12 United States Patent

US010650011B2

10) Patent No.: US 10,650,011 B2

Barber et al. 45) Date of Patent: May 12, 2020
(54) EFFICIENT PERFORMANCE OF INSERT (56) References Cited
AND POINT QUERY OPERATIONS IN A U.S. PATENT DOCUMENTS
COLUMN STORE T -
(71) Applicant: International Business Machines gﬁggﬁg i 1?;1333 8121;73311:15[2l
Corporation, Armonk, NY (US) (Continued)
(72) Inventors: Ronald J. Prﬂl’bﬁl’j San JOS‘&'?,J CA (US), FORFEIGN PATENT DOCUMENTS
Bishwaranjan Bhattacharjee,
Yorktown Heights, NY (US); CN 1522409 A 8/2004
Mohammad Sadoghi Hamedani, CN 1968212 A 5/2007
Chappaqua, NY (US); Guy M. (Continued)
Lohman, San Jose, CA (US);
Chandrasekaran Mohan, San Jose, OTHER PURLICATIONS
CA (US); Ippokratis Pandis, Palo Alto,
CA (US); Vijayshankar Raman, Raman et al. (“DB2 with BLU Acceleration: So Much More than
Sunnyvale, CA (US); Richard S. Sidle, Just a Column Store”, Proceedings of the VLLDB Endowment, vol.
Mountain View, CA (US); Adam J. gbﬁ?;j Aug. 26-30, 2013, Riva del Garda, Trento, Italy). (Year:
Storm, Ontario (CA) *
(Continued)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) Primary Examiner — Shew Fen Lin
74) Attorney, Agent, or Firm — Sherman 1P LLP;
(*) Notice: Subject to any disclaimer, the term of this I({elzneth I gheém; Steven [Laut
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 367 days. (57) ABSTRACT
A method includes logically organizing, by an object hier-
(21) Appl. No.: 14/664,636 archy processor, data ogbj ectg n f first higerar};hy. Aéor‘[ion of
1ad- the data objects in the first hierarchy logically includes
(22) Filed viar. 20, 2015 groupings ol other data objects. The object hierarchy pro-
(65) Prior Publication Data cessor physically organizes the data objects across two or
more types of memory in a second hierarchy. Another
US 2016/0275171 Al Sep. 22, 2016 portion of the data objects 1n the second hierarchy physically
includes groupings of other data objects. Groupings of the
(51) Int. CI. data objects 1n the second hierarchy are dynamically moved
GO6l 167245 (2019.01) across the two or more types of memory. Levels of access of
GO6E 16/2458 (2019.01) the data objects are tracked using a data structure that maps
(52) US. CL groupings of the data objects 1n the first hierarchy onto
CPC e, GO6F 16/2465 (2019.01) metadata information including combined access frequen-
(58) Field of Classification Search cies of the data objects, and current number of accessors to
CPC GO6F 3/0647; GO6F 17/30539; GO6F the data Obj@CtS, 1n each grouping of the data ijects_

16/2255; GO6F 16/2456; GO6F 16/2465
See application file for complete search history.

20 Claims, 9 Drawing Sheets

LLLLLL)

