12 United States Patent
Wozniak

US010652350B2

US 10,652,350 B2
May 12, 2020

(10) Patent No.:
45) Date of Patent:

(54) CACHING FOR UNIQUE COMBINATION
READS IN A DISPERSED STORAGE
NETWORK

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventor: Ethan S. Wozniak, Park Ridge, IL
(US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 365 days.

(21) Appl. No.: 15/174,596

(22) Filed: Jun. 6, 2016

(65) Prior Publication Data
US 2017/0353575 Al Dec. 7, 2017

(51) Int. CL
GO6IF 15/167 (2006.01)
HO4L 29/08 (2006.01)
GO6F 12/0813 (2016.01)
GO6F 12/0868 (2016.01)
GO6F 16/172 (2019.01)

(52) U.S. CL
CPC ... HO4L 67/2842 (2013.01); GO6F 12/0813
(2013.01); GOGF 12/0868 (2013.01); GO6F
16/172 (2019.01); HO4L 67/1097 (2013.01);
GOGF 2212/154 (2013.01); GOGF 2212/60
(2013.01); GO6F 2212/62 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
5485474 A 1/1996 Rabin
5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
5,809,285 A 9/1998 Hilland
5,890,156 A 3/1999 Rekieta et al.

(Continued)

OTHER PUBLICATTONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-6153.

(Continued)

Primary Examiner — Brian Whipple
Assistant Examiner — Gregory P Tolchinsky

(74) Attorney, Agent, or Firm — James Nock; Andrew D.
Wright; Roberts Calderon Safran & Cole, P.C.

(57) ABSTRACT

A method includes receiving a first access request that
indicates a first data object stored as encoded slices 1n a
plurality of storage units. A first desired slice set 1s selected,
based on the requesting module, that includes a first subset
of encoded slices of the first data object. Absent slice data 1s
generated based on searching a local cache, indicating an
encoded slice not present in the local cache. A read request
to read the encoded slice indicated by the absent slice data
from one of the storage units 1s transmitted. The encoded
slice indicated by the absent slice data from the storage unit
1s received and the local cache 1s updated to include the
encoded slice. The first data object 1s regenerated for trans-
mission to the first requesting module by decoding the first
subset of encoded slices 1n the first desired slice set.

20 Claims, 4 Drawing Sheets

user device 12 ST processing unit 16
computing core 26) , data 40 &for task
___ _ computing core 24 T request 38
DST client -
module 34 DST client _
25 module 34 computing
T core 26
interface 32 l interface 32 r interface 30 ’1 t >| interface 30
A F Y
sser device 14

. y
| inferface 33

i

nefwork 24

» interface 33

I

computing
core 26

[STN managing
unit 18

computing

core 26

DST execution
unit 36

DST execution
unit 36

DST integrity
processing unit 20

distributed storage &for
task network (DSTN) module 22

distributed computing systern 10

US 10,652,350 B2

Page 2
(56) References Cited 2009/0094251 Al 4/2009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
U.S. PATENT DOCUMENTS 2010/0023524 Al 1/2010 Gladwin et al.
2011/0055010 A1* 3/2011 Behroozi GO6F 17/30867
5,987,622 A 11/1999 Lo Verso et al. | 705/14.52
5,991.414 A 11/1999 Garay et al. 2011/0107026 Al* 5/2011 Qugley GO6F 11/1092
6,012,159 A 1/2000 Fischer et al. 711/114
6,058,454 A 5/2000 Gerlach et al. 2012/0226933 Al* 9/2012 Baptist GOG6F 11/0727
6,128,277 A 10/2000 Bruck et al. 714/6.2
6,175,571 Bl 1/2001 Haddock et al. 2014/0244788 Al* 8/2014 Resch HO4L 67/1097
6,192,472 Bl 2/2001 Garay et al. 709/217
0,256,088 Bl 7/2001 Suetaka et al. 2014/0351674 Al* 11/2014 Grube GO6F 11/1076
6,272,658 Bl 8/2001 Steele et al. 714/764
6,301,604 B1 10/2001 Nojima
6,356,949 Bl 3/2002 Katsandres et al.
6,366,995 Bl 4/2002 Vilkov et al. OTHER PUBLICATIONS
6,374,336 Bl 4/2002 Peters et al.
6,415,373 Bl 7/2002 Peters et al. Rabin; Efficient Dispersal of Information for Security, Load Bal-
gﬂj jgﬂggg g ;//{ 3883 ;Valker . ancing, and Fault Tolerance; Journal of the Association for Com-
65567j948 R 5/7003 Ste;gz Zt al* puter Machinery; vol. 36, No. 2; Apr. 1989, pp. 335-348.
6571780 Bl 5/79003 BRowman-Amuah Chung; An Automatic Data Segmentation Method for 3D Measured
6:609:223 Bl 8/2003 Wolfgang Data Points; National Taiwan University, Pp. .1-8; 1998.
6,718,361 Bl 4/2004 Basani et al. Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
6,760,808 B2 7/2004 Peters et al. Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
6,766,422 B2 7/2004 Beyda GOG6F 17/30902 pp. 1-74.
707/E17.12 Wildi; Java 1SCS1 Initiator; Master Thesis; Department of Computer
0,785,768 B2 8/2004 Peters et al. and Information Science, University of Konstanz; Feb. 2007; 60
6,785,783 B2 8/2004 Buckland pgs.
gagggag 91' é E% 1 f-’llﬁ 3882 %)/IOUHIOH et al. Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
0 SOPLY d Matching Rules; IETF Network Working Group; RFC 4517;
7,003,688 Bl 2/2006 Pittelkow et al. 2006 ‘;}f e cLVOTR WOLRHE MEOUP; ’
;’833’283} E% jgggg {ﬁ;%fg;;g of al Zellenga; Lightweight Directory Access Protocol (LDAP): Interna-
7080101 B1 77006 Watson of al. tionalized String Preparation; IETF Network Working Group; RFC
7,103,824 B2 9/2006 Halford 4518; Jun. 2006; pp. 1-14. |
7,103,915 B2 0/2006 Redlich et al. Smith; Lightweight Directory Access Protocol (LDAP): Uniform
7,111,115 B2 0/2006 Peters et al. Resource Locator; IETF Network Working Group; RFC 4516; Jun.
7,140,044 B2 11/2006 Redlich et al. 2006, pp. 1-15.
7,146,644 B2 12/2006 Redlich et al. Smith; Lightweight Directory Access Protocol (LDAP): String
7,171,493 B2 1/2007 Shu et al. Representation of Search Filters; IETF Network Working Group;
B S 1S 0 g 112
e s et 4l Zeilenga; Lightweight Directory Access Protocol (LDAP): Direc-
/7,272,615 B2 9/2007 Sim et al. tory Information Models; IETF Network Working Group; RFC
7,636,724 B2 12/2009 de la Torre et al. 4512: Tun. 2006 149
2002/0062422 Al 5/2002 Butterworth et al. o T SV P
2002/0166079 Al 11/2002 Ulrich et al. Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
2003/0018927 Al 1/2003 Gadir et al. for User Applications; IETF Network Working Group; RFC 4519;
2003/0037261 Al 2/2003 Meffert et al. Jun. 2006; pp. 1-33.
2003/0065617 Al 4/2003 Watkins et al. Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
2003/0084020 Al 5/2003 Shu tication Methods and Security Mechanisms; IETF Network Work-
2004/0024963 Al 2/2004 Talagala et al. ing Group; RFC 4513; Jun. 2006; Pp. 1-32.
2004/0122917 Al 6/2004 Menon et al. Zellenga; Lightweight Directory Access Protocol (LDAP): Techni-
2004/0215998 Al 10/2004 Buxton et al. cal Specification Road Map; IETF Network Working Group; RFC
2004/0228493 Al 11/2004 Ma . .
2005/0100022 Al 5/2005 Ramprashad Ao10 Jun, 2000; pp. 1-5
5005/0114504 A | 5/2005 Corbii?setaal Zellenga; Lightweight Directory Access Protocol (LDAP): String
2005/0125593 Al 6/2005 Karpoff et al‘ Representation of Distinguished Names; IETF Network Working
2005/0131993 Al 6/2005 Fatula Group; REC 4514; Jun. 2006; pp. 1-15.
2005/0132070 Al 6/2005 Redlich et al Sermersheim; Lightweight Dlr.ectory Access Protocol (LDAP): the
2005/0144382 Al 6/2005 Schmisseur Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
2005/0229069 Al 10/2005 Hassner et al. 1-68.
2006/0047907 Al 3/2006 Shiga et al. Satran, et al.; Internet Small Computer Systems Interface (1SCSI);
2006/0136448 Al 6/2006 Cialini et al. IETF Network Working Group; RFC 3720, Apr. 2004; pp. 1-257.
2006/0156059 Al 7/2006 Kitamura Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
2006/0224603 Al 10/2006 Correll Storage Systems; 13th IEEE International Symposium on High
2007/0079081 Al 4/2007 Gladwin et al Performance Distributed Computing; Jun. 2004; pp. 172-181.
2007/0079082 Al 4/2007 Gladwin et al. - - | | :
_ . . ublatowicz, et al.; Oceandtore: chitecture 1tor (slobal-Scale
Kub l.; O S An Arch for Global-Scal
2007/0079083 Al 4/2007 Gladwin et al. . | . . .
2007/0088970 A | 4/2007 Buxton ef al. Persistent Storage; Proceedings of the Ninth International Confer-
2007/0174197 Al 79007 Gladwin et al. ence on Architectural Support for Programming Languages and
2007/0214285 Al 9/2007 Au et al. Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.
2007/0234110 A1 10/2007 Soran et al. _ _
2007/0283167 Al 12/2007 Venters et al. * cited by examiner

