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MULTI-LEVEL SIGNIFICANCE MAP
SCANNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of U.S. patent
application Ser. No. 15/657,719 filed Jul. 24, 2017, which 1s
a continuation of U.S. patent application Ser. No. 13/446,
186 filed Apr. 13, 2012, and granted as U.S. Pat. No.
9,743,098, each of which claims priority to U.S. provisional
patent application 61/561,872, filed Nov. 19, 2011, and all of
which are owned in common herewith. The contents of each
of the applications mentioned above 1s hereby incorporated
by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this document and accom-
panying materials contains material to which a claim for
copyright 1s made. The copyright owner has no objection to
the facsimile reproduction by anyone of the patent document
or the patent disclosure, as 1t appears in the Patent and
Trademark Oflice files or records, but reserves all other
copyright rights whatsoever.

FIELD

The present application generally relates to data compres-
sion and, 1n particular, to methods and devices for encoding
and decoding video using multi-level significance maps.

BACKGROUND

Data compression occurs 1n a number of contexts. It 1s
very commonly used in communications and computer
networking to store, transmit, and reproduce information
clliciently. It finds particular application 1n the encoding of
images, audio and video. Video presents a significant chal-
lenge to data compression because of the large amount of
data required for each video frame and the speed with which
encoding and decoding often needs to occur. The current
state-of-the-art for video encoding 1s the ITU-T H.264/AVC
video coding standard. It defines a number of diflerent
profiles for different applications, including the Main profile,
Baseline profile and others. A next-generation video encod-

ing standard 1s currently under development through a joint
mitiative of MPEG-ITU: High Efliciency Video Coding

(HEVC).

There are a number of standards for encoding/decoding
images and videos, including H.264, that use block-based
coding processes. In these processes, the 1mage or frame 1s
divided 1nto blocks, typically 4x4 or 8x8, and the blocks are
spectrally transformed into coeflicients, quantized, and
entropy encoded. In many cases, the data being transformed
1s not the actual pixel data, but 1s residual data following a
prediction operation. Predictions can be intra-irame, 1.c.
block-to-block within the frame/image, or inter-frame, 1.¢.
between Irames (also called motion prediction). It 1s
expected that HEVC (may also be called H.265) will also
have these features.

When spectrally transforming residual data, many of
these standards prescribe the use of a discrete cosine trans-
form (DCT) or some variant thereon. The resulting DCT
coellicients are then quantized using a quantizer to produce
quantized transform domain coeflicients, or indices.
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2

The block or matrix of quantized transform domain
coellicients (sometimes referred to as a “transform unit”) 1s

then entropy encoded using a particular context model. In
H.264/AVC and in the current development work for HEVC,
the quantized transform coellicients are encoded by (a)
encoding a last significant coetlicient position indicating the
location of the last non-zero coeflicient 1n the block, (b)
encoding a significance map indicating the positions in the
block (other than the last significant coetlicient position) that
contain non-zero coetlicients, (¢) encoding the magmtudes
ol the non-zero coellicients, and (d) encoding the signs of the
non-zero coellicients. This encoding of the quantized trans-
form coeflicients often occupies 30-80% of the encoded data
in the bitstream.

Transform units are typically NxN. Common sizes
include 4x4, 8x8, 16x16, and 32x32, although other sizes
are possible. The entropy encoding of the symbols 1n the
significance map 1s based upon a context model. In the case
of a 4x4 luma or chroma block or transform unit (1TU), a
separate context 1s associated with each coeflicient position
in the TU. That 1s, the encoder and decoder track a total of
30 (excluding the bottom right corner positions) separate
contexts for 4x4 luma and chroma TUs. The 8x8 TUs are
partitioned (conceptually for the purpose of context asso-
ciation) 1mto 2x2 blocks such that one distinct context is
associated with each 2x2 block 1n the 8x8 TU. Accordingly,
the encoder and decoder track a total of 16+16=32 contexts
for the 8x8 luma and chroma TUs. This means the encoder
and decoder keep track of and look up 62 different contexts
during the encoding and decoding of the significance map.
When 16x16 TUs and 32x32 TUSs are taken into account, the
total number of distinct contexts involved 1s 88. Among the
additional 26 contexts, 13 are for luma TUs and 13 are for
chroma TUs. The assignment of the 13 contexts to the
coellicient positions 1 a 16x16 or 32x32 TU 1s as follows.
Let (r, ¢) denote a position 1n the TU, where O<=r, c<=15 11
the TU 1s of s1ze 16x16, and O0<=r, c<=31 1f the TU 1s of size
32x32. Then 3 distinct contexts are assigned to the three
positions (0, 0), (0, 1), (1, 0) at the top-left corner including
the DC position (0, 0); 5 distinct contexts are assigned to
positions in the region {(r, ¢): 2<=r+c<5}; and the last 5
distinct contexts are assigned to all the remaining positions.
Except for the first 3 contexts for (0, 0), (0, 10), and (1, 0),
the derivation of the context for a position in the region {(r,
¢): 2<=r+c<5} depends on its lower-right neighborhood. Let
s(r, ¢) denote the significance tlag of a coellicient at position
(r, ), 1.€., s(r, ¢)=1 11 the coetlicient 1s not zero and s(r, ¢)=1
otherwise. The context for position (r, ¢) 1s equal to min(s
(r+1, c)+s(r, c+1)+s(r+2.c)+s(r, c+2)+s(r+1,c+1), 4), where
min(a, b) returns the smaller value between a and b. The
context of a position (r, ¢) in the remaining region {(r, ¢):
r+c>=5} is similarly derived.

The contexts for 4x4 and 8x8 significance maps are
determined by the bit position. The contexts for 16x16 and
32x32 significance maps are mostly determined by the
values of the neighboring bits. The determination of context
for the 16x16 and 32x32 significance maps 1s fairly com-
putationally intense, because 1n most cases the processor
determines context by looking at the values of neighboring
significant flags, which involves costly memory access
operations.

BRIEF DESCRIPTION OF THE

DRAWINGS

Retference will now be made, by way of example, to the
accompanying drawings which show example embodiments
of the present application, and in which:
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FIG. 1 shows, in block diagram form, an encoder for
encoding video;

FIG. 2 shows, in block diagram form, a decoder for
decoding video;

FIG. 3 shows an example transform umt contaiming
quantized transform domain coetlicients;

FIG. 4 shows an example significance map containing
significant-coeflicient flags for the transform unit of FIG. 3;

FIG. 5 shows an example L1 significance map containing,
significant-coeflicient-group flags for the significance map
of FIG. 4;

FIG. 6 shows, in flowchart form, an example method of
encoding significant-coellicient flags;

FIG. 7 shows, 1n flowchart form, an example method for
reconstructing a significance map from encoded data;

FIG. 8 shows, 1n flowchart form, an example process for
decoding and reconstructing significant-coeflicient-group
flags;

FIG. 9 shows, 1n flowchart form, an example rate-distor-
tion optimized quantization process for multi-level signifi-
cance map encoding;

FIG. 10 shows the example LO significance map of FIG.
4 after application of L1 RDOQ);

FIG. 11 shows the L1 significance map corresponding to
the LO significance map of FIG. 10, after L1 RDOQ);

FI1G. 12 shows a simplified block diagram of an example
embodiment of an encoder;

FIG. 13 shows a simplified block diagram of an example
embodiment of a decoder;

FIG. 14 shows a 16x16 transform unit with 4x4 coetli-
cient groups and a forward diagonal scan order;

FIG. 15 shows the 16x16 transform unit with 4x4 coel-
ficient groups and a group-based multi-level forward diago-
nal scan order;

FI1G. 16 shows, 1n flowchart form, an example method for
decoding a significance map; and

FIG. 17 shows, 1n flowchart form, an example process for
encoding of a multi-level significance map with a multi-
level scan order.

Similar reference numerals may have been used in dii-
ferent figures to denote similar components.

DESCRIPTION OF EXAMPLE EMBODIMENTS

The present application describes methods and encoders/
decoders for encoding and decoding significance maps with
context-adaptive encoding or decoding. The encoder and
decoder use multi-level significance maps. In at least one
case, the multi-level maps are used with larger transform
units, such as the 16x16 and 32x32 TUs.

In one aspect, the present application describes a method
of reconstructing significant-coetlicient flags for a transform
unit from a bitstream of encoded data, the bitstream includ-
ing encoded significant-coellicient-group flags, and wherein
cach significant-coellicient-group flag corresponds to a
respective group of significant-coellicient flags. The method
includes, for each of the respective groups of significant-
coellicient flags 1n a group scan order, reconstructing that
group’s corresponding significant-coethcient-group flag,
and reconstructing the significant-coeflicient flags in that
group by decoding the significant-coeflicient flags from the
bitstream 1n a scan order within the group, 1f the correspond-
ing significant-coetlicient-group flag 1s non-zero, and setting
the significant-coeflicient tlags to zero, 1f the corresponding,
significant-coetlicient-group flag is zero.

In another aspect, the present application describes a
method for encoding significant-coethicient tlags for a trans-
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form unit. The method includes, for each respective group of
significant-coeflicient flags 1n a group scan order, encoding,
that group’s corresponding significant-coetlicient-group
flag, unless a special case applies, and wherein the signifi-
cant-coellicient-group flag 1s set to zero to indicate that that
corresponding group contains no non-zero significant-coet-
ficient tlags, and encoding the significant-coeflicient flags 1n
that group 1 a scan order within the group, if the corre-
sponding significant-coetlicient-group flag 1s non-zero.

In one aspect, the reconstruction of the significant-coet-
ficient flags 1s performed 1n a prescribed order, such as a
scan order. In another aspect, the reconstruction of the
significant-coeflicient-group flags 1s performed 1n a pre-
scribed order, which may be the same prescribed order as
used with the reconstruction of the significant-coeflicient
flags, such as the scan order.

In one aspect, a significant-coellicient-group flag 1s set to
zero 11 all significant-coethicient flags 1n the corresponding
group are zero. In another aspect, a significant-coeflicient-
group tlag 1s non-zero 1 at least one significant-coetlicient
flag 1n the corresponding group 1s non-zero. In another
aspect, a special case may result 1n a significant-coeflicient-
group flag being non-zero even 1f all significant-coethicient
flags 1n the corresponding group are zero, 1n which case the
decoder will decode all the zero value significant-coethicient
flags for that corresponding group from the bitstream.

In another aspect, the present application describes a
method, at a decoder, of reconstructing significant-coetli-
cient flags for a transform unit, wherein the transform unit
comprises non-overlapping blocks of transform coethicients,
cach of the non-overlapping blocks corresponds to a respec-
tive group ol significant-coeflicient flags, each significant-
coellicient flag corresponds to a respective transform coet-
ficient, and each respective group corresponds to a
respective significant-coeflicient group tlag, groups of sig-
nificant-coellicient tlags are reconstructed in a group scan
order, and significant-coetlicient flags are reconstructed 1n a
scan order within their group. The method includes decoding
a position for a last-significant coethicient of the transform
unmt from a bitstream of encoded data; and 1n a first group
corresponding to the position of the last-significant coetl-
cient, decoding from the bitstream each significant-coetl-
cient flag in the scan order from a position following the
position of the last-significant coeflicient 1n the scan order
through position (0,0) of the first group. The method further
includes, for each group in the group scan order from a
second group, which follows the first group 1n the group

scan order, to a group preceding a DC group in the group
scan order, wherein the DC group corresponds to a block
containing a transform coethicient at the (0,0) position of the
transform umit, decoding a significant-coethicient-group tlag
from the bitstream for that group, and reconstructing sig-
nificant-coetlicient flags 1n that group in a scan order within
that group, by, for each significant-coetlicient flag in that
group, (1) 1f that significant-coeflicient flag 1s at position
(0,0) m 1ts group, 1ts corresponding significant-coetlicient-
group tlag 1s decoded to be non-zero, and all of the signifi-
cant-coeflicient flags which precede that significant-coetl-
cient flag 1n the scan order in that group are zero, then
inferring, without decoding from the bitstream, that signifi-
cant-coellicient flag to be 1, and (11) otherwise decoding that
significant-coetlicient flag from the bitstream 11 that signifi-
cant-coellicient flag 1s 1n a group that has corresponding
significant-coetlicient-group flag that 1s non-zero, and infer-
ring, without decoding from the bitstream, that significant-
coellicient tlag to zero, 11 that significant-coetlicient flag 1s 1n
a group that has corresponding significant-coeflicient-group
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flag that 1s zero. The method then further includes, 1n the DC
group, decoding each corresponding significant-coetlicient
flag in the scan order.