9[!/

Ay

Managemen

vyl

US 10,650,011 B2

Page 2
(56) References Cited 2009/0210445 Al 8/2009 Draese et al.
2009/0222659 Al 9/2009 Miyabayashi et al.
1U.S. PATENT DOCUMENTS 2010/0088309 Al 4/2010 Petculescu et al.
2010/0114868 Al 5/2010 Beavin et al.
5.706,495 A 1/1998 Chadha et al. 2010/0131540 Al 5/2010 Xu et al.
5,740,440 A 4/1998 West 2010/0199066 Al 8/2010 Artan et al.
5,794,229 A %/1998 French 2010/0223253 Al 9/2010 Gopal et al.
5,893,086 A 4/1999 Schmuck et al. 2011/0060876 Al 3/2011 L
5.930,785 A 7/1999 T.ohman et al. 2011/0066593 Al 3/2011 Ahluwalia et al.
6,026,394 A /2000 Tsuchida et al. 2011/0078134 Al 3/2011 Bendel et al.
6,052,697 A 4/2000 Bennett 2011/0107021 Al* 5/2011 Muthukumarasamy
6,134,601 A * 10/2000 Spilo ...ccccovvevvvvrennnnn, GOG6F 9/50 GO6F 12/0207
719/328 711/104
6.247.014 Bl 6/2001 Ladwig et al. 2011/0283082 Al 11/2011 McKenney et al.
6,292,795 Bl 0/2001 Peters et al. 2011/0307471 A1 12/2011 Sheinin
6,505,189 Bl 1/2003 On Au et al. 2012/0011133 Al 1/2012 Faerber et al.
6,609,131 Bl Q/2003 7Zait et al. 2012/0011144 Al 1/2012 Transier et al.
6,757,677 B2 6/2004 Pham et al. 2012/0036134 Al 2/2012 Malakhov
6,775,681 Bl /2004 Ballamkonda et al. 2012/0117055 Al 5/2012 Al-omari et al.
6,937.652 B2 Q/2005 Gold et al. 2012/0136846 Al 5/2012 Song et al.
6,941,432 B2 9/2005 Ronstrom 2012/0136889 Al 5/2012 Jagannathan et al.
6,954,776 B1 10/2005 Cruanes et al. 2012/0143877 Al 6/2012 Kumar et al.
7,062,481 B2 6/2006 Pham et al. 2012/0158729 Al 6/2012 Mital et al.
7.287.131 Bl 10/2007 Martin et al. 2012/0166400 Al 6/2012 Sinclair et al.
7.293,028 B2 11/2007 Cha et al. 2012/0173517 Al 7/2012 Lang et al.
7.308,539 B2 12/2007 Fuhs et al. 2012/0260349 A1 10/2012 Nagai et al.
7.343.363 Bl 3/2008 Parker 2012/0303633 Al 11/2012 He et al.
7.412,439 B2 /2008 Bossman et al. 2012/0310917 A1 12/2012 Sheinin et al.
7.499.960 B2 3/2009 Dageville et al. 2012/0331249 Al1* 12/2012 Bengamin GO6F 3/0607
7,653,670 B2 1/2010 Hasan et al. 711/162
7,688,758 B2 3/2010 Denby et al. 2013/0046949 Al1* 2/2013 Colgrove GO6F 3/0608
7,716,180 B2 5/2010 Vermeulen et al. 711/170
7,827,182 B1 11/2010 Panigrahy 2013/0138628 Al 5/2013 Bensberg et al.
7,827,218 B1 11/2010 Mittal 2013/0218934 Al 8/2013 Lin et al.
7,868,789 Bl 1/2011 Binnig et al. 2013/0325900 A1 12/2013 Barber et al.
8,078,593 B1 12/2011 Ramarao et al. 2014/0006379 Al 1/2014 Arndt et al.
8,145,642 B2 3/2012 Cruanes et al. 2014/0006382 Al1* 1/2014 Barber GO6F 17/30463
8,195,644 B2 6/2012 Xu 707/718
