 9167
(S)ININOJINOD
NOILV1IN3ISIHd
0252
SININOdNOD O/
v 1Ge
(S)HOSSIDOHd
81Ge
(S)1H0Od O/
2162

AJONEN

US 10,685,279 B2

1

AUTOMATICALLY GENERATING FIELD
EXTRACTION RECOMMENDATIONS

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation-in-part of U.S. appli-
cation Ser. No. 15/276,693, filed on Sep. 26, 2016, and titled
“Clustering Events Based on Extraction Rules,” and which
1s 1incorporated herein in its entirety.

BACKGROUND

Modern data centers often include thousands of hosts that

operate collectively to service requests from even larger
numbers of remote clients. During operation, components of
these data centers can produce significant volumes of
machine-generated data. In order to reduce the size of the
data, 1t 1s typically pre-processed before it 1s stored. In some
instances, the pre-processing includes extracting and storing
some of the data, but discarding the remainder of the data.
Although this may save storage space in the short term, it
can be undesirable 1n the long term. For example, 1 the
discarded data 1s later determined to be of use, it may no
longer be available.

In some instances, techniques have been developed to
apply mimimal processing to the data i an attempt to
preserve more of the data for later use. For example, the data
may be maintained 1 a relatively unstructured form to
reduce the loss of relevant data. Unfortunately, the unstruc-
tured nature of much of this data has made 1t challenging to
perform indexing and searching operations because of the
difficulty of applying semantic meaning to unstructured
data. As the number of hosts and clients associated with a
data center continues to grow, processing large volumes of
machine-generated data 1n an intelligent manner and etlec-
tively presenting the results of such processing continues to
be a priority. Moreover, identifying fields to extract from the
data can be diflicult and time consuming for a user. For
example, a user may manually select the various fields of
interest for extraction. In some cases, the user may not be
familiar with the data making selection of fields diflicult.

Additionally or alternatively, selection of each such field for
extraction can be tedious.

SUMMARY

Embodiments of the present mvention are directed to
facilitating field extraction recommendations. In various
implementations, a set of events are obtained. Each event 1n
the set of events can be a time-stamped portion of raw
machine data, the raw machine data produced by one or
more components within an information technology or secu-
rity environment and reflects activity within the information
technology or security environment. Thereatter, a first neural
network 1s used to automatically identily variable text to
extract as a field from the set of events. An 1ndication of the
variable text 1s provided as a field extraction recommenda-
tion, for example, to a user device for presentation to a user.

This summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the detailed description. This summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s it intended to be used 1n
1solation as an aid 1n determining the scope of the claimed
subject matter.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

Implementations of the present disclosure are described 1n
detail below with reference to the attached drawing figures,
wherein:

FIG. 1 illustrates a networked computer environment 1n
which an embodiment may be implemented;

FIG. 2 illustrates a block diagram of an example data
intake and query system in which an embodiment may be
implemented;

FIG. 3 1s a flow diagram that illustrates how indexers
process, index, and store data received from forwarders in
accordance with the disclosed embodiments:

FIG. 4 15 a flow diagram that illustrates how a search head
and indexers perform a search query 1n accordance with the
disclosed embodiments;

FIG. 5 1llustrates a scenario where a common customer 1D
1s found among log data received from three disparate
sources 1n accordance with the disclosed embodiments;

FIG. 6 A illustrates a search screen 1n accordance with the
disclosed embodiments;

FIG. 6B 1llustrates a data summary dialog that enables a
user to select various data sources i1n accordance with the
disclosed embodiments:

FIGS. 7TA-TD illustrate a series of user interface screens
for an example data model-driven report generation inter-
face 1n accordance with the disclosed embodiments;

FIG. 8 illustrates an example search query received from
a client and executed by search peers 1n accordance with the
disclosed embodiments;

FIG. 9A illustrates a key indicators view 1n accordance
with the disclosed embodiments;

FIG. 9B illustrates an incident review dashboard in accor-
dance with the disclosed embodiments;

FIG. 9C 1illustrates a proactive monitoring tree in accor-
dance with the disclosed embodiments;

FIG. 9D 1llustrates a user interface screen displaying both
log data and performance data in accordance with the
disclosed embodiments;

FIG. 10 illustrates a block diagram of an example cloud-
based data intake and query system 1n which an embodiment
may be implemented;

FIG. 11 illustrates a block diagram of an example data
intake and query system that performs searches across
external data systems in accordance with the disclosed
embodiments;

FIGS. 12-14 illustrate a series of user interface screens for
an example data model-driven report generation interface 1n
accordance with the disclosed embodiments:

FIGS. 15-17 illustrate example visualizations generated
by a reporting application 1n accordance with the disclosed
embodiments;

FIG. 18A illustrates an example of a field generation
interface 1 accordance with the disclosed embodiments.

FIG. 18B illustrates an example of a field generation
interface 1 accordance with the disclosed embodiments.

FIG. 18C illustrates an example of a field generation
interface 1n accordance with the disclosed embodiments.

FIG. 18D illustrates an example of a field generation
interface 1n accordance with the disclosed embodiments.

FIG. 18E illustrates an example of a field generation
interface in accordance with the disclosed embodiments.

FIG. 18F 1illustrates an example of a field generation
interface in accordance with the disclosed embodiments.

FIG. 18G illustrates an example of a field generation
interface 1 accordance with the disclosed embodiments.

US 10,685,279 B2

3

FIG. 19 presents a flowchart illustrating a method in
accordance with the disclosed embodiments.

FIG. 20 presents a flowchart illustrating a method in
accordance with the disclosed embodiments.

FI1G. 21 presents depicts a block diagram of an 1llustrative
data processing environment in accordance with various
embodiments of the present disclosure.

FIG. 22 illustrates an exemplary user interface showing
field extraction recommendations, 1n accordance with
embodiments of the present invention.

FIG. 23 15 a flow diagram depicting an 1llustrative method
of facilitating field extraction recommendations, according
to embodiments of the present invention.

FIG. 24 1s a flow diagram depicting another method of
tacilitating field extraction recommendations, according to
embodiments of the present invention.

FIG. 25 1s a block diagram of an example computing
device 1n which embodiments of the present disclosure may
be employed.

DETAILED DESCRIPTION

Embodiments are described herein according to the fol-
lowing outline:
1.0. General Overview
2.0. Operating Environment
2.1. Host Devices
2.2. Client Devices
2.3. Client Device Applications
2.4. Data Server System
2.5. Data Ingestion
2.5.1. Input
2.5.2. Parsing
2.5.3. Indexing
2.6. Query Processing
2.7. Field E

Extraction
2.8. Example Search Screen
2.9. Data Modelling
2.10. Acceleration Techniques
2.10.1. Aggregation Technique
2.10.2. Keyword Index
2.10.3. High Performance Analytics Store
2.10.4. Accelerating Report Generation
11. Secunity Features
12. Data Center Monitoring
13. Cloud-Based System Overview
14. Searching Externally Archived Data
2.14.1. ERP Process Features
2.15. I'T Service Monitoring
3.0. Event Clustering
3.1. Event Clustering based on Extraction Rules
3.2. Types of Extraction Rules Applied to Clustering,
3.3. Interactive Field Generator
3.4 Additional Implementations
4.0 Overview of Field Extraction Recommendations
4.1 Overview of a Field Extraction Tool 1n a Data
Processing Environment
4.2 Illustrative Field Extraction Recommendation
operations
4.3 Illustrative Hardware System
1.0. General Overview
Modern data centers and other computing environments
can comprise anywhere from a few host computer systems
to thousands of systems configured to process data, service
requests from remote clients, and perform numerous other
computational tasks. During operation, various components

within these computing environments often generate signifi-

M DO DO DD

10

15

20

25

30

35

40

45

50

55

60

65

4

cant volumes of machine-generated data. For example,
machine data 1s generated by various components in the
information technology (IT) environments, such as servers,
sensors, routers, mobile devices, Internet of Things (IoT)
devices, etc. Machine-generated data can include system
logs, network packet data, sensor data, application program
data, error logs, stack traces, system performance data, etc.
In general, machine-generated data can also 1include perfor-
mance data, diagnostic information, and many other types of
data that can be analyzed to diagnose performance problems,
monitor user interactions, and to derive other insights.

A number of tools are available to analyze machine data,
that 1s, machine-generated data. In order to reduce the size
of the potentially vast amount of machine data that may be
generated, many of these tools typically pre-process the data
based on anticipated data-analysis needs. For example,
pre-specified data items may be extracted from the machine
data and stored 1n a database to facilitate eflicient retrieval
and analysis of those data items at search time. However, the
rest of the machine data typically 1s not saved and discarded
during pre-processing. As storage capacity becomes pro-
gressively cheaper and more plentitul, there are fewer incen-
tives to discard these portions of machine data and many
reasons to retain more of the data.

This plentiful storage capacity 1s presently making it
feasible to store massive quantities of mimimally processed
machine data for later retrieval and analysis. In general,
storing minimally processed machine data and performing
analysis operations at search time can provide greater flex-
ibility because i1t enables an analyst to search all of the
machine data, instead of searching only a pre-specified set of
data i1tems. This may enable an analyst to mvestigate dii-
ferent aspects of the machine data that previously were
unavailable for analysis.

However, analyzing and searching massive quantities of
machine data presents a number of challenges. For example,
a data center, servers, or network appliances may generate
many different types and formats of machine data (e.g.,
system logs, network packet data (e.g., wire data, etc.),
sensor data, application program data, error logs, stack
traces, system performance data, operating system data,
virtualization data, etc.) from thousands of diflerent com-
ponents, which can collectively be very time-consuming to
analyze. In another example, mobile devices may generate
large amounts of information relating to data accesses,
application performance, operating system performance,
network performance, etc. There can be millions of mobile
devices that report these types of information.

These challenges can be addressed by using an event-
based data intake and query system, such as the SPLUNK®
ENTERPRISE system developed by Splunk Inc. of San
Francisco, Calif. The SPLUNK® ENTERPRISE system 1s
the leading platform for providing real-time operational
intelligence that enables organizations to collect, index, and
search machine-generated data from various websites, appli-
cations, servers, networks, and mobile devices that power
their businesses. The SPLUNK® ENTERPRISE system 1s
particularly useful for analyzing data which 1s commonly
found 1n system log files, network data, and other data input
sources. Although many of the techniques described herein
are explaimned with reference to a data intake and query
system similar to the SPLUNK® ENTERPRISE system,
these techniques are also applicable to other types of data
systems.

In the SPLUNK® ENTERPRISE system, machine-gen-
erated data are collected and stored as “events”. An event
comprises a portion of the machine-generated data and 1s

US 10,685,279 B2

S

associated with a specific point 1n time. For example, events
may be derived from “time series data,” where the time
series data comprises a sequence of data points (e.g., per-
formance measurements from a computer system, etc.) that
are associated with successive points 1 time. In general,
cach event can be associated with a timestamp that 1s derived
from the raw data in the event, determined through inter-
polation between temporally proximate events having
known timestamps, or determined based on other configu-
rable rules for associating timestamps with events, etc.

In some 1nstances, machine data can have a predefined
format, where data items with specific data formats are
stored at predefined locations 1n the data. For example, the
machine data may include data stored as fields in a database
table. In other instances, machine data may not have a
predefined format, that 1s, the data 1s not at fixed, predefined
locations, but the data does have repeatable patterns and 1s
not random. This means that some machine data can com-
prise various data items of different data types and that may
be stored at diflerent locations within the data. For example,
when the data source 1s an operating system log, an event
can include one or more lines from the operating system log
containing raw data that includes different types of perfor-
mance and diagnostic information associated with a specific
point 1n time.

Examples of components which may generate machine
data from which events can be derived include, but are not
limited to, web servers, application servers, databases, fire-
walls, routers, operating systems, and software applications
that execute on computer systems, mobile devices, sensors,
Internet of Things (Io'T) devices, etc. The data generated by
such data sources can include, for example and without
limitation, server log files, activity log files, configuration
files, messages, network packet data, performance measure-
ments, sensor measurements, €1c.

The SPLUNK® ENTERPRISE system uses flexible
schema to specily how to extract information from the event
data. A flexible schema may be developed and redefined as
needed. Note that a flexible schema may be applied to event
data “on the fly,” when it 1s needed (e.g., at search time,
index time, ingestion time, etc.). When the schema i1s not
applied to event data until search time 1t may be retferred to
as a “late-binding schema.”

During operation, the SPLUNK® ENTERPRISE system
starts with raw input data (e.g., one or more system logs,
streams of network packet data, sensor data, application
program data, error logs, stack traces, system performance
data, etc.). The system divides this raw data into blocks (e.g.,
buckets of data, each associated with a specific time frame,
etc.), and parses the raw data to produce timestamped
events. The system stores the timestamped events 1n a data
store. The system enables users to run queries against the
stored data to, for example, retrieve events that meet criteria
specified 1n a query, such as containing certain keywords or
having specific values in defined fields. As used herein
throughout, data that 1s part of an event 1s referred to as
“event data”. In this context, the term “field” refers to a
location 1n the event data containing one or more values for
a specific data item. As will be described 1n more detail
herein, the fields are defined by extraction rules (e.g., regular
expressions) that derive one or more values from the portion
of raw machine data 1n each event that has a particular field
specified by an extraction rule. The set of values so produced
are semantically-related (such as IP address), even though
the raw machine data 1n each event may be in diflerent
formats (e.g., semantically-related values may be in different
positions 1n the events derived from different sources).

10

15

20

25

30

35

40

45

50

55

60

65

6

As noted above, the SPLUNK® ENTERPRISE system
utilizes a late-binding schema to event data while perform-
ing queries on events. One aspect of a late-binding schema
1s applying “extraction rules” to event data to extract values
for specific fields during search time. More specifically, the
extraction rules for a field can include one or more instruc-
tions that specity how to extract a value for the field from the
event data. An extraction rule can generally include any type
of 1nstruction for extracting values from data 1n events. In
some cases, an extraction rule comprises a regular expres-
sion where a sequence ol characters form a search pattern,
in which case the rule 1s referred to as a “regex rule.” The
system applies the regex rule to the event data to extract
values for associated fields 1n the event data by searching the
event data for the sequence of characters defined 1n the regex
rule.

In the SPLUNK® ENTERPRISE system, a field extractor
may be configured to automatically generate extraction rules
for certain field values in the events when the events are
being created, indexed, or stored, or possibly at a later time.
Alternatively, a user may manually define extraction rules
for fields using a variety of techniques. In contrast to a
conventional schema for a database system, a late-binding
schema 1s not defined at data ingestion time. Instead, the
late-binding schema can be developed on an ongoing basis
until the time a query i1s actually executed. This means that
extraction rules for the fields in a query may be provided 1n
the query 1tself, or may be located during execution of the
query. Hence, as a user learns more about the data in the
cvents, the user can continue to refine the late-binding
schema by adding new fields, deleting fields, or modifying
the field extraction rules for use the next time the schema 1s
used by the system. Because the SPLUNK® ENTERPRISE
system maintains the underlying raw data and uses late-
binding schema for searching the raw data, it enables a user
to continue to 1nvestigate and learn valuable msights about
the raw data.

In some embodiments, a common field name may be used
to reference two or more fields containing equivalent data
items, even though the fields may be associated with dii-
ferent types of events that possibly have different data
formats and different extraction rules. By enabling a com-
mon field name to be used to i1dentity equivalent fields from
different types of events generated by disparate data sources,
the system facilitates use of a “common information model”™
(CIM) across the disparate data sources (further discussed
with respect to FIG. 3).

2.0. Operating Environment

FIG. 1 1llustrates a networked computer system 100 1n
which an embodiment may be implemented. Those skilled in
the art would understand that FIG. 1 represents one example
of a networked computer system and other embodiments
may use different arrangements.

The networked computer system 100 comprises one or
more computing devices. These one or more computing
devices comprise any combination of hardware and software
configured to implement the various logical components
described herein. For example, the one or more computing
devices may include one or more memories that store
instructions for 1mplementing the wvarious components
described herein, one or more hardware processors config-
ured to execute the instructions stored i1n the one or more
memories, and various data repositories 1n the one or more
memories for storing data structures utilized and manipu-
lated by the various components.

In an embodiment, one or more client devices 102 are
coupled to one or more host devices 106 and a data intake

US 10,685,279 B2

7

and query system 108 via one or more networks 104.
Networks 104 broadly represent one or more LANs, WANSs,
cellular networks (e.g., LTE, HSPA, 3G, and other cellular
technologies), and/or networks using any of wired, wireless,
terrestrial microwave, or satellite links, and may include the
public Internet.

2.1. Host Devices

In the illustrated embodiment, a system 100 includes one
or more host devices 106. Host devices 106 may broadly
include any number of computers, virtual machine instances,
and/or data centers that are configured to host or execute one
or more 1stances of host applications 114. In general, a host
device 106 may be involved, directly or indirectly, 1n pro-
cessing requests recerved from client devices 102. Each host
device 106 may comprise, for example, one or more of a
network device, a web server, an application server, a
database server, etc. A collection of host devices 106 may be
configured to implement a network-based service. For
example, a provider ol a network-based service may con-
figure one or more host devices 106 and host applications
114 (e.g., one or more web servers, application servers,
database servers, etc.) to collectively implement the net-
work-based application.

In general, client devices 102 communicate with one or
more host applications 114 to exchange information. The
communication between a client device 102 and a host
application 114 may, for example, be based on the Hypertext
Transter Protocol (HTTP) or any other network protocol.
Content delivered from the host application 114 to a client
device 102 may include, for example, HIML documents,
media content, etc. The communication between a client
device 102 and host application 114 may include sending
various requests and receiving data packets. For example, in
general, a client device 102 or application running on a
client device may mitiate communication with a host appli-
cation 114 by making a request for a specific resource (e.g.,
based on an HT'TP request), and the application server may
respond with the requested content stored in one or more
response packets.

In the 1llustrated embodiment, one or more of host appli-
cations 114 may generate various types ol performance data
during operation, including event logs, network data, sensor
data, and other types of machine-generated data. For
example, a host application 114 comprising a web server
may generate one or more web server logs 1n which details
ol interactions between the web server and any number of
client devices 102 1s recorded. As another example, a host
device 106 comprising a router may generate one or more
router logs that record information related to network trathic
managed by the router. As yet another example, a host
application 114 comprising a database server may generate
one or more logs that record information related to requests
sent from other host applications 114 (e.g., web servers or
application servers) for data managed by the database server.

2.2. Client Devices

Client devices 102 of FIG. 1 represent any computing
device capable of interacting with one or more host devices
106 via a network 104. Examples of client devices 102 may
include, without limitation, smart phones, tablet computers,
handheld computers, wearable devices, laptop computers,
desktop computers, servers, portable media players, gaming
devices, and so forth. In general, a client device 102 can
provide access to different content, for instance, content
provided by one or more host devices 106, etc. Each client
device 102 may comprise one or more client applications
110, described 1n more detail 1n a separate section herein-
aiter.

10

15

20

25

30

35

40

45

50

55

60

65

8

2.3. Chient Device Applications

In an embodiment, each client device 102 may host or
execute one or more client applications 110 that are capable
ol mteracting with one or more host devices 106 via one or
more networks 104. For instance, a client application 110
may be or comprise a web browser that a user may use to
navigate to one or more websites or other resources provided
by one or more host devices 106. As another example, a
client application 110 may comprise a mobile application or
“app.” For example, an operator of a network-based service
hosted by one or more host devices 106 may make available
one or more mobile apps that enable users of client devices
102 to access various resources ol the network-based ser-
vice. As vet another example, client applications 110 may
include background processes that perform various opera-
tions without direct interaction from a user. A client appli-
cation 110 may include a “plug-1n” or “extension” to another
application, such as a web browser plug-in or extension.

In an embodiment, a client application 110 may include a
monitoring component 112. At a high level, the monitoring
component 112 comprises a software component or other
logic that facilitates generating performance data related to
a client device’s operating state, including monitoring net-
work traflic sent and received from the client device and
collecting other device and/or application-specific informa-
tion. Monitoring component 112 may be an integrated
component of a client application 110, a plug-in, an exten-
sion, or any other type of add-on component. Monitoring,
component 112 may also be a stand-alone process.

In one embodiment, a monitoring component 112 may be
created when a client application 110 1s developed, for
example, by an application developer using a software
development kit (SDK). The SDK may include custom
monitoring code that can be incorporated into the code
implementing a client application 110. When the code 1s
converted to an executable application, the custom code
implementing the monitoring functionality can become part
of the application 1tself.

In some cases, an SDK or other code for implementing the
monitoring functionality may be offered by a provider of a
data mtake and query system, such as a system 108. In such
cases, the provider of the system 108 can implement the
custom code so that performance data generated by the
monitoring functionality 1s sent to the system 108 to facili-
tate analysis of the performance data by a developer of the
client application or other users.

In an embodiment, the custom monitoring code may be
incorporated nto the code of a client application 110 1n a
number of different ways, such as the insertion of one or
more lines 1n the client application code that call or other-
wise 1nvoke the monitoring component 112. As such, a
developer of a client application 110 can add one or more
lines of code into the client application 110 to trigger the
monitoring component 112 at desired points during execu-
tion of the application. Code that triggers the monitoring
component may be referred to as a monitor trigger. For
instance, a monitor trigger may be included at or near the
beginning of the executable code of the client application
110 such that the monitoring component 112 1s mitiated or
triggered as the application 1s launched, or included at other
points 1n the code that correspond to various actions of the
client application, such as sending a network request or
displaying a particular interface.

In an embodiment, the monitoring component 112 may
monitor one or more aspects of network traflic sent and/or
received by a client application 110. For example, the
monitoring component 112 may be configured to monitor

US 10,685,279 B2

9

data packets transmitted to and/or from one or more host
applications 114. Incoming and/or outgoing data packets can
be read or examined to identily network data contained
within the packets, for example, and other aspects of data
packets can be analyzed to determine a number of network
performance statistics. Monitoring network traflic may
enable mformation to be gathered particular to the network
performance associated with a client application 110 or set
ol applications.

In an embodiment, network performance data refers to
any type of data that indicates information about the network
and/or network performance. Network performance data
may include, for mstance, a URL requested, a connection
type (e.g., HT'TP, HI'TPS, etc.), a connection start time, a
connection end time, an HT'TP status code, request length,
response length, request headers, response headers, connec-
tion status (e.g., completion, response time(s), failure, etc.),
and the like. Upon obtaining network performance data
indicating performance of the network, the network perfor-
mance data can be transmitted to a data intake and query
system 108 for analysis.

Upon developing a client application 110 that icorpo-
rates a monitoring component 112, the client application 110
can be distributed to client devices 102. Applications gen-
erally can be distributed to client devices 102 1n any manner,
or they can be pre-loaded. In some cases, the application
may be distributed to a client device 102 via an application
marketplace or other application distribution system. For
instance, an application marketplace or other application
distribution system might distribute the application to a
client device based on a request from the client device to
download the application.

Examples of functionality that enables monitoring per-

formance of a client device are described 1 U.S. patent
application Ser. No. 14/524,748, entitled “UTILIZING

PACKET HEADERS TO MONITOR NETWORK TRAF-
FIC IN ASSOCIATION WITH A CLIENT DEVICE”, filed
on 27 Oct. 2014, and which 1s hereby incorporated by
reference in 1ts entirety for all purposes.

In an embodiment, the monitoring component 112 may
also monitor and collect performance data related to one or
more aspects of the operational state of a client application
110 and/or client device 102. For example, a monitoring
component 112 may be configured to collect device pertor-
mance information by monitoring one or more client device
operations, or by making calls to an operating system and/or
one or more other applications executing on a client device
102 for performance information. Device performance
information may 1include, for instance, a current wireless
signal strength of the device, a current connection type and
network carrier, current memory performance information, a
geographic location of the device, a device orientation, and
any other information related to the operational state of the
client device.