US 10,652,350 B2

Sheet 1 of 4

May 12, 2020

U.S. Patent

‘—_

07 hun buissasoid
Abajul 18a

Z¢ dInpow (N1SQ) Yiomiau yse)

0T Wa)sAs bunndwiod panqgLysip
10/% 8beI0IS pPaINgLISIP

) E

07 9109
bunndwios

9¢ Jun

UONNJ=Xs | S

uonNIaXa |SQ

|
|
|
" € un
|
|

— T VS G A _ TC aoBuaUI

gl jun
buibeuew N1 SQ

0z 2109 T Y

bunndwon

£¢ S0elajul

BT 99IASp Jasn

0 @oepajul AN AT

Z¢ 9oBl8)ul

07 2109

¢ 9npow
Juelo 15a

bunndwod

¢ ginpowl

Jusip 150

gt 1sanbal
3SE} 10/8 (7 ejep

0¢7 9109 bunpndwo?

07 2409 bunndwo?

g1 Jun buissesoid 1SQ [901A8p Jasn

US 10,652,350 B2

Sheet 2 of 4

May 12, 2020

U.S. Patent

9/ 9|hpow ¥/ {|npow J 9|npow adela)ul 0/ 9|npow 99 9|npow 09 9|npow
9JELRJUI N1S(oJelajul JH YSe| 9Jel=jul }I0Mjou 9JELIR)UI YHH 9JEL™UI § 5[

8G 0Bl |Od 70 S0I9
NOHY

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

_ G 19]|0J3u09 09 8deuaul SoRLIOII
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Ol Ol

99IN3P O

S ¢S 0G s|hpow
AJowaw urew 19]|0Ju09 Alowaw puISSa90.d

GG Jun buissagold
solydeld oapia

._
_
_
_
_
_
_
_
_
_
_
_
_
_
_

— 70 a|npow “
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

07 2109 bunndwo?
_IIINIIII.HIIL

¢ Ol

19918

SERIE

_— Im
Uun X3 15d IN —
-«
(4-¥) 1sanbal peal it

US 10,652,350 B2

m 01€ 8Yaeo [eao
| + 1 9JI|S
— >
= 2 Wun X3 1SC o
PR I-], S80I palIsap
- Z 1sanbal peal
: 10} youIess
-
— SR
75 0¢¢ Aowsw 19[S 73
R € 9inpowl
€ sinpow jusid 157 < ——
< | 1S9nba. pes.
= ——— Q¢ 9102 bunndwo?
ul!
>
~
=

-1 S92I|S

>

¢ 90BLIBUI

%} sisont
(1 -3) -| sisenbay pes. 97 un Buissaoold |SQ

U.S. Patent

US 10,652,350 B2

Sheet 4 of 4

May 12, 2020

U.S. Patent

¥ Ol

19S 99I|S
P3JISAP 1S.1} BY) Ul $32I1|S Papoaua Jo Alljeln|d
ay] 10 19sgns 1S4l aYy) buiposap sspnjoul
199(q0 Blep 1sJ1) ay) bunetsusbal uldlaym
‘WI0M])aU ay] BIA ajnpow bunsanbal 1siiy ay) 0)
UOISSIWSUR) 10} 193[00 Blep 1S41) 8Y) d)elaushal

Jilun abe.o)s auo
]SE9| Je 8} WO PaAISdal 321|S papoIUs auo
JSE3| Je 3y} apn[oul 0} ayde9 [eao| ay) ajepdn

YJOMIaU ay] BIA Jun abeio)s
9UO 1Se9| Je ay) Wolj elep a9l|s Juasge au) Aq
P3aJeIPUI 3II|S POPOIUS BUO JSEI)| Je BU] SAISI3.