In another aspect, the present application describes a
method for encoding significant-coethicient flags for a trans-
form unit, each of the significant coeflicient flags belonging
to a respective group of significant-coeflicient flags and each
respective group having a corresponding significant-coetli-
cient-group flag. The method includes, for each respective
group ol significant-coeflicient flags in a group reverse scan
order the group reverse scan order starting with the group
containing the significant-coeflicient flag for a last-signifi-
cant coeflicient indicating the location of the last non-zero
significant coellicient 1n the transform unit, and working
back through the groups in reverse direction until the group
containing the DC position 1n the transform unit 1s reached,
encoding that group’s significant-coeflicient-group flag
unless that group contains the last-significant coetlicient or
that group contains the DC position, wherein that group’s
corresponding significant-coeflicient-group flag is set to be
one 1f that group contains at least one non-zero significant-
coellicient flag and 1s set to be zero otherwise. The method
turther includes, 1f that group’s significant-coeflicient-group
flag 1s one or that group contains the last-significant coet-
ficient or that group contains the DC position, encoding the
significant-coeflicient flags 1n that group in a reverse scan
order, except the significant-coeflicient-flag at position (0,0)
in that group when both of the following conditions are met:
all the previous significant-coetlicient tlags 1n that group are
zero, and the significant-coethicient flag 1s not for the DC
position.

In a further aspect, the present application describes
encoders and decoders configured to implement such meth-
ods of encoding and decoding.

In yet a further aspect, the present application describes
non-transitory computer-readable media storing computer-
executable program 1nstructions which, when executed, con-
figured a processor to perform the described methods of
encoding and/or decoding.

Other aspects and features of the present application will
be understood by those of ordinary skill in the art from a
review of the following description of examples in conjunc-
tion with the accompanying figures.

In the description that follows, some example embodi-
ments are described with reference to the H.264 standard for
video coding and/or the developing HEVC standard. Those
ordinarily skilled in the art will understand that the present
application 1s not limited to H.264/AVC or HEVC but may
be applicable to other video coding/decoding standards,
including possible future standards, multi-view coding stan-
dards, scalable video coding standards, and reconfigurable
video coding standards.

In the description that follows, when referring to video or
images the terms frame, picture, slice, tile and rectangular
slice group may be used somewhat interchangeably. Those
of skill in the art will appreciate that, 1n the case of the H.264
standard, a frame may contain one or more slices. It will also
be appreciated that certain encoding/decoding operations are
performed on a frame-by-irame basis, some are performed
on a slice-by-slice basis, some picture-by-picture, some
tile-by-tile, and some by rectangular slice group, depending,
on the particular requirements or terminology of the appli-
cable 1mage or video coding standard. In any particular
embodiment, the applicable 1mage or video coding standard
may determine whether the operations described below are
performed 1n connection with frames and/or slices and/or
pictures and/or tiles and/or rectangular slice groups, as the
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case may be. Accordingly, those ordinarily skilled in the art
will understand, in light of the present disclosure, whether
particular operations or processes described herein and
particular references to frames, slices, pictures, tiles, rect-
angular slice groups are applicable to frames, slices, pic-
tures, tiles, rectangular slice groups, or some or all of those
for a given embodiment. This also applies to transform units,
coding units, groups of coding units, etc., as will become
apparent in light of the description below.

The present application describes example processes and
devices for encoding and decoding significance maps. A
significance map 1s a block, matrix or group of flags that
maps to, or corresponds to, a transform unit or a defined unit
of coellicients (e.g. several transform units, a portion of a
transform unit, or a coding unit). Each flag indicates whether
the corresponding position in the transform unit or the
specified unit contains a non-zero coetlicient or not. In
existing standards, these flags may be referred to as signifi-
cant-coeflicient flags. In existing standards, there 1s one flag
per coellicient and the flag 1s a bit that 1s zero if the
corresponding coeflicient 1s zero and 1s set to one if the
corresponding coeilicient 1s non-zero. The term “‘signifi-
cance map’’ as used herein 1s intended to refer to a matrix or
ordered set of significant-coeflicient tlags for a transform
unit, as will be understood from the description below, or a
defined unit of coethicients, which will be clear from the
context of the applications.

Although the examples described herein relate to signifi-
cance maps, the multi-level encoding and decoding pro-
cesses may be applied to other syntax elements 1n video
coding, e.g., coetlicient levels, filter coetlicients, and motion
vectors (alter binarization), which may exhibit group struc-
tures. For example, a local group of coellicient levels might
be all one with high probability. Similarly, a local group of
motion vectors might be all zero 1n one direction (zero
horizontal movement for example), or a set of filter coetli-
cients may be all zero in neighboring frequency bands.

It will also be understood, 1n light of the following
description, that the multi-level encoding and decoding
structure might be applied 1n certain situations, and those
situations may be determined from side information like
video content type (natural video or graphics as 1dentified in
sequence, picture, or slice headers). For example, two levels
may be used for natural video, and three levels may be used
for graphics (which 1s typically much more sparse). Yet
another possibility 1s to provide a flag 1n one of the sequence,
picture, or slice headers to indicate whether the structure has
one, two, or three levels, thereby allowing the encoder the
flexibility of choosing the most appropriate structure for the
present content.

Reference 1s now made to FIG. 1, which shows, 1n block
diagram form, an encoder 10 for encoding video. Reference
1s also made to FIG. 2, which shows a block diagram of a
decoder 50 for decoding video. It will be appreciated that the
encoder 10 and decoder 50 described herein may each be
implemented on an application-specific or general purpose
computing device, containing one or more processing ele-
ments and memory. The operations performed by the
encoder 10 or decoder 50, as the case may be, may be
implemented by way of application-specific integrated cir-
cuit, for example, or by way of stored program instructions
executable by a general purpose processor. The device may
include additional software, including, for example, an oper-
ating system for controlling basic device functions. The
range of devices and platforms within which the encoder 10
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or decoder 50 may be implemented will be appreciated by
those ordinarily skilled in the art having regard to the
tollowing description.

The encoder 10 receives a video source 12 and produces
an encoded bitstream 14. The decoder 50 receives the
encoded bitstream 14 and outputs a decoded video frame 16.
The encoder 10 and decoder 50 may be configured to operate
in conformance with a number of video compression stan-
dards. For example, the encoder 10 and decoder 50 may be
H.264/AVC compliant. In other embodiments, the encoder
10 and decoder 50 may conform to other video compression
standards, including evolutions of the H.264/AVC standard,
like HEVC.

The encoder 10 includes a spatial predictor 21, a coding
mode selector 20, transform processor 22, quantizer 24, and
entropy encoder 26. As will be appreciated by those ordi-
narily skilled in the art, the coding mode selector 20 deter-
mines the appropriate coding mode for the video source, for
example whether the subject frame/slice 1s of I, P, or B type,
and whether particular coding units (e.g. macroblocks, cod-
ing units, etc.) within the frame/slice are iter or intra coded.
The transform processor 22 performs a transform upon the
spatial domain data. In particular, the transform processor 22
applies a block-based transform to convert spatial domain
data to spectral components. For example, in many embodi-
ments a discrete cosine transform (DCT) 1s used. Other
transforms, such as a discrete sine transform or others may
be used i some instances. The block-based transform 1s
performed on a coding unit, macroblock or sub-block basis,
depending on the size of the macroblocks or coding units. In
the H.264 standard, for example, a typical 16x16 macrob-
lock contains sixteen 4x4 transform blocks and the DCT
process 1s performed on the 4x4 blocks. In some cases, the
transform blocks may be 8x8, meaning there are four
transform blocks per macroblock. In yet other cases, the
transiform blocks may be other sizes. In some cases, a 16x16
macroblock may include a non-overlapping combination of
4x4 and 8x8 transform blocks.

Applying the block-based transtorm to a block of pixel
data results 1n a set of transform domain coellicients. A “set”
in this context 1s an ordered set in which the coeflicients
have coellicient positions. In some 1instances the set of
transform domain coetlicients may be considered as a
“block™ or matrix of coeflicients. In the description herein
the phrases a “set of transform domain coeflicients” or a
“block of transform domain coellicients” are used inter-
changeably and are meant to indicate an ordered set of
transform domain coeflicients.

The set of transform domain coeflicients 1s quantized by
the quantizer 24. The quantized coethlicients and associated
information are then encoded by the entropy encoder 26.

The block or matrix of quantized transform domain
coellicients may be referred to herein as a “transform unit”.

Intra-coded frames/slices (1.e. type 1) are encoded without
reference to other frames/slices. In other words, they do not
employ temporal prediction. However intra-coded frames do
rely upon spatial prediction within the frame/slice, as illus-
trated 1n FIG. 1 by the spatial predictor 21. That 1s, when
encoding a particular block the data in the block may be
compared to the data of nearby pixels within blocks already
encoded for that frame/slice. Using a prediction algorithm,
the source data of the block may be converted to residual
data. The transtorm processor 22 then encodes the residual
data. H.264, for example, prescribes nine spatial prediction
modes for 4x4 transform blocks. In some embodiments,
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cach of the nine modes may be used to independently
process a block, and then rate-distortion optimization 1s used
to select the best mode.

The H.264 standard also prescribes the use of motion
prediction/compensation to take advantage of temporal pre-
diction. Accordingly, the encoder 10 has a feedback loop that
includes a de-quantizer 28, inverse transform processor 30,
and deblocking processor 32. The deblocking processor 32
may include a deblocking processor and a filtering proces-
sor. These elements mirror the decoding process 1mple-
mented by the decoder 50 to reproduce the frame/slice. A
frame store 34 1s used to store the reproduced frames. In this
manner, the motion prediction 1s based on what will be the
reconstructed frames at the decoder 50 and not on the
original frames, which may differ from the reconstructed
frames due to the lossy compression involved 1n encoding/
decoding. A motion predictor 36 uses the frames/slices
stored in the frame store 34 as source frames/slices for
comparison to a current frame for the purpose of 1dentitying
similar blocks. Accordingly, for macroblocks or coding units
to which motion prediction i1s applied, the “source data™
which the transform processor 22 encodes 1s the residual
data that comes out of the motion prediction process. For
example, 1t may include information regarding the reference
frame, a spatial displacement or “motion vector’, and
residual pixel data that represents the differences (if any)
between the reference block and the current block. Infor-
mation regarding the reference frame and/or motion vector
may not be processed by the transform processor 22 and/or
quantizer 24, but instead may be supplied to the entropy
encoder 26 for encoding as part of the bitstream along with
the quantized coeflicients.

Those ordinarily skilled 1in the art will appreciate the
details and possible variations for implementing video
encoders.

The decoder 30 includes an entropy decoder 52, dequan-
tizer 54, inverse transform processor 56, spatial compensator
57, and deblocking processor 60. The deblocking processor
60 may include deblocking and filtering processors. A frame
bufler 58 supplies reconstructed frames for use by a motion
compensator 62 in applying motion compensation. The
spatial compensator 57 represents the operation of recover-
ing the video data for a particular intra-coded block from a
previously decoded block.

