US010664313B2

a2y United States Patent (10) Patent No.: US 10,664,313 B2

Zeng 45) Date of Patent: *May 26, 2020
(54) METHOD FOR ALLOCATING PROCESSOR (58) Field of Classification Search
RESOURCES AND TERMINAL DEVICE CPC combination set(s) only.

See application file for complete search history.
(71) Applicant: Guangdong Oppo Mobile
Telecommunications Corp., Ltd., (56) References Cited

Dongguan, Guangdong (CN) U.S. PATENT DOCUMENTS

(72) Inventor: Yuanqing Zeng, Guangdong (CN)

8,332,507 B2* 12/2012 Wagh ..ccocccovvvrrnnn... GOGF 9/505
. 709/224
(73) Assignee: ?Eégggﬁﬂgﬁzi%%;)g%ng 8,893,133 B2* 11/2014 Arnold ..oooovvoovvo.. GOGF 9/4881
° 718/102
LTD., Dongguan (CN) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. CN 102360246 A 2/2012
CN 102819458 A 12/2012
311;11?11 Ef.ltem 1s subject to a terminal dis- (Continued)
(21) Appl. No.: 16/119,151 OTHER PUBLICATIONS
1 1. International search report 1ssued in corresponding international
(22) Filed: Aug. 31, 2013 application No. PCT/CN2017/086451 dated Aug. 24, 2017.
(65) Prior Publication Data (Continued)
US 2018/0365068 Al Dec. 20, 2018 Primary Examiner — Charles M Swiit
o (74) Attorney, Agent, or Firm — Young Basile Hanlon &
Related U.S. Application Data MacFarlane, P.C.
(63) Continuation of application No.
PCT/CN2017/086451, filed on May 27, 2017. (57) ABSTRACT
method Ior allocating processor resources and a termina
_ o o A method for allocating p d inal
(30) Foreign Application Priority Data device are provided. The method includes the follows.
Acquire n tasks running in parallel 1n a system, where n 1s
May 31, 2016 (CN) oo, 2016 1 0380674 an integer. The n tasks are classified into m task sets with
51y Int. Cl cach task set having a load level according to load capacities
(51) (;’106 " 9 50 20060 of the n tasks, where m 1s an integer. Demands of a current
COGF 0/48 (00 6. O:L) task set on processor resources are determined according to
COGF 0/455 (501 8. O:L) at least one of the number of tasks in the current task set and
(01) a load coeflicient corresponding to a load level of the current
(52) US. Cl. task set. The demands on the processor resources are allo-
CPC ..., GO6F 9/50 (2013.01); GO6F 9/455 cated for the current task set.
(2013.01); GO6F 9/45533 (2013.01);
(Continued) 17 Claims, 4 Drawing Sheets

201

acepuring n tasks mnning in parallel in a systemn, where & is am intepsr

l 202
classifyving the ntasks inte m task sets with each task set having a load level ,r"”
according to load capacities of the n tasks, where m is an integer

determining the demands of the current task set on processor resources by IE{}'_’)

calculating a product of the number of the tasks in the cutrent task set and the 4
1zad cosfficient cormesponding to the 1oad level of the current task set

determining, for the cument task set, processor msources with an operation level /2&4

corresponding 1o the Toad level of the cument task set, based on operation
capabilities of processors

206
[

r 15 L SRR
e H'“"“‘m____,_m f” allocating, for the current sk
" the processor resounes i S the ith
e : . YES sat, the Processor resources wi
{.:-F"”' wilh the aperation level correspording to 11w load ‘__H"'“'“m:: »l the aperation level

e Imelofthe t tosik 5et satisfy the demands of — ;
e mgl | ta:k ;ﬁ? s corresponding to the load level
T e of the current rask set

"--____‘__H__‘_T/l
NO 207

determining first extra demands of the correm t2sk set on the processor rescurces /
with the operation level of the current task sex

i 208
caleulating secomd exta demands on procassor resoutoes with other operation /
levels according to the first extra detmnands

— the processor resources wilh other operation ';::.
T lovels satisfy the secomd extra demands e

—

YES

210
allocating the processor resoutces with other operstion levels for the carrent task
set according 1o the second extra demands

US 10,664,313 B2

Page 2
(52) U.S. CL 2015/0007187 Al* 1/2015 Showscccc....... GOGF 9/5088
CPC GO6I’ 9/45558 (2013.01); GOOF 9/48 | | | | 718/104
(2013.01); GO6F 9/485 (2013.01); GO6F 2015/0186184 Al 7/2015 Kim
9/4806 (2013.01); GO6F 9/4843 (2013.01); 20150212860 AL 772015 - Ali et al
GOGF 9/4881 (2013.01); GO6F 94893 20150324234 AL 112015 Chang oo GOOE 200>
(2013.01); GMF_ 9/5005 (2013.01); Go@ 2016/0364263 Al* 12/2016 Ca0 ..coovoveveveenan.. GOGF 9/4818
9505 (2013.01); GOOF 9/5011 (2013.01); 2017/0255490 Al* 9/2017 Aberg GOG6F 9/4881
GOOF 9/5016 (2013.01); GOGE 9/5022 2017/0322834 Al* 112017 de Sene ..o..o.o....... GOGF 9/5083
(2013.01); GOGF 9/5027 (2013.01); GOOF 2017/0329643 Al* 11/2017 Wangoocoo..... H04L 29/06
9/5055 (2013.01); GO6F 9/5061 (2013.01); 2017/0337091 A1* 11/2017 Litl wooovverrerirre. GOGF 9/5038
GO6F 9/5083 (2013.01); GO6F 9/5044 2018/0284869 Al* 10/2018 He .oocovvveeveeeen., HO4L 67/1008
(2013.01); GOGF 2209/503 (2013.01)
FOREIGN PATENT DOCUMENTS
(56) References Cited
CN 103235742 A 8/2013
U.S. PATENT DOCUMENTS CN 103605567 A 2/2014
CN 103713956 A 4/2014
9,811,434 B1* 11/2017 Wagner GO6F 11/301 CN 104168318 A 11/2014
2005/0223382 Al 10/2005 Lippett CN 104182279 A 12/2014
2011/0061057 A1 3/2011 Harris et al. CN 104424101 A 3/2015
2012/0137295 Al* 5/2012 Soetemans GO6F 9/524 CN 104572308 A 4/2015
718/100 EP 2945064 Al 11/2015
2012/0180061 Al* 7/2012 R0 ..cocooevee... GOGF 9/5088
718/104
2013/0227549 Al* 8/2013 Accapadi GOGF 9/45558 OTHER PUBLICATIONS
2014/0007171 Al 19014 Caufield et al 718/1 Exte.nde.d European search report 1ssued 1n corresponding European
7014/0025857 Al 1/2014 Lippett application No. 17805801.2 dated Jan. 21, 2019.
2014/0075024 Al* 3/2014 Koza HO041. 63/104
709/225 * cited by examiner

U.S. Patent May 26, 2020 Sheet 1 of 4 US 10,664,313 B2

101

acquiring n tasks running in parallel in a system, where n 1s an integer

h 4

102

classitying the n tasks into m task sets with each task set having a load level according /
to load capacities of the n tasks, where m 1s an integer

103

determining demands of a current task set on processor resources according to at least /
one of the number of tasks 1n the current task set and a load coefficient corresponding
to a load level of the current task set

104

allocating the demands on the processor resources for the current task set /

FIG. 1

U.S. Patent Sheet 2 of 4

May 26, 2020

acquiring n fasks rumming in parallel in a system, where n 1s an integer

US 10,664,313 B2

201

|
4

202

classiying the n tasks mto m task sets with each task set having a load level
according to load capacities of the n tasks, where m is an integer

L L L L L LA L

i

determining the demands of the current task set on pmgessaz’*' resources by
calculating a product of the number of the tasks in the current task set and the
load coetficient corresponding to the load level of the current task set

203

1

h 4

; determining, for the current task set, processor resources with an operation level
i corresponding fo the load ievel of the current task set, based on operation
|

capabilities of processors

4\/205

the processor resources \

YES

with the operation level corresponding to the
level of the current task set satisfy the demands of M/

\ the current task set ?/

"

_Two

f

e,

204
e
e
206
atlocating, for the current task
set, the processor resources with
> the operation level g
corresponding to the load level
of the current task set
207

3
B determining first extra demands of the current task set on the processor resources
with the operation ievel of the current task set

Y

Tret]

/

’

208

calculating second extra demands on processor resources with other operation
levels according to the first extra demands

/

/\/

o the processor resources with other operation .

levels satisfy the second exira demands? //

M‘“““m,

uL
“*“"‘"'\"q_..
Ll L T I_,"..u-'\--“"

- allocating the processor resources with other operation levels for the current task
set according to the second extra demands