SHuUN
abeJo)s Jo Allelnd ay) ay) Jo Jiun abelo)s auo
JSB9| Je WOJ) Blep 991S Juasge aul Aq pajeaipul

301|S PAPOIUD U0 JSET| Je 3y} peal 0} }sanbal
peaJ 3UO JSBa| Je YJOMIBU 3y} BIA JIWSUEL)

ayoe?

[290] aU) U1uasald Jou S1Jeu) 1as a9I|s palIsap
JSJ1} AU} JO 32I[S PaPOIUS 3UO JSEd| Je Sajelpul
BJep 99I|S JUSSJe au) UIRJauMm ‘ayoed [eo| e
Buiyaleas uo paseq ejep a9i[s Juasge ajelauab

193(q0 B)ep 1s4i} Y} JO S3I|S
pap0oaua Jo Alelnid ay) Jo 19sqns 1S4l e S118S
991|S paJISap 1Sl AU} a1daym ‘anpow Bunsanbal
JSJ1} BY) UO Paseq 1as 991|S PaJISap sl e 199]9S

sjun abeuo)s Jo Allje.an|d
B Ul $321|S papoaus Jo Aleln|d e se palols
S1199(q0 Blep 1s411 8yl asaym 99lqo eyep isii e
S9)RIIpul Jeul YJoMmjau B BIA ajnpow bunsanbal
1SJI} B WOJ) }sanbal $S920. 1SU1) B 9AI909)

US 10,652,350 B2

1

CACHING FOR UNIQUE COMBINATION
READS IN A DISPERSED STORAGE

NETWORK

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MAITERIAL SUBMITTED ON A COMPACT
DISC

Not applicable.

BACKGROUND OF THE INVENTION

Technical Field of the Invention

Aspects of this mvention relate generally to computer
networks and more particularly to dispersed storage of data
and distributed task processing of data.

Description of Related Art

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As 1s further known, a computer may effectively extend
its CPU by using “cloud computing’” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop 1s an
open source solftware framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage” as part of 1ts memory system. As 1s known,
cloud storage enables a user, via 1ts computer, to store files,
applications, etc. on an Internet storage system. The Internet
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for
storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 1s a schematic block diagram of an embodiment of
a distributed computing system in accordance with the
present mvention;

FI1G. 2 15 a schematic block diagram of an embodiment of
a computing core 1n accordance with the present invention;

FIG. 3 1s a schematic block diagrams of an embodiment
of a dispersed storage network (DSN) 1n accordance with the
present mvention; and

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a flowchart illustrating an example of caching
for unique combination reads 1n accordance with the present
invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

FIG. 1 1s a schematic block diagram of an embodiment of
a distributed computing system 10 that includes a user
device 12 and/or a user device 14, a distributed storage
and/or task (DST) processing umt 16, a distributed storage
and/or task network (DSTN) managing unit 18, a DST
integrity processing unit 20, and a distributed storage and/or
task network (DSTN) module 22. The components of the
distributed computing system 10 are coupled via a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more private mtranet
systems and/or public internet systems; and/or one or more
local area networks (LAN) and/or wide area networks
(WAN). Hereaftter, the distributed computing system 10 may
be interchangeably referred to as a dispersed storage net-
work (DSN).

The DSTN module 22 includes a plurality of distributed
storage and/or task (DST) execution units 36 that may be
located at geographically different sites (e.g., one 1n Chi-
cago, one 1 Milwaukee, etc.). Each of the DST execution
units 1s operable to store dispersed error encoded data and/or
to execute, 1n a distributed manner, one or more tasks on
data. The tasks may be a simple function (e.g., a mathemati-
cal function, a logic function, an identify function, a find
function, a search engine function, a replace function, etc.),
a complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
ctc. Hereafter, the DST execution unit may be interchange-
ably referred to as a storage unit and a set of DS'T execution
units may be interchangeably referred to as a set of storage
units.

Each of the user devices 12-14, the DST processing unit
16, the DSTN managing unit 18, and the DST integrity
processing unmt 20 include a computing core 26 and may be
a portable computing device and/or a fixed computing
device. A portable computing device may be a social net-
working device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld com-
puter, a tablet, a video game controller, and/or any other
portable device that includes a computing core. A fixed
computing device may be a personal computer (PC), a
computer server, a cable set-top box, a satellite receiver, a
television set, a printer, a fax machine, home entertainment
equipment, a video game console, and/or any type of home
or oflice computing equipment. User device 12 and DST
processing unit 16 are configured to include a DST client
module 34. While only one DST processing unit 16 1s
depicted in FIG. 1, the DSN can include a plurality of DST
processing units 16, all connected to network 24.

With respect to interfaces, each interface 30, 32, and 33
includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, iterface 30 supports a communica-
tion link (e.g., wired, wireless, direct, via a LAN, via the
network 24, etc.) between user device 14 and the DST
processing unmt 16. As another example, 1iterface 32 sup-
ports communication links (e.g., a wired connection, a
wireless connection, a LAN connection, and/or any other

US 10,652,350 B2

3

type of connection to/from the network 24) between user
device 12 and the DSTN module 22 and between the DST
processing unit 16 and the DSTN module 22. As yet another
example, iterface 33 supports a communication link for
cach of the DSTN managing unit 18 and DST integrity
processing unit 20 to the network 24.

The distributed computing system 10 1s operable to sup-
port dispersed storage (DS) error encoded data storage and
retrieval, to support distributed task processing on recerved
data, and/or to support distributed task processing on stored
data. In general and with respect to DS error encoded data
storage and retrieval, the distributed computing system 10
supports three primary operations: storage management,
data storage and retrieval, and data storage mtegrity verifi-
cation. In accordance with these three primary functions,
data can be encoded (e.g., utilizing an information dispersal
algorithm (IDA), utilizing a dispersed storage error encod-
ing process), distributedly stored in physically different
locations, and subsequently retrieved 1n a reliable and secure
manner. Hereafter, distributedly stored may be interchange-
ably referred to as dispersed stored. Such a system 1s tolerant
of a significant number of failures (e.g., up to a failure level,
which may be greater than or equal to a pillar width (e.g., an
IDA width of the IDA) minus a decode threshold minus one)
that may result from individual storage device (e.g., DST
execution umt 36) failures and/or network equipment fail-
ures without loss of data and without the need for a redun-
dant or backup copy. Further, the distributed computing
system 10 allows the data to be stored for an indefinite
period of time without data loss and does so 1 a secure
manner (e.g., the system 1s very resistant to attempts at
hacking the data).

