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PROCESSOR MEMORY REORDERING
HINTS IN A BIT-ACCURATE TRACE

BACKGROUND

When writing code during the development of software
applications, developers commonly spend a significant
amount of time “debugging” the code to find runtime errors
in the code. In doing so, developers may take several
approaches to reproduce and localize a source code bug,
such as observing behavior of a program based on different
inputs, inserting debugging code (e.g., to print variable
values, to track branches of execution, etc.), temporarily
removing code portions, etc. Tracking down runtime errors
to pinpoint code bugs can occupy a sigmficant portion of
application development time.

Many types ol debugging applications (“debuggers™)
have been developed 1n order to assist developers with the
code debugging process. These tools ofler developers the
ability to trace, visualize, and alter the execution of com-
puter code. For example, debuggers may visualize the
execution of code instructions, may present variable values
at various times during code execution, may enable devel-
opers to alter code execution paths, and/or may enable
developers to set “breakpoints” and/or “watchpoints™ on
code elements of interest (which, when reached during
execution, causes execution of the code to be suspended),
among other things.

An emerging form of debugging applications enable
“time travel,” “reverse,” or “historic” debugging, in which
execution of one or more of a program’s threads are
recorded/traced by tracing software and/or hardware into
one or more trace files. Using some tracing techniques, these
trace file(s) contain a “bit-accurate” trace of each traced
thread’s execution, which can be then be used to replay each
traced thread’s execution later for forward and backward
analysis. Using bit-accurate traces, each traced thread’s prior
execution can be reproduced down to the granularity of 1ts
individual machine code instructions. Using these bit-accu-
rate traces, time travel debuggers can enable a developer to
set forward breakpoints (like conventional debuggers) as
well as reverse breakpoints during replay of traced threads.

One form of hardware-based trace recording records a
bit-accurate trace based, in part, on recording influxes to a
microprocessor’s cache (e.g., cache misses) during execu-
tion of each traced thread’s machine code instructions by the
processor. These recorded cache influxes enable a time
travel debugger to later reproduce any memory values that
were read by these machine code instructions during replay
of a traced thread.

Modern processors are oiten not sequentially-consistent
in theirr memory accesses, 1 order to ensure that the pro-
cessor can stay as busy as practical. As a result, modern
processors may reorder memory accesses relative to the
order in which they appear in a stream of machine code
instructions. One way in which modern processors may
reorder memory accesses 1s by executing a thread’s machine
code 1nstructions out-of-order (1.e., 1n a different order then
the order the istructions were specified in the thread’s
code). For instance, a processor may execute multiple non-
dependent memory loads and/or stores simultaneously
across parallel execution units, rather than one-by-one as
they appear in a thread’s 1nstructions. Another way 1n which
modern processors may reorder memory accesses 1S by
engaging 1n “‘speculative” execution of a thread’s instruc-
tions—such as by speculatively pre-fetching and executing,
instructions after a branch prior the condition(s) that deter-
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mine the outcome of the branch actually being known.
Out-of-order and/or speculative execution of a thread’s

instructions means that the memory values relied upon by
these instructions may appear 1n the processor’s cache at
times other than when a memory accessing instruction
appears to have committed from an architectural perspective
(and are thus reordered). In addition, the very act of specu-
latively pre-fetching instructions alters contents of the pro-
cessor’s cache, even 1f those instructions are not actually
executed, and even if they do not access memory. The
degree to which a given processor engages 1n out-of-order
and/or speculative execution can vary depending on the
instruction set architecture and implementation of the pro-
CESSOT.

BRIEF SUMMARY

When recording the execution of one or more threads at
modern processors that engage 1n out-of-order and/or specu-
lative execution, cache influxes may be recorded out-oi-
order from the order of a thread’s instructions. Due to
speculative execution, some of these cache influxes may not
even actually be necessary for correct replay of a traced
thread’s execution. Thus, debuggers that replay traces that
are recorded at these processors may need to track a plurality
of potential logged cache values that could have actually
been used by a given instruction and determine which one
renders the correct execution result. While a single correct
result can be determined mathematically (e.g., by solving a
graph problem based on knowledge of future program state
such as memory accesses, register values, etc.), the process
of actually 1dentitying this single correct result can consume
significant processing time during trace post-processing
and/or replay—which can decrease post-processing and/or
replay performance i consume additional processor and
memory resources.

At least some embodiments described herein include
microprocessor (processor) modifications that cause a pro-
cessor that records the execution of a thread 1nto a trace to
also record additional memory reordering hints into the
trace. These hints provide information that is usable during
trace replay to help identily which memory value was
actually used by a given memory accessing machine code
instruction. Examples of memory reordering hints include
information that can help 1dentily how long ago a particular
machine code mnstruction read from a particular cache line
(e.g., 1n terms of a number of processor cycles, a number of
instructions, etc.), whether or not the particular machine
code struction read a current value from the particular
cache line, an indication of which value the particular
machine code instruction read from the particular cache, and
the like.

In addition, least some embodiments described herein
could also include processor modifications that cause the
processor to record additional processor state into the trace.
Such additional processor state could include, for example,
a value of at least one register, a hash of at least one register,
an istruction count, at least a portion of a processor branch
trace, and the like. Such processor state can provide addi-
tional bounds to the math problem of determiming which of
multiple logged cache values would render a correct execu-
tion result.

It will be appreciated that the embodiments described
herein can reduce (or even eliminate) the processing needed
during trace post-processing and/or trace replay for identi-
tying which particular logged cache value(s) were consumed
by a traced thread’s instructions. Thus, the embodiments
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described herein address a technical problem uniquely aris-
ing in the realm of time travel tracing and debugging/replay.
The technical solutions described herein improve the per-
formance of traced post-processing and/or trace replay,
greatly advancing the uftility of time travel tracing and
debugging/replay and decreasing the processing/memory
resources needed during trace post-processing and/or trace
replay.