In an embodiment, the monitoring component 112 may
also monitor and collect other device profile mmformation
including, for example, a type of client device, a manufac-
turer and model of the device, versions of various software
applications installed on the device, and so forth.

In general, a monitoring component 112 may be config-
ured to generate performance data in response to a monitor
trigger in the code of a client application 110 or other
triggering application event, as described above, and to store
the performance data 1n one or more data records. Each data
record, for example, may include a collection of field-value
pairs, each field-value pair storing a particular item of
performance data 1n association with a field for the item. For

5

10

15

20

25

30

35

40

45

50

55

60

65

10

example, a data record generated by a monitoring compo-
nent 112 may include a “networkLatency” field (not shown
in the Figure) in which a value 1s stored. This field indicates
a network latency measurement associated with one or more
network requests. The data record may include a *““state’ field
to store a value indicating a state of a network connection,
and so forth for any number of aspects of collected perfor-
mance data.

2.4. Data Server System

FIG. 2 depicts a block diagram of an exemplary data
intake and query system 108, similar to the SPLUNK®
ENTERPRISE system. System 108 includes one or more
torwarders 204 that recerve data from a variety of input data
sources 202, and one or more 1indexers 206 that process and
store the data in one or more data stores 208. These
forwarders and indexers can comprise separate computer
systems, or may alternatively comprise separate processes
executing on one or more computer systems.

Each data source 202 broadly represents a distinct source
of data that can be consumed by a system 108. Examples of
a data source 202 include, without limitation, data files,
directories of files, data sent over a network, event logs,
registries, efc.

During operation, the forwarders 204 identily which
indexers 206 receive data collected from a data source 202
and forward the data to the appropnate indexers. Forwarders
204 can also perform operations on the data before forward-
ing, including removing extraneous data, detecting time-
stamps 1n the data, parsing data, indexing data, routing data
based on criteria relating to the data being routed, and/or
performing other data transformations.

In an embodiment, a forwarder 204 may comprise a
service accessible to client devices 102 and host devices 106
via a network 104. For example, one type of forwarder 204
may be capable of consuming vast amounts of real-time data
from a potentially large number of client devices 102 and/or
host devices 106. The forwarder 204 may, for example,
comprise a computing device which implements multiple
data pipelines or “queues” to handle forwarding of network
data to indexers 206. A forwarder 204 may also perform
many of the functions that are performed by an indexer. For
example, a forwarder 204 may perform keyword extractions
on raw data or parse raw data to create events. A forwarder
204 may generate time stamps for events. Additionally or
alternatively, a forwarder 204 may perform routing of events
to indexers. Data store 208 may contain events derived from
machine data from a variety of sources all pertaining to the
same component 1n an I'T environment, and this data may be
produced by the machine 1n question or by other compo-
nents 1n the I'T environment.

2.5. Data Ingestion

FIG. 3 depicts a flow chart illustrating an example data
flow performed by Data Intake and Query system 108, 1n
accordance with the disclosed embodiments. The data tlow
illustrated 1 FIG. 3 1s provided for illustrative purposes
only; those skilled 1n the art would understand that one or
more of the steps of the processes illustrated 1n FIG. 3 may
be removed or the ordering of the steps may be changed.
Furthermore, for the purposes of 1llustrating a clear example,
one or more particular system components are described 1n
the context of performing various operations during each of
the data flow stages. For example, a forwarder 1s described
as recerving and processing data during an input phase; an
indexer 1s described as parsing and indexing data during
parsing and indexing phases; and a search head 1s described
as performing a search query during a search phase. How-

US 10,685,279 B2

11

ever, other system arrangements and distributions of the
processing steps across system components may be used.

2.5.1. Input

At block 302, a forwarder receives data from an input
source, such as a data source 202 shown in FIG. 2. A
forwarder 1imitially may receive the data as a raw data stream
generated by the input source. For example, a forwarder may
receive a data stream from a log file generated by an
application server, from a stream of network data from a
network device, or from any other source of data. In one
embodiment, a forwarder receives the raw data and may
segment the data stream 1nto “blocks,” or “buckets,” possi-
bly of a uniform data size, to facilitate subsequent process-
ing steps.

At block 304, a forwarder or other system component
annotates each block generated from the raw data with one
or more metadata fields. These metadata fields may, for
example, provide information related to the data block as a
whole and may apply to each event that 1s subsequently
derived from the data 1n the data block. For example, the
metadata fields may include separate fields speciiying each
of a host, a source, and a source type related to the data
block. A host field may contain a value i1dentifying a host
name or IP address of a device that generated the data. A
source field may contain a value 1dentifying a source of the
data, such as a pathname of a file or a protocol and port
related to received network data. A source type field may
contain a value specilying a particular source type label for
the data. Additional metadata fields may also be included
during the input phase, such as a character encoding of the
data, 1f known, and possibly other values that provide
information relevant to later processing steps. In an embodi-
ment, a forwarder forwards the annotated data blocks to
another system component (typically an indexer) for further
processing.

The SPLUNK® ENTERPRISE system allows forwarding,
of data from one SPLUNK® ENTERPRISE instance to
another, or even to a third-party system. SPLUNK®
ENTERPRISE system can employ different types of for-
warders 1n a configuration.

In an embodiment, a forwarder may contain the essential
components needed to forward data. It can gather data from
a variety of inputs and forward the data to a SPLUNK®
ENTERPRISE server for indexing and searching. It also can
tag metadata (e.g., source, source type, host, etc.).

Additionally or optionally, 1n an embodiment, a forwarder
has the capabilities of the alorementioned forwarder as well
as additional capabilities. The forwarder can parse data
betfore forwarding the data (e.g., associate a time stamp with
a portion of data and create an event, etc.) and can route data
based on criteria such as source or type of event. It can also
index data locally while forwarding the data to another
indexer.

2.5.2. Parsing,

At block 306, an indexer receives data blocks from a
forwarder and parses the data to organize the data into
events. In an embodiment, to organize the data into events,
an indexer may determine a source type associated with each
data block (e.g., by extracting a source type label from the
metadata fields associated with the data block, etc.) and refer
to a source type configuration corresponding to the identified
source type. The source type definition may include one or
more properties that indicate to the indexer to automatically
determine the boundaries of events within the data. In
general, these properties may include regular expression-
based rules or delimiter rules where, for example, event
boundaries may be indicated by predefined characters or

10

15

20

25

30

35

40

45

50

55

60

65

12

character strings. These predefined characters may include
punctuation marks or other special characters including, for
example, carriage returns, tabs, spaces, line breaks, etc. If a
source type for the data 1s unknown to the indexer, an
indexer may infer a source type for the data by examining
the structure of the data. Then, 1t can apply an inferred
source type definition to the data to create the events.

At block 308, the indexer determines a timestamp for each
event. Similar to the process for creating events, an indexer
may again refer to a source type definition associated with
the data to locate one or more properties that indicate
instructions for determining a timestamp for each event. The
properties may, for example, mstruct an indexer to extract a
time value from a portion of data in the event, to interpolate
time values based on timestamps associated with temporally
proximate events, to create a timestamp based on a time the
cvent data was received or generated, to use the timestamp
ol a previous event, or use any other rules for determining
timestamps.

At block 310, the indexer associates with each event one
or more metadata fields including a field containing the
timestamp (in some embodiments, a timestamp may be
included in the metadata fields) determined for the event.
These metadata fields may include a number of “default
fields” that are associated with all events, and may also
include one more custom fields as defined by a user. Similar
to the metadata fields associated with the data blocks at
block 304, the default metadata fields associated with each
event may include a host, source, and source type field
including or 1n addition to a field storing the timestamp.

At block 312, an indexer may optionally apply one or
more transformations to data included 1n the events created
at block 306. For example, such transformations can include
removing a portion of an event (e.g., a portion used to define
event boundaries, extraneous characters from the event,
other extraneous text, etc.), masking a portion of an event
(e.g., masking a credit card number), removing redundant
portions of an event, etc. The transformations applied to
event data may, for example, be specified 1n one or more
configuration files and referenced by one or more source
type definitions.

2.5.3. Indexing

At blocks 314 and 316, an indexer can optionally generate
a keyword index to facilitate fast keyword searching for
event data. To build a keyword index, at block 314, the
indexer 1dentifies a set of keywords in each event. At block
316, the indexer includes the identified keywords 1n an
index, which associates each stored keyword with reference
pointers to events containing that keyword (or to locations
within events where that keyword 1s located, other location
identifiers, etc.). When an indexer subsequently receives a
keyword-based query, the indexer can access the keyword
index to quickly identily events containing the keyword.

In some embodiments, the keyword index may include
entries for name-value pairs found 1n events, where a
name-value pair can include a pair of keywords connected
by a symbol, such as an equals sign or colon. This way,
events containing these name-value pairs can be quickly
located. In some embodiments, fields can automatically be
generated for some or all of the name-value pairs at the time
of indexing. For example, 1f the string “dest=10.0.1.2" 1s
found 1n an event, a field named “dest” may be created for
the event, and assigned a value of “10.0.1.2”.

At block 318, the indexer stores the events with an
associated timestamp 1n a data store 208. Timestamps enable
a user to search for events based on a time range. In one
embodiment, the stored events are organized 1nto “buckets,”

US 10,685,279 B2

13

where each bucket stores events associated with a specific
time range based on the timestamps associated with each
event. This may not only improve time-based searching, but
also allows for events with recent timestamps, which may
have a higher likelihood of being accessed, to be stored in
a faster memory to facilitate faster retrieval. For example,
buckets containing the most recent events can be stored in
flash memory rather than on a hard disk.

Each indexer 206 may be responsible for storing and
searching a subset of the events contained 1n a correspond-
ing data store 208. By distributing events among the index-
ers and data stores, the imndexers can analyze events for a
query 1n parallel. For example, using map-reduce tech-
niques, each indexer returns partial responses for a subset of
events to a search head that combines the results to produce
an answer for the query. By storing events in buckets for
specific time ranges, an indexer may further optimize data
retrieval process by searching buckets corresponding to time
ranges that are relevant to a query.

Moreover, events and buckets can also be replicated

across different indexers and data stores to facilitate high
availability and disaster recovery as described 1n U.S. patent

application Ser. No. 14/266,812, entitled “SITE-BASED
SEARCH AFFINITY”, filed on 30 Apr. 2014, and in U.S.

patent application Ser. No. 14/266,817, entltled “MULTI-
SITE CLUSTERING™, also filed on 30 Apr. 2014, each of
which 1s hereby incorporated by reference 1n its entirety for
all purposes.

2.6. Query Processing,

FIG. 4 1s a flow diagram that illustrates an exemplary
process that a search head and one or more indexers may
perform during a search query. At block 402, a search head
receives a search query from a client. At block 404, the
search head analyzes the search query to determine what
portion(s) of the query can be delegated to indexers and what
portions of the query can be executed locally by the search
head. At block 406, the search head distributes the deter-
mined portions of the query to the appropriate indexers. In
an embodiment, a search head cluster may take the place of
an mdependent search head where each search head i the
search head cluster coordinates with peer search heads in the
search head cluster to schedule jobs, replicate search results,
update configurations, fulfill search requests, etc. In an
embodiment, the search head (or each search head) com-
municates with a master node (also known as a cluster
master, not shown 1n Fig.) that provides the search head with
a list of indexers to which the search head can distribute the
determined portions of the query. The master node maintains
a list of active indexers and can also designate which
indexers may have responsibility for responding to queries
over certain sets of events. A search head may communicate
with the master node before the search head distributes
queries to indexers to discover the addresses of active
indexers.

At block 408, the indexers to which the query was
distributed, search data stores associated with them {for
events that are responsive to the query. To determine which
events are responsive to the query, the indexer searches for
cvents that match the criteria specified 1n the query. These
criteria can include matching keywords or specific values for
certain fields. The searching operations at block 408 may use
the late-binding schema to extract values for specified fields
from events at the time the query 1s processed. In an
embodiment, one or more rules for extracting field values
may be specified as part of a source type definition. The
indexers may then either send the relevant events back to the

10

15

20

25

30

35

40

45

50

55

60

65

14

search head, or use the events to determine a partial result,
and send the partial result back to the search head.

At block 410, the search head combines the partial results
and/or events received from the indexers to produce a final
result for the query. This final result may comprise different
types of data depending on what the query requested. For
example, the results can include a listing of matching events
returned by the query, or some type of visualization of the
data from the returned events. In another example, the final
result can include one or more calculated values derived
from the matching events.

The results generated by the system 108 can be returned
to a client using different techmiques. For example, one
technique streams results or relevant events back to a client
in real-time as they are 1dentified. Another technique waits
to report the results to the client until a complete set of
results (which may 1nclude a set of relevant events or a result
based on relevant events) 1s ready to return to the client. Yet
another technique streams interim results or relevant events
back to the client in real-time until a complete set of results
1s ready, and then returns the complete set of results to the
client. In another technique, certain results are stored as
“search jobs™ and the client may retrieve the results by
referring the search jobs.

The search head can also perform various operations to
make the search more eflicient. For example, before the
search head begins execution of a query, the search head can
determine a time range for the query and a set of common
keywords that all matching events include. The search head
may then use these parameters to query the indexers to
obtain a superset of the eventual results. Then, during a
filtering stage, the search head can perform field-extraction
operations on the superset to produce a reduced set of search
results. This speeds up queries that are performed on a

periodic basis.
2.7. Field F

Extraction

The search head 210 allows users to search and visualize
event data extracted from raw machine data received from
homogenous data sources. It also allows users to search and
visualize event data extracted from raw machine data
received from heterogeneous data sources. The search head
210 includes various mechamisms, which may additionally
reside 1 an indexer 206, for processing a query. Splunk
Processing Language (SPL), used 1n conjunction with the
SPLUNK® ENTERPRISE system, can be utilized to make
a query. SPL 1s a pipelined search language 1n which a set
of mputs 1s operated on by a first command in a command
line, and then a subsequent command following the pipe
symbol “I” operates on the results produced by the first
command, and so on for additional commands. Other query
languages, such as the Structured Query Language (“SQL”),
can be used to create a query.

In response to receiving the search query, search head 210
uses extraction rules to extract values for the fields associ-
ated with a field or fields 1n the event data being searched.
The search head 210 obtains extraction rules that specity
how to extract a value for certain fields from an event.
Extraction rules can comprise regex rules that specily how
to extract values for the relevant fields. In addition to
speciiying how to extract field values, the extraction rules
may also include instructions for deriving a field value by
performing a function on a character string or value
retrieved by the extraction rule. For example, a transforma-
tion rule may truncate a character string, or convert the
character string into a different data format. In some cases,
the query itself can specily one or more extraction rules.

US 10,685,279 B2

15

The search head 210 can apply the extraction rules to
event data that 1t receives from indexers 206. Indexers 206
may apply the extraction rules to events 1n an associated data
store 208. Extraction rules can be applied to all the events 1n
a data store, or to a subset of the events that have been
filtered based on some criteria (e.g., event time stamp
values, etc.). Extraction rules can be used to extract one or
more values for a field from events by parsing the event data
and examining the event data for one or more patterns of
characters, numbers, delimiters, etc., that indicate where the
field begins and, optionally, ends.

FIG. 5 illustrates an example of raw machine data
received from disparate data sources. In this example, a user
submits an order for merchandise using a vendor’s shopping
application program 501 runming on the user’s system. In
this example, the order was not delivered to the vendor’s
server due to a resource exception at the destination server
that 1s detected by the middleware code 502. The user then
sends a message to the customer support 503 to complain
about the order failing to complete. The three systems 501,
502, and 503 are disparate systems that do not have a
common logging format. The order application 501 sends
log data 504 to the SPLUNK® ENTERPRISE system in one
format, the middleware code 502 sends error log data 505 1n
a second format, and the support server 503 sends log data
506 1n a third format.

Using the log data received at one or more indexers 206
from the three systems the vendor can uniquely obtain an
insight into user activity, user experience, and system behav-
ior. The search head 210 allows the vendor’s administrator
to search the log data from the three systems that one or
more indexers 206 are responsible for searching, thereby
obtaining correlated information, such as the order number
and corresponding customer ID number of the person plac-
ing the order. The system also allows the administrator to see
a visualization of related events via a user interface. The
administrator can query the search head 210 for customer 1D
field value matches across the log data from the three
systems that are stored at the one or more indexers 206. The
customer ID field value exists in the data gathered from the
three systems, but the customer ID field value may be
located 1n different areas of the data given differences in the
architecture of the systems—there 1s a semantic relationship
between the customer ID field values generated by the three
systems. The search head 210 requests event data from the
one or more 1ndexers 206 to gather relevant event data from
the three systems. It then applies extraction rules to the event
data 1n order to extract field values that it can correlate. The
search head may apply a diflerent extraction rule to each set
of events from each system when the event data format
differs among systems. In this example, the user interface
can display to the administrator the event data corresponding
to the common customer 1D field values 507, 508, and 509,
thereby providing the administrator with insight into a
customer’s experience.

Note that query results can be returned to a client, a search
head, or any other system component for further processing.
In general, query results may include a set of one or more
events, a set of one or more values obtained from the events,
a subset of the values, statistics calculated based on the
values, a report containing the values, or a visualization,
such as a graph or chart, generated from the values.

2.8. Example Search Screen

FIG. 6A illustrates an example search screen 600 in
accordance with the disclosed embodiments. Search screen
600 includes a search bar 602 that accepts user imnput 1n the
form of a search string. It also includes a time range picker

10

15

20

25

30

35

40

45

50

55

60

65

16

612 that enables the user to specily a time range for the
search. For “historical searches™ the user can select a spe-
cific time range, or alternatively a relative time range, such
as “today,” “‘vesterday” or “last week.” For “real-time
searches,” the user can select the size of a preceding time
window to search for real-time events. Search screen 600
also mitially displays a “data summary” dialog as is 1llus-
trated 1n FIG. 6B that enables the user to select diflerent
sources for the event data, such as by selecting specific hosts
and log files.

After the search 1s executed, the search screen 600 1n FIG.
6A can display the results through search results tabs 604,
wherein search results tabs 604 includes: an “events tab”™
that displays various information about events returned by
the search; a “statistics tab” that displays statistics about the
search results; and a “visualization tab” that displays various
visualizations of the search results. The events tab illustrated
in FIG. 6A displays a timeline graph 605 that graphically
illustrates the number of events that occurred in one-hour
intervals over the selected time range. It also displays an
events list 608 that enables a user to view the raw data 1n
cach of the returned events. It additionally displays a fields
sidebar 606 that includes statistics about occurrences of
specific fields 1 the returned events, including “selected
fields” that are pre-selected by the user, and “interesting
fields™ that are automatically selected by the system based
on pre-specified criteria.

2.9. Data Models

A data model 1s a hierarchically structured search-time
mapping of semantic knowledge about one or more datasets.
It encodes the domain knowledge necessary to build a
variety of specialized searches of those datasets. Those
searches, 1n turn, can be used to generate reports.

A data model 1s composed of one or more “objects” (or
“data model objects”) that define or otherwise correspond to
a specific set of data.

Objects 1n data models can be arranged hierarchically 1n
parent/child relationships. Each child object represents a
subset of the dataset covered by its parent object. The
top-level objects 1n data models are collectively referred to
as “root objects.”

Child objects have inheritance. Data model objects are
defined by characteristics that mostly break down into
constraints and attributes. Child objects inherit constraints
and attributes from their parent objects and have additional
constraints and attributes of their own. Child objects provide
a way of filtering events from parent objects. Because a child
object always provides an additional constraint in addition to
the constraints it has inherited from 1ts parent object, the
dataset it represents 1s always a subset of the dataset that 1ts
parent represents.

For example, a first data model object may define a broad
set of data pertaiming to e-mail activity generally, and
another data model object may define specific datasets
within the broad dataset, such as a subset of the e-mail data
pertaining specifically to e-mails sent. Examples of data
models can include electronic mail, authentication, data-
bases, intrusion detection, malware, application state, alerts,
compute mventory, network sessions, network tratlic, per-
formance, audits, updates, vulnerabilities, etc. Data models
and their objects can be designed by knowledge managers 1n
an organization, and they can enable downstream users to
quickly focus on a specific set of data. For example, a user
can simply select an “e-mail activity” data model object to
access a dataset relating to e-mails generally (e.g., sent or

US 10,685,279 B2

17

received), or select an “e-mails sent” data model object (or
data sub-model object) to access a dataset relating to e-mails
sent.

A data model object may be defined by (1) a set of search
constraints, and (2) a set of fields. Thus, a data model object
can be used to quickly search data to 1dentily a set of events
and to 1dentily a set of fields to be associated with the set of
events. For example, an “e-mails sent” data model object
may specily a search for events relating to e-mails that have
been sent, and specily a set of fields that are associated with
the events. Thus, a user can retrieve and use the “e-mails
sent” data model object to quickly search source data for
events relating to sent e-mails, and may be provided with a
listing of the set of fields relevant to the events 1n a user
interface screen.

A child of the parent data model may be defined by a
search (typically a narrower search) that produces a subset
of the events that would be produced by the parent data
model’s search. The child’s set of fields can mclude a subset
of the set of fields of the parent data model and/or additional
fields. Data model objects that reference the subsets can be
arranged 1n a hierarchical manner, so that child subsets of
events are proper subsets of their parents. A user iteratively
applies a model development tool (not shown in Fig.) to
prepare a query that defines a subset of events and assigns
an object name to that subset. A child subset 1s created by
turther limiting a query that generated a parent subset. A
late-binding schema of field extraction rules 1s associated
with each object or subset in the data model.

Data definitions 1n associated schemas can be taken from
the common information model (CIM) or can be devised for
a particular schema and optionally added to the CIM. Child
objects mnherit fields from parents and can include fields not
present 1in parents. A model developer can select fewer
extraction rules than are available for the sources returned
by the query that defines events belonging to a model.
Selecting a limited set of extraction rules can be a tool for
simplitying and focusing the data model, while allowing a

user tlexibility to explore the data subset. Development of a
data model 1s further explained in U.S. Pat. Nos. 8,788,525

and 8,788,526, both enftitled “DATA MODEL FOR
MACHINE DATA FOR SEMANTIC SEARCH”, both
1ssued on 22 Jul. 2014, U.S. Pat. No. 8,983,994, entitled
“GENERATION OF A DATA MODEL FOR SEARCHING
MACHINE DATA”, 1ssued on 17 Mar. 2015, U.S. patent
application Ser. No. 14/611,232, entitled “GENERATION
OF A DATA MODEL APPLIED TO QUERIES”, filed on 31
Jan. 2015, and U.S. patent application Ser. No. 14/815,884,
entitled “GENERATION OF A DATA MODEL APPLIED
TO OBIJECT QUERIES”, filed on 31 Jul. 2015, each of
which 1s hereby incorporated by reference 1n 1ts entirety for
all purposes. See, also, Knowledge Manager Manual, Build
a Data Model, Splunk Enterprise 6.1.3 pp. 150-204 (Aug.
25, 2014).

A data model can also include reports. One or more report
formats can be associated with a particular data model and
be made available to run against the data model. A user can
use child objects to design reports with object datasets that
already have extraneous data pre-filtered out. In an embodi-
ment, the data intake and query system 108 provides the user
with the ability to produce reports (e.g., a table, chart,
visualization, etc.) without having to enter SPL, SQL, or
other query language terms into a search screen. Data
models are used as the basis for the search feature.