38,271,564 B2 9/2012 Dade 2014/0025648 Al 1/2014 Corbett et al.
8,321,385 B2 11/2012 Burroughs et al. 2014/0074819 A1 3/2014 Idicula
38,346,810 B2 1/2013 Beaverson et al. 2014/0108489 Al 4/2014 Glines et al.
8,370,316 B2 2/2013 Bensberg et al. 2014/0129568 Al 5/2014 Kim et al.
8,438,574 Bl 5/2013 Lyle et al. 2014/0181052 Al 6/2014 Moore et al.
8,443,155 B2 5/2013 Adams et al. 2014/0214794 Al 7/2014 Attalur et al.
3,001,005 B2 2/2014 McKenney et al. 2014/0214795 Al 7/2014 Attaluri et al.
8,092,695 B2 4/2014 Fallon et al. 2014/0214855 Al 7/2014 Attaluri
8,768,889 Bl 7/2014 Martin 2014/0215019 Al 7/2014 Ahrens
8,708,927 B2 7/2014 Yoon et al. 2014/0337375 A1 11/2014 Yue
38,832,025 B2 9/2014 Aral et al. 2014/0372388 A1 12/2014 Allalun et al.
8,880,614 B2 11/2014 Morris 2014/0372392 Al 12/2014 Attalun
9,092,141 B2 7/2015 Hayashi et al. 2015/0058293 Al 2/2015 Kobayashi et al.
9,298,723 Bl 3/2016 Vincent 2015/0088813 A1* 3/2015 Lahirtcooovvvnn, GO6F 16/21
9,355,060 B1* 5/2016 Barber HO041. 67/1097 707/609
9,454,560 B2 9/2016 Cha et al. 2015/0089134 Al* 3/2015 Mukherjee GOGF 16/221
9,626,421 B2 4/2017 Plattner et al. 711/114
9,684,682 B2* 6/2017 Mukherjee GO6F 16/221 x -
0,792,318 B2* 10/2017 Schreter GOGF 16/2365 201570301745 ALT 1022015 Nagao ocoocovvcer GOﬁflt‘/lﬁg
N |
2001/0039609 AL* 1172001 Houldsworth —........ G%Fﬁf%g 2016/0147457 Al* 5/2016 Legler .oovvevvee.... GOGF 16/221
707/601
%88588}32233 ii:}: 31%88% ?lm:t il‘* ********* GOGE 3/0601 2016/0147821 Al1* 5/2016 Schreter GO6F 17/30371
T11/165 707/703
2004/0260684 Al 12/2004 Agrawal et al 2016/0232169 Al 8/2016 Archak et al.
2005/0018683 Al 1/2005 Zaho et al.
2005/0033741 Al 2/2005 Dombroski et al. FOREIGN PATENT DOCUMENTS
2006/0015529 Al* 1/2006 Yagawa GO6F 17/30067
2006/0218176 Al 9/2006 Sun Hsu et al. CN 101013427 Al 8/2007
2007/0136317 Al 6/2007 Przywara CN 101067822 A1 11/2007
2007/0208788 Al 9/2007 Chakravarty et al. CN 1003672239 C 2/2008
2007/0244850 A1 10/2007 Hoppe et al. CN 101231657 A 7/2008
2007/0245119 A1 10/2007 Hoppe CN 101388042 A 3/2009
2008/0126706 Al 5/2008 Newport et al. CN 101828182 A 9/2010
2008/0133583 Al 6/2008 Artan et al. CN 102893265 A 1/2013
2008/0162402 Al 7/2008 Holmes et al. CN 103635902 A 3/2014
2009/0006399 Al 1/2009 Raman et al. CN 104021205 A 9/2014
2009/0024568 Al 1/2009 Al-Omari et al. CN 104317966 A 1/2015
2009/0100223 Al1* 4/2009 Murayama GO6F 3/0605 EP 0457707 A2 11/1991
711/114 JP 2007234026 A 9/2007
2009/0187586 Al 7/2009 Olson JP 2010539616 A 12/2012