In some embodiments, a system (e.g., such as a micro-
processor) stores memory reordering hints into a processor
trace. The system comprises one or more processing units
(e.g. cores) and a processor cache comprising a plurality of
cache lines. The system 1s configured to execute, at the one
or more processing units, a plurality of machine code
instructions. During this execution, the system initiates
execution of a particular machine code nstruction that
performs a load to a memory address. Based on 1nitiation of
the particular machine code instruction, the system 1nitiates
logging, into the processor trace, a particular cache line 1n
the processor cache that overlaps with the memory address,
including mitiating logging of a value that corresponds to
the memory address 1n connection with logging the particu-
lar cache line. After mitiating logging of the particular cache
line into the processor trace, and prior to committing the
particular machine code instruction, the system detects an
event aflecting the particular cache line. Based at least on
detecting the event aflecting the particular cache line, the
system 1nitiates storing ol a memory reordering hint into the
processor trace.

This summary 1s provided to itroduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to i1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated 1n the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of 1ts scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates an example computer architecture that
tacilitates storing memory reordering hints and/or snapshots
ol processor state 1nto a processor trace;

FIG. 2A 1llustrates a first example of a block of machine
code and corresponding memory value lifetimes;

FIG. 2B illustrates a second example of a block of
machine code and corresponding memory value lifetimes
that may present replay challenges;

FI1G. 2C illustrates a third example of a block of machine
code and corresponding memory value lifetimes that may
present replay challenges; and

FIG. 3 illustrates a tlow chart of an example method for
storing memory reordering hints 1to a processor trace.

DETAILED DESCRIPTION

The i1nventor has recognized that there are several
approaches to reducing the amount of processing needed to
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determine which of a plurality of recorded cache values
renders the correct execution result during a trace replay. A
first approach 1s for processor designers to alter processor
design, such that processors engage 1n fewer memory reor-
dering and/or speculative execution behaviors—thereby
reducing the number of out-of-order cache influxes that need
to be considered. The inventor has recognized that this
solution 1s probably impractical for many modern proces-
sors, since memory reordering and/or speculative execution
behaviors contribute significantly to the performance of
modern processors. As a compromise, 1t might be possible
for processor designers to cause the processor to engage n
fewer memory reordering and/or speculative execution
behaviors only when tracing functionality of the processor 1s
ecnabled. However, doing so could alter how code 1s
executed when tracing 1s enabled, versus how the same code
1s executed when tracing 1s disabled. This, 1n turn, could
alter how programming bugs are manifest when tracing 1s
enabled versus when tracing 1s disabled.

A second approach 1s for processor designers to provide
additional documentation about the memory reordering and/
or speculative execution behaviors of the processor. With the
availability of more detailed documentation, the authors of
time travel tracing soltware may be able to, for a given
memory accessing instruction, identily a reduced number of
logged cache values that might render the correct execution
result. As a result, this additional documentation can be used
to reduce the search space for identifying the correct logged
cache value. However, processor designers might be reluc-
tant to provide additional documentation about the memory
reordering and/or speculative execution behaviors of the
processor. For example, processor designers may desire to
avoid guaranteeing particular behaviors so that they have the
flexibility of altering these behaviors 1n future processors.
Processor designers may even desire to hold these behaviors
as a trade secret.

A third approach mvolves retaining the reordering and/or
speculative execution behaviors of a processor, but it modi-
fies the processor so that the processor provides additional
trace data when 1t engages 1n observable memory reordering
behaviors. Such additional trace data could be, for example,
a hint as to what the processor actually did. More particu-
larly, 1 this third approach, when the processor engages 1n
an observable memory reordering behavior the processor
can record 1nto a processor trace additional information that
can be used later to 1dentity which particular cache value a
grven mstruction actually consumed. In accordance with this
third approach, at least some embodiments described herein
include processor modifications that cause a processor that
records the execution of a thread into a trace to also record
additional memory reordering hints into the trace. These
hints provide iformation that 1s usable during trace replay
to help 1dentity which memory value was actually used by
a given memory accessing machine code instruction.
Examples of memory reordering hints include information
that can help i1dentify how long ago a particular machine
code instruction read from a particular cache line (e.g., 1n
terms of a number of processor cycles, a number of 1nstruc-
tions, etc.), whether or not the particular machine code
istruction read a current value from the particular cache
line, an indication of which value the particular machine
code 1nstruction read from the particular cache, and the like.

A fourth approach also involves retaining the reordering
and/or speculative execution behaviors of a processor, but 1t
modifies the processor so that the processor records addi-
tional processor state which can be used to provide addi-
tional bounds to the math problem of determiming which of
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multiple logged cache values would render a correct execu-
tion result. In accordance with this fourth approach (which
can be used individually, or in combination with the third
approach), at least some embodiments described herein
include processor modifications that cause the processor to
record additional processor state into the trace. Such addi-
tional processor state could include, for example, a value of
at least one register, a hash of at least one register, an
instruction count, at least a portion of a processor branch
trace, and the like. Such processor state can provide addi-
tional bounds to the math problem of determining which of
multiple logged cache values would render a correct execu-
tion result.

To the accomplishment of the third and/or fourth
approaches introduced above, FIG. 1 illustrates an example
computer architecture 100 that facilitates storing memory
reordering hints and/or snapshots of processor state mto a
processor trace. FIG. 1 illustrates that a computer system
101 can include (among other things) one or more proces-
sors 102, system memory 103 (e.g., random access
memory), and durable storage 104 (e.g., a magnetic storage
medium, a solid-state storage medium, etc.), which are
communicatively coupled using a communications bus 110.