The bitstream 14 1s received and decoded by the entropy
decoder 52 to recover the quantized coetlicients. Side infor-
mation may also be recovered during the entropy decoding
process, some of which may be supplied to the motion
compensation loop for use in motion compensation, 1f
applicable. For example, the entropy decoder 352 may
recover motion vectors and/or reference frame information
for inter-coded macroblocks.

The quantized coeflicients are then dequantized by the
dequantizer 54 to produce the transform domain coelflicients,
which are then subjected to an inverse transiorm by the
inverse transform processor 56 to recreate the “video data”.
It will be appreciated that, 1n some cases, such as with an
intra-coded macroblock or coding unit, the recreated “video
data” 1s the residual data for use i1n spatial compensation
relative to a previously decoded block within the frame. The
spatial compensator 57 generates the video data from the
residual data and pixel data from a previously decoded
block. In other cases, such as inter-coded macroblocks or
coding units, the recreated “video data” from the inverse
transform processor 56 1s the residual data for use 1n motion
compensation relative to a reference block from a different
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frame. Both spatial and motion compensation may be
referred to herein as “prediction operations™.

The motion compensator 62 locates a reference block
within the frame bufler 58 specified for a particular inter-
coded macroblock or coding unit. It does so based on the
reference frame information and motion vector specified for
the inter-coded macroblock or coding umit. It then supplies
the reference block pixel data for combination with the
residual data to arrive at the reconstructed video data for that
coding unit/macroblock.

A deblocking/filtering process may then be applied to a
reconstructed frame/slice, as indicated by the deblocking
processor 60. After deblocking/filtering, the frame/slice 1s
output as the decoded video frame 16, for example for
display on a display device. It will be understood that the
video playback machine, such as a computer, set-top box,
DVD or Blu-Ray player, and/or mobile handheld device,
may bufler decoded frames 1n a memory prior to display on
an output device.

It 1s expected that HEVC-compliant encoders and decod-
ers will have many of these same or similar features.
Significance Map Encoding

As noted above, the entropy coding of a block or set of
quantized transform domain coeflicients includes encoding
the significance map (e.g. a set of significant-coetlicient-
flags) for that block or set of quantized transform domain
coellicients. The significance map 1s a binary mapping of the
block indicating in which positions (other than the last
position) non-zero coellicients appear. The block may have
certain characteristics with which 1t 1s associated. For
example, 1t may be from an intra-coded slice or an inter-
coded slice. It may be a luma block or a chroma block. The
QP value for the slice may vary from slice to slice. All these
factors may have an impact on the best manner 1n which to
entropy encode the significance map.

The significance map 1s converted to a vector 1n accor-
dance with the scan order (which may be vertical, horizon-
tal, diagonal, z1g zag, or any other scan order prescribed by
the applicable coding standard). The scan 1s typically done
in “reverse” order, 1.e. starting with the last significant
coellicient and working back through the significant map 1n
reverse direction until the flag at [0,0] 1s reached. In the
present description, the term “scan order” 1s intended to
mean the order 1n which flags, coetlicients, or groups, as the
case may be, are processed and may include orders that are
referred to colloquially as “reverse scan order”.

Each significant-coeflicient flag 1s then entropy encoded
using the applicable context-adaptive coding scheme. For
example, 1n many applications a context-adaptive binary
arithmetic coding (CABAC) scheme may be used. Other
implementations may use other context-adaptive codecs
with binarization. Examples include binary arithmetic cod-
ing (BAC), vaniable-to-variable (V2V) coding, and variable-
to-fixed (V2F) length coding. With 4x4 and 8x8 maps, a
context 1s assigned for each bit position. When encoding the
bit (significant-coeflicient flag) in that bit position, the
assigned context and the context’s history to that point
determine the estimated probability of a least probable
symbol (LPS) (or 1n some implementations a most probable
symbol (MPS)).

In existing video coders, context assignment 1s predeter-
mined for both the encoder and decoder. For example, with
a 4x4 luma block, the current draft HEVC standard pre-
scribes that each bit position 1n the 4x4 significance map has
a unique context. Excluding the last position, that means 15
contexts are tracked for encoding of 4x4 luma significance
maps. For each bit position, the context assigned to that
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position determines the estimated probability associated
with an LPS 1n that position. The actual bit value 1s then
encoded using that estimated probability. Finally, the context
assigned to that position 1s updated based on the actual bit
value. At the decoder, the encoded data 1s decoded using the
same context model. A context for each bit position 1s
tracked and used to determine the estimated probabaility for
decoding data to recover bits for that position.

With 16x16 and 32x32 significance maps, the context for
a significant 1s (mostly) based upon neighboring significant-
coellicient flag values. Among the 13 contexts used for
16x16 and 32x32 significance maps, there are certain con-
texts dedicated to the bit position at [0,0] and to neighboring
bit positions, but most of the significant-coeflicient flags take
one of five contexts that depend on the cumulative values of
neighboring significant-coetlicient flags. In these instances,
the determination of the correct context for a significant-
coellicient flag depends on determining and summing the
values of the significant-coetlicient flags at neighboring
locations (typically five locations, but 1t could be more or
fewer 1n some instances). This involves multiple memory
accesses, which can be costly in memory bandwidth require-
ments. Moreover, 1n many 1nstances the 16x16 and 32x32
significance maps contain a large number of zeros. Accord-
ingly, there 1s a substantial cost mvolved 1n encoding and
transmitting large maps that have few coellicient values.

In accordance with one aspect of the present application,
the encoder and decoder use multi-level significance maps
for certain transform units. In the examples described below,
the multi-level significant maps are used for 16x16 and
32x32 s1zed transform units; however, it will be understood
that they may be used for 8x8 or 64x64 or other sized
transform units 1n some embodiments.

The significant-coefhicient tlags are grouped. Each sig-
nificant-coellicient flag falls into one of the groups. For
simplicity 1n many embodiments the groups are formed by
(conceptually) dividing or partitioning the transform unit
structure 1nto blocks. For example, a 16x16 map may be
divided imto 4x4 blocks each containing sixteen of the
coellicient positions. A 32x32 map may be divided into 8x8
blocks each containing sixty-four of the coellicient posi-
tions. The significant-coeflicient flags are thus grouped on
the basis that they fall into these defined blocks 1n the matrix
structure. In another example, both 16x16 and 32x32 maps
may be divided into 4x4 blocks each containing sixteen of
the coethicient positions.

FIG. 3 shows an example 16x16 transform unit 100 (the
matrix of quantized transform domain coethlicients). For
indexing purposes, the bit position within the transform unit
may be specified by [xC,yC], wheremn xC=0, 1, 2, .. .15 and
yC=0, 1, 2, . . . 15. Using ({or example) a diagonal scan
order, 1t will be noted that the last-significant coeflicient 1n
this example 1s at [12, 10], as indicated by reference numeral
112.

Reference 1s now also made to FIG. 4, which shows an
example significance map 102. The significance map 102
contains the significant-coeflicient tlags that are generated
from the example transform unit are shown 1n FIG. 4. It will
be noted that a significant-coeflicient flag appears in every
bit position 1n the scan order from [0,0] up to, but excluding,
the last-significant coeflicient at [12, 10]. The significant-
coellicient flag at each bit position for which there 1s a
non-zero coeflicient 1n the transtform unit 100 1s set to 1,
whereas each significant-coellicient flag at each bit position
at which there 1s a zero coetlicient 1s set to zero.

The significance map 102, 1.e. the set of significant-
coellicient flags, may be grouped based upon a uniform
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division of the transform unit structure into contiguous
blocks 1n one embodiment. The size of the transform unit
may determine the size of the blocks. In the case of a 16x16
transform unit, the blocks may be 4x4 1n some embodi-
ments. The groupings are illustrated 1n FIG. 4 by the lines
demarking the 4x4 blocks. A larger transform unit, such as
a 32x32 transform unit may have 1ts significant-coethicient
flags grouped into 4x4 blocks, 8x8 blocks, or other size
contiguous blocks. In one embodiment, 4x4 coethlicient
groups are used for transform umits of sizes 16x16, 4x16,
16x4, 8x32, 32x8, and 32x32.

Although the examples given herein use groups defined as
contiguous square blocks for simplicity, the present appli-
cation 1s not limited to square groups. Groups may be
formed as rectangular blocks 1n some embodiments. In yet
other embodiments, other shapes may be used. For example,
with a diagonal scan order, 1t may be advantageous to use
groups formed from diagonal slices of the transform unit, 1n
which case some of the groups may be somewhat trapezoi-
dal in shape. For example, rectangular groups may be used
with horizontal or vertical scan orders. In one example, with
an 8x8 transform unit, 2x8 coetlicient groups may be used
if a horizontal scan 1s employed, and 8x2 coeflicient groups
may be used 11 a vertical scan 1s employed. Other variations
will be understood by those skilled 1n the art.

A higher level significance map corresponding to the
matrix of groups may then be generated. The higher level
significance map 1s an ordered set of significant-coethicient-
group tlags. There 1s one significant-coeflicient-group flag
for each group containing at least one significant-coethicient
flag. The group containing the last-significant coethicient
need not be included 1n the higher level significance map
because 1t will already be known to contain at least one
non-zero coellicient, 1.e. the last-significant coeflicient. The
significance map may be referred to as the level O, or LO,
map. The higher level significance map (i.e. containing the
significant-coetlicient-group flags) may be referred to as the
level 1, or L1, map.

FI1G. 5 1llustrates the L1 higher level significance map 104
corresponding to the example significance map 102 shown
in FIG. 4. It will be noted that the L1 map 104 contains a
significant-coeflicient-group tlag for each group that con-
tains at least one significant-coetlicient flag. If any of the
significant-coeflicient flags within the group are non-zero,
then the significant-coeflicient-group flag 1s set to one.
Otherwise, 1t 1s set to zero.

Indexing of the groups may be specified by [xCG, yCG],
wherein 1n this example xCG=0, 1, 2, 3 and yCG=0, 1, 2, 3.
The group containing the last- Slgmﬁcant coellicient 1s at [3,
2]. The group at [3,3] does not contain any significant-
coellicient flags, so it 1s not included 1n the L1 map.

The significant-coeflicient-group flags may be converted
to vector form 1n a scan order, in some embodiments. The
scan order may be the same as the scan order specified for
use with the transform unit generally. In one embodiment,
the significant-coetlicient-group flag may use a predefined
scan order than may be different from the selected scan order
for the transform unit. In some cases, the L1 map may
exclude certain groups like the [0, O] group or the last-
significant-coetlicient group, which will have a presumed
flag value, as will be described further below.

It will be appreciated, that the .1 map need not be dertved
directly from the LO map, but rather could be derived from
scanning the coellicients 1n the transform unit 1n the scan
order.

It will also be appreciated that further higher level maps
may be used 1n some embodiments. For example, 1f the
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transform unit 1s a 64x64 transform unit, the L1 map may be
based on dividing the transform umt into 256 4x4 groups.
Thus the L1 map would be a 16x16 map containing L1

group flags. A further L2 map may be generated by grouping
the L1 flags into a further set of 4x4 blocks (each of which

would correspond to a group of 16x16 coellicients from the
transform unit). Additional levels of abstraction and/or
granularity may be employed 1n other embodiments.

Reference 1s now made to FIG. 6, which shows, 1n
flowchart form, an example process 200 for encoding sig-
nificant-coeflicient flags. The process 200 begins in opera-
tion 202 with the encoder determining the significant-
coellicient flags and the sigmificant-coetlicient-group flags.
In one embodiment, the encoder scans the transform block
in the scan order to determine the last-significant coetlicient
and the set of significant-coetlicient tlags. The significant-
coellicient-group flags may be determined during the same
scan (although a certain amount of bullering of values may
be used 1n practical implementations as the scan order may
involve crossing through multiple blocks; 1n some cases, the
determination of the significant-coeflicient-group flag 1is
made when the encoder determines 1t has scanned the last
coellicient for that group, e.g. the exit coeflicient). In some
implementations, the encoder may perform a second scan of
either the LO significance map or of the transform unit to
determine the significant-coetlicient-group tlags.