210

FIG. 2

U.S. Patent

May 26, 2020

Sheet 3 of 4

US 10,664,313 B2

DEVICE FOR ALLOCATING PROCESSOR RESOURCES
301 302 303 304
FIRST FIRST
AC%II{IIII,}IN G CLAIS%E;(ING| | CALCULATING || ALLOCATING
UNIT UNIT
308 307 306 /305
SECOND SECOND
ALLOCATING) UUNDGIITNG CALCULATIN DETEI?NNI[? ING
UNIT G UNIT
401
- 402
PROCESSOR
104 MEMORY
N EXECUTABLE
— 403 PROGRAM
COMMUNICATION CODES
INTERFACE
MOBILE TERMINAL

FIG. 4

U.S. Patent May 26, 2020 Sheet 4 of 4 US 10,664,313 B2

510 RF WIFI 570
CIRCUIT MODULE

90 560
580
~_—SPEAKER 561
POWER |l AUDIO ™
CIRCUIT
0 SUPPLY %
PROCESSOR MICROPHONE

562

- SENSOR 530
INPUT UNIT
230 DISPLAY UNIT

540
DISPLAY /

SCREEN

MOBILE PHONE
341

US 10,664,313 B2

1

METHOD FOR ALLOCATING PROCESSOR
RESOURCES AND TERMINAL DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application 1s a continuation of International Appli-
cation No. PCT/CN2017/086451, filed on May 27, 2017,
which claims priority to Chinese Patent Application No.
201610380674.8, filed on May 31, 2016, the contents of
both of which are hereby incorporated by reference 1n their
entireties.

TECHNICAL FIELD

This disclosure relates to the field of terminal device
technology, and particularly to a method for allocating
processor resources and a terminal device.

BACKGROUND

With an increasing number of applications loaded 1n a
terminal device, multiple applications can be processed
simultaneously i1n the terminal device. Since processor
resources ol the terminal device are limited, appropnate
allocation of the processor resources 1s required to ensure
normal operation of multiple applications. Currently, termi-
nal devices can be configured with itegrated multi-core

processors. Since a load capacity of each task run by the
application 1s diflerent from others, an operating system of
the terminal device needs to allocate the processor resources
for multiple tasks run by multiple applications simultane-
ously and appropriately.

SUMMARY

Implementations of the disclosure provide a method for
allocating processor resources and a terminal device.

According to a first aspect, a method for allocating
processor resources 1s provided. The method includes the
follows.

Acquire n tasks running in parallel 1n a system, where n
1s an 1nteger. The n tasks are classified 1into m task sets with
cach task set having a load level according to load capacities
of the n tasks, where m 1s an integer. Demands of a current
task set on processor resources are determined according to
at least one of the number of tasks in the current task set and
a load coetlicient corresponding to a load level of the current
task set. The demands on the processor resources are allo-
cated for the current task set.

According to a second aspect, a terminal device 1s pro-
vided. The terminal device includes at least one processor
and a computer readable storage, coupled to the at least one
processor and 1s configured to store at least one computer
executable instruction thereon which, when executed by the
at least one processor, causes the at least one processor to
carry out following actions.

Acquire n tasks running in parallel 1n a system, where n
1s an 1nteger. The n tasks are classified into m task sets with
cach task set having a load level according to load capacities
of the n tasks, where m 1s an integer. Demands of a current
task set on processor resources are determined according to
at least one of the number of tasks 1n the current task set and
a load coetlicient corresponding to a load level of the current
task set. The demands on the processor resources are allo-
cated for the current task set.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to a third aspect, a non-transitory computer
readable storage medium 1s provided. The non-transitory
computer readable storage medium 1s configured to store at
least one computer executable instruction thereon which,
when executed by a computer, causes the computer to
perform following actions.

Acquire n tasks running in parallel in a system, where n
1s an integer. The n tasks are classified mnto m task sets with
cach task set having a load level according to load capacities
of the n tasks, where m 1s an integer. Demands of a current
task set on processor resources are determined according to
at least one of the number of tasks in the current task set and
a load coeflicient corresponding to a load level of the current
task set. The demands on the processor resources are allo-
cated for the current task set.

BRIEF DESCRIPTION OF THE DRAWINGS

To describe technical solutions 1n the implementations of
the present disclosure more clearly, the following briefly
introduces the accompanying drawings required for describ-
ing the implementations.

FIG. 1 1s a schematic flow chart illustrating a method for
allocating processor resources according to an implementa-
tion of the present disclosure.

FIG. 2 1s a schematic flow chart illustrating another
method for allocating processor resources according to an
implementation of the present disclosure.

FIG. 3 1s a block diagram illustrating functional units of
a device for allocating processor resources according to an
implementation of the present disclosure.

FIG. 4 1s a schematic structural diagram illustrating a
terminal device according to an implementation of the
present disclosure.

FIG. 5 1s a schematic structural diagram illustrating
another terminal device according to an implementation of
the present disclosure.

DETAILED DESCRIPTION

In order to enable those skilled in the art to better
understand solutions of the present disclosure, technical
solutions 1n 1mplementations of the present disclosure will
be described clearly and completely hereinafter with refer-
ence to the accompanying drawings in the implementations
of the present disclosure. Apparently, the described 1mple-
mentations are merely some rather than all implementations
of the present disclosure. All other implementations
obtained by those of ordinary skill in the art based on the
implementations of the present disclosure without creative
cllorts shall fall within the protection scope of the present
disclosure.

The terms “first”, “second”, and the like used in the
specification, the claims, and the accompany drawings of the
present disclosure are used to distinguish different objects
rather than describe a particular order. The terms “include”,
“comprise”, and “have” as well as vanations thereol are
intended to cover non-exclusive inclusion. For example, a
process, method, system, product, or apparatus including a
series of steps or units 1s not limited to the listed steps or
units, on the contrary, 1t can optionally include other steps or
units that are not listed; alternatively, other steps or units
inherent to the process, method, product, or device can be
included either.

The term “embodiment” or “implementation” referred to
herein means that a particular feature, structure, or feature
described 1n conjunction with the implementation may be

US 10,664,313 B2

3

contained 1n at least one implementation of the present
disclosure. The phrase appearing in various places in the
specification does not necessarily refer to the same 1mple-
mentation, nor does it refer to an independent or alternative
implementation that 1s mutually exclusive with other imple-
mentations. It 1s expressly and implicitly understood by
those skilled in the art that an 1implementation described
herein may be combined with other implementations.

According to implementations of the disclosure, a method
for allocating processor resources 1s provided. In this
method, acquire n tasks runming in parallel 1n a system,
where n 1s an integer. The n tasks are classified into m task
sets with each task set having a load level according to load
capacities of the n tasks, where m 1s an 1integer. Demands of
a current task set on processor resources are determined
according to at least one of the number of tasks 1n the current
task set and a load coetflicient corresponding to a load level
of the current task set. The demands on the processor
resources are allocated for the current task set. The task
refers to a process or a thread of an application. The load
level can be a high load level, a medium load level, or a low
load level for example. The load level can be configured 1n
other manners, which are not restricted herein.

In one implementation, the demands are the number of
core processing umts of the processor resources. The
demands of the current task set on the processor resources
can be determined as follows. Determine the demands of the
current task set on processor resources by calculating a
product of the number of the tasks in the current task set and
the load coetlicient corresponding to the load level of the
current task set.

In one mmplementation, the demands on the processor
resources for the current task set can be allocated as follows.
Determine, for the current task set, a umt set having an
operation level corresponding to the load level of the current
task set, based on operation capabilities of processors, where
the unit set includes core processing units with the operation
level. The available core processing units that satisiy the
demands of the current task set are allocated for the current
task set, when the number of the available core processing
units 1n the unit set 1s greater than or equal to the demands
of the current task set.

In one implementation, the method further includes the
follows. Determine first extra demands of the current task set
on the processor resources with the operation level corre-
sponding to the load level of the current task set, when the
number of the available core processing units 1n the unit set
1s less than the demands of the current task set. Determine
second extra demands on processor resources with other
operation levels according to the first extra demands. Deter-
mine whether the processor resources with other operation
levels satisty the second extra demands. The processor
resources with other operation levels are allocated for the
current task set according to the second extra demands,
based on a determination that the processor resources with
other operation levels satisty the second extra demands.

The term ““satisly”” means that the processor resources are
able to handle or carry the tasks in the current task set. For
example, 1f the demands are expressed by the number of
processing units and 1f the number of processing units of the
processor resources (for example, the number of processing,
units ncluded 1 a unit set of the processor resources) 1s
greater than or equal to the demands of the current task set,
that 1s greater than or equal to the number of processing units
required by the current task set, then 1t indicates that the
processor resources satisty the demands. Similarly, 1t the
demands are expressed by the total load capacity of the

10

15

20

25

30

35

40

45

50

55

60

65

4

current task set and 11 the total load capacity of the processor
resources 1s greater than or equal to the demands of the
current task set, that 1s greater than or equal to the total load
capacity required by the current task set, then it indicates
that the processor resources satisty the demands.