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, 1i a second type of user device 14 has data 40 to
store 1n the DSTN module 22, 1t sends the data 40 to the DST
processing unit 16 via its interface 30. The interface 30
functions to mimic a conventional operating system (OS)
file system interface (e.g., network file system (NFS), flash
file system (FFS), disk file system (DFS), file transfer
protocol (FIP), web-based distributed authoring and ver-
sioning (WebDAV), etc.) and/or a block memory interface
(e.g., small computer system interface (SCSI), internet small
computer system interface (1SCSI), etc.). In addition, the
interface 30 may attach a user identification code (ID) to the
data 40.

To support storage management, the DSTN managing
unit 18 performs DS management services. One such DS
management service includes the DSTN managing unit 18
establishing distributed data storage parameters (e.g., vault
creation, distributed storage parameters, security param-
eters, billing information, user profile information, etc.) for
a user device 12-14 individually or as part of a group of user
devices. For example, the DSTN managing unit 18 coordi-
nates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within memory of the DSTN module 22 for a user
device, a group of devices, or for public access and estab-
lishes per vault dispersed storage (DS) error encoding
parameters for a vault. The DSTN managing unit 18 may
tacilitate storage of DS error encoding parameters for each
vault of a plurality of vaults by updating registry information
for the distributed computing system 10. The facilitating
includes storing updated system registry information in one
or more of the DSTN module 22, the user device 12, the
DST processing unit 16, and the DST integrity processing
unit 20.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The DS error encoding parameters (e.g., or dispersed
storage error coding parameters for encoding and decoding)
include data segmenting information (e.g., how many seg-
ments data (e.g., a file, a group of files, a data block, etc.) 1s
divided 1nto), segment security information (e.g., per seg-
ment encryption, compression, integrity checksum, etc.),

error coding information (e.g., pillar/IDA width, decode
threshold, read threshold, wrnte threshold, etc.), slicing
information (e.g., the number of encoded data slices that will
be created for each data segment); and slice security infor-
mation (e.g., per encoded data slice encryption, compres-
sion, 1ntegrity checksum, etc.).

The DSTN managing unit 18 creates and stores user
profile information (e.g., an access control list (ACL)) 1n
local memory and/or within memory of the DSTN module
22. The user profile information includes authentication
information, permissions, and/or the security parameters.
The security parameters may include encryption/decryption
scheme, one or more encryption keys, key generation
scheme, and/or data encoding/decoding scheme.

The DSTN managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For istance, the DSTN managing unit 18 tracks
the number of times a user accesses a private vault and/or
public vaults, which can be used to generate a per-access
billing information. In another instance, the DSTN manag-
ing unit 18 tracks the amount of data stored and/or retrieved
by a user device and/or a user group, which can be used to
generate a per-data-amount billing information.

Another DS management service includes the DSTN
managing unit 18 performing network operations, network
administration, and/or network maintenance. Network
operations 1ncludes authenticating user data allocation
requests (e.g., read and/or write requests), managing cre-
ation of vaults, establishing authentication credentials for
user devices, adding/deleting components (e.g., user
devices, DST execution units, and/or DST processing units)
from the distributed computing system 10, and/or establish-
ing authentication credentials for DST execution units 36.
Network administration includes monitoring devices and/or
unmts for failures, maintaining vault information, determin-
ing device and/or unit activation status, determining device
and/or unit loading, and/or determining any other system
level operation that affects the performance level of the
system 10. Network maintenance includes {facilitating
replacing, upgrading, repairing, and/or expanding a device
and/or unit of the system 10.

To support data storage integrity verification within the
distributed computing system 10, the DST 1ntegrity process-
ing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit
20 performs rebuilding by periodically attempting to
retrieve/list encoded data slices, and/or slice names of the
encoded data slices, from the DSTN module 22. For
retrieved encoded slices, they are checked for errors due to
data corruption, outdated version, etc. If a slice includes an
error, 1t 1s flagged as a “bad’ slice. For encoded data slices
that were not received and/or not listed, they are flagged as
missing slices. Bad and/or missing slices are subsequently
rebuilt using other retrieved encoded data slices that are
deemed to be good slices to produce rebuilt slices. The
rebuilt slices are stored 1n memory of the DSTN module 22.
Note that the DST integrity processing unit 20 may be a
separate unit as shown, it may be included in the DSTN
module 22, 1t may be included 1n the DST processing unit
16, and/or distributed among the DST execution units 36.

US 10,652,350 B2

S

Each slice name 1s unique to a corresponding encoded
data slice and includes multiple fields associated with the
overall namespace of the DSN. For example, the fields may
include a pillar number/pillar index, a vault i1dentifier, an
object number uniquely associated with a particular file for
storage, and a data segment 1dentifier of a plurality of data
segments, where the particular file 1s divided into the plu-
rality of data segments. For example, each slice name of a
set of slice names corresponding to a set of encoded data
slices that has been dispersed storage error encoded from a
common data segment varies only by entries of the pillar
number field as each share a common vault identifier, a
common object number, and a common data segment 1den-
tifier.

To support distributed task processing on received data,
the distributed computing system 10 has two primary opera-
tions: DST (distributed storage and/or task processing) man-
agement and DST execution on received data. With respect
to the storage portion of the DST management, the DSTN
managing unit 18 functions as previously described. With
respect to the tasking processing of the DST management,
the DSTN managing unit 18 performs distributed task
processing (DTP) management services. One such DTP
management service includes the DSTN managing unit 18
establishing DTP parameters (e.g., user-vault athliation
information, billing information, user-task information, etc.)
for a user device 12-14 individually or as part of a group of
user devices.

Another DTP management service includes the DSTN
managing unit 18 performing DTP network operations,
network administration (which 1s essentially the same as
described above), and/or network maintenance (which 1s
essentially the same as described above). Network opera-
tions 1include, but are not limited to, authenticating user task
processing requests (e.g., valid request, valid user, etc.),
authenticating results and/or partial results, establishing
DTP authentication credentials for user devices, adding/
deleting components (e.g., user devices, DST execution
units, and/or DST processing units) from the distributed
computing system, and/or establishing DTP authentication
credentials for DST execution units.

To support distributed task processing on stored data, the
distributed computing system 10 has two primary opera-
tions: DST (distributed storage and/or task) management
and DST execution on stored data. With respect to the DST
execution on stored data, if the second type of user device
14 has a task request 38 for execution by the DSTN module
22, 1t sends the task request 38 to the DS'T processing unit
16 via 1ts interface 30. With respect to the DS'T management,
it 1s substantially similar to the DST management to support
distributed task processing on received data.