In operation 204, for each significant-coetlicient-group
flag, the encoder determines the context to use and then
entropy encodes that significant-coethicient-group flag based
on the determined context. The significant-coeflicient-group
flags may be processed in a prescribed order. In some
embodiments, the prescribed order i1s the same as the scan
order for the transform unit. The number of contexts and
their determination may be structured 1n any suitable man-
ner. An example set of contexts and method for determiming
contexts for significant-coeflicient-group flags 1s described
later below.

Having encoded the set of significant-coeflicient-group
flags, the encoder then encodes the significant-coetlicient
flags. In operation 206, the encoder (working 1n scan order)
determines the context of and encodes each significant-
coellicient flag 1if that significant-coetlicient flag falls 1n a
group for which the significant-coetlicient-group tlag 1s set
to 1. If the corresponding significant-coethicient-group flag
1s set to zero, then any of the significant-coeflicient flags 1n
that group are not encoded, 1.e. they are skipped during the
entropy encoding process.

Accordingly, after the process 200 the encoder has pro-
duced a bitstream of encoded data which contains the
encoded significant-coeflicient-group flags and the encoded
significant-coetflicient tlags that fall into a group that has at
least one non-zero significant-coethicient flag. The bitstream
does not include any significant-coeflicient flags from any
group that does not have at least one non-zero significant-
coellicient tlag.

At the decoder, the significant-coetlicient flags need to be
reconstructed from the encoded data of the bitstream. Ret-
erence 1s now made to FIG. 7, which shows, 1n flowchart
form, an example process 300 for reconstructing significant-
coellicient flags from a bitstream of encoded data. The
bitstream may be received through a network connection,
1.e. streamed, or read from a computer-readable medium,
such as a memory (e.g. flash memory, etc.) or a storage disk
(e.g. DVD, BluRay™, CD-ROM, etc.). The process 302 1s
applied 1n the process of reconstructing a transform unit at
a decoder. Not shown 1s the decoding of header information,
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both for the sequence and for each slice or picture (depend-
ing on the syntax of the video coding standard 1n use).

In operation 302, the position of the last-significant coet-
ficient 1s decoded from the bitstream. This information may
be represented in any applicable syntax. Some standards
provide that the last-significant coeflicient 1s to be specified
using matrix notation, €.g. X- and y-based location within the
transform unit; some standards provide that the last-signifi-
cant coetlicient 1s to be signaled using a vector of 0’s with
a 1 at the last-significant coeflicient position, wherein the
vector 1s mapped to the transform unit by the scan order. Any
suitable syntax for specitying the last-significant coeflicient
may be used in operation 302.

In operation 304, the significant-coellicient group tlags
are decoded from the bitstream. The significant-coetlicient
group flags may have been entropy encoded using whatever
applicable binarization scheme 1s specified by the standard
or specified in the header information. For example, context-
adaptive binary arithmetic coding may be used in some
instances. The significant-coeflicient group flags are
decoded by determining the context for each flag position
(bit position 1n the higher level significance map—e.g. the
L1 significance map), and then decoding the flag value from
the bitstream and updating the context based on the flag
value. The size of the set of significant-coetlicient-group
flags 1s known because the scan order 1s known and the
last-81gn1ﬁcant coellicient was i1dentified 1n operation 302;
thus, the size of the L1 significance map 1s determined. In
the case of non-evenly partitioned groups, a suitable signal-
ing of the group sizes and positions may be provided in the
syntax.

As noted above, each significant-coeflicient-group flag
corresponds to a respective one of the contiguous groups
defined for the transform unit. One or more of the signifi-
cant-coellicient flags fall into each of these groups having a
significant-coetl

icient-group tlag. Accordingly, each signifi-
cant-coellicient-group flag corresponds to a respective group
of the sigmificant-coetlicient flags.

After decoding the set of sigmificant-coeflicient-group
flags, then the remaining operations for reconstructing the
significance map, 1.e. the set of significant-coetlicient tlags,
1s performed 1n the prescribed scan order. The processing
begins from the last- 51gn1ﬁcant coeflicient (but excluding
that last-significant coeflicient position, since 1t 1s already
known to contain a non-zero coeflicient). In operation 305,
for each significant-coeflicient flag the decoder determines
whether 1ts corresponding significant-coell

icient-group flag
1s zero. I the corresponding significant-coeflicient-group
flag 1s non-zero, then a significant-coeflicient tlag 1s decoded
from the bitstream as indicated by operation 306. That 1s, 1f
the associated or corresponding significant-coetlicient-group
flag indicates that the group may contain at least one
non-zero coeil

icient, then the decoder decodes a significant-
coellicient flag from the bitstream for the current position.

If the associated or corresponding significant-coetlicient-
group flag 1s a zero, 1.e. 1t indicates that there are no non-zero
coellicients 1n the group, then the decoder sets or recon-
structs the current significant-coetl

icient flag as a zero, as
indicated by operation 308. It does not decode 1t from the
bitstream.

At operation 310, the decoder determines whether 1t has
reach the end of the scan order, 1.e. the coeflicient at the
upper left comer of the transform unit, e.g. [0,0]. If so, then
the process 300 ends; i1 not, then the decoder moves to the
next position in the scan order 1n operation 312 and repeats
operations 306 and 308 to reconstruct the significant-coet-
ficient tlag for that next position.
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It will be appreciated that, 1n this embodiment, the scan
order does not result 1n reconstructing all significant-coet-
ficient flags of a group before moving onto the next group.
Rather, the scan order (depending on the scan order and the
group geometry) scans across group boundaries such that the
decoder reconstructs a few flags from one group, a few from
an adjacent group, etc., working its way back to the [0,0]
position in the scan order. A scanning process will be
described further below that avoids this 1ssue.

There may be special cases that are accounted for in the
encoding and decoding processes to save bits. For example,
as noted above, the group containing the last-significant
coellicient will always have a significant-coellicient-group
flag that indicates a non-zero coeflicient, so that significant-
coellicient-group flag does not need to be encoded and
transmitted to the decoder. The encoder always encodes the
significant-coetlicient tlags for that group, and the decoder 1s
configured to always decode the significant-coeflicient flags
for that group.

Another special case that may be included in some
embodiments 1s to always encode and decode the first group.
This group contains the DC coetlicient at [0, O] in the
transform unit. The probability of this group containing no
non-zero coetl v low. Accordingly, instead

icients 1s extreme.
of transmaitting a significant-coetlicient-group flag for the [0,
0] group, the encoder may be configured to always encode
the significant-coetlicient flags of that group and the decoder
may be configured to always decode the significant-coetli-
cient flags of that group.

Yet another special case that may be implemented 1n some
embodiments 1s also based on probability. It has been noted
that when the group to the right and the group below a
particular group both contain non-zero coethicients, then the
probability that the particular group contains a non-zero
coellicient 1s very high. Therefore, 1n some embodiments,
the encoder and decoder may presume that any group that
has a right neighboring group and lower neighboring group
that both contain non-zero coeflicients, then that group has
non-zero coethicient. Thus, with respect to a certain group, 11
the significant-coetlicient-group flag for the group to the
right 1s set to 1, and 11 the significant-coetlicient-group flag
for the group below is set to 1, then the encoder does not
encode a significant-coetlicient-group flag for the certain
group and always encoder the signiﬁcant coeflicient flags
for the certain group. The decoder reco gnizes that the right
and lower neighbors have significant-coethicient-group flags
indicating non-zero coetlicients, so 1t will automatically
assume that the certain group has non-zero coeflicients and
it will decode the significant-coeih

icient flags.

Reference 1s now made to FIG. 8, which shows operation
304 from FIG. 7 with additional detail to retlect an example
embodiment of the handling of the special cases described
above. The operation 304 includes an operation 304-1 1n
which the significant-coetlicient-group flag for the group
containing the last-significant coellicient 1s set to 1. The
location of the last-significant coellicient 1s decoded from
the bitstream 1n an earlier operation (not shown).

The decoder then moves through the groups in the scan
order. As noted 1n operation 304-2, the decoder moves from
to the next group 1n the scan order from the group containing
the last-significant coetlicient. For this group, the decoder
assesses whether the significant-coeflicient-group flag for
the group to the right and the significant-coetlicient-group
flag for the group below the current group are equal to 1.
Initially, the decoder will not have flags to the right and
below because 1t has just started, but later 1n the scan order
(whether horizontal, vertical, or diagonal) the decoder may
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sometimes have reconstructed significant-coetlicient-group
flags 1n these positions relative to the current group (for
groups located at the bottom edge of the transform unit, the
decoder may not ever have a tlag for a group below). If those
two adjacent groups are set to 1, then the probability of the
current group also being set to 1 1s suthiciently high that both
the encoder and decoder presume that 1t i1s set to one.

Accordingly, in operation 304-6, the decoder sets the sig-
nificant-coetlicient-group flag to 1 if the special case con-
dition 1s met. Otherwise, the decoder moves on to operation
304-4. In another embodiment, this special case may modi-
fied to be based on the significant-coetlicient-group flags of
other adjacent groups, or other groups altogether.

In operation 304-4, the decoder decodes the significant-
coellicient-group tflag for the current group from the bit-
stream. The decoding includes determining the context and
then decoding in accordance with the determined context.
The decoding may be based on binary arithmetic coding
(BAC), or other binarized coding/decoding processes.

In operation 304-5, the decoder determines whether this 1s
the next-to-last group in the scan order. If not, then the
decoding 1s not yet finished, so the decoder cycles back to
operation 304-2 to advance to the next group in the scan
order. I1 1t 1s the next-to-last group in the scan order, then the
decoder moves on to operation 304-7 where the decoder sets
the significant-coethcient-group flag for the last group, 1.c.
group [0,0], to 1. This 1s based on the special case 1n which

that particular group 1s always presumed by the encoder and
decoder to have at least one non-zero coeflicient, so the
significant-coetlicient-group tlag 1s always preset to 1 so that
the significant-coethicient flags for that group are always
encoded and decoded. After this operation, the decoder goes
on to operation 306 or 308 (FIG. 7).

It will be appreciated that the above example process
illustrated 1 FIGS. 7 and 8 the decoding of the L1 signifi-
cance map (the significant-coeflicient-group flags) and the
decoding of the LO significance map (the significant-coet-
ficient flags) as a two-stage process 1n which the L1 signifi-
cance map 1s fully decoded and the LO significance map 1s
then decoded. In some embodiments this may be the case;
however, in some other embodiments, the decoding pro-
cesses may be partly intertwined. That 1s, the decoding of the
L.O map may begin before the L1 map 1s fully decoded. It
will be appreciated that 1n some embodiments the decoding
of the LO significance map may begin as soon as the first
significant-coetlicient-group flag has been reconstructed.

In some embodiment, multi-level significance map coding
may be turned on and ofl depending on, for example, picture
type. For instance, multi-level significance map coding may
be enabled for I- and P-pictures, but disabled for B-pictures.
Multi-Level Scan Order

As outlined above, when coeflicient groups are formed as
illustrated 1n the above examples, 1.e. 1n contiguous blocks,
the scan order (vertical, horizontal or diagonal) will result in
crossing the boundaries of the groups when scanning the
significant-coeflicient flags. This might create difliculties 1n
encoding and decoding from a hardware implementation
perspective because significant buflering of data may be
needed to keep track of significant-coethicient flags of par-
tially-decoded groups 1n order to implement a one-pass scan.
Otherwise, 1t may be necessary to scan twice (or more): one
scan order pass for tlags of the L1 map and one scan order
pass for the LO map. One option for implementing a one-
pass scanning process and avoiding some of the memory and
computational complexity issues 1s to use a group-based or

multi-level scanning order.
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Retferring now to FIG. 14, an example 16x16 transform
umt 600 1s illustrated. In the context of significant map
encoding, the example 16x16 transform unit 600 includes 16
coellicient groups, where each coellicient group 1s a 4x4
block of significant-coeflicient flags. A diagonal scan order
1s 1llustrated in FIG. 14. The scan order begins with the
significant-coetlicient flag at [15,15] and the diagonal scan 1s
from upper right to lower left while traversing the transform
unit 600 from the lower right [ 15, 13] to the upper lett [0, O].
As discussed above, the significance map encoding process
uses a scan order starting from the last significant coetlicient.