Data models may be selected in a report generation
interface. The report generator supports drag-and-drop orga-
nization of fields to be summarized in a report. When a

5

10

15

20

25

30

35

40

45

50

55

60

65

18

model 1s selected, the fields with available extraction rules
are made available for use 1n the report. The user may refine
and/or filter search results to produce more precise reports.
The user may select some fields for organizing the report and
select other fields for providing detail according to the report
organization. For example, “region” and “salesperson” are
fields used for organizing the report and sales data can be
summarized (subtotaled and totaled) within this organiza-
tion. The report generator allows the user to specily one or
more fields within events and apply statistical analysis on
values extracted from the specified one or more fields. The
report generator may aggregate search results across sets of
events and generate statistics based on aggregated search
results. Building reports using the report generation inter-

face 1s further explained 1n U.S. patent application Ser. No.
14/503,335, entitled “GENERATING REPORTS FROM

UNSTRUCTURED DATA”, filed on 30 Sep. 2014, and
which 1s hereby incorporated by reference 1n 1ts entirety for
all purposes, and in Pivot Manual, Splunk Enterprise 6.1.3
(Aug. 4, 2014). Data visualizations also can be generated 1n
a variety of formats, by reference to the data model. Reports,
data visualizations, and data model objects can be saved and
associated with the data model for future use. The data
model object may be used to perform searches of other data.

FIGS. 12, 13, and 7A-7D 1illustrate a series of user
interface screens where a user may select report generation
options using data models. The report generation process
may be driven by a predefined data model object, such as a
data model object defined and/or saved via a reporting
application or a data model object obtained from another
source. A user can load a saved data model object using a
report editor. For example, the initial search query and fields
used to drive the report editor may be obtained from a data
model object. The data model object that 1s used to drive a
report generation process may define a search and a set of
fields. Upon loading of the data model object, the report
generation process may enable a user to use the fields (e.g.,
the fields defined by the data model object) to define critenia
for a report (e.g., filters, split rows/columns, aggregates, etc.)
and the search may be used to identily events (e.g., to
identily events responsive to the search) used to generate the
report. That 1s, for example, 11 a data model object 1s selected
to drive a report editor, the graphical user interface of the
report editor may enable a user to define reporting criteria
for the report using the fields associated with the selected
data model object, and the events used to generate the report
may be constrained to the events that match, or otherwise
satisly, the search constraints of the selected data model
object.

The selection of a data model object for use in driving a
report generation may be facilitated by a data model object
selection interface. FI1G. 12 1llustrates an example interactive
data model selection graphical user interface 1200 of a
report editor that displays a listing of available data models
1201. The user may select one of the data models 1202.

FIG. 13 1llustrates an example data model object selection
graphical user interface 1300 that displays available data
objects 1301 for the selected data object model 1202. The
user may select one of the displayed data model objects 1302
for use 1n driving the report generation process.

Once a data model object 1s selected by the user, a user
interface screen 700 shown in FIG. 7A may display an
interactive listing of automatic field i1dentification options
701 based on the selected data model object. For example,
a user may select one of the three 1llustrated options (e.g., the
“All Fields” option 702, the “Selected Fields™ option 703, or

the “Coverage™ option (e.g., fields with at least a specified

US 10,685,279 B2

19

% of coverage) 704). IT the user selects the “All Fields”
option 702, all of the fields identified from the events that
were returned 1n response to an 1nitial search query may be
selected. That 1s, for example, all of the fields of the
identified data model object fields may be selected. If the
user selects the “Selected Fields™ option 703, only the fields
from the fields of the identified data model object fields that
are selected by the user may be used. If the user selects the
“Coverage” option 704, only the fields of the 1dentified data
model object fields meeting a specified coverage critena
may be selected. A percent coverage may refer to the
percentage of events returned by the 1mitial search query that
a given field appears in. Thus, for example, 11 an object
dataset includes 10,000 events returned 1n response to an
initial search query, and the “avg_age” field appears in 854
of those 10,000 events, then the “avg_age” field would have
a coverage ol 8.54% for that object dataset. 11, for example,
the user selects the “Coverage” option and specifies a
coverage value of 2%, only fields having a coverage value
equal to or greater than 2% may be selected. The number of
fields corresponding to each selectable option may be dis-
played 1n association with each option. For example, “97”
displayed next to the “All Fields™ option 702 indicates that
97 fields will be selected 1t the “All Fields” option 1s
selected. The “3” displayed next to the “Selected Fields”
option 703 i1ndicates that 3 of the 97 fields will be selected
iI the “Selected Fields” option i1s selected. The “49” dis-
played next to the “Coverage” option 704 mdicates that 49
of the 97 fields (e.g., the 49 fields having a coverage of 2%
or greater) will be selected 11 the “Coverage” option 1is
selected. The number of fields corresponding to the “Cov-
crage” option may be dynamically updated based on the
specified percent of coverage.

FIG. 7B illustrates an example graphical user interface
screen (also called the pivot interface) 705 displaying the
reporting application’s “Report Editor” page. The screen
may display interactive elements for defining various ele-
ments of a report. For example, the page includes a “Filters™
clement 706, a “Split Rows” element 707, a “Split Columns”™
clement 708, and a “Column Values” element 709. The page
may include a list of search results 711. In this example, the
Split Rows element 707 1s expanded, revealing a listing of
fields 710 that can be used to define additional criteria (e.g.,
reporting criteria). The listing of fields 710 may correspond
to the selected fields (attributes). That 1s, the listing of fields
710 may list only the fields previously selected, either
automatically and/or manually by a user. FIG. 7C illustrates
a formatting dialogue 712 that may be displayed upon
selecting a field from the listing of fields 710. The dialogue
can be used to format the display of the results of the
selection (e.g., label the column to be displayed as “com-
ponent™).

FIG. 7D illustrates an example graphical user interface
screen 705 including a table of results 713 based on the
selected criteria including splitting the rows by the “com-
ponent” field. A column 714 having an associated count for
cach component listed in the table may be displayed that
indicates an aggregate count of the number of times that the
particular ficld-value pair (e.g., the value 1n a row) occurs in
the set of events responsive to the 1mitial search query.

FIG. 14 illustrates an example graphical user interface
screen 1400 that allows the user to filter search results and
to perform statistical analysis on values extracted from
specific fields in the set of events. In this example, the top
ten product names ranked by price are selected as a filter
1401 that causes the display of the ten most popular products
sorted by price. Each row 1s displayed by product name and

10

15

20

25

30

35

40

45

50

55

60

65

20

price 1402. This results 1n each product displayed i a
column labeled “product name™ along with an associated
price 1n a column labeled “price” 1406. Statistical analysis
ol other fields 1n the events associated with the ten most
popular products have been specified as column values
1403. A count of the number of successtul purchases for
cach product 1s displayed in column 1404. These statistics
may be produced by filtering the search results by the
product name, finding all occurrences of a successiul pur-
chase 1n a field within the events and generating a total of the
number of occurrences. A sum of the total sales 1s displayed
in column 14035, which is a result of the multiplication of the
price and the number of successtul purchases for each
product.

The reporting application allows the user to create graphi-
cal visualizations of the statistics generated for a report. For
example, FIG. 15 illustrates an example graphical user
interface 1500 that displays a set of components and asso-
ciated statistics 1501. The reporting application allows the
user to select a visualization of the statistics 1n a graph (e.g.,
bar chart, scatter plot, area chart, line chart, pie chart, radial
gauge, marker gauge, filler gauge, etc.). FIG. 16 illustrates
an example of a bar chart visualization 1600 of an aspect of
the statistical data 1501. FIG. 17 illustrates a scatter plot
visualization 1700 of an aspect of the statistical data 1501.

2.10. Acceleration Technique

The above-described system provides significant flexibil-
ity by enabling a user to analyze massive quantities of
minimally processed data “on the fly” at search time instead
ol storing pre-specified portions of the data 1n a database at
ingestion time. This flexibility enables a user to see valuable
insights, correlate data, and perform subsequent queries to
examine interesting aspects of the data that may not have
been apparent at mngestion time.

However, performing extraction and analysis operations
at search time can involve a large amount of data and require
a large number of computational operations, which can
cause delays 1n processing the queries. Advantageously,
SPLUNK® ENTERPRISE system employs a number of
unique acceleration techniques that have been developed to
speed up analysis operations performed at search time.
These techniques include: (1) performing search operations
in parallel across multiple indexers; (2) using a keyword
index; (3) using a high performance analytics store; and (4)
accelerating the process of generating reports. These novel
techniques are described in more detail below.

2.10.1. Aggregation Technique

To facilitate faster query processing, a query can be
structured such that multiple indexers perform the query 1n
parallel, while aggregation of search results from the mul-
tiple indexers 1s performed locally at the search head. For
example, FI1G. 8 illustrates how a search query 802 received
from a client at a search head 210 can split into two phases,
including: (1) subtasks 804 (e.g., data retrieval or simple
filtering) that may be performed in parallel by indexers 206
for execution, and (2) a search results aggregation operation
806 to be executed by the search head when the results are
ultimately collected from the indexers.

During operation, upon receiving search query 802, a
search head 210 determines that a portion of the operations
involved with the search query may be performed locally by
the search head. The search head modifies search query 802
by substituting “stats” (create aggregate statistics over
results sets recerved from the indexers at the search head)
with “prestats” (create statistics by the indexer from local
results set) to produce search query 804, and then distributes
search query 804 to distributed indexers, which are also

US 10,685,279 B2

21

referred to as “search peers.” Note that search queries may
generally specily search criteria or operations to be per-
formed on events that meet the search criteria. Search
queries may also specily field names, as well as search
criteria for the values 1n the fields or operations to be 5
performed on the values in the fields. Moreover, the search
head may distribute the full search query to the search peers

as 1llustrated 1n FIG. 4, or may alternatively distribute a
modified version (e.g., a more restricted version) of the
search query to the search peers. In this example, the 10
indexers are responsible for producing the results and send-
ing them to the search head. After the indexers return the
results to the search head, the search head aggregates the
received results 806 to form a single search result set. By
executing the query 1n this manner, the system effectively 15
distributes the computational operations across the indexers
while minimizing data transfers.

2.10.2. Keyword Index

As described above with reference to the flow charts 1n
FIG. 3 and FIG. 4, data intake and query system 108 can 20
construct and maintain one or more keyword indices to
quickly identify events containing specific keywords. This
technique can greatly speed up the processing of queries
involving specific keywords. As mentioned above, to build
a keyword 1ndex, an indexer first 1dentifies a set of key- 25
words. Then, the indexer includes the identified keywords 1n
an 1mndex, which associates each stored keyword with refer-
ences to events containing that keyword, or to locations
within events where that keyword 1s located. When an
indexer subsequently receives a keyword-based query, the 30
indexer can access the keyword index to quickly identify
events contaiming the keyword.

2.10.3. High Performance Analytics Store

To speed up certain types of queries, some embodiments
of system 108 create a high performance analytics store, 35
which 1s referred to as a “summarization table,” that contains
entries for specific field-value pairs. Each of these entries
keeps track of mstances of a specific value 1n a specific field
in the event data and includes references to events contain-
ing the specific value in the specific field. For example, an 40
example entry 1n a summarization table can keep track of
occurrences of the value “94107” 1n a “ZIP code” field of a
set of events and the entry includes references to all of the
events that contain the value “94107” 1n the ZIP code field.
This optimization technique enables the system to quickly 45
process queries that seek to determine how many events
have a particular value for a particular field. To this end, the
system can examine the entry in the summarization table to
count instances of the specific value 1n the field without
having to go through the imndividual events or perform data 50
extractions at search time. Also, 1f the system needs to
process all events that have a specific field-value combina-
tion, the system can use the references 1n the summarization
table entry to directly access the events to extract further
information without having to search all of the events to find 55
the specific field-value combination at search time.

In some embodiments, the system maintains a separate
summarization table for each of the above-described time-
specific buckets that stores events for a specific time range.

A bucket-specific summarization table includes entries for 60
specific field-value combinations that occur in events 1n the
specific bucket. Alternatively, the system can maintain a
separate summarization table for each indexer. The indexer-
specific summarization table includes entries for the events

in a data store that are managed by the specific indexer. 65
Indexer-specific summarization tables may also be bucket-
specific.

22

The summarization table can be populated by running a
periodic query that scans a set of events to find istances of
a specific field-value combination, or alternatively instances
of all field-value combinations for a specific field. A periodic
query can be mnitiated by a user, or can be scheduled to occur
automatically at specific time intervals. A periodic query can
also be automatically launched in response to a query that
asks for a specific field-value combination.

In some cases, when the summarization tables may not
cover all of the events that are relevant to a query, the system
can use the summarization tables to obtain partial results for
the events that are covered by summarization tables, but may
also have to search through other events that are not covered
by the summarization tables to produce additional results.
These additional results can then be combined with the
partial results to produce a final set of results for the query.
The summarization table and associated techniques are
described 1n more detail in U.S. Pat. No. 8,682,925, entitled
“DISTRIBUTED HIGH PERFORMANCE ANALYTICS
STORE”, 1ssued on 25 Mar. 2014, U.S. patent application
Ser. No. 14/170,159, entitled “SUPPLEMENTING A HIGH
PERFORMANCE ANALYTICS STORE WITH EVALUA-
TION OF INDIVIDUAL EVENTS TO RESPOND TO AN
EVENT QUERY?”, filed on 31 Jan. 2014, and U.S. patent
application Ser. No. 14/815,973, entitled “STORAGE
MEDIUM AND CONTROL DEVICE”, filed on 21 Feb.
2014, each of which 1s hereby incorporated by reference 1n
its entirety.

2.10.4. Accelerating Report Generation

In some embodiments, a data server system such as the
SPLUNK® ENTERPRISE system can accelerate the pro-
cess of periodically generating updated reports based on
query results. To accelerate this process, a summarization
engine automatically examines the query to determine
whether generation of updated reports can be accelerated by
creating intermediate summaries. If reports can be acceler-
ated, the summarization engine periodically generates a
summary covering data obtained during a latest non-over-
lapping time period. For example, where the query seeks
events meeting a specified criteria, a summary for the time
period includes only events within the time period that meet
the specified criteria. Siumilarly, 1f the query seeks statistics
calculated from the events, such as the number of events that
match the specified criteria, then the summary for the time
period includes the number of events in the period that
match the specified critenia.

In addition to the creation of the summaries, the summa-
rization engine schedules the periodic updating of the report
associated with the query. During each scheduled report
update, the query engine determines whether intermediate
summaries have been generated covering portions of the
time period covered by the report update. If so, then the
report 1s generated based on the information contained in the
summaries. Also, 1f additional event data has been received
and has not yet been summarized, and 1s required to generate
the complete report, the query can be run on this additional
event data. Then, the results returned by this query on the
additional event data, along with the partial results obtained
from the intermediate summaries, can be combined to gen-
crate the updated report. This process 1s repeated each time
the report 1s updated. Alternatively, 1f the system stores
events 1 buckets covering specific time ranges, then the
summaries can be generated on a bucket-by-bucket basis.
Note that producing intermediate summaries can save the
work imnvolved 1n re-running the query for previous time
periods, so advantageously only the newer event data needs
to be processed while generating an updated report. These

US 10,685,279 B2

23

report acceleration techniques are described 1n more detail in

U.S. Pat. No. 8,589,403, entitled “COMPRESSED JOUR-
NALING IN EVENT TRACKING FILES FOR META-
DATA RECOVERY AND REPLICATION?”, issued on 19
Nov. 2013, U.S. Pat. No. 8,412,696, entitled “REAL TIME
SEARCHING AND REPORTING™, 1ssued on 2 Apr. 2011
and U.S. Pat. Nos. 8,589,375 and 8,589,432, both also
entitled “REAL TIME SEARCHING AND REPORTING”,
both 1ssued on 19 Nov. 2013, each of which 1s hereby
incorporated by reference 1n 1ts entirety.

2.11. Security Features

The SPLUNK® ENTERPRISE platform provides various
schemas, dashboards and visualizations that simplity devel-

opers’ task to create applications with additional capabili-
ties. One such application 1s the SPLUNK® APP FOR
ENTERPRISE SECURITY, which performs monitoring and
alerting operations and includes analytics to facilitate 1den-
tifying both known and unknown security threats based on
large volumes of data stored by the SPLUNK® ENTER-
PRISE system. SPLUNK® APP FOR ENTERPRISE
SECURITY provides the security practltloner with visibility
into security-relevant threats found in the enterprise infra-
structure by capturing, monitoring, and reporting on data
from enterprise security devices, systems, and applications.
Through the use of SPLUNK® ENTERPRISE searching
and reporting capabilities, SPLUNK® APP FOR ENTER-
PRISE SECURITY provides a top-down and bottom-up
view ol an organization’s security posture.

The SPLUNK® APP FOR ENTERPRISE SECURITY
leverages SPLUNK® ENTERPRISE search-time normal-
1zation techniques, saved searches, and correlation searches
to provide visibility into security-relevant threats and activ-
ity and generate notable events for tracking. The App
enables the security practitioner to mvestigate and explore
the data to find new or unknown threats that do not follow
signature-based patterns.

Conventional Security Information and Event Manage-
ment (SIEM) systems that lack the infrastructure to eflec-
tively store and analyze large volumes of security-related
data. Traditional SIEM systems typically use fixed schemas
to extract data from pre-defined security-related fields at
data ingestion time and storing the extracted data in a
relational database. This traditional data extraction process
(and associated reduction 1n data size) that occurs at data
ingestion time mevitably hampers future incident mnvestiga-
tions that may need original data to determine the root cause
ol a security 1ssue, or to detect the onset of an 1impending
security threat.

In contrast, the SPLUNK® APP FOR ENTERPRIS
SECURITY system stores large volumes of mimimally pro-
cessed security-related data at ingestion time for later
retrieval and analysis at search time when a live security
threat 1s being investigated. To facilitate this data retrieval
process, the SPLUNK® APP FOR ENTERPRISE SECU-
RITY provides pre-specified schemas for extracting relevant
values from the different types of security-related event data
and enables a user to define such schemas.

The SPLUNK® APP FOR ENTERPRISE SECURITY
can process many types of security-related information. In
general, this security-related information can include any
information that can be used to identily security threats. For
example, the security-related information can include net-
work-related information, such as IP addresses, domain
names, asset identifiers, network trathc volume, uniform
resource locator strings, and source addresses. The process
of detecting security threats for network-related information

1s further described in U.S. Pat. No. 8,826,434, entitled

(Ll

10

15

20

25

30

35

40

45

50

55

60

65

24

“SECURITY THREAT DETECTION BASED ON INDI-
CATIONS IN BIG DATA OF ACCESS TO NEWLY REG-
ISTERED DOMAINS”, 1ssued on 2 Sep. 2014, U.S. patent
application Ser. No. 13/956,252, entitled “INVESTIGA-
TIVE AND DYNAMIC DETECTION OF POTENTIAL
SECURITY-THREAT INDICATORS FROM EVENTS IN
BIG DATA”, filed on 31 Jul. 2013, U.S. patent application
Ser. No. 14/445 018, entitled “GRAPHIC DISPLAY OF
SECURITY THREATS BASED ON INDICATIONS OF
ACCESSTO NEWLY REGISTERED DOMAINS”, filed on
28 Jul. 2014, U.S. patent application Ser. No. 14/445,023,
entitled “SECURITY THREAT DETECTION OF NEWLY
REGISTERED DOMAINS”, filed on 28 Jul. 2014, U.S.
patent application Ser. No. 14/815,971, entitled “SECU-
RITY THREAT DETECTION USING DOMAIN NAME
ACCESSES”, filed on 1 Aug. 2015, and U.S. patent appli-
cation Ser. No. 14/815,972, entitled “SECURITY THREAT
DETECTION USING DOMAIN NAME REGISTRA-
TIONS”, filed on 1 Aug. 2015, each of which 1s hereby
incorporated by reference in 1ts entirety for all purposes.
Security-related information can also 1include malware
infection data and system configuration information, as well
as access control information, such as login/logout informa-
tion and access failure notifications. The security-related
information can originate from various sources within a data
center, such as hosts, virtual machines, storage devices and
sensors. The security-related information can also originate
from various sources 1n a network, such as routers, switches,
email servers, proxy servers, gateways, firewalls and intru-
sion-detection systems.

During operation, the SPLUNK® APP FOR ENTER-
PRISE SECURITY f{facilitates detecting “notable events”
that are likely to indicate a security threat. These notable
events can be detected 1n a number of ways: (1) a user can
notice a correlation 1n the data and can manually 1dentify a
corresponding group of one or more events as “notable;” or
(2) a user can define a “correlation search” specilying
criteria for a notable event, and every time one or more
events satisiy the criteria, the application can indicate that
the one or more events are notable. A user can alternatively
select a pre-defined correlation search provided by the
application. Note that correlation searches can be run con-
tinuously or at regular intervals (e.g., every hour) to search
for notable events. Upon detection, notable events can be
stored 1n a dedicated “notable events index,” which can be
subsequently accessed to generate various visualizations
containing security-related information. Also, alerts can be

generated to notily system operators when important notable
events are discovered.

The SPLUNK® APP FOR ENTERPRISE SECURITY
provides various visualizations to aid in discovering security
threats, such as a “key indicators view” that enables a user
to view security metrics, such as counts of diflerent types of
notable events. For example, FIG. 9A illustrates an example
key indicators view 900 that comprises a dashboard, which
can display a value 901, for various security-related metrics,
such as malware infections 902. It can also display a change
in a metric value 903, which indicates that the number of
malware 1nfections increased by 63 during the preceding
interval. Key indicators view 900 additionally displays a
histogram panel 904 that displays a histogram of notable
events organized by urgency values, and a histogram of
notable events organized by time intervals. This key indi-

cators view 1s described 1n further detail in pending U.S.
patent application Ser. No. 13/956,338, entitled “KEY INDI-
CATORS VIEW?”, filed on 31 Jul. 2013, and which 1s hereby

incorporated by reference 1n 1ts entirety for all purposes.

US 10,685,279 B2

25

These visualizations can also include an “incident review
dashboard” that enables a user to view and act on “notable
events.” These notable events can include: (1) a single event
of high importance, such as any activity from a known web
attacker; or (2) multiple events that collectively warrant
review, such as a large number of authentication failures on
a host followed by a successiul authentication. For example,
FIG. 9B illustrates an example incident review dashboard
910 that includes a set of incident attribute fields 911 that, for
example, enables a user to specily a time range field 912 for
the displayed events. It also includes a timeline 913 that
graphically illustrates the number of incidents that occurred
in time intervals over the selected time range. It additionally
displays an events list 914 that enables a user to view a list
of all of the notable events that match the criteria 1n the

incident attributes fields 911. To facilitate 1dentifying pat-
terns among the notable events, each notable event can be
associated with an urgency value (e.g., low, medium, high,
critical), which 1s indicated in the incident review dash-
board. The urgency value for a detected event can be
determined based on the severity of the event and the
priority of the system component associated with the event.

2.12. Data Center Monitoring,

As mentioned above, the SPLUNK® ENTERPRISE plat-
form provides various features that simplify the developer’s
task to create various applications. One such application 1s
SPLUNK® APP FOR VMWARE® that provides opera-
tional visibility into granular performance metrics, logs,
tasks and events, and topology from hosts, virtual machines
and virtual centers. It empowers administrators with an
accurate real-time picture of the health of the environment,
proactively i1dentilying performance and capacity bottle-
necks.

Conventional data-center-monitoring systems lack the
inirastructure to eflectively store and analyze large volumes
of machine-generated data, such as performance information
and log data obtained from the data center. In conventional
data-center-monitoring systems, machine-generated data 1s
typically pre-processed prior to being stored, for example,
by extracting pre-specified data items and storing them 1n a
database to facilitate subsequent retrieval and analysis at
search time. However, the rest of the data 1s not saved and
discarded during pre-processing.