In various embodiments, data sent to a DST processing
unit for storage by a user device 12-14 can include one or
more data objects. Each data object can have a unique,
corresponding object identifier, object name, or object ID. In
various embodiments, the object ID can be generated deter-
ministically based on the data object itself, generated based
on the user device, generated sequentially, and/or generated
randomly. The object ID can be generated by the user device
or requesting entity, or can be generated by the DST
processing unit after the data 1s received from the user
device. A set of encoded data slices can be generated to store
a particular data object, where the set of encoded data slices
corresponding to the data object are stored in one or more
storage units. A subset of the encoded data slices can be
decoded to regenerate the original data object.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 1s a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (I10) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic mput output system
(BIOS) 64, and one or more memory mterface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a

conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),

disk file system (DFS), file transter protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system 1nterface (SCSI), internet small computer system
interface (1SCSI), etc.). The DSTN interface module 76
and/or the network 1nterface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10 device imterface module 62 and/or the memory
interface modules may be collectively or individually
referred to as 10 ports.

FIG. 3 1s a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) that includes the

distributed storage and task (DST) processing unit 16 of
FIG. 1, the network 24 of FIG. 1, and a set of DST execution

(EX) umits 1-z. Each DST execution unit includes the DST
client module 34 of FIG. 1 and a memory 320. Memory 320
can be utilized by, for example, main memory 54 of FIG. 2.
DST processing unit 16 includes interface 32 of FIG. 1,
computing core 26 of figure one which can include DST
client module 34 of FIG. 1, and a local cache 310. Hereatfter,
the set of DST execution units may be interchangeably
referred to as a set of storage units and the DST execution
unit may be interchangeably referred to as a storage unait.
Each DST execution unit may be implemented utilizing the
DST execution umt 36 of FIG. 1. The DSN functions to
cache unique combination reads.

A DST processing unit that 1s part of a DSN memory
utilizing Unique Combination Reads (UCR), may at times
experience high demand for a given data object. One
approach 1s, for each request, to 1ssue a unique combination
of read requests for those slices based on the requester.
However, after a very small number of requesters, a DST
processing until will generally have seen all slices for the
grven data object. Rather than burden storage units each time
an access request comes 1n, the DST processing unit, may
choose to cache all of the individual slices locally, and then
with each read request that comes 1n, based on the requester,
the DST processing until will select the correct combination
of slices to use from those slices held 1n cache, apply the
decoding function to recover the original content object, and
then return the data object to the requester.

In various embodiments, a data object can be encoded and
stored as a plurality of encoded data slices distributed
amongst a plurality of storage units. In various embodi-
ments, the number of data slices needed to decode and
regenerate the original data object 1s less than the total
number of data slices stored for the object. In various
embodiments, k slices are necessary to decode the object,
and there are n slices total. In various embodiments, any
combination of k slices can be used jointly to decode the
object. Each combination of k slices for a data object can be

US 10,652,350 B2

7

assigned to a particular requesting entity, where the request-
ing entity can be, for example, a user device 12-14. In such
cases, the combination of k slices assigned to the commu-
nicating for the data object can be a unique combination of
read requests for the object 1t the total number of requesting,
entities does not exceed C(n,k), the total number of possible
combinations of k slices from the total number of slices n.

In various embodiments, retrieved slices from previous
read requests can be stored 1n a cache of the DST processing,
unit. The cache can be included 1n the DST processing unit
itself, or be connected to network 24, accessible by the DST
processing unit. In various embodiments, every retrieved
slice can be stored in the cache until a predefined size has
been reached, or until a time stamp corresponding to the
access 1s less recent than a predefined time. In various
embodiments, only slices corresponding to read requests are
stored. In other embodiments, slices indicated in write
and/or task requests are also stored in the cache. In various
embodiments, only slices corresponding to recent accesses
are stored. In various embodiments, only slices correspond-
ing to high demand data objects are stored. For example, the
DST processing unit can determine that a data object or set
of data objects has been accessed frequently, or 1s antici-
pated to be 1 high demand, and choose to store correspond-
ing slices 1n the cache accordingly. In various embodiments,
the DST processing unit can preemptively retrieve data
slices from storage and add them to the cache, even without
receiving a corresponding access request. For example, the
DST processing unit can preemptively retrieve slices 1n
response to determining the cache has space for more slices
and/or a particular data slice will soon be 1n high demand.
In various embodiments, the DST processing unit can
retrieve all additional data slices for a particular object
preemptively 1n response to adding at least one data slice of
the data object to the local cache, for example, to ensure that
all data slices of the data object are present 1n the cache and
that no additional slices will need to be retrieved from
storage units 1n subsequent requests for the data object. The
DST processing unit can store slices 1n the cache based on
capacity and/or performance considerations ol particular
storage units or the DST processing unit itself. In various
embodiments, only slices stored 1n a particular set of storage
units will be selected, for example, to help reduce trafiic to
those particular storage units 1n satisfying future requests.

In various embodiments, the DST processing unit can
receive an access request indicating a data object from a
requesting entity. For example, the access request can be a
read request where no updates to the encoded slices are
necessary. The DST processing unit can determine the
unique combination of slices corresponding to the request-
ing entity, for example, based on an 1ndication in the access
request, a deterministic function performed on an 1dentifier
of the requesting entity, an entry of a lookup table, etc. Once
the desired set of encoded slices corresponding to the data
object 1s determines, the DST processing unit can check the
cache can check the cache for encoded slices in response to
receiving an access request from a requesting entity. For
example, the first r encoded slices may be available 1n the
cache, but the remaining k-r encoded slices require read
requests from storage units. The DST processing umit can
then retrieve any additional encoded slices not found 1n the
cache from one or more storage units. In various embodi-
ments, once the desired set of encoded slices are retrieved
from the cache and/or storage units, the DST processing unit
can decode the slice set to regenerate the data object for
transmission back to the requesting entity.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

In various embodiments, a processing system of a dis-
persed storage and task (DST) execution unit includes at
least one processor a memory that stores operational mstruc-
tions, that when executed by the at least one processor cause
the processing system to receive a {irst access request from
a {irst requesting module via a network that indicates a first
data object, where the first data object is stored as a plurality
of encoded slices in a plurality of storage units. A {first
desired slice set 1s selected based on the first requesting
module, where the first desired slice set 1s a first subset of the
plurality of encoded slices of the first data object. Absent
slice data 1s generated based on searching a local cache,
where the absent slice data indicates at least one encoded
slice of the first desired slice set that 1s not present in the
local cache. A read request to read the at least one encoded
slice indicated by the absent slice data from at least one
storage unit of the plurality of storage units 1s transmitted via
the network. The at least one encoded slice indicated by the
absent slice data from the at least one storage unit 1s received
via the network. The local cache 1s updated to include the at
least one encoded slice received from the at least one storage
unit. The first data object 1s regenerated for transmission to
the first requesting module via the network, where regener-
ating the first data object includes decoding the first subset
of the plurality of encoded slices 1n the first desired slice set.