It will be noted that the scanning order cuts across
coellicient group boundaries. For example, consider the
significant-coeflicient flags at [10, 12], [11, 11], and [12, 10],
as indicated by reference numerals 610, 612, and 614,
respectively. In the scan order, the encoder and decoder first
encounter the significant-coeflicient tlag 614 at position [12,
10]. The scan order then encounters the significant-coetl-
cient flag 612 at position [11, 11], which 1s the first signifi-
cant-coellicient tlag 1n that coeflicient group. Then the scan
order then crosses ito another coeflicient group when 1t
reaches significant-coetlicient flag 610 at position [10, 12].

At the encoder side, 1t will be appreciated that this
frequent crossing ol coeflicient group boundaries can result
in significant butfering during the scannmg process to track
the values of significant-coetlicient flags 1n various coetli-
cient groups, and that a determination as to the significant-
coellicient group tlag for that coeflicient group may need to
wait until the last (upper left) significant-coellicient flag in
the group has been reached in the scan order. In order to
process the whole transform unit 600 1n a one-pass scan, the
encoder may require some complex bullering to avoid
excessive memory access operations. The frequent crossing
of the coeflicient group boundaries presents a particular
complication for rate-distortion-optimized quantization
(RDOQ), 1.e. soft-decision quantization (SDQ)). Tracking the
rate costs associated with encoding when making RDOQ)/
SDQ determinations become significantly more complex. At
the decoder side, the decoder too may require buflering to
track the previously-decoded significant-coeflicient-group
flags for the various groups as the decoder traverses them 1n
scan order re-constructing the significant-coeflicient tlags.
This results 1n greater memory/bufler requirements at the
decoder.

Accordingly, in one embodiment the encoding and decod-
ing processes may employ a multi-level scanning order.
Reference 1s now made to FIG. 15, which shows the
transform unit 600 of FIG. 14 with a multi-level diagonal
scan order illustrated. Within each coeflicient group, a
diagonal scan order 1s applied at the group-level, rather than
across the whole transform umt 600. The coeflicient groups
themselves are processed 1n a scan order, which in this
example implementation 1s also a diagonal scan order.

It will be appreciated that diagonal 1s one option, and 1n
other embodiments horizontal, vertical, zig-zag, or other
scan orders may be applied, within the coellicient groups
and/or at the group-level for ordering the processing of the
coellicient groups.

Using the group-based or multi-level scanning order, each
group of significant-coellicient flags 1s encoded and decoded
in order. That 1s, the encoding/decoding of the next group of
significant-coetlicient flags only begins once the encoding/
decoding of the present group has been completed. For
example, using a diagonal group scan order, the entire group
ol significant-coetlicient flags that contains the significant-
coellicient flag 614 at position [12, 10] 1s decoded before the
decoder starts decoding the group of significant-coethicient
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flags that contains the significant-coeflicient flag 610 at
position [10, 12]. Similarly, both those groups are com-
pletely decoded betfore the decoder starts decoding the group
containing the significant-coetlicient flag 612 at position [11,
11]. This permits the encoder/decoder to more easily process
the multi-level significance map 1n one pass since all sig-
nificant-coeflicient flags of a coeflicient group are processed
sequentially in scan order within the group.
Advantageously, the multi-level or group-based scanning
order further facilitates the interleaving of significant-coel-
ficient-group tlags within the bitstream. As each coetlicient
group 1s processed in scan order, the encoder may write the

significant-coedl

icient-group flag to the bitstream and may
then 1nsert the significant-coetlicient flags for that coetlicient
group if the significant-coetlicient-group flag 1s non-zero. At
the decoder, the decoder decodes the significant-coetlicient-
group tlag from the bitstream and, 11 non-zero, then decodes
the significant-coethicient flags for that group 1n scan order
within the group. If the significant-coethicient-group flag 1s
zero, then 1t sets all significant-coeflicient flags for that
group to zero and reads decodes the next significant-coet-
ficient flag from the bitstream. In this manner, 1t reconstructs
the significance map group-by-group in group scan order.

It will be understood that the scan order used within the
group does not necessarily need to correspond to the group
scan order used for progressing from group to group. For
example, within the groups a diagonal scan order may be
used while the processing of the groups 1s done in a
horizontal group scan order.

It will also be understood that the multi-level scan order
described herein matches with the coeflicient grouping used
for the multi-level significance map; however, 1n the more
general case the multi-level or group-based scan order may
be organized mto blocks that do not necessarily correspond
to the groups of significant-coetlicient flags. For example,
with reference to FIGS. 14 and 135, instead of applymg a
diagonal scan order to each 4x4 coellicient group, 1n another
example implementation the grouping or blocking for the
purpose of scan order may use 8x8 blocks. In other words,
in this example, the diagonal scan order would be applied to
four 8x8 blocks. Note that if there 1s a mismatch between the
grouping used for the multi-level scan order and the coet-
ficient groups used 1n the multi-level significance map, then
the encoder/decoder will not necessarily process each group
completely before moving to the next group.

Reference 1s now made to FIG. 16, which shows an
example method 700 for decoding a multi-level significance
map using a multi-level scan order. The method 700 1s an
example process lor reconstructing significant-coethicient
flags from a bitstream of encoded data. The bitstream of
encoded data 1includes encoded significant-coeflicient-group
flags. Each significant-coetlicient-group flag corresponds to
a respective group ol significant-coeflicient flags. Fach
non-zero significant-coetlicient- -group flag 1n the bitstream 1s
followed by the significant-coeflicient tlags of 1ts respective
group in a scan order.

The method 700 begins with decoding of the last-signifi-
cant coellicient position from the bitstream 1n operation 702.
As mentioned previously, the last-significant coeflicient
position may be signaled in any one of a number of ways.
Once the last-significant coell

icient position 15 known, then
in operation 704 the decoder decodes the significant-coet-
ficient flags from the bitstream for the significant-coetl-
cients within the coelflicient group containing the last-sig-
nificant coeil

icient. The decoding in operation 704 1is
performed 1n a scan order (which may be diagonal, vertical,
horizontal, etc.) within the coeflicient group, starting with
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the significant-coellicient position after the position of the
last-significant position and working back towards the upper
lett coeflicient in the scan order.

In operation 706, with reference to a group scan order, the
current coefhicient group (indexed as CG) 1s set to be the
group aiter the group containing the last-significant coetl-
cient. The group scan order i1s the order in which the
coellicient groups are decoded, starting with the group after
the group containing the last-significant coethcient and
working back towards the upper left group 1n the transform
unmit (the group contamning the DC coeflicient at position
[0,0]) 1n the group scan order. The group scan order may be
vertical, horizontal, diagonal, etc.

In operation 708, the decoder reconstructs the significant-
coellicient-group tlag for the current coeflicient group (in-
dexed as CG). This reconstruction includes decoding the
significant-coetlicient-group flag from the bitstream, unless
a special case applies. For example, one exemplary special
case 1s when the significant-coeflicient-group flags for the

group to the right and the group below the current coeth

icient
group are both non-zero. In this situation, the significant-
coellicient-group tlag may be presumed to be non-zero by
default.

As indicated by operation 710, 1f the reconstructed sig-
nificant-coetlicient-group tlag 1s zero, then 1n operation 712
the significant-coeflicient tlags of the corresponding coetli-
cient group are all set to zero. If the reconstructed signifi-
cant-coeflicient group flag 1s non-zero, then 1n operation 714
the significant-coeflicient tlags of the corresponding coetli-
cient group are decoded from the bitstream in scan order
within that group.

Once all the significant-coetlicient flags of the current
coellicient group are reconstructed 1n either operation 712 or
714, then 1n operation 716, the CG index 1s decremented to
move to the next coeflicient group in the group scan order.
If, 1n operation 718, the next coeflicient group 1n the group
scan order 1s CG>0, 1.e. 1t 1s not the upper left group
containing the DC coetlicient at [0, O], then the process
returns to operation 708 to fully reconstruct the significant-
coellicient of the next coeflicient group. However, 11 CG=0,
then the method 700 proceeds to operation 720, where the
significant-coeflicient flags of the upper left coeflicient
group are decoded from the bitstream. These significant-
coellicient flags are always encoded 1n the bitstream 1n this
example embodiment, so the decoder presumes that the
significant-coetlicient-group flag for this coeflicient group 1s
cllectively always non-zero.

Context-Modeling

To improve coding efliciency, the BAC engine (or other
entropy coding/decoding engine) uses contexts. The present
application proposes using four new contexts for encoding
the significant-coethicient-group tlags. Two contexts are for
luma encoding/decoding and two are for chroma encoding/
decoding.

Determining which of the two contexts applies to a given
significant-coeflicient-group flag may occur as follows. If
the significant-coeflicient-group flag for the adjacent group
to the right of the current group 1s zero, and the significant-
coellicient-group flag for the adjacent group below the
current group 1s zero, then the context for encoding the
significant-coetlicient-group flag of the current group 1s O.
Otherwise, the context 1s 1. If the flags for those two
adjacent groups are not available then the unavailable flags
are presumed to=0 for the purpose of context determination.

Note that 11 a different scan order direction (such as from
upper left towards lower right) 1s used, the context model

can be changed to use the significant-coethicient-group flag




US 10,681,362 B2

19

for the adjacent group to the left of the current group and the
significant-coeflicient-group flag for the adjacent group
above the current group to determine the context.

The context determination process may also include spe-
cial cases. For example, the upper left group may always be
assigned context 1.

There are other possible context models and methods for
determining context that may be used. Some examples are
given below.

To define notation, let L[1] denote the significance flag of
coellicient group 1 at level L and let N denote the number of
the coeflicient groups at level L. In general, for a glven [Land
coellicient group 1, we use a function c(*) of 1 and all
available L[j] to determine a context C_1 for LJ[1]. The

context 1s thus given by:

L[], ... LIN-1])

where 1!=1. Note that 1n order to use L[j] to determine a
context for L[1], L[j] itself must be available. Therefore, the
selected scan order must guarantee that any L[j] used 1n c(*)
has been determined previously.

In an embodiment similar to the above-described context
determination mode, the context may be determined by:

C i=c(i,L[0]

C_1=c(i, LO]0], LO[1], ..., LO[15])

= sumybj = LO| j]}

where 1=0, 1, . . ., N and j!=1, bj=1 11 coellicient group j
1s the rnight or lower neighbor of coeflicient group 1 and bj=0
otherwise. This particular embodiment has 3 contexts (6, 1f
a distinct 3 contexts are used for chroma).

Another embodiment of ¢(*) 1s given by:

C_i=c(, L[0], I]1], ..., L[N — 1)
= sum{bj = L[ j]}
where 1=0, 1, . . ., N and j!=1, by 1s non-zero 1 coeflicient

group ] 1s any neighboring coeflicient group of 1 that has
already been determined and bj=0 otherwise. In this embodi-
ment, the weighting coeflicients bj may not necessarily be
constants.

Another embodiment of c(*) 1gneres the sigmificant-
coellicient-group flag’s of other coeflicient groups at L and
determines the context based solely on the position 1 of the
current coetlicient group. This may be expressed as:

C_1=c(i,

L[0], L[1], ..., L[N = 1])

=1

Other context models and processes for determining con-
text may be used with multi-level significance maps.