In contrast, the SPLUNK® APP FOR VMWARE® stores
large volumes of minimally processed machine data, such as
performance information and log data, at ingestion time for
later retrieval and analysis at search time when a live
performance 1ssue 1s being investigated. In addition to data
obtained from various log files, this performance-related
information can include values for performance metrics
obtained through an application programming interface
(API) provided as part of the vSphere Hypervisor™ system
distributed by VMware, Inc. of Palo Alto, Calif. For
example, these performance metrics can include: (1) CPU-
related performance metrics; (2) disk-related performance
metrics; (3) memory-related performance metrics; (4) net-
work-related performance metrics; (5) energy-usage statis-
tics; (6) data-tratlic-related performance metrics; (7) overall
system availability performance metrics; (8) cluster-related
performance metrics; and (9) virtual machine performance

statistics. Such performance metrics are described 1n U.S.
patent application Ser. No. 14/167,316, entitled “CORRE-

LATION FOR USER-SELECTED TIME RANGES OF
VALUES FOR PERFORMANCE METRICS OF COMPO-
NENTS IN AN INFORMATION-TECHNOLOGY ENVI-
RONMENT WITH LOG DATA FROM THAT INFORMA-

10

15

20

25

30

35

40

45

50

55

60

65

26

TION-TECHNOLOGY ENVIRONMENT”, filed on 29 Jan.
2014, and which 1s hereby incorporated by reference 1n 1ts
entirety for all purposes.

To facilitate retrieving information of interest from per-
formance data and log files, the SPLUNK® APP FOR
VMWARE® provides pre-specified schemas for extracting
relevant values from different types of performance-related
event data, and also enables a user to define such schemas.

The SPLUNK® APP FOR VMWARE® additionally pro-
vides various visualizations to facilitate detecting and diag-
nosing the root cause of performance problems. For
example, one such visualization 1s a “proactive monitoring
tree” that enables a user to easily view and understand
relationships among various factors that affect the perior-
mance of a hierarchically structured computing system. This
proactive monitoring tree enables a user to easily navigate
the hierarchy by selectively expanding nodes representing
various entities (e.g., virtual centers or computing clusters)
to view performance information for lower-level nodes
associated with lower-level entities (e.g., virtual machines or
host systems). Example node-expansion operations are illus-
trated 1n FIG. 9C, wherein nodes 933 and 934 are selectively
expanded. Note that nodes 931-939 can be displayed using
different patterns or colors to represent different perfor-
mance states, such as a critical state, a warning state, a
normal state or an unknown/oflline state. The ease of navi-
gation provided by selective expansion in combination with
the associated performance-state information enables a user
to quickly diagnose the root cause ol a performance prob-
lem. The proactive monitoring tree 1s described in further
detaill 1 U.S. patent application Ser. No. 14/253,490,
entitled “PROACTIVE MONITORING TREE WITH
SEVERITY STATE SORTING”, filed on 15 Apr. 2014, and

U.S. patent application Ser. No. 14/812,948, also entitled
“PROACTIVE MONITORING TREE WITH SEVERITY

STATE SORTING™, filed on 29 Jul. 2015, each of which 1s
hereby incorporated by reference in 1ts entirety for all

purposes.
The SPLUNK® APP FOR VMWARE® also provides a

user interface that enables a user to select a specific time
range and then view heterogeneous data comprising events,
log data, and associated performance metrics for the selected
time range. For example, the screen illustrated 1n FIG. 9D
displays a listing of recent “tasks and events” and a listing
of recent “log entries” for a selected time range above a
performance-metric graph for “average CPU core utiliza-
tion” for the selected time range. Note that a user 1s able to
operate pull-down menus 942 to selectively display different
performance metric graphs for the selected time range. This
cnables the user to correlate trends 1n the performance-
metric graph with corresponding event and log data to
quickly determine the root cause of a performance problem.

This user interface i1s described 1n more detail 1n U.S. patent
application Ser. No. 14/167,316, entitled “CORRELATION

FOR USER-SELECTED TIME RANGES OF VALUES
FOR PERFORMANCE METRICS OF COMPONENTS IN
AN INFORMATION-TECHNOLOGY ENVIRONMENT
WITH LOG DATA FROM THAT INFORMATITON-TECH-
NOLOGY ENVIRONMENT”, filed on 29 Jan. 2014, and

which 1s hereby incorporated by reference 1n 1ts entirety for
all purposes.

2.13. Cloud-Based System Overview

The example data intake and query system 108 described
in reference to FIG. 2 comprises several system components,
including one or more forwarders, indexers, and search
heads. In some environments, a user of a data intake and
query system 108 may install and configure, on computing

US 10,685,279 B2

27

devices owned and operated by the user, one or more
software applications that implement some or all of these
system components. For example, a user may install a
soltware application on server computers owned by the user
and configure each server to operate as one or more of a
forwarder, an indexer, a search head, etc. This arrangement
generally may be referred to as an “on-premises” solution.
That 1s, the system 108 1s installed and operates on com-
puting devices directly controlled by the user of the system.
Some users may prefer an on-premises solution because 1t
may provide a greater level of control over the configuration
of certain aspects of the system (e.g., security, privacy,
standards, controls, etc.). However, other users may instead
prefer an arrangement i which the user 1s not directly
responsible for providing and managing the computing
devices upon which various components of system 108
operate.

In one embodiment, to provide an alternative to an
entirely on-premises environment for system 108, one or
more of the components of a data intake and query system
instead may be provided as a cloud-based service. In this
context, a cloud-based service refers to a service hosted by
one more computing resources that are accessible to end
users over a network, for example, by using a web browser
or other application on a client device to interface with the
remote computing resources. For example, a service pro-
vider may provide a cloud-based data intake and query
system by managing computing resources configured to
implement various aspects of the system (e.g., forwarders,
indexers, search heads, etc.) and by providing access to the
system to end users via a network. Typically, a user may pay
a subscription or other fee to use such a service. Fach
subscribing user of the cloud-based service may be provided
with an account that enables the user to configure a custom-
1zed cloud-based system based on the user’s preferences.

FIG. 10 1llustrates a block diagram of an example cloud-
based data intake and query system. Similar to the system of
FIG. 2, the networked computer system 1000 includes input
data sources 202 and forwarders 204. These input data
sources and forwarders may be in a subscriber’s private
computing environment. Alternatively, they might be
directly managed by the service provider as part of the cloud
service. In the example system 1000, one or more forward-
ers 204 and client devices 1002 are coupled to a cloud-based
data intake and query system 1006 via one or more networks
1004. Network 1004 broadly represents one or more LANS,
WANSs, cellular networks, intranetworks, internetworks, etc.,
using any of wired, wireless, terrestrial microwave, satellite
links, etc., and may include the public Internet, and 1s used
by client devices 1002 and forwarders 204 to access the
system 1006. Similar to the system of 108, each of the
torwarders 204 may be configured to receive data from an
input source and to forward the data to other components of
the system 1006 for further processing.

In an embodiment, a cloud-based data intake and query
system 1006 may comprise a plurality of system instances
1008. In general, each system instance 1008 may include
one or more computing resources managed by a provider of
the cloud-based system 1006 made available to a particular
subscriber. The computing resources comprising a system
instance 1008 may, for example, include one or more servers
or other devices configured to implement one or more
torwarders, indexers, search heads, and other components of
a data intake and query system, similar to system 108. As
indicated above, a subscriber may use a web browser or

10

15

20

25

30

35

40

45

50

55

60

65

28

other application of a client device 1002 to access a web
portal or other interface that enables the subscriber to
configure an instance 1008.

Providing a data intake and query system as described 1n
reference to system 108 as a cloud-based service presents a
number of challenges. Each of the components of a system
108 (e.g., forwarders, indexers and search heads) may at
times refer to various configuration {files stored locally at
cach component. These configuration files typically may
involve some level of user configuration to accommodate
particular types of data a user desires to analyze and to
account for other user preferences. However, 1mn a cloud-
based service context, users typically may not have direct
access to the underlying computing resources implementing
the wvarious system components (e.g., the computing
resources comprising each system instance 1008) and may
desire to make such configurations indirectly, for example,
using one or more web-based interfaces. Thus, the tech-
niques and systems described heremn for providing user
interfaces that enable a user to configure source type defi-
nitions are applicable to both on-premises and cloud-based
service contexts, or some combination thereof (e.g., a hybnd
system where both an on-premises environment such as

SPLUNK® ENTERPRISE and a cloud-based environment
such as SPLUNK CLOUD™ are centrally visible).

2.14. Searching Externally Archived Data

FIG. 11 shows a block diagram of an example of a data
intake and query system 108 that provides transparent search
facilities for data systems that are external to the data intake
and query system. Such facilities are available 1n the
HUNK® system provided by Splunk Inc. of San Francisco,
Calif. HUNK® represents an analytics platform that enables
business and IT teams to rapidly explore, analyze, and
visualize data 1n Hadoop and NoSQL data stores.

The search head 210 of the data intake and query system
receives search requests from one or more client devices
1104 over network connections 1120. As discussed above,
the data intake and query system 108 may reside in an
enterprise location, 1n the cloud, etc. FIG. 11 1illustrates that
multiple client devices 1104a, 11045, , 11047 may
communicate with the data intake and query system 108.
The client devices 1104 may communicate with the data
intake and query system using a variety of connections. For
example, one client device in FIG. 11 1s illustrated as
communicating over an Internet (Web) protocol, another
client device 1s illustrated as communicating via a command
line interface, and another client device 1s illustrated as
communicating via a system developer kit (SDK).

The search head 210 analyzes the received search request
to 1dentily request parameters. If a search request recerved
from one of the client devices 1104 references an index
maintained by the data intake and query system, then the
search head 210 connects to one or more indexers 206 of the
data mtake and query system for the index referenced in the
request parameters. That 1s, 1f the request parameters of the
search request reference an index, then the search head
accesses the data 1n the index via the indexer. The data intake
and query system 108 may include one or more indexers
206, depending on system access resources and require-
ments. As described further below, the indexers 206 retrieve
data from their respective local data stores 208 as specified
in the search request. The indexers and their respective data
stores can comprise one or more storage devices and typi-
cally reside on the same system, though they may be
connected via a local network connection.

If the request parameters of the received search request
reference an external data collection, which 1s not accessible

US 10,685,279 B2

29

to the indexers 206 or under the management of the data
intake and query system, then the search head 210 can
access the external data collection through an External
Result Provider (ERP) process 1110. An external data col-
lection may be referred to as a “virtual imdex” (plural,
“virtual indices™). An ERP process provides an interface
through which the search head 210 may access virtual
indices.

Thus, a search reference to an index of the system relates
to a locally stored and managed data collection. In contrast,
a search reference to a virtual index relates to an externally
stored and managed data collection, which the search head
may access through one or more ERP processes 1110, 1112.
FIG. 11 shows two ERP processes 1110, 1112 that connect
to respective remote (external) virtual indices, which are
indicated as a Hadoop or another system 1114 (e.g., Amazon
S3, Amazon EMR, other Hadoop Compatible File Systems
(HCES), etc.) and a relational database management system
(RDBMS) 1116. Other virtual indices may include other file
organizations and protocols, such as Structured Query Lan-
guage (SQL) and the like. The ellipses between the ERP
processes 1110, 1112 indicate optional additional ERP pro-
cesses of the data intake and query system 108. An ERP
process may be a computer process that 1s mitiated or
spawned by the search head 210 and i1s executed by the
search data intake and query system 108. Alternatively or
additionally, an ERP process may be a process spawned by
the search head 210 on the same or diflerent host system as
the search head 210 resides.

The search head 210 may spawn a single ERP process in
response to multiple virtual imndices referenced 1n a search
request, or the search head may spawn different ERP pro-
cesses for different virtual indices. Generally, virtual indices
that share common data configurations or protocols may
share ERP processes. For example, all search query refer-
ences to a Hadoop file system may be processed by the same
ERP process, 1 the ERP process 1s suitably configured.
Likewise, all search query references to an SQL database
may be processed by the same ERP process. In addition, the
search head may provide a common ERP process for com-
mon external data source types (e.g., a common vendor may
utilize a common ERP process, even if the vendor includes
different data storage system types, such as Hadoop and
SQL). Common indexing schemes also may be handled by
common ERP processes, such as flat text files or Weblog
files.

The search head 210 determines the number of ERP
processes to be mitiated via the use of configuration param-
cters that are included 1n a search request message. Gener-
ally, there 1s a one-to-many relationship between an external
results provider “family” and ERP processes. There 1s also
a one-to-many relationship between an ERP process and
corresponding virtual indices that are referred to 1n a search
request. For example, using RDBMS, assume two 1indepen-
dent instances of such a system by one vendor, such as one
RDBMS for production and another RDBMS used {for
development. In such a situation, it 1s likely preferable (but
optional) to use two ERP processes to maintain the inde-
pendent operation as between production and development
data. Both of the ERPs, however, will belong to the same
tamily, because the two RDBMS system types are from the
same vendor.

The ERP processes 1110, 1112 receive a search request
from the search head 210. The search head may optimize the
received search request for execution at the respective
external virtual index. Alternatively, the ERP process may
receive a search request as a result of analysis performed by

10

15

20

25

30

35

40

45

50

55

60

65

30

the search head or by a different system process. The ERP
processes 1110, 1112 can communicate with the search head
210 via conventional mmput/output routines (e.g., standard

in/standard out, etc.). In this way, the ERP process receives

the search request from a client device such that the search
request may be efliciently executed at the corresponding
external virtual index.

The ERP processes 1110, 1112 may be implemented as a
process of the data intake and query system. Each ERP
process may be provided by the data intake and query
system, or may be provided by process or application
providers who are independent of the data intake and query
system. Each respective ERP process may include an inter-
face application installed at a computer of the external result
provider that ensures proper communication between the
search support system and the external result provider. The
ERP processes 1110, 1112 generate appropriate search
requests 1n the protocol and syntax of the respective virtual
indices 1114, 1116, each of which corresponds to the search
request received by the search head 210. Upon receiving
search results from their corresponding virtual indices, the
respective ERP process passes the result to the search head
210, which may return or display the results or a processed
set of results based on the returned results to the respective
client device.

Client devices 1104 may communicate with the data
intake and query system 108 through a network interface
1120, e.g., one or more LANs, WANSs, cellular networks,
intranetworks, and/or internetworks using any of wired,
wireless, terrestrial microwave, satellite links, etc., and may
include the public Internet.

The analytics platform utilizing the External Result Pro-

vider process described in more detail in U.S. Pat. No.
8,738,629, entitled “EXTERNAL RESULT PROVIDED
PROCESS FOR RETRIEVING DATA STORED USING A
DIFFERENT CONFIGURATION OR PROTOCOL”,
issued on 27 May 2014, U.S. Pat. No. 8,738,587, entitled
“PROCESSING A SYSTEM SEARCH REQUEST BY
RETRIEVING RESULTS FROM BOTH A NATIVE
INDEX AND A VIRTUAL INDEX”™, 1ssued on 25 Jul. 2013,
U.S. patent application Ser. No. 14/266,832, entitled “PRO-
CESSING A SYSTEM SEARCH REQUEST ACROSS
DISPARATE DATA COLLECTION SYSTEMS”, filed on 1
May 2014, and U.S. patent application Ser. No. 14/449,144,
entitled “PROCESSING A SYSTEM SEARCH REQUEST
INCLUDING EXTERNAL DATA SOURCES”, filed on 31
Jul. 2014, each of which 1s hereby incorporated by reference
in its entirety for all purposes.

2.14.1. ERP Process Features

The ERP processes described above may include two
operation modes: a streaming mode and a reporting mode.
The ERP processes can operate in streaming mode only, 1n
reporting mode only, or 1 both modes simultaneously.
Operating 1n both modes simultaneously 1s referred to as
mixed mode operation. In a mixed mode operation, the ERP
at some point can stop providing the search head with
streaming results and only provide reporting results there-
alter, or the search head at some point may start 1ignoring
streaming results 1t has been using and only use reporting
results thereafter.

The streaming mode returns search results in real time,
with minimal processing, 1n response to the search request.
The reporting mode provides results of a search request with
processing of the search results prior to providing them to
the requesting search head, which 1n turn provides results to

the requesting client device. ERP operation with such mul-

US 10,685,279 B2

31

tiple modes provides greater performance tlexibility with
regard to report time, search latency, and resource utiliza-
tion.

In a mixed mode operation, both streaming mode and
reporting mode are operating simultaneously. The streaming
mode results (e.g., the raw data obtained from the external
data source) are provided to the search head, which can then
process the results data (e.g., break the raw data into events,
timestamp 1t, filter 1t, etc.) and integrate the results data with
the results data from other external data sources, and/or from
data stores of the search head. The search head performs
such processing and can immediately start returning interim
(streaming mode) results to the user at the requesting client
device; simultaneously, the search head 1s waiting for the
ERP process to process the data it 1s retrieving from the
external data source as a result of the concurrently executing
reporting mode.

In some 1nstances, the ERP process initially operates in a
mixed mode, such that the streaming mode operates to
cnable the ERP quickly to return interim results (e.g., some
of the raw or unprocessed data necessary to respond to a
search request) to the search head, enabling the search head
to process the interim results and begin providing to the
client or search requester interim results that are responsive
to the query. Meanwhile, in this mixed mode, the ERP also
operates concurrently in reporting mode, processing por-
tions of raw data 1n a manner responsive to the search query.
Upon determining that 1t has results from the reporting mode
available to return to the search head, the ERP may halt
processing 1n the mixed mode at that time (or some later
time) by stopping the return of data 1n streaming mode to the
search head and switching to reporting mode only. The ERP
at this point starts sending interim results 1n reporting mode
to the search head, which 1n turn may then present this
processed data responsive to the search request to the client
or search requester. Typically the search head switches from
using results from the ERP’s streaming mode of operation to
results from the ERP’s reporting mode of operation when
the higher bandwidth results from the reporting mode out-
strip the amount of data processed by the search head 1n the
streaming mode of ERP operation.

A reporting mode may have a higher bandwidth because
the ERP does not have to spend time transierring data to the
search head for processing all the raw data. In addition, the
ERP may optionally direct another processor to do the
processing.

The streaming mode of operation does not need to be
stopped to gain the higher bandwidth benefits of a reporting
mode; the search head could simply stop using the streaming,
mode results—and start using the reporting mode results—
when the bandwidth of the reporting mode has caught up
with or exceeded the amount of bandwidth provided by the
streaming mode. Thus, a variety of triggers and ways to
accomplish a search head’s switch from using streaming
mode results to using reporting mode results may be appre-
ciated by one skilled 1n the art.

The reporting mode can mvolve the ERP process (or an
external system) performing event breaking, time stamping,
filtering of events to match the search query request, and
calculating statistics on the results. The user can request
particular types of data, such as if the search query itself
involves types of events, or the search request may ask for
statistics on data, such as on events that meet the search
request. In either case, the search head understands the query
language used 1n the recerved query request, which may be
a proprictary language. One exemplary query language is
Splunk Processing Language (SPL) developed by the

10

15

20

25

30

35

40

45

50

55

60

65

32

assignee of the application, Splunk Inc. The search head
typically understands how to use that language to obtain data
from the 1indexers, which store data in a format used by the
SPLUNK® Enterprise system.

The ERP processes support the search head, as the search
head 1s not ordinarily configured to understand the format in
which data 1s stored 1n external data sources such as Hadoop
or SQL data systems. Rather, the ERP process performs that
translation from the query submitted in the search support
system’s native format (e.g., SPL if SPLUNK® ENTER-
PRISE 1s used as the search support system) to a search
query request format that will be accepted by the corre-
sponding external data system. The external data system
typically stores data in a different format from that of the
search support system’s native index format, and it utilizes
a different query language (e.g., SQL or MapReduce, rather
than SPL or the like).

As noted, the ERP process can operate 1n the streaming
mode alone. After the ERP process has performed the
translation of the query request and received raw results
from the streaming mode, the search head can integrate the
returned data with any data obtained from local data sources
(e.g., native to the search support system), other external
data sources, and other ERP processes (i1 such operations
were required to satisty the terms of the search query). An
advantage of mixed mode operation 1s that, in addition to
streaming mode, the ERP process 1s also executing concur-
rently 1n reporting mode. Thus, the ERP process (rather than
the search head) 1s processing query results (e.g., performing
event breaking, timestamping, filtering, possibly calculating
statistics 1f required to be responsive to the search query
request, etc.). It should be apparent to those skilled 1n the art
that additional time 1s needed for the ERP process to perform
the processing in such a configuration. Therefore, the
streaming mode will allow the search head to start returning
interim results to the user at the client device before the ERP
process can complete sullicient processing to start returning
any search results. The switchover between streaming and
reporting mode happens when the ERP process determines
that the switchover 1s appropniate, such as when the ERP
process determines it can begin returning meaningtul results
from 1ts reporting mode.

The operation described above illustrates the source of
operational latency: streaming mode has low latency (1imme-
diate results) and usually has relatively low bandwidth
(fewer results can be returned per unit of time). In contrast,
the concurrently running reporting mode has relatively high
latency (1t has to perform a lot more processing before
returning any results) and usually has relatively high band-
width (more results can be processed per unit of time). For
example, when the ERP process does begin returning report
results, 1t returns more processed results than 1n the stream-
ing mode, because, e.g., statistics only need to be calculated
to be responsive to the search request. That 1s, the ERP
process doesn’t have to take time to first return raw data to
the search head. As noted, the ERP process could be
configured to operate 1n streaming mode alone and return
just the raw data for the search head to process 1n a way that
1s responsive to the search request. Alternatively, the ERP
process can be configured to operate 1n the reporting mode
only. Also, the ERP process can be configured to operate 1n
streaming mode and reporting mode concurrently, as
described, with the ERP process stopping the transmission
of streaming results to the search head when the concur-
rently runming reporting mode has caught up and started
providing results. The reporting mode does not require the
processing ol all raw data that 1s responsive to the search

US 10,685,279 B2

33

query request before the ERP process starts returning results;
rather, the reporting mode usually performs processing of
chunks of events and returns the processing results to the
search head for each chunk.

For example, an ERP process can be configured to merely
return the contents of a search result file verbatim, with little
or no processing ol results. That way, the search head
performs all processing (such as parsing byte streams 1nto
events, filtering, etc.). The ERP process can be configured to
perform additional intelligence, such as analyzing the search
request and handling all the computation that a native search
indexer process would otherwise perform. In this way, the
configured ERP process provides greater flexibility 1n fea-
tures while operating according to desired preferences, such
as response latency and resource requirements.

2.15. I'T Service Monitoring

As previously mentioned, the SPLUNK® ENTERPRIS,
platform provides various schemas, dashboards and visual-
izations that make it easy for developers to create applica-
tions to provide additional capabilities. One such application
1s SPLUNK® IT SERVICE INTELLIGENCE™, which
performs monitoring and alerting operations. It also includes
analytics to help an analyst diagnose the root cause of
performance problems based on large volumes of data stored
by the SPLUNK® ENTERPRISE system as correlated to
the various services an I'T organization provides (a service-
centric view). This differs significantly from conventional IT
monitoring systems that lack the infrastructure to effectively
store and analyze large volumes of service-related event
data. Traditional service monitoring systems typically use
fixed schemas to extract data from pre-defined fields at data
ingestion time, wherein the extracted data 1s typically stored
in a relational database. This data extraction process and
associated reduction in data content that occurs at data
ingestion time 1nevitably hampers future investigations,
when all of the original data may be needed to determine the
root cause ol or contributing factors to a service 1ssue.