In one implementation, the second extra demands on the
processor resources with other operation levels are deter-
mined according to the first extra demands as follows.
Determine a ratio of a first operation coetlicient correspond-
ing to the operation level to a second operation coetlicient
corresponding to other operation levels. Determine a prod-
uct of the ratio and the first extra demands as the second
extra demands.

In one implementation, the demands are a total load
capacity of the current task set. The demands of the current
task set on the processor resources are determined as fol-
lows. Determine the total load capacity of the current task
set according to load capacities of the tasks 1n the current
task set and the number of the tasks 1n the current task set.

In one implementation, the demands on the processor
resources are allocated for the current task set as follows.
Determine, for the current task set, a umt set having an
operation level corresponding to the load level of the current
task set, based on operation capabilities of processors, where
the unit set includes core processing units with the operation
level. Determine a load capacity that can be carried by each
core processing unit 1n the unit set. Determine a total load
capacity that can be carried by the unit set according to the
load capacity that can be carried by each core processing
unit. Allocate, for the current task set, available core pro-
cessing umits that can carry the demands of the current task
set, when the total load capacity that can be carried by the
unit set 1s greater than or equal to the demands of the current
task set.

In one implementation, the method further includes the
follows. Determine first extra demands of the current task set
on the processor resources with the operation level corre-
sponding to the load level of the current task set, when the
number of the available core processing units 1n the unit set
1s less than the demands of the current task set. Determine
second extra demands on processor resources with other
operation levels according to the first extra demands. Deter-
mine whether the processor resources with other operation
levels satisty the second extra demands. The processor
resources with other operation levels are allocated for the
current task set according to the second extra demands,
based on a determination that the processor resources with
other operation levels satisiy the second extra demands.

In one implementation, the second extra demands on the
processor resources with other operation levels are deter-
mined according to the first extra demands as follows.
Determine a ratio of a first operation coetlicient correspond-
ing to the operation level to a second operation coetlicient
corresponding to other operation levels. Determine a prod-
uct of the ratio and the first extra demands as the second
extra demands.

The following describes method implementations of the
disclosure 1n detail.

FIG. 1 1s a schematic flow chart illustrating a method for
allocating processor resources according to an implementa-
tion of the present disclosure. As illustrated in FIG. 1, the
method begins at block 101.

At block 101, n tasks running 1n parallel 1n a system are
acquired, where n 1s an integer.

In one 1implementation, the terminal device acquires the n
tasks running in parallel 1n the system. As one implemen-
tation, the terminal device may acquire the n tasks runnming

US 10,664,313 B2

S

in parallel 1n the system 1n real time, and may also acquire,
in a period, the n tasks running in parallel during the period.
The present disclosure 1s not limited thereto. Among them,
the n tasks running in parallel in the system may represent
n processes or threads of an application, and may also
represent other tasks that a processor can handle. The n tasks
can contain different load capacities, and can be generated
by the same application or different applications.

At block 102, the n tasks are classified into m task sets
with each task set having a load level according to load
capacities of the n tasks, where m 1s an 1nteger.

In one implementation, based on different load capacities
of the n tasks, the n tasks are classified into the m task sets
according to load capacities of the n tasks, with each task set
having a load level. As one implementation, a mapping
relationship table between load capacity ranges and load
levels may be preset, where one load capacity range corre-
sponds to one load level. The n tasks are classified according
to the load capacities thereof. When a load capacity of a task
talls within a load capacity range, a load level of the task can
be determined, where the load level of the task corresponds
to the load capacity range above. After determining load
levels of the n tasks 1n the foregoing manner, tasks of the
same load level may be selected to form a task set with the
load level. The total number of tasks in the m task sets with
cach task set having a load level 1s n. Through the above
manner, tasks that the system needs to process at the same
time and the number of tasks at diflerent load levels can be
determined. Therefore, diflerent processor resources can be
allocated for different tasks based on different load levels.

At block 103, demands of a current task set on processor
resources are calculated according to the number of tasks in
the current task set and a load coetlicient corresponding to
a load level of the current task set.

In one implementation, aiter the m task sets with each task
set having a load level are determined, the demands of the
current task set on processor resources are determined
according to the number of the tasks 1n the current task set
and the load coeflicient corresponding to the load level of the
current task set. As one implementation, different load levels
correspond to different load coellicients, such that the
demands of the current task set on processor resources can
be calculated according to the load coeflicient and the
number of the tasks in the current task set. The processor
resources described 1n the implementation of the present
disclosure may be central processing units (CPUs) or graph-
ics processing units (GPUs), which can include core pro-
cessing units mtegrated 1n the processor. The core process-
ing units with different operation capabilities will have
different load capacities for operation, that is, the stronger
the operation capability, the larger the load capacities for
operation. The processor resources can include multiple
processors, and multiple core processing units may be
integrated 1n each processor. The core processing units may
have the same operation capability or different operation
capabilities.

The following describes an example 1n which three load
levels are configured. The three load levels are a high load
level, a medium load level, and a low load level. Tasks with
the high load level require relatively more processor
resources; for example, they need to be processed by a single
core processing unit. Accordingly, tasks with the medium
load level require relatively medium processor resources; for
example, one or two tasks are allowed to share a single core
processing unit; and tasks with the low load level require
relatively less processor resources; for example, multiple
tasks are allowed to share a single core processing unit. The

10

15

20

25

30

35

40

45

50

55

60

65

6

above-mentioned core processing units may have the same
operation capability. Alternatively, core processing units
allocated to the tasks with the high load level have a high
operation capability, that 1s, have a high operation level; and
core processing units allocated to the tasks with the medium
load level or the low load level have a medium operation
capability or a low operation capability, that i1s, have a
medium operation level or a low operation level.

For example, a load coeflicient corresponding to the high
load level may be 1, indicating that each task requires a
single core processing unit for processing; a load coeflicient
corresponding to the middle load level may be 0.6; a the load
coellicient corresponding to the low load level may be 0.2.
In this way, the processor resources that the current task set
required are determined according to the load coetlicient
corresponding to the load level of the current task set and the
number of the tasks in the current task set. For example,
processor resources that a task set with the high load level
required are determined as 1*the number of the tasks in the
task set with the high load level.

In addition, other coeflicients may be used to further
determine the processor resources required. For example,
according to different load capacities of different tasks,
different weight values of diflerent tasks are determined;
based on this, a total weight value of the current task set can
be calculated. According to the total weigh value and the
load coethicient and the number of the tasks in the current
task set, the demands of the current task set on the processor
resources are determined. The disclosure 1s not particularly
restricted.

At block 104, the demands on the processor resources are
allocated for the current task set.

In one implementation, after demands of task sets with
different load levels on processor resources are calculated,
the demands on the processor resources are allocated for the
task sets with diflerent load levels. As one implementation,
the tasks with the high load level will be allocated first,
allocating core processing units with the high operation
capability for the tasks with the high load level. If a
remaining available processing capacity of the core process-
ing units with the high operation capability 1s not sutlicient
to meet the demands of the tasks with the high load level on
the processor resources, core processing units with the
medium operation capability will be allocated to the tasks
with the high load level. Continue until the allocation 1s
completed.

According to the implementation of the disclosure, the n
tasks can be classified into the m task sets with each task set
having a load level by acquiring the n tasks running in
parallel 1n the system. The demands of the current task set
on processor resources can also be calculated according to
the number of the tasks 1n the current task set and the load
coellicient corresponding to the load level of the current task
set and then the demands on the processor resources can be
allocated for the current task set. With aid of the above, it 1s
possible to distinguish the tasks running simultaneously 1n a
fine way, and allocate processors with different levels for
different tasks for processing according to different load
levels. Therefore, the processor resources can be utilized
cliciently and efliciency in processing multiple tasks run-
ning 1n parallel can be improved.

FIG. 2 1s a schematic flow chart illustrating another
method for allocating processor resources according to an
implementation of the present disclosure. The method can be
implemented by a terminal device. As illustrated 1n FIG. 2,
the method at least includes the following operations.

US 10,664,313 B2

7

At block 201, n tasks running 1n parallel 1n a system are
acquired, where n 1s an integer.

In one implementation, the terminal device acquires the n
tasks running in parallel in the system. As one implemen-
tation, the terminal device may acquire the n tasks running
in parallel 1 the system 1n real time, and may also acquire,
in a period, the n tasks running in parallel during the period.
The present disclosure 1s not limited thereto. Among them,
the n tasks running 1n parallel in the system may represent
n processes or threads of an application, and may also
represent other tasks that a processor can handle. The n tasks
can contain different load capacities, and can be generated
by the same application or different applications.

At block 202, the n tasks are classified into m task sets
with each task set having a load level according to load
capacities of the n tasks, where m 1s an integer.