As shown, durable storage 104 might store (among other
things) a tracer 104a, one or more traces 104b, and an
application 104¢. During operation of computer system 101,
the processor 102 can load the tracer 104a and the applica-
tion 104¢ nto system memory 103 (1.e., shown as tracer
103a and application 1036). In embodiments, the
processor(s) 102 execute machine code instructions of appli-
cation 1035, and during execution of these machine code
instructions, the tracer 103a causes the processor(s) 102 to
record a bit-accurate trace of execution of those 1nstructions.
This bit-accurate trace can be recorded based, at least 1n part,
on recording cache influxes to cache(s) 107 (discussed later)
caused by execution of those instructions. This trace can be
stored 1n system memory 103 (i.e., shown as trace(s) 1035)
and, 11 desired, can also be persisted to the durable storage
(1.e., as indicated by the arrow between trace(s) 1035 and
trace(s) 1045).

FIG. 1 details some of the components of each processor
102 that can implement the embodiments herein. As shown,
cach processor 102 can include (among other things) one or
more processing units 105 (e.g., processor cores), one or
more cache(s) 107 (e.g., a level-1 cache, a level-2, cache,
etc.), a plurality of registers 108, and microcode 109. In
general, each processor 102 loads machine code instructions
(e.g., of application 103¢) from system memory 103 into the
cache(s) 107 (e.g., into a “‘code” portion of the cache(s) 107)
and executes those machine code nstructions using one or
more of the processing units 105. During their execution, the
machine code instructions can use registers 108 as tempo-
rary storage locations and can read and write to various
locations 1n system memory 103 via the cache(s) 107 (e.g.,
using a “data’ portion of the cache(s) 107). While operation
of the various components of each processor 102 1s con-
trolled 1n large part by physical hardware-based logic (e.g.,
implemented using transistors), operation of the various
components of each processor 102 can also be controlled, at
least 1n part, using soltware instructions contained in pro-
cessor microcode 109.

As shown, each of the processing units 105 includes a
plurality of execution units 106. These execution units 106
can 1nclude, for example, arithmetic logic units, memory
units, etc. In modern processors, each processing unit 105
might include multiples of each type of execution umt and
might arrange these execution units 106 1n a manner that
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enables parallel execution of machine code instructions. As
such, each processing unit 105 can work to execute a
plurality of machine code instructions (e.g., from application
103c¢) 1n parallel. Each processing unit 105 can be viewed as
containing a processing “pipeline” that can continuously (or
periodically) receive an intlux of new machine code nstruc-
tions; the size and length of this pipeline (e.g., how many
instructions 1t can handle at once, and how long it takes to
complete execution of each instruction) 1s defined, at least 1n
part, by the number, 1dentity, and arrangement of execution
units 106.

In some processor implementations, parallel execution of
machine code instructions 1s accomplished by the processing
unmt 105 loading a series of machine code instructions (e.g.,
a fixed number of bytes) from the cache(s) 107 and decoding
these machine code instructions into micro-operations
(Lops) that execute on the execution units 106. After decod-
ing 1nstructions into puops, the processing unit 105 dispatches
these uops for execution at the execution umts 106. Other
processor implementations might instead execute machine
code 1nstructions directly at the execution units 106 without
decoding them to pops.

FIG. 2A illustrates an example 200q that includes a series
of machine code instructions that might be loaded from the
cache(s) 107 and decoded into pops by processing unit 105.
These machine code instructions include a plurality of load
instructions (1.€., instructions 1-4, 6, and 7)—each of which
loads a value from a memory location (memory locations
A-D) 1nto a register (registers R1-R6)—and a store instruc-
tion (1.e., mstruction 5) that stores the value contained 1n a
register (1.e., register R1) into a memory location (1.e.,
memory location D). Processing umit 105 might decode each
of these loads and stores into pops that are executable at
execution units 106.

During the decoding and/or dispatching process for a
given series ol machine code instructions, processing unit
105 might identily a plurality of machine code instructions
in the series that lack dependencies on each other (e.g.,
independent loads or stores, independent math operations,
etc.) and dispatch their pops for parallel execution at the
execution units 106. Additionally, or alternatively, process-
ing unit 105 might identity machine code instructions that
may, or may not, execute depending on the outcome of a
branch/condition, and choose to speculatively dispatch their
uwops for parallel execution at the execution units 106.

For example, referring again to FIG. 2A, processing unit
105 might determine that the loads of instructions 1-4 are not
dependent on one another (i.e., they need not be performed
serially as they appear in the series of instructions). As such,
processing unit 105 might dispatch the pops corresponding
to instructions 1-4 for parallel execution at the execution
units 106. These pops can then proceed to carry out the
loads. This could include, for example, the execution units
106 1dentifying one or more memory values already stored
in the cache(s) 107, the execution units 106 initiating one or
more cache misses 1f a load’s requested memory location 1s
not already stored 1n the cache 107, etc. Notably, the amount
of time (e.g., processor clock cycles) 1t takes for the pops of
a given instruction to execute can vary depending on the
state of the processor 102 (e.g., existing puops executing at
execution units 106, existing contents of the cache(s) 107,
concurrent activity by other processing units 105, etc.). For
example, even though the uops corresponding to instructions
1-4 might be 1mtially dispatched at the same time, each
istruction’s pops might not complete at that same time.

Eventually, the execution units 106 may complete the
uwops for a given instruction, and the processing unit 105 can
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“commit” (sometimes referred to as “retire”) the nstruction.
Most processing units commit instructions in the order in
which they were originally specified in the application
104¢’s code, regardless of the order in which the pops for
those instructions were dispatched and/or completed. Thus,
from an architectural standpoint, processing unit 105 can
appear to have executed a series of instructions in-order,
even though these instructions may have been executed
out-of-order internally at the processing umt 105. An
instruction 1s oiten referred to as being “in-flight” from the
time 1ts execution 1s 1mtiated at the execution units 106 to
the time 1t 1s commuitted.