In contrast, a SPLUNK® IT SERVICE INTELLI-
GENCE™ gsystem stores large volumes of minimally-pro-
cessed service-related data at ingestion time for later
retrieval and analysis at search time, to perform regular
monitoring, or to investigate a service 1ssue. To facilitate this
data retrieval process, SPLUNK® IT SERVICE INTELLI-
GENCE™ enables a user to define an IT operations infra-
structure from the perspective of the services it provides. In
this service-centric approach, a service such as corporate
¢-mail may be defined 1n terms of the entities employed to
provide the service, such as host machines and network
devices. FEach entity 1s defined to include information for
identifying all of the event data that pertains to the entity,
whether produced by the entity 1itself or by another machine,
and considering the many various ways the entity may be
identified in raw machine data (such as by a URL, an IP
address, or machine name). The service and entity defini-
tions can organize event data around a service so that all of
the event data pertaining to that service can be easily
identified. This capability provides a foundation for the
implementation of Key Performance Indicators.

One or more Key Performance Indicators (KPI’s) are
defined for a service within the SPLUNK® IT SERVICE
INTELLIGENCE™ application. Fach KPI measures an
aspect of service performance at a point 1n time or over a
period of time (aspect KPI’s). Each KPI 1s defined by a
search query that dertves a KPI value from the machine data
of events associated with the entities that provide the ser-
vice. Information 1n the entity definitions may be used to
identity the appropriate events at the time a KPI 1s defined

(L]

10

15

20

25

30

35

40

45

50

55

60

65

34

or whenever a KPI value 1s being determined. The KPI
values dertved over time may be stored to build a valuable
repository of current and historical performance information
for the service, and the repository, itsell, may be subject to
search query processing. Aggregate KPIs may be defined to
provide a measure of service performance calculated from a
set of service aspect KPI values; this aggregate may even be
taken across defined timeframes and/or across multiple
services. A particular service may have an aggregate KPI
derived from substantially all of the aspect KPI's of the
service to indicate an overall health score for the service.
SPLUNK® IT SERVICE INTELLIGENCE™ f{acilitates
the production of meaningiul aggregate KPI’s through a
system of KPI thresholds and state values. Different KPI
definitions may produce values 1n different ranges, and so
the same value may mean something very different from one

KPI definition to another. To address this, SPLUNK® IT
SERVICE INTELLIGENCE™ implements a translation of
individual KPI values to a common domain of *state”
values. For example, a KPI range of values may be 1-100,
or 50-275, while values 1n the state domain may be “critical,’
‘warning,” ‘normal,” and ‘informational’. Thresholds asso-
ciated with a particular KPI definition determine ranges of
values for that KPI that correspond to the various state
values. In one case, KPI values 95-100 may be set to
correspond to ‘critical’ in the state domain. KPI values from
disparate KPI’s can be processed uniformly once they are
translated 1into the common state values using the thresholds.
For example, “normal 80% of the time” can be applied
across various KPI’s. To provide meaningful aggregate
KPI’s, a weighting value can be assigned to each KPI so that
its influence on the calculated aggregate KPI value 1is
increased or decreased relative to the other KPIs.

One service 1 an IT environment often impacts, or 1s
impacted by, another service. SPLUNK® IT SERVICE

INTELLIGENCE™ can reflect these dependencies. For
example, a dependency relationship between a corporate
e-mail service and a centralized authentication service can
be retlected by recording an association between their
respective service definitions. The recorded associations
establish a service dependency topology that informs the
data or selection options presented 1 a GUI, for example.
(The service dependency topology 1s like a “map”™ showing
how services are connected based on their dependencies.)
The service topology may 1tself be depicted 1n a GUI and
may be interactive to allow navigation among related ser-
VICES.

Entity definitions in SPLUNK® IT SERVICE INTELLI-
GENCE™ can include informational fields that can serve as
metadata, implied data fields, or attributed data fields for the
cvents 1dentified by other aspects of the entity definition.
Entity definitions in SPLUNK® IT SERVICE INTELLI-
GENCE™ can also be created and updated by an import of
tabular data (as represented 1 a CSV, another delimited file,
or a search query result set). The import may be GUI-
mediated or processed using import parameters from a
GUI-based import definition process. Entity definitions in
SPLUNK® IT SERVICE INTELLIGENCE™ can also be
associated with a service by means of a service definition
rule. Processing the rule results in the matching entity
definitions being associated with the service definition. The
rule can be processed at creation time, and thereafter on a
scheduled or on-demand basis. This allows dynamic, rule-
based updates to the service defimition.

During operation, SPLUNK® IT SERVICE INTELLI-
GENCE™ can recognize so-called “notable events™ that
may indicate a service performance problem or other situ-

US 10,685,279 B2

35

ation of interest. These notable events can be recognized by
a ‘“‘correlation search” specilying trigger criteria for a
notable event: every time KPI values satisty the criteria, the
application indicates a notable event. A severity level for the
notable event may also be specified. Furthermore, when
trigger criteria are satisfied, the correlation search may
additionally or alternatively cause a service ticket to be
created 1n an IT service management (ITSM) system, such
as a systems available from ServiceNow, Inc., of Santa
Clara, Calif.

SPLUNK® IT SERVICE INTELLIGENCE™ provides
various visualizations built on 1ts service-centric organiza-
tion of event data and the KPI values generated and col-
lected. Visualizations can be particularly usetul for moni-
toring or 1mvestigating service performance. SPLUNK® IT
SERVICE INTELLIGENCE™ provides a service monitor-
ing 1interface suitable as the home page for ongoing IT
service momtoring. The interface 1s appropriate for settings
such as desktop use or for a wall-mounted display 1n a
network operations center (INOC). The interface may promi-
nently display a services health section with tiles for the
aggregate KPI’s indicating overall health for defined ser-
vices and a general KPI section with tiles for KPI’s related
to individual service aspects. These tiles may display KPI
information in a variety of ways, such as by being colored
and ordered according to factors like the KPI state value.
They also can be interactive and navigate to visualizations of
more detailed KPI information.

SPLUNK® IT SERVICE INTELLIGENCE™ provides a
service-monitoring dashboard visualization based on a user-
defined template. The template can include user-selectable
widgets of varying types and styles to display KPI informa-
tion. The content and the appearance of widgets can respond
dynamically to changing KPI information. The KPI widgets
can appear in conjunction with a background image, user
drawing objects, or other visual elements, that depict the IT
operations environment, for example. The KPI widgets or
other GUI elements can be interactive so as to provide
navigation to visualizations of more detailed KPI informa-
tion.

SPLUNK® IT SERVICE INTELLIGENCE™ provides a
visualization showing detailed time-series information for
multiple KPI’s 1n parallel graph lanes. The length of each
lane can correspond to a uniform time range, while the width
of each lane may be automatically adjusted to fit the dis-
played KPI data. Data within each lane may be displayed in
a user selectable style, such as a line, area, or bar chart.
During operation a user may select a position 1n the time
range ol the graph lanes to activate lane inspection at that
point 1n time. Lane mspection may display an indicator for
the selected time across the graph lanes and display the KPI
value associated with that point 1n time for each of the graph
lanes. The visualization may also provide navigation to an
interface for defining a correlation search, using information
from the visualization to pre-populate the definition.

SPLUNK® IT SERVICE INTELLIGENCE™ provides a
visualization for incident review showing detailed informa-
tion for notable events. The incident review visualization
may also show summary information for the notable events
over a time frame, such as an indication of the number of
notable events at each of a number of severity levels. The
severity level display may be presented as a rainbow chart
with the warmest color associated with the highest severity
classification. The incident review visualization may also
show summary information for the notable events over a
time frame, such as the number of notable events occurring,
within segments of the time frame. The incident review

10

15

20

25

30

35

40

45

50

55

60

65

36

visualization may display a list of notable events within the
time frame ordered by any number of factors, such as time
or severity. The selection of a particular notable event from
the list may display detailed information about that notable
event, including an identification of the correlation search
that generated the notable event.

SPLUNK® IT SERVICE INTELLIGENCE™ provides
pre-specified schemas for extracting relevant values from
the different types of service-related event data. It also
enables a user to define such schemas.

3.0 Event Clustering

As indicated above, 1n various implementations, under-
lying raw data 1s maintained for events. This allows users
and the system to continue to mvestigate and learn valuable
insights about the raw data. For example, the raw data of
different events may include latent similarities, which can
facilitate additional understanding of the events. These simi-
larities can be leveraged in various ways, such as to deter-
mine that certain events correspond to the same data type,
share the same schema, or otherwise have similar structure.
As additional examples, these similarities can be leveraged
to assist users 1n 1dentifying fields in event raw data, develop
extraction rules for the fields, apply schema to events, and
validate any combination of the foregoing.

As described herein, events can be clustered, or arranged
into groups, based on the similarity between any of the
various data assigned to the events, such as the raw data or
other underlying data of the event. In this regard, events can
be detected as similar, and thereby clustered when data
assigned to the events are similar.

Various approaches to clustering may be employed, such
as those based on cluster analysis, similarity scoring, dii-
ference scoring, or the like. In some embodiments, statistical
classification, including supervised and unsupervised leamn-
ing approaches, may be utilized. In unsupervised learning
methods, any one of a number of cluster analysis techniques
may be employed alone or in combination, including con-
nectivity-based clustering, centroid-based clustering, distri-
bution-based clustering, density-based clustering, canopy
clustering, K-means clustering, subspace clustering, and
correlation clustering, for example.

3.1 Event Clustering Based on Extraction Rules

In various implementations, the present disclosure pro-
vides for applying extraction rules to the clustering of
events. The extraction rules can be used to extract informa-
tion from event data, which can be factored into clustering
algorithms, such as those based on any of the various
approaches described above. For example, by applying one
or more extraction rules for a field to a set of events, portions
of event data that are latently similar (e.g., values in different
events corresponding to the same field) can be identified to
improve the clustering of the events.

For simplicity, the present application may only refer to a
particular extraction rule 1n association with a field. How-
ever, 1t 1s noted that a field may be defined by one or more
extraction rules and where the application refers to an
extraction rule for a field 1n the singular, 1t should be
interpreted as potentially applying to multiple extraction
rules (e.g., each extraction rule associated with the field).

In some embodiments, clustering based on an extraction
rule(s) for a field includes applying the extraction rule to a
set of events to 1dentity values for the field in the events. A
clustering algorithm that determines how to cluster events
can base its notion of similarity between events on the
identified values. To this end, the values identified by the
extraction rule can be used to determine the similarity
between events such that similar events can be clustered

US 10,685,279 B2

37

together. This could include increasing the similarity
between events based on the 1dentified values so that events
are more likely to be clustered into the same group. In some
cases, this includes increasing a similarity score for events
based on the identified values. For example, the algorithm
could increase a similarity score for an event based on the
event including values for the field corresponding to the
extraction rule. However, as described in more detail below,
some embodiments do not require a scoring system to base
the similarity of events on the identified values.

In some cases, values for a field are masked from event
data, and the events are clustered based on determining the
similarity between the masked event data. Masked event
data generally refers to event data altered based on values
identified 1n the event data. Masking event data for events
can include, for example, deleting i1dentified values for a
field from the event data of each event. In addition, or
instead, masking event data for events can include assigning
a token to 1identified values for a field from the event data of
cach event (e.g., replacing the identified value with the
token). To this eflect, the clustering algorithm can consider
identified values 1n different events as similar or more
similar based on each value being assigned the token. For
example, assigning a token to an 1dentified value may cause
the algorithm to analyze the token in place of the particular
value. Each field can be associated with at least one token
(e.g., a diflerent token for each field) that 1s assigned to each
identified value corresponding to the field. In one approach,
the token for a field corresponds to the field name for the
field.

As mentioned above, some embodiments do not require a
scoring system to base the similarity on identified values
from one or more extraction rules. Some of these embodi-
ments may only consider events similar where event data
analyzed for the events are identical amongst the events
(optionally after some parsing, cleaning, and/or tokeniza-
tion). Similar events may be grouped together, such that
cach group represents unique event data. In some embodi-
ments, the event data analyzed for events can be or comprise
the masked event data described above. Masking different
values from event data of diflerent events, for example can
result 1in those values being considered as i1dentical. In this
way, applying an extraction rule can result 1in the clustering
algorithm 1dentifying additional events as 1dentical, or oth-
erwise similar, even where the events have different values
for fields. An example of the forgoing will later be described
in additional detail with respect to FIGS. 18A-18G.

It should be appreciated that rather than grouping events
together based on 1dentical event data, masked or otherwise,
in some cases, similarity scores between events could be
determined based on analyzing the identified values for
fields (e.g., based on determining similarity between tokens,
or the values themselves), and events may be grouped based
on the similarity scores. The identified values can be fac-
tored 1into any of the various clustering approaches described
herein 1including those that employ statistical classification.

3.2 Types of Extraction Rules Applied to Clustering

The extraction rules for fields applied to clustering can
come from any combination of a variety of possible sources.
In some cases, one or more of the extraction rules are
machine-generated. For example, an extraction rule may be
automatically generated by the system based on an analysis
of one or more events. For example, an extraction rule may
be generated by offering the user options for the extraction
rule and the extraction rule may be automatically machine-
generated based on the selected options. In addition or
instead, the user may select the one or more events and/or

10

15

20

25

30

35

40

45

50

55

60

65

38

one or more portions of the underlying data thereof for the
system to base the extraction rule generation on. One or
more extraction rules can also be user generated. For
example, a user may type in or otherwise define an extrac-
tion rule. In some cases, one or more extraction rules are
partially machine-generated and partially user generated.
For example, a user could modily a machine-generated
extraction rule and/or draft one or more portions thereof. As
yet another example, extraction rules can be generated as
discussed below with regard to field extraction recommen-
dations.

One or more of the extraction rules can correspond to a
field defined prior to search time. These can include meta-
data fields of the events, such as “default fields” that may be
assoclated with all events, as described above. In some
cases, these metadata fields are extracted at index time by an
indexer and may also include one more custom fields as
defined by a user. Examples of default metadata fields
assoclated with each event include a host, source, and source
type field mncluding or in addition to a field storing the
timestamp.

In addition or instead, one or more of the extraction rules
can correspond to a field defined after index time of events,
such as at search time. For example, the field may be defined
in association with a search interface, which may correspond
to search screen 600 of FIG. 6A, or another interface. As an
example, a user may provide an extraction rule that defines
a field to a loaded search interface corresponding to search
screen 600. The search screen can be updated to reflect the
newly defined field, such as by updating displayed events in
the search screen to display values for the field (e.g., in
events list 608) and/or including the field 1n fields sidebar
606. In this case, the newly defined field may be extracted
from the events corresponding to the search query and
values of the field may be displayed 1n association with the
events.

It should be noted that aspects of the present disclosure
extend beyond systems that perform searches on indexed
events and more generally can apply to systems that define
extraction rules for events at any time, regardless of whether
the system performs indexing or employs a search intertface.
Further, the extraction rules can more generally be applied
to the underlying data of events, which 1s not necessarily raw
data.

In various implementations, regardless of when an extrac-
tion rule(s) has been generated, and regardless of whether
the extraction rule has been assigned to a field, events can be
clustered based on the extraction rule. Further, 1n some
cases, at least some of the events can be reclustered or
clusters can be updated based on the extraction rule. Thus,
as new extraction rules are generated in association with
events, a set of clusters corresponding to those events can
also be updated to retlect any 1nsights that may be provided
by the new extraction rules.

3.3 Interactive Field Generator

In some respects, the present application provides for
clustering events based on extraction rules 1n order to assist
a user in defining extraction rules for event fields. In
particular, the relationships between events that are repre-
sented by clusters can be exposed to users to aid 1n the users
understanding and interpreting the events.

In some embodiments, this 1s manifested by displaying
one or more clusters of a set of clusters to the user in
association with a set of events. An extraction rule can be
generated 1n association with the displayed events. In
response to the extraction rule being generated, a new set of
clusters 1s determined based on the extraction rule, and one

US 10,685,279 B2

39

or more clusters of the new set of clusters 1s displayed to the
user. In this way, the system can indicate to the user the
impact of the extraction rule on underlying relationships
between events. Based on the displayed clusters from the
new set, the user can choose to modily the extraction rule,
assign the extraction rule to a field, and/or generate at least
one additional extraction rule for the field or another field.

In some embodiments, the extraction rules (and optionally
fields) are iteratively generated using this approach, and
cach time events are clustered, any newly generated extrac-
tion rules can be added to the extraction rules applied to the
clustering. Each additional extraction rule may in some
cases increase the similarity between events 1n the clustering
algorithm, such that the number of clusters might be
reduced.

FIGS. 18 A-18G 1llustrate one approach to interactive field
generation, 1n accordance with implementations of the pres-
ent disclosure. Below, additional aspects of the present
disclosure are described with respect to field generation
interface 1800. However, field generation interface 1s used
tor 1llustrative purposes and many of the features of field
generation interface 1800 can vary such as presentation
formats for data, workflow, and the like. FIGS. 18 A-18G are
in temporal order, however, other intermediate screens could
be employed.

Field generation interface 1800 allows a user to interac-
tively define new event fields by generating extraction rules
and assigning the extraction rules to fields. As indicated
above, the field generation interface may optionally be
launched from a search interface, such as one corresponding
to search screen 600, or another suitable search interface. It
1s noted that field generation interface 1800 could be 1mple-
mented at or prior to search time for events and could be
employed outside of the context of search systems. In some
cases, a search interface (e.g., corresponding to search
screen 600) displays a selectable option, which when
selected by the user, causes field generation interface 1800
to be launched, which can optionally result in display of
source selection form 1802 shown in FIG. 18A.

By way of example, source selection form 1802 allows
the user to select one or more source types. A user may type
a source type into source selection form 1802 to select a
source type and/or select one or more source types from a
menu, as shown. For the present example, assume the user
selects source type 1804 labeled “alcatel.” In some 1mple-
mentations, the selected source type(s) define the events
utilized by field generation interface 1800 to assist the user
in generating extraction rules. In particular, field generation
interface 1800 can display events corresponding to the
selected source type and/or base extraction rule generation
on the underlying data of the events, such as for machine-
generated extraction rules. In other cases, one or more
source types may be automatically selected, such as based
on corresponding to a search query in the search interface
and/or one or more events returned by the search query. In
FIG. 6A, as one example, the source type could correspond
to the selected field indicated in fields sidebar 606.

In the present example, based on the selection of a source
type, such as source type 1804, the system causes display of
one or more events corresponding to the source type, as
shown 1 FIG. 18B. For example, the events may be
displayed based on having a source type field that matches
or otherwise corresponds to the selected source type.
Optionally, the system clusters the events, and the events and
one or more ol the clusters are presented to the user, as
shown 1n FIG. 18B. In this case, the system has identified
torty-eight clusters from one-thousand events corresponding

10

15

20

25

30

35

40

45

50

55

60

65

40

to the selected source type. A subset of the clusters (eight
clusters) 1s shown and optionally additional clusters could be
exposed via user interaction with field generation interface
1800 (e.g., via scrolling 1n response to user input). This
subset includes clusters 1806A, 18068, 1806C, 1806D,
1806E, 1806F, 1806G, and 1806H (referred to collectively

as clusters 1806), which are each visually indicated in the
figure by a corresponding event. In the present example,
clusters 1806 are presented 1n a manner that visually dis-
tinguishes the clusters. Each cluster corresponds to a respec-
tive row. Further, an event from the cluster 1s presented in
association with the cluster (e.g., the underlying data of the
event). Although a single event from each cluster 1s dis-
played, in other cases multiple events could be displayed in
association with each cluster. Further, more events from a
cluster could be exposed based on a user selection corre-
sponding to the cluster.

In the present example, the set of clusters for FIG. 18B 1s
based on fields assigned to the events (e.g., prior to launch-
ing field generation interface 1800). In this case, the events
have been clustered based on at least one default field
assigned to the events. In particular, the events have been
clustered based on a field(s) corresponding to the time stamp
(e.g., using one or more extraction rules corresponding to the
time stamp) of the event. The system has 1dentified values in
the events corresponding to the time stamp, has masked out
the 1dentified values, and has clustered the events using the
masked event data. As a specific example, for FIG. 18B, the
masked out portion of each event comprising the time stamp
can be
“<<TIME>>»<<NUM>><<NUM>><<NUM>><<NUM>>"
where the five values of the time stamp have been tokemzed.
Thus, for clustering, the masked event data for the event
corresponding to cluster 1806 A shown in FIG. 18B could be
“<<TIME>><<NUM>><<NUM>><<NUM>><<NUM>>%
LINK-I-Up: €13” and the masked event data for the event
corresponding to cluster 1806G shown in FIG. 18B could be
“<<TIME>><<NUM>><<NUM>><<NUM>><<NUM>>%
LINK-I-Up: e14.”

The clustering algorithm used in the present example
groups events by identical matches between event data, as
described above. Thus, using masked event data, events with
different time stamp values can be 1dentified as correspond-

ing to the same cluster. The unmasked portion of the event
data can be used to define the clusters. Thus, 1n this case,
cach event of a particular cluster includes the same
unmasked portion of event data, but might include a differ-
ent time stamp. As noted above, in other approaches a
similarity score could be determined using masked event
data in order to group events.

As noted above, this 1s but one suitable approach to
clustering the events. It 1s further noted that the events need
not be mitially clustered based on a field(s) in FIG. 18B.
More generally, one or more of the events corresponding to
the selected source type (or otherwise selected to use for
extraction rule generation) could be presented to the user.
Also, other fields could be considered, such as based on
being a selected field in search screen 600. By selecting GUI
control element 1814, the user can cause display of FIG.
18C.

In FIG. 18B, the user can select one or more portions of
event data from one or more events. As shown, the user has
selected portion 1810. The selection portion 1s visually
indicated using text highlighting. Based on the user selection
of the event data, the system optionally causes field selection

US 10,685,279 B2

41

form 1812 to be displayed to the user. The user can enter a
field name for a field corresponding to the selected portion
(s) of event data.

The selected portion(s) of event data correspond to a
sample value(s) for at least one extraction rule. In response
to the user providing the sample value(s), the system gen-
erates one or more extraction rules corresponding to the
sample value(s). For example, the system can generate one
or more extraction rules capable of extracting the sample
value(s) from the corresponding event data. This can be
based on the position of a sample value 1n event data, the
formatting of a sample value, one or more characters in the
sample value and/or other factors that can be defined 1n an
extraction rule, such as a regex. Any suitable approach to
machine-generating extraction rules based on sample values
can be employed.

FIG. 18C displays events along with sample values 1den-
tified 1 each event using the machine-generated extraction
rule(s) for the field named “type.” The identified values for
cach event are visually indicated by highlighting text in
event data corresponding to the values. By selecting GUI
control element 1816, the user can accept the machine-
generated rule for the field and cause display of FIG. 18D.

The example shown 1 FIG. 18C corresponds to an
extraction rule adjustment interface, which allows the user to
modily the machine-generated extraction rule. Examples of
such 1nterfaces have been described above. In this case, the
extraction rule adjustment interface presents a plurality of
selectable options for the extraction rule. Each option 1s
selectable to cause the extraction rule to be replaced with a
modified version corresponding to the selection option.
Further, the displayed field value indicators (e.g., highlight-
ing) can be updated to correspond to the selected option(s).
When the user 1s satisfied with the current extraction rule,
GUI control element 1816 can be seclected to apply the
extraction rule to the field.