Below 1s given an example syntax for the two-context
embodiment discussed above. In this example, consider
inputs to be the current coeflicient group scan position (xCG,
y(CG(), and the previously decoded bins of the syntax element
significant_coeflgroup_flag. The output of this process 1s
ctxIldxInc. In this example, the transform unit 1s presumed to
have been divided 1nto sixteen contiguous blocks to form the
coellicient groups. For example, a 16x16 TU 1s divided into

4x4 blocks and a 32x32 TU 1s divided into 8x8 blocks. In
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another example, the transform units may be divided into
4x4 blocks or other sized blocks.

The variable ctxldxInc depends on the current position
(xCG, yCG), and previously decoded bins of the syntax
clement significant_coefigroup_flag. For the derivation of
ctxIdxInc, the following applies.

If xCG 15 equal to 3, and yCG 1s equal to 3, ctxIdxInc 1s
set equal to a default context value. In this example embodi-
ment, the default value 1s ctxldxInc=44. In other embodi-
ments, 1t may be another value, including 0.

If xCG 1s less than 3, and yCG 1s equal to 3, ctxIdxInc 1s
set as ctxldxInc=44+significant_subblock flag|xCG+1]
lyCG]

If xCG 1s equal to 3, and yCG 1s less than 3, ctxIdxInc 1s
set as ctxIdxInc=44+significant_subblock_flag[xCG][yCG+

1]
If xSB 1s less than 3, and ySB 1s less than 3, ctxIdxInc 1s

set as ctxldxInc=44+max{significant_subblock_flag|xCG+
1][yCG], significant_subblock_flag[xCG][yCG+1]}

The value 44 1n the above expressions 1s one example of
a default index value. Other values may be used in other
embodiments, including O.

Rate-Distortion Optimized Quantization

Some encoding processes employ rate-distortion opti-
mized quantization (RDOQ)), or what 1s sometimes referred
to as “soft-quantization”. RDOQ) 1s a process of determining
optimal quantized transform domain coeflicients based on a
rate-distortion optimization expression. Accordingly, the
quantized transform domain coeflicients that result from
RDOQ may or may not be the same as the quantized
transform domain coeflicients that were arrived at through
the normal transform and quantization process. In some
cases, the coeflicient values may have been modified by the
RDOQ process because the resulting distortion was deter-
mined to have been less costly than the consequent savings
in transmission cost.

The RDOQ process normally evaluates four costs in
determining the rate component. The four rate costs include
the last position rate, the significance rate (LO rate), the
coellicient rate, and the coded block parameter (CBP) rate.
To mmplement multi-level significance maps, it may be
advantageous to modity RDOQ to also include the higher-
level significance rate (e.g. L1 rate) in the RDOQ calcula-
tion.

In one embodiment the RDOQ process may be modified
to perform a two-stage RDOQ with regard to significance
maps. First, the RDOQ process 1s applied to determine the
best last position and coeflicient values and, thus, the L1
significant-coetlicient tlags. In a second stage, with the last
position fixed, the RDOQ process may then be applied again
with regard to the L1 rate to determine whether there 1s a
rate-distortion (RD) cost justification for zeroing any coet-
ficients.

FIG. 9 shows, in flowchart form, an example RDOQ
process 400 for encoding of multi-level significance maps.
The process 400 uses RDOQ) to obtain the optimal quantized
transform coellicients and to determine the position of the
last significant coeflicient, 1.e. a LO RDOQ). The process 400
then fixes the last position and adjusts the current RD cost
to account for the eflect of the additional levels of signifi-
cance maps. Then, it uses a greedy approach to further
optimize the transform coeflicients.

Operation 402 reflects the use of RDOQ to obtain optimal
quantized transform domain coetlicients, which provides a
last-significant coetlicient position. Operation 402 results 1n
a certain RD cost based on the rates for transmitting the last
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position, significance map corresponding to the optimal
coeflicients, the coethicient values, and CBP.

In operation 404, the last signmificant position 1s fixed. That
1s the last group will contain a non-zero coellicient, 1.e. the
last sigmificant-coeflicient-group flag 1s fixed at 1. The
encoder then greedily determines whether costs savings are
found by zeroing coellicients in other groups. The process
400 may be pertormed 1n the scan order 1n some embodi-
ments, although 1t could be processed 1n another order.

In operation 406, starting with the next-to-last group as
the current group, the encoder determines whether the
current group has a significant-coetlicient-group flag=1. If
not, then the group contains only zeros already and the
encoder skips to the next group. If the significant-coetl-
cient-group flag=1, then the encoder calculates an RD cost
that would result 11 all coeflicients 1n the current group were
zeros. In operation 408, the encoder assesses whether the
RD cost newly calculated is better than (e.g. lesser than) the
current RD cost. If so, then 1n operation 410 all coeflicients
in the current group are zeroed, and the current RD cost 1s
updated to retlect the change. In operation 412, the encoder
assesses whether 1t 1s done with the L1 RDOQ), e.g. whether
it has reached the group just before the [0, O] group (the [0,
0] group does not get zeroed 11 the encoder and decoder are
configured to presume there 1s at least one non-zero coet-
ficient 1n that group, as described 1n the special cases
outlined above). If there are further groups to assess, then the
process 400 continues at operation 414, where the encoder
moves to the next group (using scan order 1n some embodi-
ments).

The RDOQ process will now be 1llustrated by way of an
example. References will again be made to the example

given above in connection with FIGS. 3, 4 and 5. Prior to L1
RDOQ, but after LO RDOQ, the optimal quantized trans-

form domain coeflicients are shown 1n FIG. 3. The corre-
sponding L.O significance map 1s shown 1n FIG. 4, and the L1
significance map 1s shown i FIG. 5.

The L1 RDOQ process may result, for example, in an
optimized LO significance map 300 shown m FIG. 10, and
the associated or corresponding L1 significance map 502
shown 1n FIG. 11.

It will be noted that the significant-coetlicient tlags in the
last-significant group, 1.e. the [3, 2] group, are unchanged.
However, the [3, 0] group, the [0, 3] group, and the [1, 3]
group have all been zeroed. As a result, the corresponding
significant-coetlicient-group flags for these three groups
have been changed to zeros as well, as indicated 1n FIG. 11.
The result 1s that the encoder will not need to encode these
three groups. The distortion that results from zeroing the few
coellicients that were found 1n those groups 1s outweighed
by the cost savings 1n reducing the number of encoded bits,
as determined by the RDOQ assessment.

In one possible embodiment, the RDOQ process can be
extended to determine the optimal coellicient group size for
the current TU. In this embodiment, the process 400 1s
repeated for multiple rounds, with each round assuming a
different coeflicient group size and with operation 410
modified so that transform coetlicients are not actually set to
0. Essentially, 1n each round, this modified RDOQ process
calculates the RD cost for a particular coeflicient group size.
After all rounds have completed, the RDOQ selects the
coellicient group size that yields the least RD cost and
finally, sets any transform coeflicients to 0 as required. The
encoder encodes the value of the optimal coeflicient group
s1ze 1nto the bitstream so that 1t can be obtained and used by
the decoder.
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The coellicient group sizes that are tested may be based
upon the transform unit size. For example, a 32x32 trans-
form unit may test group sizes 8x8, 4x4 and 2x2. The groups
to be tested may be selectable, and the encoder may indicate
(for example 1n the sequence header) what group sizes will
be tests for each transform unit size. Suppose, for example,
that the encoder and decoder have agreed that for 16x16
TUs, the modified RDOQ will test two different coetlicient
group sizes: 2x2 and 4x4, denoted by 1 and 0, respectively.
If the modified RDOQ determines that 2x2 1s optimal, the
encoder encodes a bin 1 into the bitstream before the
significant-coeflicient-group flags. The decoder decodes this
bin before the significant-coeflicient-group tlags and knows
that the coetlicient group size for the current TU 1s 2x2.

In another embodiment the RDOQ process takes advan-
tage of the multi-level scan: L1/LO RDOQ 1s performed in
a group by group manner followed by determining the last
position. Specifically, an exemplary RDOQ process for a
16x16 TU, 4x4 coellicient groups, and a multi-level scan
over 4x4 groups, 1s as follows.

Step 1: Set nCG=15 (start from the last coetlicient group).

Step 2: Do LO RDOQ for each coeilicient 1n the coetli-
cient group at group position nCG following the scan order
within the group as specified by multi-level scan.

Step 3: If the resulting coeflicient group aiter Step 2 has
non-zero coetlicients, nCG 1s greater than 0, and either the
right neighbor or the below neighbor has its significant
coellicient group flag set to zero, do L1 RDOQ for the
coellicient group: 1) calculate the RD cost setting the L1 flag
to zero for the present coellicient group; 2) 1f the cost 1s
smaller than the RD cost resulting from Step 2, set all
coellicients 1n the coellicient group to zero, and the signifi-
cant coellicient group flag of the present group to 0.

Step 4: Decrease nCG by 1.

Step 5: Repeate Steps 1-4 until nCG 1s equal to O.

Step 6: Determine the last position minimizing the RD
COst.

FIG. 17 illustrates this example i flowchart form show-
ing example process 450 for RDOQ encoding of a multi-
level significance map with a multi-level scan order. The
process 450 includes a first operation 452 of setting the
number ol coellicient groups nCG based on the group
containing the last significant coeflicient. In operation 454,
a LLO RDOQ process 1s performed on the coeflicients within
the current coeflicient group; that 1s, rate-distortion optimi-
zation 1s used to determined optimal coeflicient values for
cach coellicient 1n the current group. In operation 456, 1f
there are no non-zero coellicients, then the process 450 skips
to operation 464 to move to the next coellicient group 1n the
scan order and cycle back to operation 454 to perform LO
RDOQ on that next coeflicient group. Note that the process
450 also skips to operation 464 if the lower and right
neighbor groups have sigmificant-coetlicient-tflags that are
both non-zero.

In operation 456, 1f there are non-zero coellicients 1n the
current group, then the process 450 moves to operation 458
in which L1 RDOQ) 1s performed with respect to the current
group. That 1s the RD cost 1s calculated if the L1 flag
(s1ignificant-coetlicient-group flag) were set to zero, thereby
resulting 1n all zero coeflicients at the decoder. If the rate

savings versus the distortion result in a lower RD cost, as
evaluated 1n operation 460, then 1n operation 462 the coet-
ficients are zeroed and the significant-coetlicient-group flag
1s set to zero.
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Example Syntax

An example syntax for implementing multi-level signifi-
cance maps 1s provided below. This example syntax i1s but
one possible implementation.

The significant-coeflicient-group flags may be denoted
and defined as:

significant_coeflgroup_1tlag[xCG][yCG]

This flag specifies, for the coeflicient group position
(xCG, yCG) within the current 16x16 or 32x32 transiform
block, whether the corresponding coeflicient group at loca-
tion (xCG, yCG) has non-zero coellicients as follows:

It significant_coeflgroup_tlag[xCG][yCG] 1s equal to O,
the number of nonzero coeflicients 1n the coeflicient
group at location (xCG, yCG) 1s set equal to O;

Otherwise (significant_coeflgroup_flag|xCG|[yCG] 1s
equal to 1), the number of nonzero coetlicients in the
coellicient group at location (xCG, yCG) 1s non-zero
except for the special cases defined below.

The special cases are defined as follows:

1. The sigmificant_coeflgroup_tlag[0][0] at the first coel-
ficient group position (0, 0) 1n scan order 1s inferred to
be equal to 1.
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2. The significant_coetigroup_flag|xCG|[yCG] at the
coellicient group position (xCG, yCG) 1n scan order 1s
inferred to be equal to 1 if significant_coeligroup_flag

xCG][yCG+1]=1 and significant_coeligroup_flag

xCG+1][yCG]=1.

When significant_coeflgroup_flag[xCG][yCG]
present, 1t 1s inferred to be equal to 0.

In some embodiments, the sigmficant_coeflgroup_tlag
[xCG][yCG] does not apply to 4x4 and 8x8 transform
blocks.