In various embodiments, the local cache includes all of
the plurality of encoded slices for the first data object after
the local cache 1s updated. In various embodiments, the local
cache includes only encoded slices from a pre-defined subset
of the plurality of storage units. In various embodiments, the
absent slice data further indicates all encoded slices of the
first data object that are not present in the local cache,
including at least one encoded slice that 1s not a member of
the first desired slice set, and the local cache includes the
plurality of encoded slices of the first data object as a result
of updating the local cache. In various embodiments, the
local cache 1s updated to include all of a second plurality of
encoded slices corresponding to a second data object 1n
response to determining that the second data object 1s 1n high
demand. In various embodiments, the local cache includes
encoded slices of previous access requests based on recency
ol access of the encoded slice and/or frequency of access of
the encoded slice. In various embodiments, the first desired
slice set 1s unique to the first requesting module.

In various embodiments, a second read request to read the
first data object 1s received from a second requesting module
via the network. A second desired slice set 1s selected based
on the second requesting module, where the second desired
slice set 1s a second subset of the plurality of encoded slices
of the first data object. The first data object 1s regenerated for
transmission to the second requesting module via the net-
work 1n response to determining that the entire second
desired slice set 1s present 1n the local cache, where regen-
crating the first data object includes decoding the second
subset of the plurality of encoded slices 1n the second desired
slice set.

FIG. 4 1s a flowchart illustrating an example of caching
unique combination reads. In particular, a method 1s pre-
sented for use 1n conjunction with one or more functions and
features described 1in conjunction with FIGS. 1-3 15 pre-
sented for execution by a dispersed storage and task (DST)
processing unit that includes a processor or via another
processing system ol a dispersed storage network that
includes at least one processor and memory that stores
instruction that configure the processor or processors to
perform the steps described below. Step 402 includes receiv-
ing a first access request from a first requesting module via

US 10,652,350 B2

9

a network that indicates a first data object, where the first
data object 1s stored as a plurality of encoded slices 1n a
plurality of storage units. Step 404 includes selecting a first
desired slice set based on the first requesting module, where
the first desired slice set 15 a first subset of the plurality of
encoded slices of the first data object. Step 406 includes
generating absent slice data based on searching a local
cache, where the absent slice data indicates at least one
encoded slice of the first desired slice set that 1s not present
in the local cache. Step 408 includes transmitting via the
network a read request to read the at least one encoded slice
indicated by the absent slice data from at least one storage
unit of the plurality of storage units. Step 410 includes
receiving the at least one encoded slice indicated by the
absent slice data from the at least one storage unit via the
network. Step 412 includes updating the local cache to
include the at least one encoded slice received from the at
least one storage unit. Step 414 includes regenerating the
first data object for transmission to the first requesting
module via the network, wherein regenerating the first data
object includes decoding the first subset of the plurality of
encoded slices 1n the first desired slice set.

In various embodiments, the local cache includes all of
the plurality of encoded slices for the first data object after
the local cache 1s updated. In various embodiments, the local
cache includes only encoded slices from a pre-defined subset
of the plurality of storage units. In various embodiments, the
absent slice data further indicates all encoded slices of the
first data object that are not present in the local cache,
including at least one encoded slice that 1s not a member of
the first desired slice set, and the local cache includes the
plurality of encoded slices of the first data object as a result
of updating the local cache. In various embodiments, the
local cache 1s updated to include all of a second plurality of
encoded slices corresponding to a second data object 1n
response to determining that the second data object 1s 1n high
demand. In various embodiments, the local cache includes
encoded slices of previous access requests based on recency
of access of the encoded slice and/or frequency of access of
the encoded slice. In various embodiments, the first desired
slice set 1s unique to the first requesting module.

In various embodiments, a second read request to read the
first data object 1s recerved from a second requesting module
via the network. A second desired slice set 15 selected based
on the second requesting module, where the second desired
slice set 1s a second subset of the plurality of encoded slices
of the first data object. The first data object 1s regenerated for
transmission to the second requesting module via the net-
work 1n response to determining that the entire second
desired slice set 1s present 1n the local cache, where regen-
erating the first data object includes decoding the second
subset of the plurality of encoded slices 1n the second desired
slice set.

The method described above in conjunction with the
computing device and the storage units can alternatively be
performed by other modules of the dispersed storage net-
work or by other devices. For example, any combination of
a first module, a second module, a third module, a fourth
module, etc. of the computing device and the storage units
may perform the method described above. In addition, at
least one memory section (e.g., a first memory section, a
second memory section, a third memory section, a fourth
memory section, a fifth memory section, a sixth memory
section, etc. of a non-transitory computer readable storage
medium) that stores operational instructions can, when
executed by one or more processing modules of one or more
computing devices and/or by the storage units of the dis-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

persed storage network (DSN), cause the one or more
computing devices and/or the storage units to perform any or
all of the method steps described above.

In various embodiments, a non-transitory computer read-
able storage medium includes at least one memory section
that stores operational instructions that, when executed by a
processing system of a dispersed storage network (DSN)
that includes a processor and a memory, causes the process-
ing system to receive a first access request from a first
requesting module via a network that indicates a first data
object, where the first data object is stored as a plurality of
encoded slices 1n a plurality of storage units. A first desired
slice set 1s selected based on the first requesting module,
where the first desired slice set 1s a first subset of the
plurality of encoded slices of the first data object. Absent
slice data 1s generated based on searching a local cache,
where the absent slice data indicates at least one encoded
slice of the first desired slice set that 1s not present 1n the
local cache. A read request to read the at least one encoded
slice indicated by the absent slice data from at least one
storage unit of the plurality of storage units 1s transmitted via
the network. The at least one encoded slice indicated by the
absent slice data from the at least one storage unit 1s received
via the network. The local cache 1s updated to include the at
least one encoded slice received from the at least one storage
umt. The first data object 1s regenerated for transmission to
the first requesting module via the network, where regener-
ating the first data object includes decoding the first subset
of the plurality of encoded slices 1n the first desired slice set.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between 1tems. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but 1s not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between 1tems ranges from a differ-
ence of a few percent to magnmitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
to”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening 1tem (e.g., an item includes, but 1s not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modity
the information of a signal but may adjust 1ts current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (1.e., where one element 1s coupled
to another element by inference) includes direct and indirect
coupling between two 1tems in the same manner as “coupled
to”. As may even further be used herein, the term “operable
to” or “operably coupled to” indicates that an 1tem includes
one or more ol power connections, iput(s), output(s), etc.,
to perform, when activated, one or more 1ts corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ‘“‘associated with”, includes direct and/or indirect cou-
pling of separate i1tems and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more 1tems, signals, etc., provides a desired relation-
ship. For example, when the desired relationship i1s that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 1s greater than that of signal 2 or when the magnitude of
signal 2 1s less than that of signal 1.