As shown, one or more default options may be selected
that correspond to the machine-generated extraction rule(s).
In some implementations, the system generates the plurality
of options for the extraction rule based on the sample
value(s), selects one or more of the options as default
options, and generates the nitial machine-generated extrac-
tion rule having the selected default options. The selection of
the options can be based on analyzing each option, such as
by scoring and ranking options and/or combinations thereof
based on field values extractable using the selection option.
For example, the system may determine the default option(s)
based on determining the similarity of values extracted using,
a corresponding extraction rule to the sample value(s) pro-
vided by the user. Other factors could include the number of
values extractable from a set of events using the option(s).

In the example shown, the system generates options for a
plurality of categories (e.g., categories 1820, 1822, and
1824). Further, the system automatically selects an option
from each category for the initial extraction rule. As indi-
cated above, the selection can be based on ranking the
individual options, and/or combinations thereof (e.g., com-
binations of one option from each category). By way of
example, category 1820 1s a “start after” category, with
options that define the start after position for the extraction
rule (e.g., a regex). These options can define a start position
for extracting a value 1n event data. Category 1822 1s an
“Extract” category, with options that define content (e.g.,
characters) to extract for the extraction rule (e.g., a regex).
Category 1824 1s an “End at and not include” category, with
options that define the end at position for the extraction rule.
These options can define an end position for extracting a

10

15

20

25

30

35

40

45

50

55

60

65

42

value 1n event data. The options may also specily one or
more characters that will not be included 1n the value, but
may define the end position.

As 1ndicated above, the user may select an option from
cach category of the extraction rule. In addition, or instead,
the user may define one or more custom options for the
extraction rule. For example, each category includes a
custom option, such as custom option 1826, which the user
can use to define a corresponding option for that category
(e.g., by selecting a corresponding GUI control element).
This could include the user providing one or more characters
to define the option. In some cases, a custom option allows
the user to type 1n or otherwise provide regex code or one or
more portions thereof for the extraction rule. In some cases,
an option comprises a predefined common value pattern to
include in the extraction rule. As an example, a common
value pattern could correspond to an IP address format, a
credit card # format, a mac address format, or a fully-
qualified hostname. An example of a common value pattern

for an IP address format is (\d{1-3 \\d{1-3\\d{1-3}\.\d{1-
3}), which defines the format of IP addresses.

The extraction rule adjustment interface described above
1s only one suitable example that may be employed. Also,
the extraction rule adjustment interface may include one or
more screens and/or windows, although a single screen 1s
shown. In some implementations, an extraction rule adjust-
ment interface 1s not employed. For example, a machine-
generated extraction rule could automatically be generated
based on one or more sample values and/or events provided
by the user, and applied to clustering. In these cases, the
system may, for example, transition to the display of FIG.
18D from FIG. 18B without entering an extraction rule
adjustment interface, such as that shown i FIG. 18C.

In response to the new extraction rule, the system can
cluster events based on the extraction rule, as indicated 1n
FIG. 18D. In the present example, this clustering 1s 1n
response to the user accepting the new extraction rule, which
can correspond to the user assigning the extraction rule to a
field. This may be responsive to selection of GUI control
element 1816 1n FIG. 18C. FIG. 18D 1s similar to FIG. 18B,
but the screen has been updated based on the new extraction
rule(s).

Events can be clustered by adding the new extraction
rule(s) to a set comprising any extraction rules that may have
been used for a previous clustering of events (e.g., corre-
sponding to FIG. 18B). Further, the clustering algorithm
may optionally be the same clustering algorithm utilized for
previous clustering. In the present example, the events are
reclustered by updating the masked event data to correspond
to the new set of extraction rules. This can include token-
1zing field values corresponding to the new extraction rule(s)
and/or fields. In the example provided for clusters 1806 A
and 1806G, the updated masked event data could be
“<<TIME>><<NUM>><<NUM>><<NUM>><<NUM>>
Yo<type>: ¢l3” and
“<<TIME>><<NUM>><<NUM>><<NUM>><<NUM>>
Yo<type>: €147 respectively. As indicated 1n FIG. 18D, using
this approach, the number of clusters of the events has been
reduced to 32, as some clusters have been merged. It 1s noted
that the set of extraction rules used for clustering could also
be updated based on the user deleting or modifying an
extraction rule and/or field from the set 1n addition to or
instead of adding an extraction rule and/or field to the set.

FIG. 18E shows an optional visualization of the reclus-
tering ol events, 1n accordance with some implementations
of the present disclosure. In some cases, the user may access
the visualization from field generation interface 1800, and

US 10,685,279 B2

43

the visualization can be updated each time events are
reclustered. In the present example, selecting GUI control
clement 1834 causes visualization 1840 to be displayed to
the user.

Visualization 1840 wvisually indicates relationships
between clusters of the events from diflerent sets of clusters.
The relationships show a progression of the sets of clusters
exposed to the user 1n field generation interface 1800 (e.g.,
cach set can correspond to a user assigned field and/or
extraction rule). In FIG. 18E, the progression 1s from the set
of clusters corresponding to FIG. 18B to the set of clusters
corresponding to FIG. 18D. As shown, visualization 1840
indicates that cluster 1842 A corresponds to clusters 1806 A
merged or combined with cluster 18061. In other words, the
events of cluster 1842A comprise the events of each of
clusters 1806 A and 18061. Visualization 1840 also indicates
that cluster 1842B directly corresponds to cluster 18068,
and cluster 1842C directly corresponds to cluster 1806C. In
other words, each event 1s 1dentical amongst those corre-
sponding clusters or groups. Visualization 1840 also dis-
plays event data for each cluster. For the initial set of
clusters, the unmasked portion of event data 1s shown. For
the subsequent set of clusters, the unmasked portion of event
data 1s shown, along with at least one token of the masked
event data. The token corresponds to the extraction rule(s)
added between sets of clusters, thereby indicating the impact
of the extraction rule on the clustering.

Returning to FIG. 18D, field generation interface 1800
indicates fields and assigned extraction rules generated using
ficld generation interface 1800. In particular GUI display
region 1830 comprises a list of generated fields. Based on
the extraction rule being assigned to the field, the field 1s
added to the displayed fields as shown. In particular, entry
1832 corresponds to the field generated for the field named
“type.” The entry 1s selectable to delete the field or edit the
field. Any number of fields may be shown 1 GUI display
region 1830. In the present example, the fields are selectable
and selecting a field causes field values corresponding to the
selected fields to be indicated in field generation interface
1800. For example, FIG. 18D shows entry 1832 1n a selected
state. Deselecting a field and cause field value indicators to
be removed from display.

Also shown 1n FIG. 18D, a user can select sample text
values and/or events associated with the clusters similar to
what 1s shown 1n FIG. 18B. In the example shown, the user
has selected portion 1850 of event data causing field selec-
tion form 18352 to be displayed. Field selection form 1852
can be similar to field selection form 1812 of FIG. 18B.
However, field selection form 1852 presents the user with
selectable “add to existing field” option 18354 to assign the
extraction rule to an existing field, such as the field named
“type,” such that the extraction rule generated based on the
sample data from the user 1s assigned to the existing field
(c.g., one field may have multiple extraction rules). As
another example, adding to an existing field could cause an
updated to the original extraction rule corresponding to the
field. In this case, an additional extraction rule may not be
added to the field, but additional values may be extracted by
the updated extraction rule.

In the present example, assume the user opts to define a
new field named “ecode,” as shown. A similar extraction
rule adjustment interface (not shown) as described with
respect to FIG. 18C may be presented based on the selected
sample data. As shown in FIG. 18F, the newly generated
extraction rule for the field has been generated and assigned
to the field causing field entry 1856 to be added to GUI
display region 1830 (e.g., a GUI panel). Field entry 1856 1s

10

15

20

25

30

35

40

45

50

55

60

65

44

active, causing values corresponding to the field to be
identified 1n event data, as shown. In this case, the values are
identified by highlighting their corresponding text in the
displayed event data.

Text corresponding to values of inactive or unselected
fields 1s also optionally displayed in a different manner than
for active fields. For example, that text may be greyed out,
or 1n some cases not displayed in the event data. Whether
text 1s greyed out, not displayed, or otherwise visually
distinguished can be based on the text corresponding to
values of fields, regardless of whether the field 1s active or
mactive in field generation interface 1800. For example,
cach portion of text corresponding to a field may be greyed
out or removed from the event data, or otherwise displayed
in a manner that allows the user to distinguish between text
that has a corresponding field and text that does not. In this
way, the users can visually identify which text in event data
has yet to be captured by an extraction rule and/or field. As
a specilic example, for the event corresponding to cluster
1860A, the user may only see “%: €” because that text does
not have a corresponding field or extraction rule (e.g., a
corresponding field or extraction rule used to form the set of
clusters being presented to the user). As another option, the
undisplayed text may instead by greyed out or otherwise
distinguished from the other text.

As 1ndicated 1n FIG. 18F, the orniginal events have been
narrowed down to two clusters, clusters 1860A and 1860B.
FIG. 18G shows visualization 1864, which 1s similar to
visualization 1840, and therefore 1s not described 1n signifi-
cant detail. As indicated using checkboxes, the user can
selectably remove one or more fields from visualization
1840, causing the visualization to be updated accordingly.

It 1s noted, 1n the present example, the user can exit field
generation interface 1800 at any stage of field generation,
such as by selecting GUI control element 1866, or the user
can continue to generate extraction rules for fields. This can
be one approach to saving the generated fields, or the fields
can be saved as they are generated.

In various implementations, the extraction rules can be
utilized by a field extractor described above. As an example,
the generated fields could be applied to the search interface
optionally used to enter the field generation interface. For
example, the generated fields can be automatically added to
fields sidebar 606 as selected and/or interesting fields. Thus,
the generated fields can be added to the fields utilized by the
search interface corresponding to search screen 600. Further,
the user may optionally re-enter field generation interface
1800 from the search interface in order to redefine fields
and/or generate additional fields.

In addition, or 1nstead, the generated extraction rules can
be applied to new events. For example, the generated
extraction rules could be saved in associated with the
selected source type(s) and applied to different events cor-
responding to the source type. This can be used, for example,
to associate a pre-defined late-binding schemas to particular
source types. Thus, the generated fields and associated
extraction rules can be used to extract values for the fields
from events, and the extracted values may be presented to
the user 1in an graphical interface, such as a graphical
interface corresponding to search screen 600.

As indicated above, the worktlow illustrated using field
generation interface 1800 can vary widely from what has
been shown, using any number of screens and any number
of display formats. For example, a set of clusters, and an
updated set of clusters may be presented to a user on any
number of screens, such as a single screen. Further, the
approach of presenting clusters by selecting events for

US 10,685,279 B2

45

display based on their corresponding cluster, and updating
the displayed events when the clusters are updated can
change. More generally, presentation of a set of clusters as
used herein refers to any imnformation presented based on the
set of clusters. For example, a cluster may be presented by
highlighting one or more portions of event data based on the
cluster.

It 1s also noted, events displayed to the user 1n association
with extraction rule generation could be static or otherwise
independent from a set of clusters, and when a new set of
clusters 1s generated, the highlighting or other visual indi-
cators could be updated to reflect the updated clusters.
Further, in some cases, the field generation interface 1is
completely or partially integrated into one or more search
screens ol a search interface, such as the search interface
corresponding to search screen 600, or another search inter-
tace that causes events to be presented to users. For example,
the user may select sample data, such as sample values from
an events list, such as events list 608. Further, any combi-
nation of the various visual indicators applied to event data
may be applied to the events in the events list. In particular,
any combination of the user features and portions thereof
described with respect to field generation interface 1800
may be mtegrated into search screen 600, or another search
screen, such as the entries of generated fields, the extraction
rule adjustment interface, and the like.

3.4 Additional Implementations

FIG. 19 presents a flowchart illustrating a method in
accordance with the disclosed embodiments. Each block
illustrating methods 1n accordance with FIG. 19, and other
methods described herein, comprises a computing process
that may be performed using any combination of hardware,
firmware, and/or software. For instance, various functions
may be carried out by a processor executing instructions
stored 1n memory. The methods may also be embodied as
computer-usable instructions stored on computer storage
media. The methods may be provided by a standalone
application, a service or hosted service (standalone or in
combination with another hosted service), or a plug-in to
another product, to name a few.

At block 1902, a first cluster 1s presented from a first set
of clusters. For example, the system can cause presentation
of cluster 1806A 1n association with an event of cluster
1806 A, as shown 1in FIG. 18B. The first cluster 1s from a first
set of clusters of events, each event comprising a time stamp
and event data.

At block 1904, an extraction rule 1s received from a user.
For example, based on the presentation of cluster 1806 A, the
system can receive from a user extraction rule 1870 corre-
sponding to the event of cluster 1806A. This can optionally
involve an extraction rule adjustment interface, such as is
described with respect to FIG. 18C.

At block 1906, similarities are determined 1n event data
based on the extraction rule. For example, the system can
determine similarities 1n the event data between the events
based on the received extraction rule. This can include
masking event data based on the extraction rule, and com-
paring the masked event data, applying the extraction rule to
the event data to 1dentily values for a field, and/or otherwise
factoring in one or more extraction rules into a similarity
metric for clustering, examples of which have been
described above.

At block 1908, events are grouped into a second set of
clusters based on the determined similarities. For example,
the system can group the events mto a second set of clusters
based on the determined similarities.

5

10

15

20

25

30

35

40

45

50

55

60

65

46

At block 1910, a second cluster from the second set of
clusters 1n presented. For example, the system can cause
presentation of cluster 1842 A 1n association with an event of
cluster 1842 A, where the second cluster 1s from the second
set of clusters, as shown 1n FIG. 18D.

FIG. 20 presents a flowchart illustrating a method 1n
accordance with the disclosed embodiments. At block 2002,
events are clustered based on a set of extraction rules
associated with a set of fields. As used herein, a set of
extraction rules can include one or more extraction rules and
a set of fields can include one or more fields. As an example,
the system can cluster events corresponding to source type
1804 based on a set of extraction rules corresponding to at
least one metadata field of the events. The clusters can
include clusters 1806 presented in FIG. 18B.

At block 2004, clusters are presented in association with
corresponding events. For example, as shown in FIG. 18B,
the system can cause presentation of clusters 1806 1n asso-
ciation with corresponding events from the clusters. As
noted above, every cluster may be presented or only a subset
of the clusters may be presented. In some cases, the pre-
sentation of each cluster may be viewable 1n a screen, but not
necessarily concurrently (e.g., they may be viewable via a
GUI element like a scroll bar).

At block 2006, an extraction rule 1s added for a field to the
set of extraction rules. For example, extraction rule 1870 can
be added to the set of extraction rules by the user for the field
named “type.” Method 2000 can optionally be repeated any
number of times, as indicated in FIG. 20. FIGS. 18D through
18F can correspond to another 1teration of method 2000, 1n
which the events are clustered based on both the at least one
metadata field and extraction rule 1870. Further, the extrac-
tion rule corresponding to the field named “ecode” may be
added to the set of extraction rules.

4.0 Overview of Field Extraction Recommendations

As described, underlying raw machine data can be main-
tamned for events. Extraction rules are typically applied to
extract information from the events as fields or field values.
In this regard, fields (e.g., custom fields) can be created 1n
association with the events using extraction rules. For
example, 1n addition to default fields automatically extracted
during indexing (e.g., host, source, source type values,
timestamps), custom fields can be extracted at search time
and/or index time enabling a user to track desired informa-
tion. Generally, to create fields, a user 1s presented with a set
of events (e.g., sample events or events resulting from a
search). Thereatter, the user can select a portion of an event
(e.g., text string) that 1s desired to be extracted as a field
value. Based on the selected event portion, an extraction rule
can be generated to extract corresponding field values from
various events (e.g., similar events). Manually selecting
specific event portions to mitiate field extraction, however,
can be tedious and time consuming, particularly when field
extractions do not yet exist (e.g., for events associated with
a source type). Further, extraction rules generated from user
selections may be over inclusive or under inclusive 1n
extracting field values, for example, based on the selected
event portion being used in a different context and/or time
frame. As field extractions based on manual user selections
of event data can be over or under inclusive, correcting
erroneous field extractions may also be time consuming and
tedious to a user.

Accordingly, embodiments of the present invention are
directed to facilitating field extraction recommendations. In
this regard, field extraction recommendations can be auto-
matically generated without user selection of portions of
event data for which field extractions are desired. In par-

US 10,685,279 B2

47

ticular, neural networks can be trained to facilitate identifi-
cation of static text and/or variable text associated with
various events. At a high level, variable text refers to text
that may be recommended for field extraction, while static
text 1s not typically recommended for field extraction. Based
on 1dentification of the static and/or variable text within the
events, field extraction recommendations can be generated
and provided to a user via a computing device.

Advantageously, because field extraction recommenda-
tions are automatically generated, less time and knowledge
about collected data (e.g., raw machine data) i1s required by
a user. For example, a user can view and confirm field
extraction recommendations without manually selecting
event portions desired to be extracted. Further, field extrac-
tion can be effectively and efliciently performed even though
a user may not have much exposure to or knowledge about
the collected data.

Although generally described herein as generating field
extraction recommendations for which a user can select or
confirm to perform the corresponding field extractions, 1n
some 1mplementations, an 1dentified field extraction recom-
mendation (d) can be automatically implemented. In this
regard, upon 1dentitying field extraction recommendations,
corresponding extraction rules can be generated and auto-
matically implemented to extract event data as fields.

4.1 Overview of a Field Extraction Tool 1n a Data Pro-
cessing Environment

FIG. 21 illustrates an example data processing environ-
ment 2100 1n accordance with various embodiments of the
present disclosure. Generally, the data processing environ-
ment 2100 refers to an environment that provides for, or
cnables, the management, storage, and retrieval of data. As
shown 1n FIG. 21, the data processing environment includes
a fleld extraction tool 2116 used to facilitate field extraction
in association with events. The field extraction tool 2116 can
identity field extractions recommendations and provide such
field extraction recommendations to a user. Based on a user
selection or acceptance of one or more field extraction
recommendations, data can be extracted as field values using,
one or more extraction rules. As will be described more tully
below, an extraction rule may be configured to extract event
data in association with any number field values (e.g., one
field, five fields, etc.).

In some embodiments, the environment 2100 can include
an event-processing system 2102 communicatively coupled
to one or more client devices 2104 and one or more data
sources 2106 via a communications network 2108. The
network 2108 may include an element or system that facili-
tates communication between the entities of the environment
2100. The network 2108 may include an electronic commu-
nications network, such as the Internet, a local area network
(LAN), a wide area network (WAN), a wireless local area
network (WLAN), a cellular communications network, and/
or the like. In some embodiments, the network 2108 can
include a wired or a wireless network. In some embodi-
ments, the network 2108 can include a single network or a
combination of networks.

The data source 2106 may be a source of incoming source
data 2110 being fed into the event-processing system 2102.
A data source 2106 can be or include one or more external
data sources, such as web servers, application servers,
databases, firewalls, routers, operating systems, and soit-
ware applications that execute on computer systems, mobile
devices, sensors, and/or the like. Data source 2106 may be
located remote from the event-processing system 2102. For
example, a data source 2106 may be defined on an agent
computer operating remote from the event-processing sys-

10

15

20

25

30

35

40

45

50

55

60

65

48

tem 2102, such as on-site at a customer’s location, that
transmits source data 2110 to event-processing system 2102
via a communications network (e.g., network 2108).

Source data 2110 can be a stream or set of data fed to an
entity of the event-processing system 2102, such as a
forwarder (not shown) or an indexer 2112. In some embodi-
ments, the source data 2110 can be heterogeneous machine-
generated data received from various data sources 2106,
such as servers, databases, applications, networks, and/or the
like. Source data 2110 may include, for example raw data,
such as server log files, activity log files, configuration files,
messages, network packet data, performance measurements,
sensor measurements, and/or the like. For example, source
data 2110 may include log data generated by a server during
the normal course of operation (e.g. server log data). In some
embodiments, the source data 2110 may be minimally
processed to generate minimally processed source data. For
example, the source data 2110 may be received from a data
source 2106, such as a server. The source data 2110 may then
be subjected to a small amount of processing to break the
data into events. As discussed, an event generally refers to
a portion, or a segment of the data, that 1s associated with a
time. And, the resulting events may be indexed (e.g., stored
in a raw data file associated with an index file). In some
embodiments, imndexing the source data 2110 may include
additional processing, such as compression, replication,
and/or the like.

As can be appreciated, source data 2110 might be struc-
tured data or unstructured data. Structured data has a pre-
defined format, wherein specific data items with specific
data formats reside at predefined locations 1n the data. For
example, data contained 1n relational databases and spread-
sheets may be structured data sets. In contrast, unstructured
data does not have a predefined format. This means that
unstructured data can comprise various data 1tems having
different data types that can reside at different locations.

The indexer 2112 of the event-processing system 2102
receives the source data 2110, for example, from a forwarder
(not shown) or the data source 2106, and apportions the
source data 2110 into events. An mdexer 2112 may be an
entity of the event-processing system 2102 that indexes data,
transforming source data 2110 into events and placing the
results 1nto a data store 2114, or index. Indexer 2112 may
also search data stores 2114 in response to requests or
queries. An indexer 2112 may perform other functions, such
as data input and search management. In some cases,
forwarders (not shown) handle data input, and forward the
source data 2110 to the indexers 2112 for indexing.

During indexing, and at a high-level, the indexer 2112 can
facilitate taking data from 1ts origin 1n sources, such as log
files and network feeds, to its transformation into searchable
events that encapsulate valuable knowledge. The indexer
2112 may acquire a raw data stream (e.g., source data 2110)
from 1ts source (e.g., data source 2106), break 1t into blocks
(e.g., 64K blocks of data), and/or annotate each block with
metadata keys. After the data has been mput, the data can be
parsed. This can include, for example, identilying event
boundaries, 1dentitying event timestamps (or creating them
if they don’t exist), masking sensitive event data (such as
credit card or social security numbers), applying custom
metadata to incoming events, and/or the like. Accordingly,
the raw data may be data broken into individual events. The
parsed data (also referred to as “events”) may be written to
a data store, such as an index or data store 2114.

The data store 2114 may include a medium for the storage
of data thereon. For example, data store 2114 may include
non-transitory computer-readable medium storing data

US 10,685,279 B2

49

thereon that 1s accessible by enftities of the environment
2100, such as the corresponding indexer 2112 and the field
extraction tool 2116. As can be appreciated, the data store
2114 may store the data (e.g., events) in any manner. In some
implementations, the data may include one or more indexes
including one or more buckets, and the buckets may include
an index file and/or raw data file (e.g., including parsed,
time-stamped events). In some embodiments, each data store
1s managed by a given indexer that stores data to the data
store and/or performs searches of the data stored on the data
store. Although certain embodiments are described with
regard to a single data store 2114 for purposes of 1llustration,
embodiments may include employing multiple data stores
2114, such as a plurality of distributed data stores 2114.

As described, events within the data store 2114 may be
represented by a data structure that i1s associated with a
certain point 1n time and includes a portion of raw machine
data (e.g., a portion of machine-generated data that has not
been manipulated). An event may include, for example, a
line of data that includes a time reference (e.g., a timestamp),
and one or more other values. In the context of server log
data, for example, an event may correspond to a log entry for
a client request and include the following values: (a) a time
value (e.g., including a value for the data and time of the
request, such as a timestamp), and (b) a series of other values
including, for example, a page value (e.g., including a value
representing the page requested), an IP (Internet Protocol)
value (e.g., including a value for representing the client 1P
address associated with the request), and an HTTP (Hyper-
text Transfer protocol) code value (e.g., including a value
representative of an HTTP status code), and/or the like. That
1s, each event may be associated with one or more values.
Some events may be associated with default values, such as
a host value, a source value, a source type value and/or a
time value. A default value may be common to some of all
events of a set of source data.