If the processing unit 105 engages 1n speculative execu-
tion, 1t may 1initiate execution of istructions that may not
actually need to execute. For example, the instructions of
FIG. 2A might be instructions that should only be executed
i the condition of a prior branch 1nstruction 1s met. In order
to keep the execution units 106 “busy” the processing unit
105 may nonetheless 1nitiate their execution at the execution
units 106 prior to the branch imstruction committing. If the
condition 1s later found to have been met (1.e., when the
branch instruction commits), these speculatively-executed
instructions can be committed when their pops complete. If,
on the other hand, the condition 1s later found to have been
not met, the processing unit 105 can refrain from committing,
these speculatively-executed instructions. In this second
circumstance, execution of the pops for these speculatively-
executed instructions may have observable eflects on pro-
cessor state, though the instructions did not commit. For
example, these pops may have caused cache misses—
resulting 1n data being brought into (and evicted from) the
cache(s) 107—even i these cache misses were not ulti-
mately consumed (1.e., because the speculative instruction
that caused the cache miss was not commaitted).

As a side eflect of out-of-order and/or speculative execu-
tion, the order of influxes of data to the cache(s) 107 (1.e.,
cache misses) may lack correspondence with the order 1n
which machine code instructions appeared to have executed.
In addition, the lifetime of that data once 1t 1s 1in the cache(s)
107 may lack correspondence with the cache lifetime that
might be expected based on the order in which machine code
instructions appeared to have executed. If unused cache
misses from speculative execution are logged to the trace(s)
1035, these cache misses add log data that 1s ultimately not
needed for correct reply of the trace(s) 1035, but that might
result 1n ambiguity as to which value a given instruction
actually read. Further complications can also arise due to
concurrent execution of other threads, since those threads
can further cause cache misses, evictions, and invalidation.
As alluded to previously, all of this means that, when
replaying a trace that 1s based on recording cache misses,
additional processing may be needed to determine which
logged cache value(s) were actually read by a given machine
code 1nstruction.

Some 1mplementations of cache-based trace recording
might log cache evictions and/or invalidations, 1 addition to
cache influxes. Thus, the trace(s) 1045 can contain infor-
mation suihicient to determine when a cache line was 1ni-
tially brought into the cache(s) 107, as well as when that
cache line was later evicted from the cache(s) 107 or
invalidated within the cache(s) 107. This means that trace
replay soltware can determine the total lifetime of a par-
ticular cache line 1n the cache(s) 107.

For example, FIG. 2A shows one example 200a of
possible lifetimes for cache lines corresponding to memory
locations A, B, and C. As shown by the arrows 1n FIG. 2A,
in example 200a these cache lines were all brought into the
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cache(s) 107 prior to the load at mstruction 1 committing
(e.g., because these loads at instructions 1-4 were all 1nit1-
ated 1n parallel). As also shown by the arrows 1 FIG. 2A,
in example 200a the cache line for memory location A
remained valid in the cache until the load at instruction 7
committed, the cache line for memory location B remained
valid 1n the cache until the load at instruction 3 committed,
and the cache line for memory location C remained valid 1n
the cache until the load at instruction 5 committed. With
these example lifetimes, trace replay software can readily
identily which logged cache values correspond to the rel-
evant loads (i.e., the loads at instructions 1-4, which read
memory locations A-C). This 1s because, at the time that
cach relevant load instruction committed, there was a pres-
ent and valid cache line that the load could have read from.

While reordering may not have presented significant
replay challenges 1n the example 200aq of FIG. 2A, FIGS. 2B
and 2C 1llustrate examples 2005, 200¢ 1n which reordering
might present replay challenges. The example 20056 of FIG.
2B includes the same series of machine code mstructions as
the example 200a of FIG. 2A, along with the same cache
line lifetimes for the cache lines corresponding to memory
locations A and B. However, unlike example 200q, 1n
example 2005 the cache line for memory location C only
remains valid in the cache until the load at instruction 2
committed. This means that, prior to the load at 1nstruction
4 committing, the cache line corresponding to the memory
location that the load was reading was 1invalidated or evicted.
This 1invalidation/eviction prior to the load committing (i.e.,
while 1t was in-flight) can present challenges when replay
soltware considers the load at instruction 4 during replay.
For example, the replay solftware may need to determine 1f
it could be been legal for the load at instruction 4 to have
read from this cache line, even though the cache line was
invalidated/evicted prior to the load committing.

The example 200¢ of FIG. 2C also includes the same
series of machine code instructions as the example 200a of
FIG. 2A, along with the same cache line lifetimes for the
cache lines corresponding to memory locations A and B.
However, 1n example 200c the cache line for memory
location C was valid 1n the cache 107 from prior to the load
at instruction 1 until the load at instruction 2 commutted, and
then again from committing of the load at instruction 3 to the
committing of the load at instruction 6. Assuming the values
for memory location C are the same during these two
validity periods, replay software does not need to distinguish
between these two validity periods when considering the
load at instruction 4. However, 1f the values are different in
the two validity periods, then replay software will need to
determine which of these two values was actually read by
the load at instruction 4. Thus, this change 1n the value of the
cache line prior to the load committing (1.e., while 1t was
in-thght) can also present challenges when replay software
considers the load at instruction 4 during replay.

In order to assist replay software in determining which
cache line(s) are valid for a load and/or which cache value
was read, embodiments include processor modifications that
detect situations in which out-of-order and/or speculative
execution may have caused observable eflects, and that store
one or more memory reordering hints as a result. These
processor modifications are symbolically depicted in FIG. 1
as reordering hints logic 1094 within microcode 109, how-
ever 1t will be appreciated that these processor modifications
could potentially be implemented as physical logic changes
in addition to (or instead of) microcode 109 changes.