In one implementation, based on different load capacities
of the n tasks, the n tasks are classified into the m task sets
with each task set having a load level according to load
capacities of the n tasks. As one implementation, a mapping
relationship table between load capacity ranges and load
levels may be preset, where one load capacity range corre-
sponds to one load level. The n tasks are classified according
to the load capacities thereof. When a load capacity of a task
talls within a load capacity range, a load level of the task can
be determined, where the load level of the task corresponds
to the load capacity range above. After determining load
levels of the n tasks in the foregoing manner, tasks of the
same load level may be selected to form a task set with the
load level. The total number of tasks 1n the m task sets with
cach task set having a load level 1s n. Through the above
manner, tasks that the system needs to process at the same
time and the number of tasks at different load levels can be
determined. Therefore, diflerent processor resources can be
allocated for different tasks based on different load levels.

At block 203, the demands of the current task set on
processor resources 1s determined by calculating a product
of the number of the tasks in the current task set and the load
coellicient corresponding to the load level of the current task
set.

In one implementation, after the m task sets with each task
set having a load level are determined, the demands of the
current task set on processor resources are determined
according to the number of the tasks in the current task set
and the load coeflicient corresponding to the load level of the
current task set. As one implementation, different load levels
correspond to different load coethicients, such that the
demands of the current task set on processor resources can
be calculated according to the load coetlicient and the
number of the tasks 1n the current task set. The processor
resources described 1n the implementation of the present
disclosure may be central processing units (CPUs) or graph-
ics processing units (GPUs), which can include core pro-
cessing units integrated in the processor. The core process-
ing units with different operation capabilities will have
different load capacities for operation, that 1s, the stronger
the operation capability, the larger the load capacities for
operation. The processor resources can include multiple
processors, and multiple core processing units may be
integrated 1n each processor. The core processing units may
have the same operation capability or different operation
capabilities.

The following describes three load levels are configured
as an example. The three load levels are a high load level,
a medium load level, and a low load level. Tasks with the
high load level require relatively more processor resources;
for example, they need to be processed by a single core

10

15

20

25

30

35

40

45

50

55

60

65

8

processing unit. Accordingly, tasks with the medium load
level require relatively medium processor resources; for
example, one or two tasks are allowed to share a single core
processing unit; and tasks with the low load level require
relatively less processor resources; for example, multiple
tasks are allowed to share a single core processing unit. The
above-mentioned core processing units may have the same
operation capability. Alternatively, core processing units
allocated to the tasks with the high load level have a high
operation capability, that 1s, have a high operation level; and
core processing units allocated to the tasks with the medium
load level or the low load level have a medium operation
capability or a low operation capability, that 1s, have a
medium operation level or a low operation level.

For example, a load coetlicient P_big corresponding to the
high load level may be 1, indicating that each task requires
a single core processing unit for processing, and the number
of the tasks with the high load level 1s Rq_big; in this case,
demands on processor resources for a task set with the high
load level are determined as CPU_big=P_mid*Rqg_big.
Similarly, a load coeflicient P_mid corresponding to the
medium load level may be 0.6 and the number of the tasks
with the medium load level 1s Rq_maid; in this case, demands
on processor resources for a task set with the medium load
level are determined as CPU_mid=P_mid*Rq_mid. A load
coellicient P_small corresponding to the low load level may
be 0.2 and the number of the tasks with the low load level
1s Rg_small; in this case, demands on processor resources
for a task set with the low load level are determined as
CPU_mid=P_mid*Rqg_mud.

That 1s, the load coeflicient can be understood as the
number of core processing units required for a task corre-
sponding to the load coetlicient. Assume that each core
processing unit 1n the processor has the same operation
capability, the demands of the task can be determined
according to the load coelflicient. For example, for a task
with the high load level, the task has a load coeflicient of 1.
It means that, a single core processing unit that does not
process other tasks 1s required for processing the task with
the high load level specifically. For a task with the medium
load level, the task has a load coeflicient of 0.6. It indicates
that, 60% of a core processing unit 1s required for processing
the task with the medium load level and the remaining 40%
of the core processing unit may be used to process other
tasks with the medium load level. Similarly, for a task with
the low load level, the task has a load coefhicient of 0.2. It
indicates that, 20% of a core processing unit 1s required for
processing the task with the low load level and the remaiming
80% of the core processing unit may be used to process other
tasks with the low load level.

After determining the demands of each task in the current
task set, the demands of the current task set can be deter-
mined according to the number of the tasks 1n the current
task set. For the task set with the high load level, assume the
number of the tasks thereof 1s 5; in this situation, the
demands of the task set with the high load level will be 5.
For the task set with the medium load level, assume the
number of the tasks thereof 1s 5; in this situation, the
demands of the task set with the medium load level will be
3. For the task set with the low load level, assume the
number of the tasks thereof 1s 5; 1n this situation, the
demands of the task set with the low load level will be 1. The
core processing units above can be understood as having the
same operation capability or capable of carrying the same
demands of tasks.

As mentioned above, the demands can be the total load
capacity of the current task set. Based on this, alternatively,

US 10,664,313 B2

9

at block 203, the implementations of the disclosure also
provide another implementation to determine the demands
of the current task set on processor resources.

A total load capacity of the current task set 1s calculated
according to the number of the tasks 1n the current task set
and load capacities of the tasks in the current task set. The
total load capacity of the current task set may be determined
as the demands of the current task set on the processor
resources. In this case, processor resources such as core
processing units that can carry the total load capacity of the
current task set are allocated for the current task set.

At block 204, determine, for the current task set, proces-
sor resources with an operation level corresponding to the
load level of the current task set, based on operation capa-
bilities of processors.

In one 1implementation, after determining the demands on
the processor resources for the task sets with different load
levels, the processor resources can be classified as well. As
one 1mplementation, for the current task set, the processor
resources with the operation level corresponding to the load
level of the current task set can be determined based on the
operation capabilities of the processors. Processors (includ-
ing core processing units) can be classified according to
operation capabilities to obtain processor resources with
different operation levels. For example, operation levels of
processor resources can be divided into a high operation
level, a medium operation level, and a low operation level.
It 1s to be noted that, operation levels of processor resources
correspond to load levels of task sets, that 1s, the task set with
the high load level corresponds to processor resources with
the high operation level, the task set with the medium load
level corresponds to processor resources with the medium
operation level, and the task set with the low load level
corresponds to processor resources with the low operation
level. As one implementation, the operation levels of the
processor resources may be further subdivided into more
levels, load levels of task sets may correspond to one or
more operation levels of processor resources, and the like.
The disclosure 1s not particularly limited. Processor
resources of the same operation level may include at least
one core processing unit, where the core processing unit may
come from one processor or different processors.

The following describes an implementation 1n detail.

Assume that the smallest unit of processor resources that
can be allocated for a task set 1s a core processing unit. The
operation level of the core processing unit may be deter-
mined according to the operation capability of the core
processing unit of the processor resources, and the core
processing units of the same operation level may be
assembled into one unit set. For example, the processor
resources are divided into a umt set with a high operation
level, a unit set with a medium operation level, and a unit set
with a low operation level. Here, the operation capability of
the core processing unit can also be understood as at least
one of: the capability of the core processing unit to carry a
load capacity, or the efliciency 1n processing tasks of the core
processing unit. For example, 11 a core processing unit of the
processor resources can carry a large load capacity, has high
clliciency in processing tasks, or has a high comprehensive
result via considering the load capacity that can be carried
and the ethiciency 1n processing tasks, the core processing
unit above can be determined as a core processing unit with
the high operation level. Furthermore, the unit set with the
high operation level can be formed.

The current task set can be allocated for a unit set with an
operation level corresponding to the load level of the current
task set based on the load level of the current task set. For

10

15

20

25

30

35

40

45

50

55

60

65

10

example, the task set with the high load level corresponds to
the unit set with the high operation level.

Alternatively, a unit set may be allocated for the current
task set according to the total load capacity of the current
task set. For example, 11 the task set with the medium load
level has the largest total load capacity, the unit set with the
high operation level will be allocated for the task set with the
medium load level.

At block 205, whether the processor resources with the
operation level corresponding to the load level of the current
task set satisty the demands of the current task set 1s judged.

In one implementation, after determining, for the current
task set, the processor resources with the operation level
corresponding to the load level of the current task set,
whether the processor resources with the operation level
corresponding to the load level of the current task set satisty
the demands of the current task set on processor resources 1s
judged. Compare remaining available resources of the pro-
cessor resources with the demands of the current task set on
processor resources, 1f the remaining available resources of
the processor resources are greater than the demands, 1t
indicates that the processor resources satisty the demands of
the current task set on processor resources; otherwise, 1t
indicates that the processor resources do not satisty the
demands of the current task set on processor resources.

Moreover, the remaining available resources of the pro-
cessor resources can be determined according to the
demands of the current task set.

For one example, 11 the demands of the current task set are
the number of core processing units, the remaining available
resources of the processor resources are the number of
remaining core processing units that are not processing tasks
in the unmit set corresponding to the current task set. For
example, the demands of the task set with the high load level
are five core processing units. Assume that the task set with
the high load level corresponds to the unit set with the high
operation level, whether the number of available core pro-
cessing units in the unit set with the high operation level of
the processor resources 1s equal to five 1s judged. If yes, the
unmt set with the high operation level 1s selected to process
the task set with the high load level, that 1s, advance to block
206; otherwise, the number of available core processing
units 1n a unit set with other operation levels 1s determined,
that 1s, proceed to block 207.