The {following pseudo-code 1illustrates one example
implementation of multi-level significance maps within the
decoding process for reconstruction quantized transiorm
domain coetlicients (residuals).

It will be noted that the first portion of the pseudo-code
includes decoding the last-significant coeflicient position.
The number of coeflicient groups are then determined, 1f the
transform unit 1s 16x16 or larger (as indicated by if (log
2'TratoS1ze>3)), and the number of coeflicients in each
coellicient group. The second 1f-else statement reflects the
decoding of the significant-coetlicient flags within the coet-
ficient group containing the last-significant coeflicient.

1S not

residual coding_cabac( x0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) { Descriptor
last_ significant_ coefl x ae(v)
last__significant coefl y ae(v)
numCoell = 0
xC = ScanOrder[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeil |[ O ]
yC = ScanOrder[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeil |[ 1 ]
while( ( XC != last_significant coeff x ) || (yC != last_significant coeff vy ) ) {
numCoefl++
XC = ScanOrder[ log2TrafoSize — 2 ][ log2TratoSize — 2 ][ scanldx |[ numCoeil |[ O ]
yC = ScanOrder|[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[ numCoeil |[ 1 ]
h
if (log2TrafoSize > 3) {
log2CoeftGroupSize = log2trafoSize-2
numCoeflinCG = (1 << (log2CoefiGroupSize << 1))
numCoeflGroup = ((numCoeff + numCoeflinCG -1)>> (log2CoefiGroupSize << 1))
for( m = numCoeff - (numCoeffGroup-1)* numCoeffinCG-1; m >= 0; m—-) {
n = (numCoefiGroup—-1)*numCoeffinCG + m
XC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[n ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 [[ scanldx |[n ][ 1 ]
if (n == numCoeiff-1)
significant_ coeff flag] xC ][ yC ] =1
Else
significant. coeff  flag] xC ][ yC ] ae(v)
h
for( nCG = numCoeffGroup-2; nCG >= 0; nCG-—- ) {
xCG = ScanOrder[ O ][ O ][ scanldx ][ nCG ][ 0]
yCG = ScanOrder[ O ][ O ][ scanldx ][ nCG ][ 1]
rightCGFlag = (xCG == 4)7 0: significant_ coeffgroup_ flag] xCG+1 |[ vCG |
bottomCGFlag = (yCG == 4)? 0: significant__coeffgroup_ flag] xCG | [ yCG+1 ]
if ( ( rightCGFlag + bottomCGFlag == 2) || ( nCG == 0 ) )
1
significant_ coeffgroup_ flag] xCG |[ yCG | =1
I else {
significant_ coeffgroup_ flag] xCG ][ yCG | ae(v)
h
if (significant_ coeffgroup_ flag] xCG ][ yCG ] ) {
numNonzeroCoef = 0
for( m = numCoeffGroup -1; m > 0; m—-) {
n = nCG*numCoeflinCG + m
xC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx [ n ][ O ]
yC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 [[ scanldx [[n ][ 1 ]
significant. coeff flag] xC ][ yC ] ae(v)

numNonzeroCoef += significant_ coeff flag| xC ][ vC ]
h
m = 0
n = nCG*numCoefiinCG + m
xC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[ n ][ O ]
yC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 [[ scanldx |[n ][ 1 ]
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-continued

residual__coding_ cabac( x0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) {

26

Descriptor

if ( ( rightCGFlag + bottomCGFlag == 2 ) || ( nCG == 0 ) || numNonzeroCoef) {

significant._ coeff flag] xC ][ vC ]

I else {

significant. coeff flag] xC ][ vC | =1
h

}else {

for( m = numCoeffGroup -1; m >= 0; m--) {
n = nCG*numCoeilinCG + m

ae(v)

xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 || log2TratoSize — 2 ][ scanldx |[n ][ 1 ]

[
significant__coeff_ flag] xC ][ yC ] =0

h
h

h
} else

{

for( n = numCoeff — 1; n >= 0; n- - ) {

xC = ScanOrder| log2TrafoSize — 2 |[ log2TrafoSize — 2 ][ scanldx |[ n |[
yC = ScanOrder| log2TrafoSize — 2 |[ log2TrafoSize — 2 ][ scanldx |[[ n ][

significant__coeff_ flag] xC ][ vC ]

)
y

....(decoding of coeflicient values and signs omutted)

h

The second for-loop within the main if-else statement
reflects the group-by-group processing in group scan order.
Within the first part of that loop, two special cases are dealt
with 1n an 1f-else statement: the significant-coethicient-group
flag 1s set to 1 11 the coeflicient-group 1s the upper leit group
(1.e. nCG=0) or 11 the groups to the right and bottom of the
current group have significant-coeflicient-group flags that

are both non-zero. I those two cases do not apply (the “else”
clause), then the significant-coeflicient-group flag 1s
decoded from the bitstream (significant_coefigroup_flag
xCG][yCG]).

Following that if-else statement, a further if-clse state-
ment provides that 1 the significant-coethicient-group flag 1s
non-zero, then the significant-coetlicient flags for that group
are decoded from the bitstream 1n scan order. All but the last
(upper left) significant-coeflicient flag in the group 1s
decoded from the bitstream. The decoder then assesses
whether any of the decoded significant-coetlicient flags for
that group are nonzero. If so, then 1t decodes the last (upper
left) signmificant-coeflicient flag for that group; and other-
wise, 1t sets 1t to 1 because 1t knows that 1t cannot be zero.

residual__coding_ cabac( x0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) {
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last_ significant  coeff x
last__significant coefl y

numCoefl = 0

0]
L]

ae(v)

The “else” statement that follows applies to the situation
where the significant-coeflicient-group flag 1s zero. In that
case, all the significant-coeflicient tlags for that group are set
to zero.

The foregoing pseudo-code shows one example 1mple-
mentation of the example method 700 described above in
connection with FIG. 16. The significant-coellicient-group
flags and their corresponding significant-coeflicient flags (1f
any) are interleaved in this embodiment. A distinction
between the example method 700 i FIG. 16 and the
example pseudocode 1s that the example method 700 deals
with the special case of the upper left group in operation 720,
whereas the psuedocode deals with that special case within
operation 708 by setting the significant-coellicient-group

flag for that group to be non-zero and thus decoding that
group’s significant-coetlicient tlags from the bitstream 1n
operation 714.

In another embodiment, the coeflicient group size may be
fixed. Example syntax using fixed 4x4 coeflicient groups 1s
set out 1n the following pseudocode:

Descriptor

ae(v)
ae(v)

xC = ScanOrder[ log2TrafoSize — 2 ][ log2TratoSize — 2 |[ scanldx |[ numCoefl ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx |[ numCoeff |[ 1 ]
while( ( XC != last_ significant_ coeff x ) || ( yC != last_ significant_ coeff vy ) ) {
numCoefl++
xC = ScanOrder[ log2TrafoSize — 2 ][ log2TratoSize — 2 |[ scanldx |[ numCoefl ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[ numCoeff ][ 1 ]
)
if (log2TrafoSize > 3) {
log2CoeflGroupSize = 2
numCoeffinCG = (1 << (log2CoeffGroupSize << 1))
numCoeflGroup = ((numCoeff + numCoeflinCG -1)>> (log2CoeflGroupSize << 1))
for( m = numCoeff - (numCoeffGroup-1)* numCoeffinCG-1; m >= 0; m—-) {
n = (numCoefiGroup-1)*numCoefliinCG + m
xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[n ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TrafoSize — 2 [[ scanldx |[n ][ 1 ]
if (n == numCoeif-1)
significant_ coeff  flag] xC ][ yC ] =1
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-continued

residual__coding_ cabac( x0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) { Descriptor

Else

significant._ coeff flag] xC ][ vC ]

)

ae(v)

for( nCG = numCoeffGroup-2; nCG >= 0; nCG-- ) {

xCG = ScanOrder
log2CoeftGroupSize -2 |
yCG = ScanOrder
log2CoeflGroupSize — 2

| scanldx |[ nCG ][ 0]

| log2tratoSize — log2CoefiGroupSize -2 |[ log2tratfoSize -

| log2tratoSize — log2CoefliGroupSize -2 ][ log2tratoSize -
[ scanldx ][ nCG ][ 1]

rightCGFElag = (XCG == (1<< (log2trafoSize — log2CoefiGroupSize) ) )? O:
significant_ coeffgroup_ flag] xCG+1 |[ yCG |

bottomCGFlag = (yC

significant_ coeflgroup_ flag] xCG | [ yCG+1 ]
if ( ( rightCGFlag + bottomCGFlag == 2) || ( nCG == 0 ) )

{

== (1 << (log2trafoSize - log2CoeflGroupSize) ) )7 O:

significant_ coeffgroup_ flag] xCG [ yCG | =1

}else {

significant_ coeffgroup_ flag] xCG ][ yvCG ] ae(v)

h

if (significant_coeffgroup_ flag[ xCG ][ yCG ]) {
numNonzeroCoef = 0
for( m = numCoeffGroup -1; m > 0; m—-) {

n = nCG*numCoefinCG + m

xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[n ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ 1

significant__coeff  flag] xC ][ yC ]
numNonzeroCoef += significant_ coefl flag[ xC ][ yC ]

h

m = 0

n = nCG*numCoeflinCG + m
xC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx |[ n |[ O ]
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[n ][ 1 ]
if ( ( rightCGFlag + bottomCGFlag == 2) Il { nCG == 0) || numNonzeroCoef) {

significant__coefl_ flag] xC ][ yC ]

}else {

]

ae(v)

ae(v)

significant__coefl. flag] xC |[ yC | =1

h
I else {

for( m = numCoeffGroup -1; m >= 0; m--) {
n = nCG*numCoeflinCG + m
xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ O ]
yC = ScanOrder|[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx |[n [[ 1 ]

significant__coefl_ flag| xC |[ yC | =

h
h

h
} else

{

for( n = numCoell -

xC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ O ]
yC = ScanOrder[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ n ][ 1

l;n>=0; n- - )+

significant_ coeff_ flag] xC ][ vC ]

h
h

[
0

]

ae(v)

....(decoding of coeflicient values and signs omutted)

h

50

In yet another embodiment, the significant-coetlicient- and the significant-coethicient flags, group-by-group in the

group tlags may not be interleaved with the significant-
coellicient flags within the bitstream. That 1s, the significant-

coellicient-group flags are encoded 1n the bitstream together the following pseudocode:

residual__coding_ cabac( x0, y0, log2TrafoSize, trafoDepth, scanldx, ¢Idx ) {

last_ significant coeff  x

last_ significant coeff vy

numCoell = 0

xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[ numCoefl ]

yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[ numCoeil ]

while( ( xC != last__significant__coefl__ x ) || { yC != last__significant_ coefl__y ) )
numCoefl++

[0
[ 1
{

]
]

h

xC = ScanOrder[ log2TrafoSize — 2 ][ log2TratoSize — 2 ][ scanldx ][ numCoeil |[ O ]
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[ numCoefl ][ 1 ]

scan order, follow them in the bitstream. Example syntax
corresponding to a non-interleaved embodiment 1s set out 1n

Descriptor

ae(v)
ae(v)
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-continued

residual__coding_ cabac( x0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) {

if (log2TrafoSize > 3) {

log2CoefiGroupSize = log2trafoSize-2
numCoetlinCG = (1 << (log2CoeflGroupSize << 1))
numCoefiGroup = ((humCoeff + numCoetlinCG -1)>> (log2CoeflGroupSize << 1))
nCG = numCoefiGroup-1
xCG = ScanOrder[ O ][ O ][ scanldx |[ nCG ][ O]
yCG = ScanOrder[ O ][ O ][ scanldx |[ nCG ][ 1]
significant_ coeffgroup_ flag] xCG |[ yCG | =1
nCG =0
xCG = ScanOrder[ O ][ O ][ scanldx |[ nCG ][ O]
yCG = ScanOrder[ O ][ O ][ scanldx |[ nCG ][ 1]
significant_ coeffgroup_ flag] xCG |[ yCG | =1
for( nCG = numCoeffGroup-2; nCG >0; nCG-- ) {
xCG = ScanOrder[ O ][ O ][ scanldx |[ nCG ][ O]
yCG = ScanOrder[ O ][ O ][ scanldx ][ nCG ][ 1]
rightCGFlag = (xCG == 4)7 0: significant__coeffgroup_ flag] xCG+1 |[ yCG ]
bottomCGFlag = (yCG == 4)? 0: significant_ coeflgroup_ flag] xCG | [ yCG+1 ]
if ( rightCGFlag + bottomCGFlag == 2 )