In some embodiments, an event can be associated with
one or more characteristics that are not represented by the
data mitially contained 1n the raw data, such as character-
1stics of the host, the source, and/or the source type associ-
ated with the event. In the context of server log data, for
example, 11 an event corresponds to a log entry received
from Server A, the host and the source of the event may be
identified as Server A, and the source type may be deter-
mined to be “server.” In some embodiments, values repre-
sentative of the characteristics may be added to (or other-
wise associated with) the event. In the context of server log
data, for example, iI an event 1s received from Server A, a
host value (e.g., including a value representative of Server
A), a source value (e.g., including a value representative of
Server A), and a source type value (e.g., including a value
representative of a “server”) may be appended to (or other-
wise associated with) the corresponding event.

In some embodiments, events can correspond to data that
1s generated on a regular basis and/or in response to the
occurrence of a given event. In the context of server log data,
for example, a server that logs activity every second may
generate a log entry every second, and the log entries may
be stored as corresponding events of the source data. Simi-
larly, a server that logs data upon the occurrence of an error
cvent may generate a log entry each time an error occurs,
and the log entries may be stored as corresponding events of
the source data.

In accordance with events being stored in the data store
2114, the field extraction tool 2116 can function to extract
fields 1n association with events. Although the field extrac-
tion tool 2116 1s 1illustrated and described herein as a

10

15

20

25

30

35

40

45

50

55

60

65

50

separate component, this 1s for illustrative purposes. As can
be appreciated, the field extraction tool 2116, or functions
described 1n association therewith, can be performed at the
indexer 2112, a search head (not shown), or any other
component. For example, some functionality described 1n
association with the field extraction tool 2116 might be
performed at a search head, while other functionality
described 1n association with the field extraction tool 2116
might be performed at an indexer.

As described herein, the field extraction tool 2116 1s
generally configured to generate and/or provide field extrac-
tion recommendations. Field extraction recommendations
can be automatically generated and provided to client device
2104 for presentation to a user. In this regard, and as
described 1n more detail below, client device 2104 can
display one or more field extraction recommendations. One
or more field extraction recommendations can then be
selected or confirmed by a user to eflectuate corresponding
field extractions. The client device 2104 may be used or
otherwise accessed by a user, such as a system administrator
or a customer. A client device 2104 may include any variety
of electronic devices. In some embodiments, a client device
2104 can include a device capable of communicating infor-
mation via the network 2108. A client device 2104 may
include one or more computer devices, such as a desktop
computer, a server, a laptop computer, a tablet computer, a
wearable computer device, a personal digital assistant
(PDA), a smart phone, and/or the like. In some embodi-
ments, a client device 1804 may be a client of the event
processing system 2102. In some embodiments, a client
device 2104 can include various mput/output (I/0) inter-
faces, such as a display (e.g., for displaying a graphical user
interface (GUI), an audible output user interface (e.g., a
speaker), an audible mput user interface (e.g., a micro-
phone), an 1mage acquisition interface (e.g., a camera), a
keyboard, a pointer/selection device (e.g., a mouse, a track-
ball, a touchpad, a touchscreen, a gesture capture or detect-
ing device, or a stylus), and/or the like. In some embodi-
ments, a client device 2104 can include general computing
components and/or embedded systems optimized with spe-
cific components for performing specific tasks. In some
embodiments, a client device 2104 can include programs/
applications that can be used to generate a request for
content, to provide content, to render content, and/or to send
and/or receive requests to and/or from other devices via the
network 2108. For example, a client device 2104 may
include an Internet browser application that facilitates com-
munication with the event-processing system 2102 via the
network 2108. In some embodiments, a program, or appli-
cation, of a client device 2104 can include program modules
having program instructions that are executable by a com-
puter system to perform some or all of the functionality
described herein with regard to at least client device 2104.
In some embodiments, a client device 2104 can include one
or more computer systems similar to that of the computer
system 2500 described below with regard to at least FIG. 25.

Field extraction recommendations can be initiated, trig-
gered, and/or viewed at the client device 2104, for example,
via a search graphical user interface (GUI). In some embodi-
ments, the event-processing system 2102 can provide for the
display of a search GUI. Such a search GUI can be displayed
on a client device 2104, and can present information relating
to mitiating field extraction recommendations, generating
field extraction recommendations, and viewing field extrac-
tion recommendations.

The field extraction tool 2116 can include a field extrac-
tion tramner 2120 and a field extraction recommender 2122.

US 10,685,279 B2

51

As described, the field extraction tool 2116 1s generally
configured to {facilitate generating and providing field
extraction recommendations. Field extraction refers to a
process by which data (e.g., event data) 1s extracted, for
example, from events as field values or extracted field
values. Stated differently, field extraction refers to extracting
values from data, such as event data. Field extraction
recommendations refer to recommendations of fields, or
field values, to extract from data. Recommendations can be
provided to a user i any manner, some of which are
described 1n more detail below.

It should be understood that this and other arrangements
described herein are set forth only as examples. Other
arrangements and elements (e.g., machines, interfaces, func-
tions, orders, groupings of functions, etc.) can be used in
addition to or instead of those shown, and some elements
may be omitted altogether. Further, many of the elements
described herein are functional entities that may be imple-
mented as discrete or distributed components or 1n conjunc-
tion with other components, and 1n any suitable combination
and location. Various functions described herein as being
performed by one or more entities may be carried out by
hardware, firmware, and/or software. For instance, various
functions may be carried out by a processor executing
istructions stored in memory.

In operation, the field extraction trainer 2120 1s generally
configured to train one or more neural networks for use 1n
generating field extraction recommendations. In particular, a
neural network(s) 1s trained to facilitate recognition or
identification of variable and/or static text within character
strings (e.g., associated with events). Stated differently, a
neural network(s) 1s trained to facilitate distinguishing or
differentiating between variable and static text within char-
acter strings. Variable text generally refers to text that varies
among character strings, such as events. Due to the variance
of the variable text, such variable text 1s oftentimes desirable
to extract as a field. Static text generally refers to text that
tends to be the same among character strings (e.g., events),
or text that occurs with high frequency. Such static text is
typically the ‘structure’ in the raw event data that 1s not
desired to be extracted. By way of example only, provided
a 1irst event data “user Richard logged out of 1.2.3.4” and a
second event data “user Adam logged out of 1.2.3.5.”
variable text can be 1dentified as “Richard” and “1.2.3.4” for
the first event data and “Adam” and “1.2.3.5” for the second
event data. Accordingly, “Richard” and “Adam™ can be
recommended and/or extracted as field values as well as
“1.2.3.4” and “1.2.3.5.7

Neural networks can be used herein to facilitate identifi-
cation of variable and/or static text within character strings,
for example, associated with events. To distinguish between
static text and variable text, probabilities of next characters
within character strings can be generated by neural networks
and used to distinguish between variable and static text.
More specifically, in embodiments, neural networks can be
used to predict probabilities of next characters within char-
acter strings. Such probabilities can then be used as 1ndica-
tors as to when static and/or variable text begins and ends
within the character string.

To train a neural network(s), a set of training data, such as
events or event raw machine data, can be referenced. Train-
ing data can be any data, such as events including raw
machine data. Further, any amount or type of training data
may be used to train a neural network(s). For example, in
some cases, training data may correspond with a particular
type of data, source type, index, period of time, etc. In some
cases, training data corresponding with a particular type of

5

10

15

20

25

30

35

40

45

50

55

60

65

52

data, source type, index, period of time, etc. may be used to
train and use neural networks specific thereto. For example,
a neural network(s) may be trained for a specific source type
using training data associated with that source type. Such a
neural network can then be used to facilitate field extraction
recommendations 1n association with subsequent events
associated with that specific source type. In other cases,
training data may correspond with one particular type of
data, while the trained neural network 1s deployed for use
with another type of data. As can be appreciated, traiming
data can be aggregated from various systems, data sources,
source types, etc. and used to train a neural network(s).
Training a neural network using the tramning data can be
performed 1n any number of ways. In embodiments, a neural
network can be trained on a character-by-character basis. As
such, a recurrent neural network (RNN), which can process
a sequence ol characters, can be tramned and utilized 1n
accordance with embodiments described herein. As used
herein, a character may refer to any type of character, such
as, but not limited to, letter characters, numeral characters,
symbol characters (e.g., space, comma, semi-colon, colon,
ampersand, etc.). Although character 1s described broadly
herein, as can be appreciated, in some implementations, a
character may be identified or defined 1n a more limited
manner, such as only letter characters or alphanumeric
characters, etc. Further, although neural networks trained
and used via a character-by-character basis are generally
described herein, other units could additionally or alterna-
tively be used, such as tokens, fractional tokens (e.g.,
syllables), n-grams (e.g., multiple-token sequences), etc.
In one implementation, to train a neural network on a
character-by-character basis, a character of a character string
can be fed into the neural network one at a time to predict
a next character given the prior characters in the character
string. That 1s, previously provided characters of a character
string can be used to predict a next character. Upon 1denti-
tying the actual or observed next character, the neural
network can be adjusted based on the actual next character
relative to the predicted next character. To this end, the
neural network can be trained 1n accordance with the accu-
racy of the predicted next character. Accordingly, the neural
network 1s trained to predict probabilities or confidence of a
subsequent or next character given the previous characters.
As described 1n more detail below, multiple neural net-
works may be utilized to identily static and/or variable text
within a character string, such as an event or portion thereof.
Accordingly, multiple neural networks may be trained. In
cases that neural networks are trained for utilization 1n
association with a particular source type, data set, index,
etc., multiple neural networks can be trained for each such
source type, data set, index, etc. In some embodiments, a
torward neural network and a reverse neural network can be
trained to facilitate identification of static and/or variable
text within a character string. A forward neural network
refers to a neural network that 1s trained via a character-by-
character forward approach. In this regard, characters are fed
to the neural network beginning with the first character of
the character string and continuing through the last charac-
ter. A reverse neural network refers to a neural network that
1s trained via a character-by-character reverse or backward
approach. To this end, characters are fed to the neural
network beginming with the last character of the character
string and continuing through the first character. As can be
appreciated, multiple neural networks can be trained using
the same or different character strings, such as events. For
example, in some implementations, a same set of events may
be used to train both a forward neural network and a reverse

US 10,685,279 B2

53

neural network. In other implementations, a first set of
events may be used to train a forward neural network, while
a second set of events may be used to train a reverse neural
network.

Traiming a neural network(s) can be performed and/or
initiated at any time. For example, neural network training
may be mitially performed via a user accessing or providing,
an 1ndication of a source type and subsequently performed
as additional data 1s collected. As another example, neural
network training may be automatically performed upon a
lapse of a time duration, or on a periodic basis. As yet
another example, neural network training may be performed
based on a user indication to perform such traiming or may
be triggered 1n accordance with performance of generating,
and/or providing field extraction recommendations.

The field extraction recommender 2122 1s generally con-
figured to generate and/or provide field extraction recom-
mendations. In embodiments, neural networks can be used
to generate field extraction recommendations. In particular,
neural networks can be used to facilitate identification of
static and/or variable text within a character string. Based on
identification of static and/or variable text, field extraction
recommendations can be generated and provided to a user.

Field extraction recommendations can be initiated 1n any
manner. For example, field extraction recommendations can
be 1nitiated at a client device, such as client device 2104, by
a user at any time. In this regard, a user may iitiate field
extraction recommendations prior to or 1 accordance with
performing a search for information. Although generally
described herein as performing field extraction recommen-
dations upon the events being created, indexed, and stored,
field extraction recommendations can be generated and/or
applied before or as events are created, indexed, and/or
stored. Further, field extraction recommendations may be
automatically triggered. For example, upon imtially select-
ing a data source, an index, a source type, etc., field
extraction recommendations may be automatically triggered
and generated at that time, as new data 1s recetved, or upon
a lapse of a time duration.

Generally, to generate field extraction recommendations,
a set of data, such as events or raw event data stored 1n data
store 2114, 1s obtained or referenced. Data can be any data
having character strings, such as events including raw
machine data. Further, any amount or type of data may be
used to generate field extraction recommendations. In some
cases, data may correspond with a particular type of data,
source type, mdex, period of time, etc. For example, a user
may select to perform a search in association with a par-
ticular source type. In such a case, a set of events corre-
sponding with that source type may be referenced and used
to generate field extraction recommendations.

The data sets, such as sets of events, can be provided to
a trained neural network(s). In some cases, a particular
neural network, or set of neural networks, may be selected.
For example, assume a referenced set of events correspond
with a particular source type. In such a case, a neural
network or set of neural networks trained in association with
that particular source type can be selected. In accordance
with embodiments of the present invention, such neural
networks are automatically selected (e.g., without user
selection).

For each data set, such as an event, a character string can
be provided to a neural network(s) on a character-by-
character basis. In this regard, a neural network can consume
one character at a time and output a probability of a next
character given the previous characters. In some cases, a
neural network may predict multiple characters given a set

10

15

20

25

30

35

40

45

50

55

60

65

54

of previous characters. For instance, a neural network may
predict a ranked list of characters associated with probabili-
ties. Further, in addition to or 1n the alternative to predicting
a probability, in embodiments, neural networks might pro-
vide a confidence expressed as a range (e.g., 95% chance of
being one of the top k predicted characters). As can be
appreciated, in cases that multiple neural networks are used
to facilitate 1dentification of static and/or variable text, each
of the multiple neural networks can be fed the character
string, for instance, on a character-by-character basis. For
instance, assume that a forward and reverse neural network
are used to facilitate identification of static and/or variable
text, a character string might be fed into both the forward
neural network and the reverse neural network. In 1mple-
mentation, the character string can be provided to the
forward neural network beginning with the first character
tollowed by each succeeding character. The forward neural
network can then predict a probability of a next character
given the preceding characters. The character string can be
provided to the reverse neural network beginning with the
last character 1n the character string followed by each
preceding character, that 1s 1n a backward or reverse manner.
The reverse neural network can then predict probabilities of
next characters given the preceding characters provided,
which 1n this case, include the ending portion of the char-
acter string. In various embodiments, multiple neural net-
works can perform consecutively or concurrently. For
example, 1n some 1mplementations, a forward neural net-
work and a reverse neural network can be fed a character
string at or about the same time. As another example, a
forward neural network may be fed a character string. Upon
completion, the character string can then be fed to a reverse

neural network (for example, only 1n cases in which addi-
tional analysis 1s needed to identily static and/or variable
text).

By way of example only, assume a character string “for
djohnson from”™ 1s obtained, wherein character C1 1s “1,”
character C2 1s “0,” character C3 1s “r,” and so forth. A
forward neural network can consume characters one at a
time, beginning with character C1 at the beginning of the
string, which 1s the letter “f.” Based on the consumed
character, the forward neural network can output a prob-
ability, P2, which 1s the probability of the next character, C2,
given the previous character C1. In this regard, a probability
of 0.9 may be provided as output. Now, the forward neural
network can consume character C2, which 1s the letter “0.”
Based on the consumed character, the forward neural net-
work can output a probability, P3, which 1s the probability
of the next character, C3, given the previous characters C1
and C2. This process of 1dentifying probabilities associated
with each character can continue in a forward manner (left
to right) until the character string 1s complete. In a similar
manner, a reverse neural network can consume characters
one at a time, beginning with character C1 at the end of the
string, which 1s the letter “m.” Based on the consumed
character “m,” the reverse neural network can output a
probability, (Q2, which 1s the probability of the next character
C2, given the previous character C1. In this regard, a
probability of 0.9 may be provided as output. Now, the
reverse neural network can consume character C2, which 1s
the letter “0.” Based on the consumed character, the reverse
neural network can output a probability, Q3, which 1s the
probability of the next character C3, given the previous
characters C1 an C2. This process of 1dentifying probabili-
ties associated with each character can continue in a reverse
manner (right to left) until the character string 1s complete.

US 10,685,279 B2

3

Such probabilities produced by the neural network(s) can
be used to automatically 1dentity static and/or variable text,
or transitions therebetween. At a high level, changes or
deviations in probabilities, or probability patterns, can indi-
cate a transition from one type of text to the other, such as
static to variable text or variable to static text. In some

embodiments, a threshold or probability threshold can be
used to measure or determine such probability deviations
indicating a transition from one type of text to another. For
example, a probability falling under or rising above a
threshold may be deemed to begin or end a text type (e.g.,
static or variable). As can be appreciated, recognition of a
probability that indicates a transition may indicate a begin-
ning of a static text, an ending of a static text, an beginning,
ol a vanable text, or an ending of a variable text. As another
example, a dynamic threshold may be used to detect prob-
ability deviations. Such a dynamic threshold may vary based
on, for instance, preceding probabilities, preceding predic-
tion errors, configuration or input parameters, or context
(e.g., the current source type, the predicted character, or the
observed character). Any number of implementations may
be employed to use the probabilities to 1dentity static and/or
variable text within a character string, and such implemen-
tations are not intended to be limited herein. Further, one
probability threshold may be used to indicate one text
transition 1n association with a forward neural network,
while another probability threshold may be used to indicate
another type of text transition in association with a reverse
neural network.

In one embodiment, changes 1n probabilities recognized
via a forward neural network can be used to identily a
beginning of a variable text (or ending of a static text),
whereas changes in probabilities recognized via a reverse
neural network can be used to identily an ending of a
variable text (or beginning of a static text). By way of
example only, and with continued reference to the example
above with the character string “for djohnson from.”

Assume that a forward neural network outputs the following,
probabilities corresponding with each of the characters in
the character string <0.9(1), 0.9(0), 0.9(r), 0.9(space), 0.004
(d), 0.9(3), 0.9(0), 0.9(h), 0.9(n), 0.9(s), 0.9(0), 0.9(n), 0.9
(space), 0.9(1), 0.9(r), 0.9(0), 0.9(m)>. In this regard, the
decrease in the probability (e.g., 0.004) associated with the
character “d” can indicate beginning of a variable text
beginning with the character “d.” Following the decreased
probability associated with the character “d,” the probabili-
ties remain high at 0.9 for the remainder of the characters in
the character string making it diflicult to identify the end of
the variable text, or the transition from the variable text to
static text. Accordingly, this illustrates one example for
utilizing a reverse neural network in various embodiments.
In this way, a reverse neural network can be used to facilitate
identification of the end of the variable text, the beginning
of the static text, or the transition therebetween. For
example, now, assume that a reverse neural network outputs
the following probabilities for each of the characters 1n the
character string “for djohnson from” beginning at the end of
the character string: <0.9(1), 0.9(0), 0.9(r), 0.9(space), 0.9
(d), 0.9(3), 0.9(0), 0.9(h), 0.9(n), 0.9(s), 0.9(0), 0.8(n), 0.9
(space), 0.9(1), 0.9(r), 0.9(0), 0.9(m)>. In such a case, the
decrease 1n probability (e.g., 0.8) associated with the char-
acter “n” can indicate the end of the variable text ending
with the character “n.” The variable text can be 1dentified in
any manner. For example, variable text may be 1dentified as
the text between the characters “d” and “n” or the characters

“djohnson,” eftc.

10

15

20

25

30

35

40

45

50

55

60

65

56

In one implementation, various rules may be applied to
identily beginnings and endings of static and variable text.
At a high level, a set of rules can be used to determine
beginning and ending transitions associated with static text,
as well as continuations of static text. Further, a set of rules
can be used to determine beginming and ending transitions
associated with variable text, as well as continuations of
variable text. By way of example only, static text begins at
a first character position 1f the probability of character
position one 1s greater than (or equal to) a threshold (e.g.,
0.9). Static text begins at a non-first character position (any
character position after the first) 1f the prior character
position equals the end of variable text. Static text continues
at a character position if the corresponding probability is
greater than (or equal to) a threshold (e.g., 0.9). Static text
ends at a character position i1f the corresponding probability
1s less than a threshold (e.g., 0.9). Such a set of rules
associated with static text can be defined as:

Anchor text begins at position 1 1f: p_1>=threshold;

Anchor text begins at 1>>1 if: ¢_(i-1)=end of variable text;

Anchor text continues at 1 1f: p_1>=threshold;

Anchor text ends at 1 1f: p_i1<threshold;

Threshold=0.9

An example set of rules associated with variable text can
specily that variable text begins at a first character position
if the probability of character position one 1s less than a
threshold. Variable text begins at a non-first position (any
character position after the first) 1f the prior character
position equals the end of static text. Variable text continues
at a character position 1f the corresponding probability 1s less
than a threshold, or the corresponding probability 1s greater
than or equal to a threshold and another condition 1s met. In
embodiments, such a condition may be that the probability
output 1n association with that character position from a
reverse neural network 1s less than a threshold but probabil-
ity output in association with the next character position
from the reverse neural network 1s greater than or equal to
a threshold. Such a set of rules associated with variable text
can be defined as:

Varnable text begins at 1=1 1if: p_i1<threshold;

Varniable text begins at 1>1 1f: ¢_(1—1)=end of static text;

Vaniable text continues at 1 1if: p_i<threshold, OR

p_1>=threshold AND
g_1<threshold but g_(i1+1)>=threshold

Although probabilities are generally discussed herein to
identify static and/or vaniable text, in cases that neural
networks provide a confidence expressed as a range (e.g.,
95% chance of being one of the top k predicted characters),
a value of k may be used to identily such text. For instance,
in cases that k 1s large enough, any miss-prediction may be
considered a boundary.

In accordance with 1dentifying static and/or variable text,
field extraction recommendations can be generated. In this
regard, 1dentified static and/or variable text can be used to
generate field extraction recommendations, that 1s, recom-
mendations of data to extract as field values. In some cases,
identified vaniable text can be provided as field extraction
recommendations. For example, assume that USERNAME
X 1s 1dentified as variable text. In such a case, “USERNAME
X" can be provided as a recommendation for field extrac-
tion. As can be appreciated, 1n some cases, while various
user name strings may be identified as varniable text within
various events, a representative variable string may be

selected for presentation as a field extraction recommenda-
tion. For instance, assume “USERNAME X.” “USER-
NAME Y.,” and “USERNAME 77 are each i1dentified as

variable text within different events. In such a case, one of

US 10,685,279 B2

S7

the variable text, such as “USERNAME X may be selected
and presented to a user as a field extraction recommendation.
As another example, a representation or a field name 1den-
tified for various variable text strings may be presented as a
field extraction recommendation. For instance, again assume
“USERNAME X.,” “USERNAME Y,” and “USERNAME
/” are each 1dentified as variable text within different events.
In such a case, a field name (e.g., “username”) representing
the various variable text strings may be selected and pre-
sented to a user as a field extraction recommendation.

Such field extraction recommendations can be provided to
client device 2104 for presentation to a user. In this manner,
a user can view one or more recommended field extractions.
As described, such field extraction recommendations can be
presented 1n any number of ways and 1s not intended to limit
the scope of embodiments of the present invention. As can
be appreciated, 1n accordance with presenting field extrac-
tion recommendations, a user can select one or more field
extraction recommendations to initiate or execute field
extraction. Such recommendations can be selected 1n any
number of ways. For example, 1n some embodiments, a user
may select all of the presented field extraction recommen-
dations, a user may select a portion of the presented field
extraction recommendations, a user may exclude a portion
of the presented field extraction recommendations, or the
like. Accordingly, a user may accept or reject any portion or
all field extraction recommendations. Based on such a
selection, the corresponding field extractions can be mitiated
and executed to extract desired fields, or field values. In
some embodiments, user feedback can be incorporated 1n
turther training a neural network(s). For example, when a
user utilizes a field extraction recommendation to extract
field values, such a selection may reinforce the paths through
the contributing networks. Alternatively, when a user rejects
a field extraction recommendation, or consistently rejects a
field extraction recommendation, the neural network may be
retrained using different or more training data.