In general, the reordering hints logic 109a detects situa-
tions 1n which (1) execution of a machine code instruction
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that performs a load from a memory address 1s initiated (e.g.,
its pops are dispatched to execution units 106); (11) execution
of the machine code instruction results 1n a particular cache
line 1n the cache(s) 107 (i.e., a cache line overlapping with
the memory address) being logged to the trace(s) 103; and
(111) after logging the particular cache line—but prior to
committing the machine code mstruction—it 1s determined
that an event has aflected the particular cache line 1n the
cache. This could happen, for example, because the cache
line was evicted or invalidated, because the cache line was
written to, because of a loss of a read lock on the particular
cache line, etc. When this happens, the reordering hints logic
109a might cause the processor 102 to record one or more
memory reordering hints into the trace(s) 1035. In general,
memory reordering hints can comprise any data that can be
used to aid replay software in i1dentifying which cache
line(s) are valid for the machine code instruction and/or
which value was read by the machine code instruction.
Notably, 11 an 1nstruction never commits (e.g., because 1t was
speculatively executed and later found to not be needed), the
reordering hints logic 109q might refrain from recording any
hints for that mstruction.

In embodiments, the reordering hints logic 109a might
record memory reordering hints only in situations in which
a memory access behavior has deviated from a defined
“general” behavior. For example, processor 102 may define
a general behavior as being that an mstruction generally uses
the value that was 1n the cache(s) 107 at the time that the
instruction committed. Then, the reordering hints logic 109a
might record a reordering hint only when an 1nstruction used
(or may have used) a value other than the value that was 1n
the cache(s) 107 at the time that the mstruction commutted.
In other words, the reordering hints logic 109a might record
a reordering hint only when an “old” value (e.g., from the
logged cache line above) was used by an instruction, as
opposed to when a “new” or “current” value (e.g., resulting
from a subsequent cache mvalidation/eviction, or cache line
write) was used by an instruction. In this way, a reordering,
hint 1s only recorded when normal behaviors are deviated
from, and lack of a reordering hint contains implicit knowl-
edge (e.g., that the current value was used). Thus, 1n these
embodiments, a reordering hint might be stored only when
the event that affected the particular cache line changed its
value, and when the processor used the old value.

For example, returning to FI1G. 2B, if the reordering hints
logic 109a were to detect that the cache line corresponding
to memory address C was ivalided/evicted prior to com-
mitting of the load at instruction 4, the reordering hints logic
109a might record a hint indicating how long ago the load
at instruction 4 read from the cache line, or how long ago the
load at instruction 4 could have read from the cache line (i.e.,
how long the processor pipeline/readahead window 1s). This
could be expressed, for example, 1n terms of a number of
processor cycles, a number of instructions, and the like.
Returning also to FIG. 2C, 1t the reordering hints logic 109a
were to detect that the memory value corresponding to
memory address C had changed prior to committing of the
load at instruction 4, the reordering hints logic 109a might
record an 1ndication of which memory value was read. This
could be expressed in terms of how long ago the load at
istruction 4 read from the cache line, whether or not the
load at instruction 4 read a current value from the cache line,
or even what value the was read by the load at instruction 4.

In some embodiments, the reordering hints logic 1094
might be probabilistic. For example, if the reordering hints
logic 109a records hints when 1nstructions use a value other
than the current value at the time of instruction commitment,
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the reordering hints logic 109aq might also record hints when
it 1s not certain 11 an 1nstruction used current value at the time
of istruction commitment. Additionally, the reordering
hints logic 109a could even record the probability that the
most recent value was (or wasn’t) used. Recording prob-
abilities enables replay software to narrow the search space
by testing most probably paths first. For example, a 0%
probability could mean that reordering hints logic 1094 1s
certain a prior value was used, and a 100% probability (or
no data packet, i1 the data 1s implicit) could mean that that
reordering hints logic 109a is certain that the current value
was used. Values between 0% and 100% could specity the
probability that current value was used. A different number
of bits could be used for different granularities of probabili-
ties. For example, {100%, 0%} in one bit, {100%, 99-50%,
49-1%, 0%} in two bits, {100%, 99-90%, 89-51%, 50%,
49-10%, 9-1%, 0%} in three bits, {100%=0xFF, 0%=0x00,
other values, =probability*256} in 8 bits, floating point
values, etc.

In view of the foregoing, F1G. 3 illustrates a flow chart of
an example method 300 for storing memory reordering hints
into a processor trace. In general, method 300 1s 1mple-
mented at computing system (e.g., processor 102) that
includes one or more processing units (€.g., processing units
105) and a processor cache (e.g., cache(s) 107) comprising
a plurality of cache lines. Method 300 might be implemented
in environments 1n which a processor does not normally log
processor state (e.g., registers such as the instruction pointer,
instruction counts, etc.). Method 300 will be described 1n
reference to the computer architecture 100 of FIG. 1, and the

examples 2005 and 200¢ of FIGS. 2B and 2C.

As shown 1in FIG. 3, method 300 includes an act 301 of
initiating execution of a load. In some embodiments, act 301
comprises, while executing a plurality of machine code
instructions at the one or more processing units, mitiating
execution of a particular machine code instruction that
performs a load to a memory address. For example, while
tracing execution of a thread of application 104¢ at process-
ing unit 105, processing unit 105 may fetch a series of
instructions of application 104¢, such as the series shown 1n
examples 20056 and 200c, from the cache(s) 107. The pro-
cessing unit 105 may then decode one or more of these
instructions mto pwops and dispatch these pops for execution
at execution units 106. As part of this fetch/decode process,
the processing unit 105 might decode the load at 1nstruction
4 and dispatch 1ts pops for execution at execution units 106.