1

significant__coeflgroup_ flag] xCG [[ yCG | =1

}else {
significant_ coeffgroup_ flag] xCG ][ yCG |

h
h
nCG = numCoefiGroup-1
for( m = numCoeff - nCG*numCoeffinCG-1; m >= 0; m--) {
n = nCG*numCoeffiinCG + m
xC = ScanOrder[ log2TratoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ n ][ O ]
yC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ 1 ]
if (n == numCoefi-1)
significant__coefl_ flag] xC |[ yC ] =1
Else
significant__coefl_ flag] xC ][ yC ]
h
for( nCG = numCoeffGroup-2; nCG >= 0; nCG-- ) {
if (significant_ coeffgroup_ flag[ xCG ][ yCG ]) {
numNonzeroCoef = 0
for( m = numCoeffGroup -1; m > 0; m—-) {
n = nCG*numCoeflinCG + m
xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ O ]
yC = ScanOrder|[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx |[n [[ 1 ]
significant__coeff_ flag] xC ][ yC ]
numNonzeroCoef += significant coefl flag] xC ][ yC ]

h

m =0

n = nCG*numCoeflinCG + m

xC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx ][ n ][ O ]

yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 |[ scanldx |[n ][ 1 ]

xCG = ScanOrder[ O ][ O ][ scanldx ][ nCG ][ 0]

yCG = ScanOrder[ O ][ O ][ scanldx ][ nCG ][ 1]

rightCGFlag = (xCG == 4)7 0: significant_ coeflgroup_ flag] xCG+1 |[ yCG |

bottomCGFlag = (yCG == 4)7 0: significant_ coeffgroup_ flag] xCG | [ yCG+1 ]

if ( ( rightCGFlag + bottomCGFlag == 2 ) |I[{ nCG == 0 ) || numNonzeroCoef) {
significant_ coeff  flag] xC ][ yC ]

I else {
significant._ coefl  flag] xC |[ yC | =1
h
}else {

for( m = numCoeffGroup -1; m >= 0; m--) {
n = nCG*numCoeflinCG + m
xC = ScanOrder[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx |[ n |[ O ]
1

[
yC = ScanOrder[ log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ 1 ]
significant. coeff flag] xC ][ yC ] =0

h

h

h

} else

{

h

for( n= numCoeff - 1; n >= 0; n— - ) {

xC = ScanOrder| log2TrafoSize — 2 |[ log2TratoSize — 2 ][ scanldx |[n ][ O ]
yC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 |[ scanldx |[n ][ 1 ]
significant_ coefl flag[ xC ][ yC ]

)

...(decoding of coeflicient values and signs omitted)

h

Descriptor

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

30



US 10,681,362 B2

31

Reference 1s now made to FIG. 12, which shows a
simplified block diagram of an example embodiment of an
encoder 900. The encoder 900 includes a processor 902,
memory 904, and an encoding application 906. The encod-
ing application 906 may include a computer program or
application stored in memory 904 and containing instruc-
tions for configuring the processor 902 to perform opera-
tions such as those described heremn. For example, the
encoding application 906 may encode and output bitstreams
encoded 1n accordance with the multi-level significance map
processes described herein. It will be understood that the
encoding application 906 may be stored in on a computer
readable medium, such as a compact disc, flash memory
device, random access memory, hard drive, etc.

Reference 1s now also made to FIG. 13, which shows a
simplified block diagram of an example embodiment of a
decoder 1000. The decoder 1000 includes a processor 1002,
a memory 1004, and a decoding application 1006. The
decoding application 1006 may include a computer program
or application stored in memory 1004 and containing
instructions for configuring the processor 1002 to perform
operations such as those described herein. The decoding
application 1006 may include an entropy decoder configured
to reconstruct residuals based on multi-level significance
maps, as described herein. It will be understood that the
decoding application 1006 may be stored 1n on a computer
readable medium, such as a compact disc, flash memory
device, random access memory, hard drive, etc.

It will be appreciated that the decoder and/or encoder
according to the present application may be implemented 1n
a number of computing devices, including, without limita-
tion, servers, suitably programmed general purpose comput-
ers, audio/video encoding and playback devices, set-top
television boxes, television broadcast equipment, and
mobile devices. The decoder or encoder may be imple-
mented by way of soltware containing instructions for
conflguring a processor to carry out the functions described
herein. The software instructions may be stored on any
suitable non-transitory computer-readable memory, 1mnclud-
ing CDs, RAM, ROM, Flash memory, efc.

It will be understood that the encoder described herein
and the module, routine, process, thread, or other software
component implementing the described method/process for
configuring the encoder may be realized using standard
computer programming techniques and languages. The pres-
ent application 1s not limited to particular processors, coms-
puter languages, computer programming conventions, data
structures, other such implementation details. Those skilled
in the art will recognize that the described processes may be
implemented as a part of computer-executable code stored 1n
volatile or non-volatile memory, as part of an application-
specific itegrated chip (ASIC), etc.

Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not
restrictive.

What 1s claimed 1s:

1. A method for encoding significant-coetlicient flags for
a transform unit, each of the significant coeflicient flags
belonging to a respective group ol significant-coeflicient
flags and each respective group having a corresponding
significant-coetlicient-group flag, the method comprising:

for each respective group of significant-coeflicient flags in

a group reverse scan order, the group reverse scan order
starting with the group containing the significant-co-
cllicient tlag for a last-signmificant coeflicient indicating
the location of the last non-zero signmificant coetlicient
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in the transform unit, and working back through the
groups 1n reverse direction until the group containing
the DC position 1n the transform umit i1s reached:
encoding a significant-coeflicient-group flag for the
group, except when the group contains the last-signifi-
cant coetlicient and except when the group contains the
DC position, wherein encoding comprises setting the
corresponding significant-coeflicient-group flag to one
if the group contains at least one non-zero significant-
coellicient flag and setting the corresponding signifi-
cant-coellicient-group flag to be zero otherwise, and
when the group contains the DC position,

encoding the significant-coeflicient flags in the group 1n a

reverse scan order,

otherwise when the significant-coeflicient-group flag for

the group 1s one or the group contains the last-signifi-
cant coellicient:

encoding each significant-coetlicient flag 1n the group 1n

a reverse scan order, except for the significant-coefli-
cient-flag at position (0,0) in the group when all the
previous significant-coeflicient flags in the group are
Zer0.

2. The method claimed in claim 1, wherein the group
reverse scan order 1s a prescribed order in which the respec-
tive groups of significant-coeflicient flags are to be recon-
structed.

3. The method claimed 1n claim 1, wherein the group
reverse scan order 1s one of a horizontal, vertical, or diagonal
order.

4. The method claimed 1n claim 1, wherein the reverse
scan order 1s one of a horizontal, vertical, or diagonal order.

5. The method claimed in claim 1, wherein the group
reverse scan order and the reverse scan order are the same.

6. The method claimed in claim 1, wherein each group
corresponds to a contiguous square block of the transform
unit.

7. The method claimed 1n claim 1, wherein each group
corresponds to a non-square rectangular block.

8. An encoder for encoding significant-coetlicient tlags
for a transform unit, each of the significant coeflicient flags
belonging to a respective group of significant-coeflicient
flags and each respective group having a corresponding
significant-coeflicient-group flag, the encoder comprising;

a Processor;

a memory; and

an encoding application stored in memory and containing,

instructions for configuring the processor to:

for each respective group of significant-coetlicient tlags in

a group reverse scan order, the group reverse scan order
starting with the group containing the sigmificant-co-
cilicient tlag for a last-significant coeflicient indicating
the location of the last non-zero signmificant coetlicient
in the transform unit, and working back through the
groups 1n reverse direction until the group containing
the DC position 1n the transform unit 1s reached:
encode a significant-coetlicient-group flag for the group,
except when the group contains the last-significant
coellicient and except when the group contains the DC
position, wherein encoding the significant-coetlicient-
group tlag for the group comprises instructions for
configuring the processor to set the corresponding
significant-coetlicient-group flag to one 1f the group
contains at least one non-zero significant-coetlicient
flag and set the corresponding significant-coeflicient-
group tlag to be zero otherwise, and
when the group contains the DC position,
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encoding the significant-coeflicient tlags in the group 1n a

reverse scan order,

otherwise when the significant-coeflicient-group flag for

the group 1s one or the group contains the last-signifi-
cant coellicient:

encode each significant-coeflicient flag 1n the group 1n a

reverse scan order, except for the significant-coetl-
cient-flag at position (0,0) in the group when all the
previous significant-coethicient flags in the group are
ZErO.

9. The encoder claimed 1n claim 8, wherein the group
reverse scan order 1s a prescribed order in which the respec-
tive groups of significant-coeflicient tlags are to be recon-
structed.

10. The encoder claimed in claim 8, wherein the group
reverse scan order 1s one of a horizontal, vertical, or diagonal
order.

11. The encoder claimed 1n claim 8, wherein the reverse
scan order 1s one of a horizontal, vertical, or diagonal order.

12. The encoder claimed in claim 8, wherein the group
reverse scan order and the reverse scan order are the same.

13. The encoder claimed 1n claim 8, wherein each group
corresponds to a contiguous square block of the transform
unit.

14. The encoder claimed 1n claim 8, wherein each group
corresponds to a non-square rectangular block.

15. A non-transitory processor-readable medium storing
processor-executable instructions which, when executed,
configures one or more processors to:

for each respective group of significant-coeflicient flags in

a group reverse scan order, the group reverse scan order

starting with the group contaming the significant-co-
cilicient flag for a last-significant coetlicient indicating
the location of the last non-zero significant coetlicient
in the transform unit, and working back through the
groups 1n reverse direction until the group containing
the DC position 1n the transform unit 1s reached:
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encode a significant-coetlicient-group flag for the group,
except when the group contains the last-significant
coellicient and except when the group contains the DC
position, wherein encoding the significant-coetlicient-
group tlag for the group comprises instructions for
configuring the processor to set the corresponding
significant-coeflicient-group flag to one 1f the group
contains at least one non-zero significant-coethicient
flag and set the corresponding significant-coellicient-
group flag to be zero otherwise, and

when the group contains the DC position,

encoding the significant-coefhicient flags 1n the group 1n a

reverse scan order,

otherwise when the sigmificant-coeflicient-group flag for

the group 1s one or the group contains the last-signifi-
cant coellicient:

encode each significant-coethicient flag 1n the group 1n a

reverse scan order, except for the significant-coetli-
cient-tlag at position (0,0) 1n the group when all the
previous significant-coeflicient tlags in the group are
ZEr0.

16. The non-transitory processor-readable medium
claimed 1n claim 15, wherein the group reverse scan order 1s
one of a horizontal, vertical, or diagonal order.

17. The non-transitory processor-recadable medium
claimed 1n claim 15, wherein the reverse scan order 1s one
ol a horizontal, vertical, or diagonal order.

18. The non-transitory processor-readable medium
claimed 1n claim 15, wherein the group reverse scan order
and the reverse scan order are the same.

19. The non-transitory processor-readable medium
claimed 1n claim 135, wherein each group corresponds to a
contiguous square block of the transform unait.

20. The non-transitory processor-readable medium
claimed in claim 15, wherein each group corresponds to a
non-square rectangular block.
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