For another example, if the demands of the current task
set are the total load capacity, the remaining available
resources of the processor resources are a load capacity that
can be carried by various core processing units in the unit set
corresponding to the current task set. The total load capacity
of the task set with the high load level 1s N load units, where
N 1s a positive integer and the load unit 1s a mimnimum load
that can be imndependently processed. Assume that the task
set with the high load level corresponds to the unit set with
the high operation level, 1t 1s necessary to determine the
number of load units that can be carried by the umt set with
the high operation level. For example, 11 a part of the space
ol a core processing unit in the unit set has been occupied for
other tasks, the number of load units that the remaining
space of the core processing unit can carry will be deter-
mined; or another core processing unit in the unit set 1s not
processing tasks, that is, the entire space of the core pro-
cessing unit 1s available, the number of load units that the
entire space of the core processing unit can carry will be
determined. Though the above manner, whether the number
of load units that can be carried by the unit set with the high
operation level 1s equal to N can be judged. If yes, advance
to block 206; otherwise, proceed to block 207.

US 10,664,313 B2

11

At block 206, the processor resources with the operation
level corresponding to the load level of the current task set
are allocated for the current task set, based on a judgment
that the processor resources with the operation level corre-
sponding to the load level of the current task set satisiy the
demands of the current task set.

In one mmplementation, based on a judgment that the
processor resources with the operation level corresponding,
to the load level of the current task set satisty the demands
of the current task set, the processor resources with the
operation level corresponding to the load level of the current
task set can be allocated for the current task set. In this way,
the processor resources with different operation levels can
be fully utilized, and tasks in the current task set can be
processed quickly and efliciently.

At block 207, first extra demands of the current task set
on the processor resources with the operation level of the
current task set are determined, based on a determination
that the demands of the current task set are not satisfied.

In one implementation, based on a determination that the
demands of the current task set are not satisfied, extra
demands of the current task set on processor resources are
determined first. As one implementation, the following
describes the processor resources with the medium operation
level corresponding to the task set with the medium load
level as an example. Assume that demands on processor
resources for the task set with the medium load level are
CPU_mid and remaiming available resources of the proces-
sor resources with the medium operation level are Num_
mid, where Num_mid<CPU_mid, extra demands on the
processor resources with the medium operation level for the
task set with the medmuum load level will be
CPU mid ex=CPU mid-Num mid. And then the extra
demands are determined as the first extra demands.

At block 208, second extra demands on processor
resources with other operation levels are calculated accord-
ing to the first extra demands.

In one mmplementation, if the remaining available
resources of the processor resources with the operation level
corresponding to the load level of the current task set fail to
meet the demands of the current task set on processor
resources, that 1s, the processor resources with the operation
level corresponding to the load level of the current task set
can only handle partial demands of the current task set, for
extra demands, processor resources with other operation
levels may help. As operation capabilities of processors with
different operation levels are different, the first extra
demands at the operation level corresponding to the load
level of the current task set can be converted into the second
extra demands at other operation levels.

As one implementation, block 208 can be achieved as
tollows. A ratio of a first operation coeflicient corresponding
to the operation level to a second operation coeflicient
corresponding to other operation levels 1s calculated. A
product of the ratio and the first extra demands 1s calculated
as the second extra demands.

The following describes the task set with the medium load
level as an example. If the processor resources with the
medium operation level are not suflicient to meet the
demands of the task set with the medium load level, whether
processor resources with an operation level higher than the
medium operation level can meet extra demands of the task
set with the medium load level 1s judged first. Among them,
different operation levels correspond to diflerent operation
coellicients. For example, an operation coeflicient Capaci-
ty_big of the high operation level 1s 1, an operation coetli-
cient Capacity_mid of the middle operation level 1s 0.5, and

10

15

20

25

30

35

40

45

50

55

60

65

12

an operation coellicient of the low operation level Capaci-
ty_small 1s 0.2. The {formula CPU_big ex=CPU_
mid_ex*Capacity_mid/Capacity_big can be used to convert
the first extra demands of the task set with the medium load
level on the processor resources with the medium operation
level 1nto second extra demands of the task set with the
medium load level on the processor resources with the high
operation level.

At block 209, whether the processor resources with other
operation levels satisty the second extra demands 1s judged.

In one implementation, after calculating the second extra
demands on the processor resources with other operation
levels, whether the processor resources with other operation
levels satisty the second extra demands can be judged. That
1s, remaining available resources of the processor resources
with other operation levels are compared with the second
extra demands; 1f the remaiming available resources are less
than the second extra demands, it shows that the processor
resources with other operation levels do not satisty the
second extra demands; otherwise, it shows that the processor
resources with other operation levels satisiy the second extra
demands. It 1s to be noted that, the remaining available
resources of the processor resources with other operation
levels 1ndicate remaining resources that can handle tasks
alter parts of the processor resources with other operation
levels have been allocated for a task set with a load level
corresponding to other operation levels.

At block 210, the processor resources with other opera-
tion levels are allocated for the current task set according to
the second extra demands, based on a judgment that the
processor resources with other operation levels satisty the
second extra demands.

In one 1mplementation, if the processor resources with
other operation levels can process the extra demands of the
current task set on processor resources with the load level,
not only the processor resources with the operation level
corresponding to the load level of the current task set are
allocated for the current task set with the load level, the
processor resources with other operation levels are also
allocated for the current task set with the load level.

In the case that the processor resources with other opera-
tion levels still cannot handle the extra demands of the
current task set on processor resources with the load level,
repeat block 207~block 209.

For example, if the processor resources with the medium
operation level fail to satisty the demands of the task set with
the medium load level, whether processor resources with an
operation level higher than the medium operation level can
satisly the extra demands of the task set with the medium
load level will be judged first. In the implementations of the
disclosure, first extra demands of the task set with the
medium load level on the processor resources with the
medium operation level are converted mto second extra
demands of the task set with the medium load level on the
processor resources with the high operation level by using
the following {formula: CPU_big_ex=CPU_mid_ex*
Capacity_mid/Capacity_big.

In this case, assume that Num_big—CPU_big represents
remaining available resources of the processor resources
with the high operation level; the value of CPU_big_ex 1s
then compared with the value of Num_big-CPU_big.

If the value of CPU_big_ex 1s greater than the value of
Num_b1g—-CPU_big, 1t means that the remaining available
resources of the processor resources with the high operation
level still fail to satisty the extra demands on the processor
resources for the task set with the medium load level. In this
situation, after the task set with the medium load level takes

US 10,664,313 B2

13

the remaining available resources of the processor resources
with the high operation level, remaining extra demands on
the processor resources for the task set with the medium load
level can be calculated with reference to block 208. As one
implementation, the remaining extra demands are deter-
mined as the first extra demands CPU_big_ex—(Num_big—
CPU_bi1g), and the second extra demands on the processor
resources with the low operation level are determined from
the processor resources with the low operation level. And the
second extra demands can be calculated via the following
formula: CPU_small_ex=(CPU_big_ex—(Num_big-CPU_
big))*Capacity_big/Capacity_small.

The above operations will be continued until the alloca-
tion of the demands on the processor resources for the task
set with the medium load level 1s completed. Therefore, 1t 1s
possible to further utilize the processor resources to the
most.

According to the implementation of the disclosure, the n
tasks can be classified into the m task sets with each task set
having a load level by acquiring the n tasks running in
parallel in the system. The demands of the current task set
on processor resources can also be calculated according to
the number of the tasks 1n the current task set and the load
coellicient corresponding to the load level of the current task
set and then the demands on the processor resources can be
allocated for the current task set. By adopting the above, the
tasks running simultaneously can be distinguished in a fine
way, and processors with different levels are allocated for
different tasks for further processing according to different
load levels. Therefore, the processor resources can be uti-
lized ethiciently and efliciency 1n processing multiple tasks
running in parallel can be improved.

The following describes device implementations of the
disclosure. The device implementations of the disclosure are
configured to execute the methods achieved by the method
implementations of the disclosure. FIG. 3 1s a block diagram
illustrating functional units of a device for allocating pro-
cessor resources according to an implementation of the
present disclosure. The device may 1include an acquiring unit
301, a classitying unit 302, a first calculating umt 303, and
a first allocating unit 304. These components can be inte-
grated 1nto a processor, such as the processor of FIG. 4 or
FIG. §.

The acquiring unit 301 1s configured to acquire n tasks
running in parallel in a system, where n 1s an integer. The
classitying umt 302 1s configured to classity the n tasks into
m task sets with each task set having a load level according,
to load capacities of the n tasks, where m 1s an integer. The
first calculating unit 303 is configured to calculate demands
of a current task set on processor resources according to the
number of tasks in the current task set and a load coelflicient
corresponding to a load level of the current task set. The first
allocating unit 304 1s configured to allocate the demands on
the processor resources for the current task set.