Method 300 also includes an act 302 of, as a result of the
load, logging a cache line. In some embodiments, act 302
comprises, based on 1nitiation of the particular machine code
instruction mitiating logging, nto the processor trace, a
particular cache line in the processor cache that overlaps
with the memory address, including mitiating logging of a
value that corresponds to the memory address in connection
with logging the particular cache line. For example, based
on the execution of the nops for the load at instruction 4 at
the execution units 106, the execution units 106 may cause
a cache miss based on accessing the memory address (i.e.,
address C) that 1s used by the load, resulting 1n a value 1n
system memory 103 corresponding to memory address C
being loaded 1nto a cache line 1n the cache(s) 107. Alterna-
tively, the uops for the load at mstruction 4 might read the
value from a cache line already existing in the cache(s) 107.
As a result of the load, this value may then be logged nto
the trace(s) 1035. This logging might occur 1n connection
with the load, or at some other time. In FIG. 2B, the lifetime
of this cache line might be represented by the arrow corre-
sponding to memory address C, and in FIG. 2C the lifetime
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of this cache line might be represented by one of the arrows
corresponding to memory address C.

Method 300 also includes an act 303 of, prior to com-
mitting the load, detecting an event aflection the cache line.
In some embodiments, act 303 comprises, aifter 1mitiating
logging of the particular cache line into the processor trace,
and prior to committing the particular machine code nstruc-
tion, detecting an event aflecting the particular cache line.
For example, 1n the context of FIG. 2B, the reordering hints
logic 109a (e.g., microcode and/or physical logic) might
detect that the cache line corresponding to memory address
C was evicted or mvalidated prior to the load at instruction
4 committing (and, thus, there was an invalidation or evic-
tion of the particular cache line prior to committing the
particular machine code instruction). In another example, in
the context of FIG. 2C, the reordering hints logic 109a (e.g.,
microcode and/or physical logic) might detect that (1) the
first cache line corresponding to memory address C was
evicted/invalidated prior to the load at mstruction 4 com-
mitting, and that (11) a new cache line having a diflerent
value for memory address C was brought into the cache prior
to the load at instruction 4 committing (and, thus, there was
a change 1n the particular cache line that includes a change
in the stored value corresponding to the memory address
prior to committing the particular machine code istruction).
Other events could include a write to the particular cache
line, a loss of a read lock on the particular cache line, and the
like, that might result 1n a change 1n the value of the cache
line after 1t was logged. These situations could have been
caused by speculative execution, activity by other threads,
etc.

Method 300 also includes an act 304 of, based on the
detection, storing a reordering hint. In some embodiments,
act 304 comprises, based at least on detecting the event
allecting the particular cache line, mitiating storing of a
memory reordering hint into the processor trace. For
example, in the context of FIG. 2B, the reordering hints
logic 109a could store 1nto the trace(s) 1035 a hint of how
long ago the particular machine code nstruction read from
the particular cache line or how long ago the particular
machine code instruction could have read from the particular
cache line. As was discussed, this could be expressed in
terms of a number of processor cycles, a number of 1nstruc-
tions, etc., that describes a size of the processor’s readahead
window. In the context of FIG. 2C, the reordering hints logic
109a could store into the trace(s) 1035 an indication of
which memory value was read, such as whether or not the
particular machine code instruction read a current value
from the particular cache line, or an indication of which
value the particular machine code instruction read from the
particular cache.

As was mentioned, some embodiments might record
memory reordering hints only 1n situations in which a
memory access behavior has deviated from a defined general
behavior. For example, it the general behavior us that an
instruction generally uses the value that was 1n the cache(s)
at the time that the 1instruction commaitted, then act 304 might
initiate storing of the memory reordering hint into the
processor trace only when the particular machine code
istruction loads the value that was logged 1n act 302 (i.e.,
when 1t did not load a new value resulting from the event
allecting the particular cache line, and thus 1t loaded an old
value).

As was also mentioned, bit-accurate tracing can include
recording not only cache influxes, but also cache evictions
and/or invalidations. Thus, method 300 can include, 1nitiat-
ing storing 1nto the processor trace a record of least one of:
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a later invalidation of the particular cache line, or a later
eviction of the particular cache line (1.e., recording a corre-
sponding cache line eviction/invalidation into the trace(s)
1035). These records can be used during replay to identily
values brought into the cache(s) 107, as well as their
lifetimes. This hifetime information can be combined with
reordering hints to help identily which particular cache
value a particular instruction read.

Accordingly, embodiments can include processor modi-
fications that cause a processor to record memory reordering
hints 1nto a trace. These hints provide information that 1s
usable during trace replay to help i1dentily which memory
value was actually used by a given memory accessing
machine code instruction. These hints can significantly
reduce the processing needed to carry out trace replay.

As was mentioned, some embodiments may additionally
(or alternatively) record extra processor state into the
trace(s) 1035. This state can provide additional information
about program state, adding bounds to the math problem of
determining which of multiple logged cache values would
render a correct execution result. Thus, embodiments can
include processor modifications that record extra state into
the trace(s) 1035 periodically or continuously. These pro-
cessor modifications are symbolically depicted in FIG. 1 as
a processor state logic 10956 within microcode 109. How-
ever, similar to reordering hints logic 109a, 1t will be
appreciated that these processor modifications could poten-
tially be implemented as physical logic changes in addition
to (or mstead of) microcode 109 changes.

The processor state logic 1096 may record snapshots of
periodic processor state at regular itervals (e.g., based on a
number of instructions that have executed since the last
snapshot, a number of processor clock cycles that have
clapsed since the last snapshot, etc.). In each snapshot, the
processor state logic 1096 may record any state that can be
used to help constrain the math problem of determiming
which of multiple logged cache values would render a
correct execution result. Examples of available processor
state 1nclude the value(s) of one or more registers, a hash of
the value(s) of one or more registers, an instruction count
(c.g., of the next instruction to be executed, of the last
instruction committed, etc.), and the like.

In some embodiments, the processor state logic 10956 may
even record a more continuous stream of additional proces-
sor state. For example, many modern processors include
functionality for generating a “branch trace,” which 1s a
trace that indicates which branches were taken/not taken in

executing code. Examples of branch tracing technology
include INTEL PROCESSOR TRACE and ARM PRO-

GRAM TRACE MACROCELL. When a branch trace is
available, the processor state logic 10956 might record all, or
a subset, of this branch trace into the trace(s) 1035. For
example, the processor state logic 1096 could record an
entire branch trace (e.g., as a separate data stream in the
trace(s) 1035), the processor state logic 10956 could record a
sampling of the branch trace (e.g., the result of each indirect
jump, plus the results of a defined number of jumps after the
indirect jump or a defined number of bytes of branch trace
data after the indirect jump), and/or the processor state logic
1096 could record subset of the branch trace (e.g., the
outcomes of indirect jumps only).