As may also be used herein, the terms “processing mod-

ule”, “processing circuit”, and/or “processing unit” may be

US 10,652,350 B2

11

a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor,
micro-controller, digital signal processor, microcomputer,
central processing unit, field programmable gate array, pro-
grammable logic device, state machine, logic circuitry, ana- 5
log circuitry, digital circuitry, and/or any device that
manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational 1nstructions. The
processing module, module, processing circuit, and/or pro-
cessing unit may be, or further include, memory and/or an 10
integrated memory element, which may be a single memory
device, a plurality of memory devices, and/or embedded
circuitry of another processing module, module, processing
circuit, and/or processing unit. Such a memory device may

be a read-only memory, random access memory, volatile 15
memory, non-volatile memory, static memory, dynamic
memory, flash memory, cache memory, and/or any device
that stores digital information. Note that if the processing
module, module, processing circuit, and/or processing unit
includes more than one processing device, the processing 20
devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be
distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area
network). Further note that i1 the processing module, mod- 25
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional 1nstructions may be embedded within, or external to, 30
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational 1nstructions corresponding to 35
at least some of the steps and/or functions illustrated 1n one

or more of the Figures. Such a memory device or memory
clement can be included in an article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified 40
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships 45
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be 50
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the tlow
diagram block boundaries and sequence could have been 55
defined otherwise and still perform the certain significant
functionality. Such alternate defimitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the 60
tfunctional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soit-
ware and the like or any combination thereof. 65

The present mvention may have also been described, at
least 1n part, 1n terms of one or more embodiments. An

12

embodiment of the present invention 1s used herein to
illustrate the present invention, an aspect thereof, a feature
thereof, a concept thereol, and/or an example thereof. A
physical embodiment of an apparatus, an article of manu-
facture, a machine, and/or of a process that embodies the
present mvention may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from figure to figure, the embodiments may incorporate
the same or similarly named functions, steps, modules, eftc.
that may use the same or different reference numbers and, as
such, the functions, steps, modules, etc. may be the same or
similar functions, steps, modules, etc. or different ones.
Unless specifically stated to the contra, signals to, from.,
and/or between elements 1n a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, 1f a signal path 1s shown as a single-ended path, 1t
also represents a diflerential signal path. Similarly, 11 a signal
path 1s shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.
The term “module” 1s used 1n the description of the
various embodiments of the present invention. A module
includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or
more functions as may be described herein. Note that, 11 the
module 1s implemented via hardware, the hardware may
operate independently and/or 1n conjunction software and/or
firmware. As used herein, a module may contain one or more
sub-modules, each of which may be one or more modules.
While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention 1s not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.
What 1s claimed 1s:
1. A method for execution by a dispersed storage and task
(DST) processing unit that includes a processor, the method
COmMprises:
recerving a lirst access request from a first requesting
module via a network that indicates a first data object,
wherein the first data object 1s stored as a plurality of
encoded slices 1n a plurality of storage units;

selecting a first desired slice set based on an 1dentifier of
the first requesting module, wherein the first desired
slice set includes a first subset of the plurality of
encoded slices of the first data object;

generating first absent slice data based on searching a

local cache, wherein the first absent slice data indicates
at least one encoded slice of the first desired slice set
that 1s not present 1n the local cache;

transmitting via the network at least one read request to

read the at least one encoded slice indicated by the first
absent slice data from at least one storage unit of the
plurality of storage units;

recerving the at least one encoded slice indicated by the

first absent slice data from the at least one storage unit
via the network;

updating the local cache to include the at least one

encoded slice received from the at least one storage
unit;

US 10,652,350 B2

13

regenerating the first data object for transmission to the
first requesting module via the network, wherein regen-
crating the first data object includes decoding the first
subset of the plurality of encoded slices 1in the first
desired slice set:

receiving a second access request from a second request-

ing module via a network that indicates the first data
object;

selecting a second desired slice set based on an 1dentifier

of the second requesting module, wherein the second
desired slice set includes a second subset of the plu-
rality of encoded slices of the first data object that
includes the at least one encoded slice, and wherein the
first subset of the plurality of encoded slices 1s different
from the second subset of the plurality of encoded
slices;

generating second absent slice data based on searching a

local cache, wherein the second absent slice data indi-
cates the second subset of the plurality of encoded
slices 1s present in the local cache as a result of
updating the local cache to include the at least one
encoded slice received from the at least one storage
unit; and

regenerating the first data object for transmission to the

second requesting module via the network, wherein
regenerating the first data object includes decoding the
second subset of the plurality of encoded slices in the
second desired slice set by utilizing the second subset
of the plurality of encoded slices stored in the local
cache.

2. The method of claim 1, wheremn updating the local
cache includes transmitting, via the network, a second at
least one read request to read a second at least one encoded
slice from a second at least one storage unit of the plurality
of storage units 1n response to determining the second at
least one encoded slice corresponds to the first data object
and 1s not included 1n the local cache, wherein the second at
least one encoded slice 1s not a member of the first desired
slice set, and wherein the local cache includes all of the
plurality of encoded slices for the first data object after the
local cache 1s updated.

3. The method of claim 1, wherein the local cache
includes only encoded slices from a pre-defined subset of the
plurality of storage units based on determining to reduce
traflic to the pre-defined subset of the plurality of storage
units.

4. The method of claim 1, wherein the first absent slice
data further indicates all encoded slices of the first data
object that are not present 1n the local cache, including at
least one encoded slice that 1s not a member of the first
desired slice set, and wherein the local cache includes the
plurality of encoded slices of the first data object as a result
of updating the local cache.

5. The method of claim 1, further comprising updating the
local cache to include all of a second plurality of encoded
slices corresponding to a second data object 1n response to
determining that the second data object 1s 1n high demand.

6. The method of claam 1, wherein the local cache
includes encoded slices of previous read access requests
based on frequency of access of the encoded slices.