The first calculating unit 303 1s configured to determine
the demands of the current task set on processor resources by
calculating a product of the number of the tasks in the
current task set and the load coeflicient corresponding to the
load level of the current task set, where the demands 1s the
number of core processing units of the processor resources.

The first allocating unit 304 1s configured to determine,
for the current task set, a unit set having an operation level
corresponding to the load level of the current task set, based
on operation capabilities of processors, where the unit set
includes core processing units with the operation level, to
judge whether the number of available core processing units
in the unit set satisfies the demands of the current task set,

10

15

20

25

30

35

40

45

50

55

60

65

14

and to allocate, for the current task set, the available core
processing units that satisfy the demands of the current task
set, based on a judgment that the number of the available
core processing units 1n the unit set satisfies the demands of
the current task set.

The first calculating unit 303 1s configured to calculate a
total load capacity of the current task set according to load
capacities of the tasks 1n the current task set, the number of
the tasks 1n the current task set, and the load coeflicient
corresponding to the load level of the current task set, and
to determine the total load capacity of the current task set as
the demands of the current task set.

The first allocating unit 304 i1s configured to: determine,
for the current task set, a unit set having an operation level
corresponding to the load level of the current task set based
on operation capabilities of processors, where the unit set
includes core processing units with the operation level,
determine a load capacity that can be carried by each core
processing unit 1 the unit set, determine a total load
capacity that can be carried by the umt set according to the
load capacity that can be carried by each core processing
unit, judge whether the total load capacity that can be carried
by the unit set satisfies the demands of the current task set,
and allocate, for the current task set, available core process-
ing units that can carry the demands of the current task set,
based on a judgment that the total load capacity that can be
carried by the unit set satisfies the demands of the current
task set.

As one implementation, the device further includes a
determining umt 305, a second calculating unit 306, a
mudging unit 307, and a second allocating unit 308.

The determining unit 305 1s configured to determine first
extra demands of the current task set on processor resources

with the operation level corresponding to the load level of
the current task set, based on a determination that the
demands of the current task set are not satisfied. The second
calculating unit 306 1s configured to calculate second extra
demands on processor resources with other operation levels
according to the first extra demands. The judging unit 307 1s
configured to judge whether the processor resources with
other operation levels satisiy the second extra demands. The
second allocating unit 308 1s configured to allocate, for the
current task set, the processor resources with other operation
levels, according to the second extra demands, when the
judging unit 307 judges that the processor resources with
other operation levels satisty the second extra demands.

The second calculating unit 306 1s configured to: calculate
a ratio ol a first operation coetl

icient corresponding to the
operation level to a second operation coeflicient correspond-
ing to other operation levels, and calculate a product of the
ratio and the first extra demands as the second extra
demands.

According to the implementation of the disclosure, the n
tasks can be classified into the m task sets with each task set
having a load level by acquiring the n tasks running in
parallel in the system. The demands of the current task set
on processor resources can also be calculated according to
the number of the tasks 1n the current task set and the load
coellicient corresponding to the load level of the current task
set and then the demands on the processor resources can be
allocated for the current task set. By adopting the above, the
tasks running simultaneously can be distinguished in a fine
way, and processors with different levels are allocated for
different tasks for further processing according to different
load levels. Therefore, it 1s possible to utilize the processor
resources efﬁc1ently and 1mprove efliciency in processing

multiple tasks running in parallel.

US 10,664,313 B2

15

It 1s to be noted that, the terminal device described in the
device implementation of the disclosure i1s presented 1n the
form of functional units. The term “‘unit” used herein should
be understood as the broadest meaning as possible, and an
object for implementing functions defined by each “unit”
may be, for example, an integrated circuit (ASIC), a single
circuit, a processor (shared, dedicated, or chipset) and a
memory for executing one or more software or firmware
programs, a combinational logic circuit, and/or other suit-
able components that can achieve the above described
functions.

According to implementations of the disclosure, a termi-
nal device 1s provided. The terminal device includes at least
one processor and a computer readable storage, coupled to
the at least one processor and storing at least one computer
executable instruction thereon which, when executed by the
at least one processor, causes the at least one processor to
carry out the forgoing methods.

An i1mplementation of the disclosure further provides
another terminal device. As 1llustrated in FIG. 4, the terminal
device mcludes: a processor 401, a memory 402, a commu-
nication interface 403, and a communication bus 404. The
processor 401, the memory 402, and the communication
interface 403 are connected via the communication bus 404
and can achieve mutual communication. The processor 401
1s configured to control wireless communication with an
external cellular network via communication interface 403.
The processor 401 includes a controller and processor
resources, and processor resources may include one or more
Processors or one or more core processing units. Among,
them, the controller 1s configured to allocate processor
resources for a task. The communication interface 403
includes, but 1s not limited to, an antenna, an amplifier, a
transceiver, a coupler, an LNA (low noise amplifier), a
duplexer, and the like. The memory 402 includes at least one
of: a random access memory, a non-volatile memory, and an
external memory. The memory 402 1s configured to store
executable program codes. The executable program codes
can guide the controller 1n the processor 401 to execute the
methods disclosed in the method implementations of the
disclosure. The method includes the following operations.

Acquire n tasks running in parallel 1n a system, where n
1S an 1nteger.

The n tasks are classified into m task sets with each task
set having a load level according to load capacities of the n
tasks, where m 1s an integer.

Demands of a current task set on processor resources are
calculated according to the number of tasks in the current
task set and a load coetlicient corresponding to a load level
of the current task set.

The demands on the processor resources are allocated for
the current task set.

According to the implementation of the disclosure, the n
tasks can be classified into the m task sets with each task set
having a load level by acquiring the n tasks runnming in
parallel 1n the system. The demands of the current task set
on processor resources can also be calculated according to
the number of the tasks 1n the current task set and the load
coellicient corresponding to the load level of the current task
set and then the demands on the processor resources can be
allocated for the current task set. By adopting the above, the
tasks running simultaneously can be distinguished 1n a fine
way, and processors with different levels are allocated for
different tasks for further processing according to different
load levels. Theretfore, the processor resources can be uti-
lized ethiciently and efliciency 1n processing multiple tasks
running in parallel can be improved.

10

15

20

25

30

35

40

45

50

55

60

65

16

In addition, the executable program codes stored in the
memory 402 are turther configured to execute related opera-
tions of the method illustrated in FIG. 2. The disclosure will
not be described 1n further details.

An implementation of the disclosure further provides yet
another terminal device. As 1llustrated in FIG. §, only parts
related to the implementations of the present disclosure are
illustrated for ease of description. For technical details not
described, reference may be made to the method implemen-
tations of the present disclosure. The terminal device may be
any terminal device, such as a mobile phone, a tablet
computer, a personal digital assistant (PDA), a point of sale
terminal (POS), an on-board computer and the like. The
following describes the mobile phone as an example of the
terminal device.

FIG. 5 1s a block diagram of a part of a structure of a
mobile phone related to a terminal device according to an
implementation of the present disclosure. As illustrated 1n
FIG. 5, the mobile phone includes a RF (radio frequency)
circuit 310, a memory 520, an mnput unit 330, a display unit
540, a sensor 550, an audio circuit 360, a Wi-F1 (wireless
fidelity) module 570, a processor 380, a power supply 590
and other components. Those skilled 1n the art can under-
stand that the structure of the mobile phone 1llustrated 1n
FIG. § does not constitute any limitation on a mobile phone.
The mobile phone configured to implement technical solu-
tions of the disclosure may include more or fewer compo-
nents than illustrated or may combine certain components or
different components.

In the following, various components of the mobile phone
will be described 1n detail with reference to FIG. 5.

The RF circuit 510 1s configured to transmit or receive
information. Generally, the RF circuit 510 includes but 1s not
limited to an antenna, at least one amplifier, a transceiver, a
coupler, a low noise amplifier (LNA), a duplexer, and the
like. In addition, the RF circuit 510 may also communicate
with the network and other devices via wireless communi-
cation. The above wireless communication may use any
communication standard or protocol, which includes but 1s
not limited to global system of mobile communication
(GSM), general packet radio service (GPRS), code division
multiple access (CDMA), wideband code division multiple
access (WCDMA), long term evolution (LTE), E-mail, short
messaging service (SMS) and so on.

The memory 520 1s configured to store software programs
and modules, and the processor 380 1s configured to execute
various function applications and data processing of the
mobile phone by runnming the soiftware programs and the
modules stored 1n the memory 520. The memory 520 mainly
includes a program storage area and a data storage area. The
program storage area may store an operating system, appli-
cation programs required for at least one function and so on.
The data storage area may store data (such usage parameters
of an application) created according to use of the mobile
phone, and so on. In addition, the memory 520 may include
a high-speed RAM, and may further include a non-volatile
memory such as at least one disk storage device, a flash
device, or other non-volatile solid storage devices.