By way of example only, and with reference to FIG. 22,
FIG. 22 provides an illustrative user interface 2200 for
presenting field extraction recommendations. As shown, a
set of field extraction recommendations 2202 are provided.
In accordance with hovering over or selecting field extrac-
tion recommendation 2204, a preview of corresponding field
values to be extracted from events can be presented to the
user. Assume the user otherwise selects the field extraction
recommendation 2204 to 1nmitiate field extraction, for
example, by selecting “accept all” recommendations 2206.
In such a case, corresponding field values can be extracted.
Further, as shown, proposed extraction rules 2208 corre-
sponding with field extraction recommendations can be
presented. Although not 1llustrated, various field extraction
recommendations can also be provided along with confi-
dence levels indicating quality of such recommendations.

In some embodiments, confidence levels can also be
determined for field extraction recommendations. In this
regard, a confidence level associated with each field extrac-
tion recommendation may be generated. A confidence level
may indicate a quality of a field extraction recommendation
in any form. In some cases, field extraction recommenda-
tions are presented along with the corresponding confidence
levels. Additionally, or alternatively, confidence levels may
be used to select which field extraction recommendations to
present to a user, a ranking or order 1n which to present field
extraction recommendations, and/or for which recommen-
dations to generate an extraction rule. For example, a
predetermined number of the field extraction recommenda-
tions with the greatest confidence levels may be selected for

10

15

20

25

30

35

40

45

50

55

60

65

58

outputting to a user. A user may then utilize the confidence
levels to determine whether which field extraction recom-
mendations to execute as field extractions.

Field extraction recommendations automatically gener-
ated via neural networks may be combined with alternative
field extraction recommendations methods to produce an
aggregated or ranked list of field extraction recommenda-
tions to present to a user. For example, heuristics-based field
extraction recommendations and edit-distance field extrac-
tion recommendations can be aggregated with neural net-
work field extraction recommendations to present to a user.
In some cases, the recommendations may be ranked to
produce a ranked list of recommendations to present to a
user.

As can be appreciated, extraction rules can be generated
for field extraction recommendations. An extraction rule
refers to a rule that specifies how to extract field values from
data, such as events or raw event data. An extraction rule can
be a regular expression, or pattern-matching rule, used to
extract fleld values. In embodiments, extraction rules can be
created based on static and/or variable text identified 1n
association with any number of character strings, for
example, using one or more neural networks. In some
implementations, an extraction rule may utilize static text as
a method for identitying field values to extract (i.e., variable
text to extract). By way of example only, assume the user
name “djohnson” 1s to be extracted as a field value. One
extraction rule constructed might specily to search for
“failed password_” and to extract data following “failed
password_" until a space 1s recognized. In other implemen-
tations, an extraction rule may utilize varnable text as a
method for identifying field values to extract. In some cases,
an extraction rule may be provided as a field extraction
recommendation or along with a field extraction recommen-
dation. For 1nstance, a field extraction recommendation may
be provided along with an extraction rule suggested to
extract corresponding values.

Extraction rules can be generated at any time. In some
cases, extraction rules are generated 1 accordance with
identifving field extraction recommendations. As such, 1n
accordance with 1dentifying and presenting field extraction
recommendations, corresponding extraction rules can be
generated. To this end, 1f a user selects one or more of the
field extraction recommendations to initiate field extraction,
the corresponding extraction rules can be accessed and used
to execute field extraction. In other cases, extraction rules
are generated upon recerving a user selection of one or more
of the field extraction recommendations. In such cases, when
a field extraction recommendation(s) 1s selected, corre-
sponding extraction rules are generated. In various 1mple-
mentations, as described above with reference to clustering
events, such extraction rules can be used to cluster events.
Further, in some cases, at least some of the events can be
reclustered or clusters can be updated based on the extrac-
tion rule. Thus, as new extraction rules are generated in
association with events, a set of clusters corresponding to
those events can also be updated to reflect any insights that
may be provided by the new extraction rules.

As described, 1n accordance with some embodiments of
the present invention, neural networks can be trained in
association with a source type. That 1s, a first set of neural
networks can be trained 1n association with a first source
type, a second set of neural networks can be tramned in
association with a second source type, etc. As such, the
neural networks can be used to infer a source type associated
with data, such as raw event data. In this regard, data can be
input, for example 1n a character-by-character manner, to

US 10,685,279 B2

59

trained neural networks associated with various source
types. A network or set ol networks associated with a
greatest prediction accuracy, 1 terms ol predicting next
characters, can be 1dentified. A source type corresponding
with the identified network(s) can then be designated or
suggested as the source type of the original data.

4.2 Ilustrative Field Extraction Recommendation Opera-
tions

FIGS. 23-24 illustrate various methods of forecasting
events, 1 accordance with embodiments of the present
invention. Although the method 2300 of FIG. 23 and the
method 2400 of FIG. 24 are provided as separate methods,
the methods, or aspects thereof, can be combined mto a
single method or combination of methods. As can be appre-
ciated, additional or alternative steps may also be included
in different embodiments.

With mitial reference to FIG. 23, FIG. 23 illustrates a
method of facilitating field extraction recommendations, in
accordance with embodiments of the present invention.
Such a method may be performed, for example, at a field
extraction tool, such as field extraction tool 2116 of FIG. 21.
Initially, at block 2302, a set of training data having char-
acter strings 1s obtained. In embodiments, the set of training
data can include events having a time-stamped portion of
raw machine data. At block 2304, a forward neural network
1s trained by obtaining characters of the character strings one
character at a time and predicting a next character. Based on
a comparison of the predicted next character and the actual
next character, the forward neural network can be adjusted.
At block 2306, a reverse neural network 1s trained by
obtaining characters of the character strings one character at
a time and predicting a next character, where the characters
are provided 1n reverse order beginning at the last characters
of the character strings. Based on a comparison of the
predicted next character and the actual next character, the
reverse neural network can be adjusted. At block 2308, the
torward neural network and the reverse neural network are
used to 1dentily variable text within the character strings. In
some embodiments, the forward neural network can be used
to detect a beginning point or character of the variable text,
while the reverse neural network can be used to detect an
ending point or character of the variable text. At block 2310,
the 1dentified variable text 1s provided as a field extraction
recommendation.

Turning now to FI1G. 24, FIG. 24 illustrates a method of
facilitating field extraction recommendations, 1n accordance
with embodiments of the present mnvention. Such a method
may be performed, for example, at a field extraction tool,
such as field extraction tool 2116 of FIG. 21. Initially, at
block 2402, a set of events are obtained. In embodiments,
cach event 1 the set of events includes a time-stamped
portion of raw machine data. At block 2404, a first neural
network 1s referenced and used to identily vanable text to
extract as a field value from the set of events. In some
embodiments, the first neural network may be used to
identily beginning points or characters of vaniable text. At
block 2406, a second neural network 1s referenced and used
to 1dentily vaniable text to extract as a field value from the
set of events. In embodiments, the second neural network
may be used to identily ending points or characters of
variable text. At block 2408, the i1dentified variable text 1s
provided for output as a field extraction recommendation. In
some cases, a confidence level associated with the field
extraction recommendation can also be generated and pro-
vided as output. Thereafter, at block 2410, a user selection
of a field extraction recommendation 1s received. Based on
the user selection, at block 2412, an extraction rule 1is

10

15

20

25

30

35

40

45

50

55

60

65

60

constructed to extract the variable text as a field value. At
block 2414, the extraction rule 1s used to extract the variable
text as a field value.

4.3 Illustrative Hardware System

The systems and methods described above may be imple-
mented 1n a number of ways. One such implementation
includes computer devices having various electronic com-
ponents. For example, components of the system 1n FIG. 18
may, individually or collectively, be implemented with
devices having one or more Application Specific Integrated
Circuits (ASICs) adapted to perform some or all of the
applicable functions in hardware. Alternatively, the func-
tions may be performed by one or more other processing
units (or cores), on one or more integrated circuits or
processors 1in programmed computers. In other embodi-
ments, other types of integrated circuits may be used (e.g.,
Structured/Platform ASICs, Field Programmable Gate
Arrays (FPGAs), and other Semi-Custom ICs), which may
be programmed in any manner known in the art. The
functions of each unit may also be implemented, in whole or
in part, with instructions embodied 1n a memory, formatted
to be executed by one or more general or application-
specific computer processors.

An example operating environment in which embodi-
ments of the present invention may be implemented 1s
described below in order to provide a general context for
various aspects of the present imnvention. Referring to FIG.
235, an 1illustrative operating environment for implementing
embodiments of the present invention 1s shown and desig-
nated generally as computing device 2500. Computing
device 2500 1s but one example of a suitable operating
environment and 1s not intended to suggest any limitation as
to the scope of use or functionality of the invention. Neither
should the computing device 2500 be interpreted as having
any dependency or requirement relating to any one or
combination ol components 1llustrated.

The invention may be described 1n the general context of
computer code or machine-useable instructions, including
computer-executable instructions such as program modules,
being executed by a computer or other machine, such as a
personal data assistant or other handheld device. Generally,
program modules 1ncluding routines, programs, objects,
components, data structures, etc., refer to code that perform
particular tasks or implement particular abstract data types.
The mvention may be practiced mn a variety of system
configurations, including handheld devices, consumer elec-
tronics, general-purpose computers, more specialized com-
puting devices, etc. The mvention may also be practiced in
distributed computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network.

With reference to FIG. 25, computing device 23500
includes a bus 2510 that directly or indirectly couples the
following devices: memory 2512, one or more processors
2514, one or more presentation components 2516, mput/
output (I/O) ports 2518, I/O components 2520, and an
illustrative power supply 2522. Bus 2510 represents what
may be one or more busses (such as, for example, an address
bus, data bus, or combination thereot). Although depicted in
FIG. 25, for the sake of clarity, as delineated boxes that
depict groups of devices without overlap between these
groups of devices, in reality, this delineation 1s not so clear
cut and a device may well fall within multiple ones of these
depicted boxes. For example, one may consider a display to
be one of the one or more presentation components 2716
while also being one of the 'O components 2520. As
another example, processors have memory integrated there-

US 10,685,279 B2

61

with 1n the form of cache; however, there 1s no overlap
depicted between the one or more processors 2514 and the
memory 2512. A person of skill in the art will readily
recognize that such 1s the nature of the art, and 1t 1s reiterated
that the diagram of FIG. 25 merely depicts an 1llustrative
computing device that can be used 1n connection with one or
more embodiments of the present invention. It should also
be noticed that distinction 1s not made between such cat-
egories as ‘“‘workstation,” “server,” “laptop,” “handheld
device,” etc., as all such devices are contemplated to be
within the scope of computing device 2500 of FIG. 25 and
any other reference to “computing device,” unless the con-
text clearly indicates otherwise.

Computing device 2500 typically includes a variety of
computer-readable media. Computer-readable media can be
any available media that can be accessed by computing
device 2500 and includes both volatile and nonvolatile
media, and removable and non-removable media. By way of
example, and not limitation, computer-readable media may
comprise computer storage media and communication
media. Computer storage media includes both volatile and
nonvolatile, removable and non-removable media 1mple-
mented 1 any method or technology for storage of infor-
mation such as computer-readable instructions, data struc-
tures, program modules, or other data. Computer storage
media 1includes, but 1s not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 2500.
Computer storage media does not comprise signals per se,
such as, for example, a carrier wave. Communication media
typically embodies computer-readable instructions, data
structures, program modules, or other data 1n a modulated
data signal such as a carrier wave or other transport mecha-
nism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more
of 1ts characteristics set or changed 1n such a manner as to
encode mformation 1n the signal. By way of example, and
not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared, and other
wireless media. Combinations of any of the above should
also be included within the scope of computer-readable
media.

Memory 2512 includes computer storage media in the
form of volatile and/or nonvolatile memory. The memory
may be removable, non-removable, or a combination
thereol. Typical hardware devices may include, for example,
solid-state memory, hard drives, optical-disc drives, eftc.
Computing device 2500 includes one or more processors
2514 that read data from various entities such as memory
2512 or I/O components 2520. Presentation component(s)
2516 present data indications to a user or other device.
[llustrative presentation components include a display
device, speaker, printing component, vibrating component,
etc.

I/O ports 2518 allow computing device 2500 to be logi-
cally coupled to other devices including I/O components
2520, some of which may be built . Illustrative compo-
nents include a keyboard, mouse, microphone, joystick,
game pad, satellite dish, scanner, printer, wireless device,
etc. The I/O components 2520 may provide a natural user
interface (NUI) that processes air gestures, voice, or other
physiological inputs generated by a user. In some instances,

10

15

20

25

30

35

40

45

50

55

60

65

62

inputs may be transmitted to an appropriate network element
for further processing. An NUI may implement any combi-
nation ol speech recognition, stylus recognition, facial rec-
ognition, biometric recognition, gesture recognition both on
screen and adjacent to the screen, air gestures, head and eye
tracking, and touch recognition (as described elsewhere
herein) associated with a display of the computing device
2500. The computing device 2500 may be equipped with
depth cameras, such as stereoscopic camera systems, 1nfra-
red camera systems, RGB camera systems, touchscreen
technology, and combinations of these, for gesture detection
and recognition. Additionally, the computing device 2500
may be equipped with accelerometers or gyroscopes that
enable detection of motion.

As can be understood, implementations of the present
disclosure provide for various approaches to data process-
ing. The present invention has been described 1n relation to
particular embodiments, which are intended 1n all respects to
be 1llustrative rather than restrictive. Alternative embodi-
ments will become apparent to those of ordinary skill in the
art to which the present invention pertains without departing
from 1ts scope.

From the foregoing, it will be seen that this mvention 1s
one well adapted to attain all the ends and objects set forth
above, together with other advantages which are obvious
and 1inherent to the system and method. It will be understood
that certain features and subcombinations are of utility and
may be employed without reference to other features and
subcombinations. This 1s contemplated by and 1s within the
scope of the claims.

The mvention claimed 1s:
1. A computer-implemented method, comprising;:
obtaining a set of events, each event in the set of events
comprising a time-stamped portion of raw machine
data, the raw machine data produced by one or more
components within an information technology or secu-
rity environment and reflecting activity within the
information technology or security environment;

using a first neural network to automatically identity
variable text to extract as a field value from the set of
events, the vanable text identified by determining, via
the first neural network, probabilities of next characters
given a previous set of characters for an event within
the set of events and using the probabilities to identify
when the variable text begins or ends within the event;
and

providing an indication of the variable text as a field

extraction recommendation.

2. The computer-implemented method of claim 1,
wherein the set of events correspond with a source type and
the first neural network 1s generated in accordance with a set
of tramning events corresponding with the source type.

3. The computer-implemented method of claim 1 turther
comprising training the first neural network.

4. The computer-implemented method of claim 1 turther
comprising training the first neural network, wherein the
first neural network 1s trained by:

obtaining a set of training events comprising character

strings;

providing the character strings to the first neural network

on a character-by-character basis;

for each provided character, predicting a next character;

and

training the first neural network based on a comparison of

the predicted next character to an actual next character.

US 10,685,279 B2

63

5. The computer-implemented method of claim 1,
wherein the first neural network 1s used to automatically
identily variable text to extract by:

providing the set of events as character strings to the first

neural network on a character-by-character basis;

for each character provided to the first neural network,

identifying a probability of a next character given the
previous characters;

analyzing a sequence of the probabilities to i1dentify a

deviation 1n the probabilities; and

utilizing the deviation 1n the probabilities to identify the

variable text to extract.

6. The computer-implemented method of claim 1,
wherein the first neural network 1s used to automatically
identily variable text to extract by:

providing the set of events as character strings to the first

neural network on a character-by-character basis;

for each character provided to the first neural network,

identifying a probability of a next character given the
previous characters;

analyzing a sequence of the probabilities to identily a first

probability that falls below a threshold value; and
designating the character associated with the first prob-
ability as a beginning character of the variable text.

7. The computer-implemented method of claim 1 further
comprising using a second neural network to automatically
identily the variable text to extract as the field value from the
set of events.

8. The computer-implemented method of claim 1 further
comprising using a second neural network to automatically

identily the variable text to extract as the field value from the
set of events, wherein the first neural network 1s trained 1n
a forward character-by-character basis, and the second neu-
ral network 1s trained 1n a reverse character-by-character
basis.

9. The computer-implemented method of claim 1 further
comprising using a second neural network to automatically
identiy the variable text to extract as the field value from the
set of events, wherein character strings are provided the first
neural network in a forward manner beginning with the first
characters of the character strings, and the character strings
are provided to the second neural network in a reverse
manner beginning with the last characters of the character
strings.

10. The computer-implemented method of claim 1 further
comprising using a second neural network to automatically
identify the variable text to extract as the field value from the
set of events, the second neural network being trained by:

obtaining a set of training events comprising character

strings;

providing the character strings to the second neural
network on a character-by-character basis beginning
at last characters of the character strings;

for each provided character, predicting a next character;
and

training the second neural network based on a com-
parison of the predicted next character to an actual
next character.

11. The computer-implemented method of claim 1 further
comprising using a second neural network to automatically
identify the variable text to extract as the field value from the
set of events, the second neural network being trained by:

providing the set of events as character strings to the

second neural network on a character-by-character
basis beginning at last characters of the character
strings;

10

15

20

25

30

35

40

45

50

55

60

65

64

for each character provided to the second neural network,
identifying a probability of a next character given the
previous characters;
analyzing a sequence of the probabilities to 1dentily a
deviation in the probabilities; and
utilizing the deviation in the probabilities to identity the
variable text to extract.

12. The computer-implemented method of claim 1, fur-
ther comprising using a second neural network to automati-
cally identity the vanable text to extract as the field value
from the set of events, the second neural network being
trained by:

providing the set of events as character strings to the

second neural network on a character-by-character
basis beginning at last characters of the character
strings;

for each character provided to the second neural network,

identifying a probability of a next character given the
previous characters;

analyzing a sequence of the probabilities to 1dentity a first

probability that falls below a threshold value; and
designating the character associated with the first prob-
ability as an ending character of the varnable text.

13. The computer-implemented method of claim 1 further
comprising using a second neural network to automatically
identify the variable text to extract as the field value from the
set of events, wherein the first neural network 1s used to
identily a beginming of a vaniable text within a character
string, and the second neural network 1s used to 1dentiiying
an ending of the variable text within the character string.

14. The computer-implemented method of claim 1 further
comprising causing display of the indication of the variable
text as the field extraction recommendation.

15. The computer-implemented method of claim 1,
wherein the indication of the variable text comprises the
identified variable text.

16. The computer-implemented method of claim 1,
wherein the indication of the variable text comprises a
representation of the identified variable text.

17. The computer-implemented method of claim 1 further
comprising generating an extraction rule to extract the
variable text.

18. The computer-implemented method of claim 1 further
comprising;

causing display of the indication of the vanable text as the

field extraction recommendation;

recerving a selection of the field extraction recommenda-

tion; and

providing a preview of field values to be extracted 1n

accordance with the field extraction recommendation.

19. The computer-implemented method of claim 1 further
comprising:

causing display of the indication of the variable text as the

field extraction recommendation;

receiving a selection of the field extraction recommenda-

tion; and

based on the selection, imitiating a corresponding field

extraction.

20. The computer-implemented method of claim 1 further
comprising;

causing display of the indication of the vaniable text as the

field extraction recommendation;

recerving a selection of the field extraction recommenda-

tion; and

generating an extraction rule to extract the variable text.

US 10,685,279 B2

65

21. A system comprising:

one or more processors; and

computer memory having instructions stored thereon, the

instructions, when executed by the one or more pro-
cessors causing the system to perform a method com-
prising;:

obtain a set of events, each event in the set of events

comprising a time-stamped portion of raw machine
data, the raw machine data produced by one or more
components within an information technology or secu-
rity environment and reflecting activity within the
information technology or security environment;

use a first neural network to automatically identity vari-

able text to extract as a field value from the set of
events, the variable text identified by determining, via
the first neural network, probabilities of next characters
given a previous set of characters for an event within
the set of events and using the probabilities to identify
when the variable text begins or ends within the event;
and

provide an indication of the variable text as a field

extraction recommendation.

22. The system of claim 21 further comprising training the
first neural network, wherein the first neural network 1s
trained by:

obtaining a set of training events comprising character

strings;

providing the character strings to the first neural network

on a character-by-character basis;

for each provided character, predicting a next character;

and

training the first neural network based on a comparison of

the predicted next character to an actual next character.

23. The system of claim 21, wherein the first neural
network 1s used to automatically identily variable text to
extract by:

providing the set of events as character strings to the first

neural network on a character-by-character basis;

for each character provided to the first neural network,

identifying a probability of a next character given the
previous characters;

analyzing a sequence of the probabilities to i1dentify a

deviation 1n the probabilities; and

utilizing the deviation 1n the probabilities to identify the

variable text to extract.

24. The system of claim 21, wheremn the first neural
network 1s used to automatically identily variable text to
extract by:

providing the set of events as character strings to the first

neural network on a character-by-character basis;

for each character provided to the first neural network,

identifying a probability of a next character given the
previous characters;

analyzing a sequence of the probabilities to identily a first

probability that falls below a threshold value; and
designating the character associated with the first prob-
ability as a beginning character of the variable text.

25. The system of claim 21 further comprising using a
second neural network to automatically 1dentity the variable
text to extract as the field value from the set of events,
wherein the first neural network 1s traimned in a forward
character-by-character basis, and the second neural network
1s trained 1n a reverse character-by-character basis.

06

26. One or more non-transitory computer-readable media
having instructions stored thereon, the instructions, when
executed by a processor of a computing device, to cause the
computing device to perform a method comprising:

5 obtain a set of events, each event in the set of events

comprising a time-stamped portion of raw machine
data, the raw machine data produced by one or more
components within an information technology or secu-
rity environment and reflecting activity within the
information technology or security environment;

use a first neural network to automatically identify vari-

able text to extract as a field value from the set of
cvents, the varnable text identified by determining, via
the first neural network, probabilities of next characters
given a previous set of characters for an event within
the set of events and using the probabilities to identify
when the variable text begins or ends within the event;
and

provide an indication of the variable text as a field

extraction recommendation.

27. The one or more non-transitory computer-readable
media of claim 26 further comprising training the first neural
network, wherein the first neural network 1s trained by:

obtaining a set of training events comprising character

strings;

providing the character strings to the first neural network

on a character-by-character basis;

for each provided character, predicting a next character;

and

training the first neural network based on a comparison of

the predicted next character to an actual next character.

28. The one or more non-transitory computer-readable
media of claim 26, wherein the first neural network 1s used
to automatically identify variable text to extract by:

providing the set of events as character strings to the first

neural network on a character-by-character basis;

for each character provided to the first neural network,

identifying a probability of a next character given the
previous characters;

analyzing a sequence of the probabilities to identily a

deviation 1n the probabilities; and

utilizing the deviation in the probabilities to 1dentily the

variable text to extract.

29. The one or more non-transitory computer-readable
45 media of claim 26, wherein the first neural network 1s used
to automatically identily variable text to extract by:

providing the set of events as character strings to the first

neural network on a character-by-character basis;

for each character provided to the first neural network,

identifying a probability of a next character given the

10

15

20

25

30

35

40

50
previous characters;
analyzing a sequence of the probabilities to identify a first
probability that falls below a threshold value; and
designating the character associated with the {first prob-
55 ability as a beginning character of the variable text.

30. The one or more non-transitory computer-readable
media of claim 26 further comprising using a second neural
network to automatically identify the variable text to extract
as the field value from the set of events, wherein the first

o heural network 1s trained 1n a forward character-by-character
basis, and the second neural network 1s trained 1n a reverse
character-by-character basis.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