7. The method of claim 1, wherein the first desired slice
set 1s unique to the first requesting module.

8. The method of claim 1, wherein the at least one
encoded slice 1s included in an intersection of the first
desired slice set and the second desired slice set.

9. A processing system of a dispersed storage and task
(DST) execution unit comprises:

10

15

20

25

30

35

40

45

50

55

60

65

14

at least one processor;
a memory that stores operational 1nstructions, that when
executed by the at least one processor cause the pro-
cessing system to:
receive a first access request via a network that 1ndi-
cates a first data object, wherein the first data object
1s stored as a plurality of encoded slices 1n a plurality
ol storage units;

select a first desired slice set based on an i1dentifier of

a first requesting module from which the first access
request was received, wherein the first desired slice
set includes a first subset of the plurality of encoded
slices of the first data object;

generate first absent slice data based on searching a
local cache, wherein the first absent slice data 1ndi-
cates at least one encoded slice of the first desired
slice set that 1s not present in the local cache;

transmit via the network at least one read request to
read the at least one encoded slice indicated by the
first absent slice data from at least one storage unit of
the plurality of storage units;

receive the at least one encoded slice indicated by the
first absent slice data from the at least one storage
unit via the network;

update the local cache to include the at least one
encoded slice recetved from the at least one storage
unit;

regenerate the first data object for transmission via the
network, wherein regenerating the first data object
includes decoding the first subset of the plurality of
encoded slices 1n the first desired slice set

receive a second access request via a network that
indicates the first data object;

select a second desired slice set based on an i1dentifier
of a second requesting module from which the first
access request was received, wherein the second
desired slice set includes a second subset of the
plurality of encoded slices of the first data object that
includes the at least one encoded slice and wherein
the first subset of the plurality of encoded slices 1s
different from the second subset of the plurality of
encoded slices;

generate second absent slice data based on searching a
local cache, wherein the second absent slice data
indicates the second subset of the plurality of
encoded slices 1s present 1n the local cache as a result
of updating the local cache to include the at least one
encoded slice received from the at least one storage
unit; and

regenerate the first data object for transmission t via the
network, wherein regenerating the first data object
includes decoding the second subset of the plurality
ol encoded slices 1n the second desired slice set by
utilizing the second subset of the plurality of
encoded slices stored 1n the local cache.

10. The processing system of claim 9, wherein updating
the local cache includes transmitting, via the network, a
second at least one read request to read a second at least one
encoded slice from a second at least one storage unit of the
plurality of storage units in response to determining the
second at least one encoded slice corresponds to the first data
object and 1s not included 1n the local cache, wherein the
second at least one encoded slice 1s not a member of the first
desired slice set, and wherein the local cache includes all of
the plurality of encoded slices for the first data object after
the local cache 1s updated.

US 10,652,350 B2

15

11. The processing system of claim 9, wherein the local
cache includes only encoded slices from a pre-defined subset
of the plurality of storage units based on determining to
reduce traflic to the pre-defined subset of the plurality of
storage units.

12. The processing system of claim 9, wherein the first
absent slice data further indicates all encoded slices of the
first data object that are not present in the local cache,
including at least one encoded slice that 1s not a member of
the first desired slice set, and wherein the local cache
includes the plurality of encoded slices of the first data
object as a result of updating the local cache.

13. The processing system of claim 9, wherein the opera-
tional instructions, when executed by the at least one pro-
cessor further cause the processing system to update the
local cache to include all of a second plurality of encoded
slices corresponding to a second data object 1n response to
determining that the second data object 1s 1n high demand.

14. The processing system of claam 9, wherein the local
cache includes encoded slices of previous read access
requests based on frequency of access of the encoded slices.

15. The processing system of claim 9, wherein the {first
desired slice set 1s unique to a requesting entity associated
with the {irst access request.

16. The processing system of claim 9, wherein the at least
one encoded slice 1s included 1n an intersection of the first
desired slice set and the second desired slice set.

17. A non-transitory computer readable storage medium
COmMprises:

at least one memory section that stores operational

instructions that, when executed by a processing sys-

tem of a dispersed storage network (DSN) that includes

a processor and a memory, causes the processing sys-

tem to:

receive a first access request from a first requesting
module via a network that indicates a first data
object, wherein the first data object 1s stored as a
plurality of encoded slices 1n a plurality of storage
units;

select a first desired slice set based on an 1dentifier of
the first requesting module, wherein the first desired
slice set includes a first subset of the plurality of
encoded slices of the first data object;

generate first absent slice data based on searching a
local cache, wherein the first absent slice data indi-
cates at least one encoded slice of the first desired
slice set that 1s not present 1n the local cache;

transmit via the network at least one read request to
read the at least one encoded slice indicated by the
first absent slice data from at least one storage unit of
the plurality of storage units;

5

10

15

20

25

30

35

40

45

50

16

receive the at least one encoded slice indicated by the
first absent slice data from the at least one storage
unit via the network;

update the local cache to include the at least one
encoded slice received from the at least one storage

unit;
regenerate the first data object for transmission to the

first requesting module via the network, wherein

regenerating the first data object includes decoding

the first subset of the plurality of encoded slices 1n

the first desired slice set

receive a second access request from a second request-
ing module via a network that indicates the first data
object;

select a second desired slice set based on an 1dentifier
of the second requesting module, wherein the second
desired slice set includes a second subset of the
plurality of encoded slices of the first data object that
includes the at least one encoded slice and wherein
the first subset of the plurality of encoded slices 1s
different from the second subset of the plurality of
encoded slices;

generate second absent slice data based on searching a
local cache, wherein the second absent slice data
indicates the second subset of the plurality of
encoded slices 1s present 1n the local cache as a result
of updating the local cache to include the at least one
encoded slice received from the at least one storage
unit; and

regenerate the first data object for transmission to the
second requesting module via the network, wherein
regenerating the first data object includes decoding

the second subset of the plurality of encoded slices 1n

the second desired slice set by utilizing the second

subset of the plurality of encoded slices stored 1n the
local cache.

18. The non-transitory computer readable storage medium
of claam 17, wherein the operational instructions, when
executed by the processing system, further cause the pro-
cessing system to: update the local cache to include all of a
second plurality of encoded slices corresponding to a second
data object in response to determining that the second data
object 1s 1n high demand.

19. The non-transitory computer readable storage medium
of claim 17, wherein the local cache includes encoded slices
of previous read access requests based on frequency of
access of the encoded slices.

20. The non-transitory computer readable storage medium
of claim 17, wherein the at least one encoded slice 1s
included 1n an intersection of the first desired slice set.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