The mput umt 530 may be configured to receive input
digital or character information and generate key signal
input associated with user setting and function control of the
mobile phone. As one implementation, the input unit 530
may include a fingerprint recognition module 531 and other
iput devices 532. The fingerprint recognition module 531
can collect fingerprint data of the user. In addition to the
fingerprint recognition module 331, the mput unit 330 may
further include other mput devices 532. As one implemen-

US 10,664,313 B2

17

tation, the other input devices 532 may include, but not limit
to, one or more of a touch screen, a physical key, a function
key (such as a volume control key, a switch key, etc.), a
trackball, a mouse, a joystick and the like.

The display unit 540 1s configured to display information
input by the user or information provided for the user or
vartous menus of the mobile phone. The display unit 540
may include a display screen 541, and alternatively, the
display screen 541 may be in the form of a liquid crystal
display (LCD), an organic light-emitting diode (OLED) and
SO On.

The mobile phone may also include at least one sensor
550, such as a light sensor, a motion sensor, and other
sensors. As one implementation, the light sensor may
include an ambient light sensor and a proximity sensor,
among which the ambient light sensor may adjust the
brightness of the display screen 541 according to ambient
lights, and the proximity sensor may turn off the display
screen 541 and/or backlight when the mobile phone reaches
nearby the ear. As a kind of motion sensor, the accelerometer
sensor can detect the magnitude of acceleration 1n all
directions (typically three axes) and when the mobile phone
1s stationary, the accelerometer sensor can detect the mag-
nitude and direction of gravity; the accelerometer sensor can
also 1dentily mobile-phone gestures related applications
(such as vertical and horizontal screen switch, related
games, magnetometer attitude calibration), or the acceler-
ometer sensor can be used for vibration-recognition related
functions (such as a pedometer, percussion) and so on. The
mobile phone can also be equipped with a gyroscope, a
barometer, a hygrometer, a thermometer, and infrared sensor
and other sensors, and 1t will not be repeated herein.

The audio circuit 560, the speaker 561, the microphone
562 may provide an audio interface between the user and the
mobile phone. The audio circuit 560 may convert the
received audio data into electrical signals and transier the
clectrical signals to the speaker 561; thereaiter the speaker
561 converts the electrical signals into sound signals to
output. On the other hand, the microphone 562 converts the
received sound signals into electrical signals, which will be
received and converted into audio data by the audio circuit
560 to output. The audio data i1s then processed and trans-
mitted by the processor 580 via a RF circuit 510 to another
mobile phone for example, or, the audio data 1s output to the
memory 520 for further processing.

Wi-F1 belongs to a short-range wireless transmission
technology. With aid of the Wi-Fi module 570, the mobile
phone may assist the user 1n E-mail receiving and sending,
webpage browsing, access to streaming media and the like.
Wi-Fi1 provides users with wireless broadband Internet
access. Although the Wi-Fi1 module 570 1s 1llustrated 1n FIG.
5, the W1-Fi1 module 570 1s not essential to the mobile phone
and can be omitted according to actual needs without
departing from the essential nature of the present disclosure.

The processor 580 1s the control center of the mobile
phone, and 1s configured to connect various parts of the
whole mobile phone through various interfaces and lines,
run or execute software programs and/or modules stored in
the memory 520, and invoke data stored 1n the memory 520
to perform various functions of the mobile phone and
process data, thereby monitoring the mobile phone as a
whole. In at least one implementation, the processor 580
may include one or more processing units. For example, the
processor 380 may integrate an application processor and a
modem processor, where the application processor 1s con-
figured to handle the operating system, the user interface, the
application, and so on, and the modem processor 1s mainly

10

15

20

25

30

35

40

45

50

55

60

65

18

configured to process wireless communication. It will be
understood that the above-mentioned modem processor may
not be mtegrated mto the processor 380.

The mobile phone also includes a power supply 590 (e.g.,
a battery) that supplies power to various components. For
instance, the power supply 5390 may be logically connected
to the processor 580 via a power management system to
cnable management of charging, discharging, and power
consumption through the power management system.

Although not illustrated, the mobile phone may 1nclude a
camera, a Bluetooth module, etc., and the disclosure will not
claborate herein.

The method of the foregoing implementations illustrated
in FIG. 1 or FIG. 2 can be realized based on the structure of
the mobile phone.

The functions of the units illustrated 1n FIG. 3 can be
achieved based on the structure of the mobile phone.

Implementations of the present disclosure also provide a
non-transitory computer readable storage medium. The non-
transitory computer readable storage medium can store
programs which, when executed by a computer, are operable
with the computer to execute all or part of the operations of
any of the methods described in the foregoing method
implementations.

For example, the programs are operable with the com-
puter to execute the following actions. Acquire n tasks
running in parallel 1n a system, where n 1s an iteger. The n
tasks are classified into m task sets with each task set having
a load level according to load capacities of the n tasks, where
m 1s an integer. Demands of a current task set on processor
resources are determined according to at least one of the
number of tasks 1n the current task set and a load coeflicient
corresponding to a load level of the current task set. The
demands on the processor resources are allocated for the
current task set.

The demands on the processor resources can be allocated
as follows. Determine, for the current task set, processor
resources with an operation level corresponding to the load
level of the current task set, based on operation capabilities
ol processors. Determine whether the processor resources
with the operation level corresponding to the load level of
the current task set satisty the demands of the current task
set. Allocate, for the current task set, the processor resources
with the operation level corresponding to the load level of
the current task set, based on a determination that the
processor resources with the operation level corresponding
to the load level of the current task set satisfy the demands
of the current task set.

The demands of the current task set can refer to the
number of core processing units ol the processor resources
obtained by calculating a product of the number of the tasks
in the current task set and the load coeflicient corresponding
to the load level of the current task set. Alternatively, the
demands of the current task set can refer to a total load
capacity of the current task set obtained according to load
capacities of the tasks 1n the current task set and the number
of the tasks in the current task set.

It 1s to be noted that, for the sake of simplicity, the
foregoing method implementations are described as a series
ol action combinations, however, it will be appreciated by
those skilled in the art that the present disclosure 1s not
limited by the sequence of actions described. According to
the present disclosure, certain steps or operations may be
performed in other order or simultaneously. Besides, 1t will
be appreciated by those skilled 1n the art that the implemen-
tations described in the specification are exemplary imple-

US 10,664,313 B2

19

mentations and the actions and modules 1mvolved are not
necessarily essential to the present disclosure.

In the foregoing implementations, the description of each
implementation has its own emphasis. For the parts not
described in detail in one implementation, reference may be °
made to related descriptions in other implementations.

In the implementations of the disclosure, the apparatus
disclosed 1n implementations provided herein may be imple-
mented 1 other manners. For example, the device/apparatus
implementations described above are merely illustrative; for
instance, the division of the unit 1s only a logical function
division and there can be other manners of division during
actual implementations, for example, multiple units or com-
ponents may be combined or may be integrated into another
system, or some features may be ignored, omitted, or not
performed. In addition, coupling or communication connec-
tion between each illustrated or discussed component may
be direct coupling or communication connection, or may be
indirect coupling or communication among devices or units 3
via some interfaces, and may be electrical connection,
mechanical connection, or other forms of connection.

The units described as separate components may or may
not be physically separated, the components 1llustrated as
units may or may not be physical units, that 1s, they may be 25
in the same place or may be distributed to multiple network
clements. All or part of the units may be selected according
to actual needs to achieve the purpose of the technical
solutions of the implementations.

In addition, the functional units in various implementa- 30
tions of the present disclosure may be integrated into one
processing unit, or each unit may be physically present, or
two or more units may be integrated into one unit. The
above-mentioned integrated unit can be implemented in the
form of hardware or a soitware function unit. 35

The integrated unit may be stored 1n a computer-readable
memory when 1t 1s implemented 1n the form of a software
functional unit and 1s sold or used as a separate product.
Based on such understanding, the technical solutions of the
present disclosure essentially, or the part of the technical 40
solutions that contributes to the related art, or all or part of
the technical solutions, may be embodied 1n the form of a
software product which 1s stored 1n a memory and includes
instructions for causing a computer device (which may be a
personal computer, a server, or a network device and so on) 45
to perform all or part of the steps described 1n the various
implementations of the present disclosure. The memory
includes various medium capable of storing program codes,
such as a USB (universal serial bus) flash disk, a read-only
memory (ROM), a random-access memory (RAM), a 50
removable hard disk, Disk, compact disc (CD), or the like.

It will be understood by those of ordinary skill in the art
that all or a part of the various methods of the implemen-
tations described above may be accomplished by means of
a program to instruct associated hardware, the program may 55
be stored in a computer-readable memory, which may
include a flash memory, a read-only memory (ROM), a

random-access memory (RAM), Disk or compact disc (CD),
and so on.