In view of the foregoing, 1t will be appreciated that
method 300 could also include initiating storing of addi-
tional processor state 1nto the processor trace. This processor
state could comprise, for example, one or more of a value of
at least one register, a hash of at least one register, an
instruction count, and/or at least a portion of a branch trace.
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This data could be recorded as periodic snapshots, or as a
more continuous data stream. If the processor state com-
prises a portion of the branch trace, the processor state could
comprise at least one of a sampling of the branch trace or a
subset of the branch trace.

Accordingly, embodiments can also include processor
modifications that cause the processor to record additional
processor state into the trace. Such additional processor state
could 1include snapshots of register values, hashes of register
values, 1nstruction counts, and the like. Such additional
processor state could additionally, or alternatively, include at
least a portion of a processor branch trace. This recorded
processor state can provide additional bounds to the math
problem of determiming which of multiple logged cache
values would render a correct execution result, reducing the
processing needed to carry out trace replay.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the
described features or acts described above, or the order of
the acts described above. Rather, the described features and
acts are disclosed as example forms of implementing the
claims.

Embodiments of the present invention may comprise or
utilize a special-purpose or general-purpose computer sys-
tem that includes computer hardware, such as, for example,
one or more processors and system memory, as discussed 1n
greater detail below. Embodiments within the scope of the
present invention also include physical and other computer-
readable media for carrying or storing computer-executable
instructions and/or data structures. Such computer-readable
media can be any available media that can be accessed by a
general-purpose or special-purpose computer system. Com-
puter-readable media that store computer-executable
istructions and/or data structures are computer storage
media. Computer-readable media that carry computer-ex-
ecutable structions and/or data structures are transmission
media. Thus, by way of example, and not limitation,
embodiments of the invention can comprise at least two
distinctly different kinds of computer-readable media: com-
puter storage media and transmission media.

Computer storage media are physical storage media that

store computer-executable instructions and/or data struc-
tures. Physical storage media include computer hardware,
such as RAM, ROM, EEPROM, solid state drives (“SSDs™),
flash memory, phase-change memory (“PCM”), optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other hardware storage device(s) which can
be used to store program code in the form of computer-
executable instructions or data structures, which can be
accessed and executed by a general-purpose or special-
purpose computer system to implement the disclosed func-
tionality of the invention.

Transmission media can include a network and/or data
links which can be used to carry program code 1n the form
of computer-executable mstructions or data structures, and
which can be accessed by a general-purpose or special-
purpose computer system. A “network™ 1s defined as one or
more data links that enable the transport of electronic data
between computer systems and/or modules and/or other
clectronic devices. When information 1s transierred or pro-
vided over a network or another communications connection
(etther hardwired, wireless, or a combination of hardwired
or wireless) to a computer system, the computer system may
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view the connection as transmission media. Combinations of
the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code in the form of computer-executable
instructions or data structures can be transierred automati-
cally from transmission media to computer storage media
(or vice versa). For example, computer-executable instruc-
tions or data structures received over a network or data link
can be bullered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transierred to computer
system RAM and/or to less volatile computer storage media
at a computer system. Thus, 1t should be understood that
computer storage media can be included 1n computer system
components that also (or even primarily) utilize transmission
media.

Computer-executable instructions comprise, for example,
istructions and data which, when executed at one or more
processors, cause a general-purpose computer system, spe-
cial-purpose computer system, or special-purpose process-
ing device to perform a certain function or group of func-
tions. Computer-executable instructions may be, for
example, binaries, intermediate format 1nstructions such as
assembly language, or even source code.

Those skilled 1n the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame coms-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like. The mvention may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. As such, in a distributed system environment,
a computer system may include a plurality of constituent
computer systems. In a distributed system environment,
program modules may be located 1n both local and remote
memory storage devices.

Those skilled in the art will also appreciate that the
invention may be practiced 1n a cloud computing environ-
ment. Cloud computing environments may be distributed,
although this 1s not required. When distributed, cloud com-
puting environments may be distributed internationally
within an organization and/or have components possessed
across multiple organizations. In this description and the
following claims, “cloud computing” 1s defined as a model
for enabling on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services). The definition of “cloud
computing” 1s not limited to any of the other numerous
advantages that can be obtained from such a model when
properly deployed.

A cloud computing model can be composed of various
characteristics, such as on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured
service, and so forth. A cloud computing model may also
come 1n the form of various service models such as, for
example, Solftware as a Service (“SaaS”), Platform as a
Service (“PaaS™), and Infrastructure as a Service (“laaS”).
The cloud computing model may also be deployed using
different deployment models such as private cloud, commu-
nity cloud, public cloud, hybrid cloud, and so forth.