While the present disclosure has been described 1n detail so
above with reference to the exemplary implementations, the
scope of the present disclosure 1s not limited thereto. As will
occur to those skilled i1n the art, the present disclosure is
susceptible to various modifications and changes without
departing from the spirit and principle of the present dis- 65
closure. Therefore, the scope of the present disclosure
should be determined by the scope of the claims.

10

15

20

What 1s claimed 1s:

1. A method for allocating processor resources, compris-
ng:

acquiring n tasks running in parallel 1n a system, n being

an integer:;

classifying the n tasks into m task sets with each task set

having a load level according to load capacities of the
n tasks, m being an integer;
determining demands of a current task set on the proces-
sor resources according to at least one of a number of
tasks 1n the current task set or a load coeflicient
corresponding to a load level of the current task set;
determiming first extra demands of the current task set on
the processor resources with an operation level corre-
sponding to the load level of the current task set;
determining a ratio of a {irst operation coeflicient corre-
sponding to the operation level to a second operation
coellicient corresponding to other operation levels;
determining a product of the ratio and the first extra
demands as second extra demands;
determining whether the processor resources with the
other operation levels satisty the second extra demands;
and

based on a determination that the processor resources with

the other operation levels satisty the second extra
demands, allocating the processor resources with the
other operation levels for the current task set according
to the second extra demands.

2. The method of claim 1, wherein the demands are a
number of core processing units of the processor resources,
and determining the demands of the current task set on the
processor resources according to the at least one of the
number of the tasks in the current task set or the load
coellicient corresponding to the load level of the current task
set comprises:

determining the demands of the current task set on the

processor resources by calculating a product of the
number of the tasks in the current task set and the load
coellicient corresponding to the load level of the cur-
rent task set.

3. The method of claim 2, wherein allocating the demands
on the processor resources for the current task set comprises:

determiming, for the current task set, a unit set having an

operation level corresponding to the load level of the
current task set, based on operation capabilities of
processors, wherein the unit set comprises core pro-
cessing units with the operation level; and

allocating, for the current task set, available core process-

ing units that satisiy the demands of the current task set,
when a number of the available core processing units in
the unit set 1s greater than or equal to the demands of
the current task set.

4. The method of claim 3, wherein determining the first
extra demands of the current task set on the processor
resources with the operation level corresponding to the load
level of the current task set 1s in response to a determination
that a number of the available core processing units in the
unit set 1s less than the demands of the current task set.

5. The method of claim 1, wherein the demands are a total
load capacity of the current task set, and determining the
demands of the current task set on the processor resources
according to the at least one of the number of tasks 1n the
current task set or a load coeflicient corresponding to a load
level of the current task set comprises:

determining the total load capacity of the current task set

according to load capacities of the tasks 1n the current
task set and the number of the tasks in the current task
set.

US 10,664,313 B2

21

6. The method of claim 5, further comprising:

determining, for the current task set, a unit set having an
operation level corresponding to the load level of the
current task set, based on operation capabilities of

22

number of the tasks in the current task set and the load
coellicient corresponding to the load level of the cur-
rent task set.

12. The terminal device of claim 11, wherein the at least

processors, wherein the unit set comprises core pro- 5 oOne computer executable instruction causing the at least one

cessing units with the operation level;
determining a load capacity capable of being carried by
cach core processing unit 1n the unit set;
determining a total load capacity capable of being carried
by the unit set according to the load capacity capable of
being carried by each core processing unit; and

allocating, for the current task set, available core process-
ing units that can carry the demands of the current task
set, when the total load capacity capable of being
carried by the unit set 1s greater than or equal to the
demands of the current task set.

7. The method of claim 6, wherein determining first extra
demands of the current task set on the processor resources
with the operation level corresponding to the load level of
the current task 1s 1n response to a determination that the
total load capacity that can be carried by the unit set 1s less
than the demands of the current task set.

8. The method of claam 1, wheremn the tasks comprise
processes ol an application or threads of an application.

9. The method of claim 1, wherein the load level includes
any one of: a high load level, a medium load level, and a low
load level.

10. A terminal device, comprising:

at least one processor; and

a memory, coupled to the at least one processor and

storing at least one computer executable instruction

thereon which, when executed by the at least one

processor, causes the at least one processor to:

acquire n tasks running in parallel 1n a system, n being
an integer;

classily the n tasks into m task sets with each task set
having a load level according to load capacities of
the n tasks, m being an integer;

determine demands of a current task set on processor
resources according to at least one of a number of
tasks 1n the current task set or a load coethcient
corresponding to a load level of the current task set;

determine first extra demands of the current task set on
the processor resources with an operation level cor-
responding to the load level of the current task set;

determine a ratio of a first operation coeflicient corre-
sponding to the operation level to a second operation
coellicient corresponding to other operation levels;

determine a product of the ratio and the first extra
demands as second extra demands:

determine whether the processor resources with the
other operation levels satisty the second extra
demands; and

based on a determination that the processor resources
with the other operation levels satisty the second
extra demands, allocating the processor resources
with the other operation levels for the current task set
according to the second extra demands.

11. The terminal device of claim 10, wherein the demands
are a number of core processing units of the processor
resources, and the at least one computer executable mnstruc-
tion causing the at least one processor to determine the
demands of the current task set on the processor resources
turther the at least one processor to:

determine the demands of the current task set on the

processor resources by calculating a product of the

10

15

20

25

30

35

40

45

50

55

60

65

processor to allocate the demands further causes the at least
one processor to:

determine, for the current task set, a unit set having an

operation level corresponding to the load level of the
current task set, based on operation capabilities of
processors, wherein the unit set comprises core pro-
cessing units with the operation level; and

allocate, for the current task set, available core processing,

units that satisty the demands of the current task set,
when a number of the available core processing units 1n
the unit set 1s greater than or equal to the demands of
the current task set.

13. The terminal device of claim 10, wherein the demands
are a total load capacity of the current task set, and the at
least one computer executable instruction causing the at
least one processor to determine the demands of the current
task set on the processor resources further causes the at least
one processor to:

determine the total load capacity of the current task set

according to load capacities of the tasks 1n the current
task set and the number of the tasks in the current task
set.

14. The terminal device of claim 13, wherein the at least
one computer executable instruction causing the at least one
processor to allocate the demands further causes the at least
one processor to:

determine, for the current task set, a unit set having an

operation level corresponding to the load level of the
current task set, based on operation capabilities of
processors, wherein the unit set comprises core pro-
cessing units with the operation level;

determine a load capacity capable of being carried by

cach core processing unit 1in the unit set;
determine a total load capacity capable of being carried by
the unit set according to the load capacity capable of
being carried by each core processing unit; and

allocate, for the current task set, available core processing,
units that can carry the demands of the current task set,
when the total load capacity that can be carried by the
unit set 1s greater than or equal to the demands of the
current task set.

15. The terminal device of claim 10, wherein the at least
one computer executable mnstruction causing the at least one
processor to allocate the demands further causes the at least
one processor to:

determine the first extra demands of the current task set on

the processor resources with the operation level corre-
sponding to the load level of the current task set, when
a unit set having an operation level corresponding to
the load level of the current task set does not satisiy the
demands of the current task set.

16. A non-transitory computer readable storage medium,
storing at least one computer executable instruction thereon
which, when executed by a computer, causes the computer
to:

acquire n tasks running in parallel 1n a system, n being an

integer;

classity the n tasks into m task sets with each task set

having a load level according to load capacities of the
n tasks, m being an integer;

determine demands of a current task set on processor

resources according to at least one of a number of tasks

US 10,664,313 B2

23

in the current task set or a load coeflicient correspond-
ing to a load level of the current task set;

determine first extra demands of the current task set on the
processor resources with an operation level corre-
sponding to the load level of the current task set;

determine a ratio of a first operation coeflicient corre-
sponding to the operation level to a second operation
coeflicient corresponding to other operation levels;

determine a product of the ratio and the first extra

demands as second extra demands; and

based on a determination that the processor resources with

the other operation levels satisty the second extra
demands, allocate the processor resources with the
other operation levels for the current task set according
to the second extra demands.

17. The non-transitory computer readable storage medium
of claim 16, wherein the non-transitory computer readable
storage medium causing the computer to allocate the
demands further causes the computer to:

determine, for the current task set, the processor resources

with an operation level corresponding to the load level

10

15

20

24

of the current task set, based on operation capabilities
of processors;

determine whether the processor resources with the opera-
tion level corresponding to the load level of the current
task set satisly the demands of the current task set; and

allocate, for the current task set, the processor resources
with the operation level corresponding to the load level
of the current task set, based on a determination that the
processor resources with the operation level corre-
sponding to the load level of the current task set satisty
the demands of the current task set wherein

the demands of the current task set comprise a number of
core processing units ol the processor resources
obtained by calculating a product of the number of the
tasks 1n the current task set and the load coeflicient
corresponding to the load level of the current task set,
or are a total load capacity of the current task set
obtained according to load capacities of the tasks in the
current task set and the number of the tasks in the
current task set.

	Front Page
	Drawings
	Specification
	Claims