Us 10,671,512 B2

15

Some embodiments, such as a cloud computing environ-
ment, may comprise a system that includes one or more
hosts that are each capable of running one or more virtual
machines. During operation, virtual machines emulate an
operational computing system, supporting an operating sys-
tem and perhaps one or more other applications as well. In
some embodiments, each host includes a hypervisor that
emulates virtual resources for the virtual machines using
physical resources that are abstracted from view of the
virtual machines. The hypervisor also provides proper 1so-
lation between the virtual machines. Thus, from the per-
spective of any given virtual machine, the hypervisor pro-
vides the illusion that the virtual machine 1s interfacing with
a physical resource, even though the virtual machine only
interfaces with the appearance (e.g., a virtual resource) of a
physical resource. Examples of physical resources including
processing capacity, memory, disk space, network band-
width, media drives, and so forth.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What 1s claimed:

1. A system that stores memory reordering hints into a
processor trace, the system comprising:

one or more processing units;

a processor cache comprising a plurality of cache lines;

and

logic that 1s configured to perform at least the following

while executing, at the one or more processing units, a

plurality of machine code instructions:

initiate execution of a particular machine code 1nstruc-
tion that performs a load to a memory address;

based on mitiation of the particular machine code
instruction, initiate logging, into the processor trace,
a particular cache line in the processor cache that
overlaps with the memory address, including 1initi-
ating logging of a value that corresponds to the
memory address i1n connection with logging the
particular cache line;

alter imtiating logging of the particular cache line into
the processor trace, and prior to committing the
particular machine code 1nstruction, detect an event

allecting the particular cache line; and

based at least on detecting the event aflecting the
particular cache line, initiate storing of a memory
reordering hint into the processor trace.

2. The system as recited 1n claim 1, wherein the event
aflecting the particular cache line 1s selected from the group
consisting of an ivalidation of the particular cache line, an
eviction of the particular cache line, a write to the particular
cache line, or a loss of a read lock on the particular cache
line.

3. The system as recited 1n claam 2, wherein the event
comprises invalidation or eviction of the particular cache
line.

4. The system as recited 1n claim 2, wherein the event
comprises the write to the particular cache line.

5. The system as recited 1n claim 1, wherein the system
initiates storing of the memory reordering hint into the
processor trace only when the particular machine code
instruction loads the value that was logged in connection
with the particular cache line.
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6. The system as recited 1n claim 1, wherein the memory
reordering hint comprises at least one of:

how long ago the particular machine code instruction read

from the particular cache line;

whether or not the particular machine code instruction

read a current value from the particular cache line; or
an 1ndication of which value the particular machine code
instruction read from the particular cache.

7. The system as recited 1n claim 6, wherein the memory
reordering hint comprises how long ago the particular
machine code instruction read from the particular cache line,
and wherein the memory reordering hint comprises at least
one of: a number of processor cycles or a number of
instructions.

8. The system as recited in claim 1, wherein the system
initiates storing of a size of a readahead window into the
processor trace.

9. The system as recited in claim 1, wherein the system
also 1nitiates storing 1nto the processor trace a record of least
one of:

a later invalidation of the particular cache line, or

a later eviction of the particular cache line.

10. The system as recited 1n claim 1, wherein the system
also 1nitiates storing of additional processor state 1nto the
processor trace.

11. The system as recited in claiam 10, wherein the
processor state comprises at least one of:

a value of at least one register;

a hash of at least one register;

an instruction count; or

at least a portion of a branch trace.

12. The system as recited in claim 11, wherein the
processor state comprises the portion of the branch trace,
and wherein the portion of the branch trace comprises at
least one of a sampling of the branch trace or a subset of the
branch trace.

13. The system as recited in claim 11, wherein the
processor state comprises the portion of the branch trace,
and wherein the branch trace comprises at least one of
INTEL PROCESSOR TRACE or ARM PROGRAM
TRACE MACROCELL.

14. The system as recited 1n claim 1, wherein the logic
comprises processor microcode.

15. A method, implemented at a computing system that
includes one or more processing units and a processor cache
comprising a plurality of cache lines, for storing memory
reordering hints into a processor trace, the method compris-
ng:

while executing, at the one or more processing units, a

plurality of machine code instructions, initiating execu-
tion of a particular machine code instruction that per-
forms a load to a memory address;

based on 1nitiation of the particular machine code instruc-

tion, mitiating logging, into the processor trace, a
particular cache line 1n the processor cache that over-
laps with the memory address, including initiating
logging of a value that corresponds to the memory
address 1n connection with logging the particular cache
line:

alter initiating logging of the particular cache line 1nto the

processor trace, and prior to committing the particular
machine code instruction, detecting an event aflecting
the particular cache line; and

based at least on detecting the event affecting the particu-

lar cache line, in1tiating storing of a memory reordering
hint 1nto the processor trace.

e
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16. The method of claim 15, wherein the event affecting
the particular cache line 1s selected from the group consist-
ing of an mvalidation of the particular cache line, an eviction
of the particular cache line, a write to the particular cache
line, or a loss of a read lock on the particular cache line.

17. The method of claim 15, wherein the memory reor-
dering hint comprises at least one of:

how long ago the particular machine code mstruction read

from the particular cache line;

whether or not the particular machine code 1nstruction

read a current value from the particular cache line; or
an indication of which value the particular machine code
instruction read from the particular cache.

18. The method of claim 17, wherein the memory reor-
dering hint comprises how long ago the particular machine
code struction read from the particular cache line, and
wherein the memory reordering hint comprises at least one
of: anumber of processor cycles or a number of instructions.

19. The method of claim 15, wherein the system periodi-
cally initiates storing of processor state into the processor
trace, including at least one of a value of at least one register,
a hash of at least one register, an mstruction count, or at least
a portion of a branch trace.
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20. A microprocessor comprising:
OnNe Or MOore Processor Cores;
a cache comprising a plurality of cache lines; and
processor microcode that performs at least the following:
execute, at the one or more processor cores, a plurality
of machine code 1nstructions; and
while executing the plurality of machine code nstruc-
tions, mitiate execution of a particular machine code
instruction that performs a load to a memory address;
based on imtiation of the particular machine code
instruction, mitiate logging, into a processor trace,
a particular cache line in the processor cache that
overlaps with the memory address, including 1ni-
tiating logging of a value that corresponds to the
memory address in connection with logging the
particular cache line;
alter mitiating logging of the particular cache line
into the processor trace, and prior to committing,
the particular machine code instruction, detect an
event aflecting the particular cache line; and
based at least on detecting the event aflecting the
particular cache line, initiate storing of a memory
reordering hint into the processor trace.
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