US 10,650,011 B2
Page 3

(56) References Cited
FORFEIGN PATENT DOCUMENTS

JP 2013222457 A 10/2013
WO 2011148496 12/2011
WO 2013141308 A 9/2013
WO 2014010038 A 1/2014
WO 2014045441 A 3/2014
WO WO 2015078136 Al * 6/2015 ... GOOF 17/3015

OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related.
Internet Society, et al., “The VCDIFF Generic Differencing and
Compression Data Format (RFC3284)”, Jul. 1, 2002, pp. 1-31,
Network Working Group, IP.com, United States.

Lehman, T.J. “Design and Performance Evaluation of a Main
Memory Relational Database System.” 1986, PhD Dissertation, 334
pages, [Abstract Only], University of Washington, Madison, W1.

Leis, V., et al., “The Adaptive Radix Tree: ARTful Indexing for

Main-Memory Databases”, IEEE 29th International Conference on
Data Engineering (ICDE), Apr. 8, 2013, pp. 38-49, IEEE, United

States.
Levandoski, J., et al., “The Bw-Tree: A B-tree for New Hardware

Platforms”, IEEE 29th International Conference on Data Engineer-
ing (ICDE), Apr. 8, 2013, pp. 1-12, IEEE, United States.

Prokopec, A. et al., “Lock-Free Resizeable Concurrent Tries”,
Languages and Compilers for Parallel Computing, 2013, pp. 156-

170, vol. 7146, Springer Berlin Heidelberg, Germany.
Arelas, M. et al., “A Simple and Eflicient Lock-Free Hash Trie

Design for Concurrent Tabling”, Theory and Practice of Logic
Programming, May 14, 2014, pp. 1-10, Arxiv.org, Cornell Univer-
sity Library, United States.

Pandis, I. et al., “PLP: Page Latch-free Shared-everything OLTP”,
Proceedings of the 37th International Conference on Very Large
Data Bases (VLDB Endowment), Aug. 29, 2011-Sep. 3, 2011, pp.
610-621, vol. 4, No. 10, United States.

Sewall, J. et al., “PALM.: Parallel Architecture-Friendly Latch-Free
Modifications to B+ Trees on Many-Core Processors”, Proceedings
of the 37th International Conference on Very Large Data Bases
(VLDB Endowment), Aug. 29, 2011-Sep. 3, 2011, pp. 795-806, vol.
4, No. 11, United States.

Gao, H. et al., “Lock-free dynamic hash tables with open address-
ing”, Journal of Distributed Computing, Jul. 2005, pp. 21-42, vol.
18, Issue 1, United Kingdom.

Xu, Y., “A Multi-Dimensional Progressive Perftect Hashing for
High-Speed String Matching™, Seventh ACM/ IEEE Symposium on
Architectures for Networking and Communications Systems, 2011,
pp. 167-177, IEEE Computer Society, United States.

Marek, R., et al., “TID Hash Joins,” CIKM, 1994, pp. 42-49,
Gaithersburg, MD, United States.

Yan, Welpeng P. et al., “Performing Group-By before Join [query
processing|,” Proceedings loth International Conference on Data
Engineering, 1994, pp. 89-100, IEEE, 1994.

List of IBM Patents or Patent Applications Treated as Related Form.
Anonymous, “System and Method for Usage Aware Row Storage 1n
Database Systems”, Jul. 23, 2010, pp. 1-4, ip.com, United States.
Anonymous, “High Performance Technique Using Join Collocation
in a Massively Parallel Processing Relational Database Implemen-
tation”, Jun. 14, 2012, pp. 1-5, IP.com, United States.
Anonymous, “CashMap: Processor Cache-Aware Implementation
of Hash Tables”, Jul. 5, 2013, pp. 1-7, IP.com, United States.
Anonymous, “Efficient Grouping Over Joins of Compressed Tables”,
Apr. 6, 2010, pp. 1-6, IP.com, United States.

Korn, D., et al., “The VCDIFF Generic Diflerencing and Compres-
sion Data Format (RFC3284)”, Jul. 1, 2002, pp. 1-31, Network
Working Group, IP.com, United States.

Hu, K. et al. “Rapid multi-dimension hierarchical algorithm in data
warchouse system”, Computer Integrated Manufacturing Systems,
Jan. 2007, pp. 196-201, vol. 13, No. 1, China [English-language
translation: Abstract Only].

Spyros, B., et al., “Design and Evaluation of Main Memory Hash
Join Algorithms for Multi-core CPUs”, SIGMOD Int’l Conference
on Management of Data, Jun. 12, 2011, pp. 1-12, ACM, United
States.

Raman, V., et al., “DB2 with BLU Acceleration: So Much More
than Just a Column Store”, Proceedings of the VLDB Endowment,
Aug. 2013, pp. 1-12, vol. 6, No. 11, ACM, United States.

Mell, P, et al., “The NIST Definition of Cloud Computing”,
National Institute of Standards and Technology Special Publication
800-145, Sep. 2011, pp. 1-7, U.S. Department of Commerce, United
States.

List of IBM Patents or Applications Treated as Related; Attaluri,
G.K., U.S. Appl. No. 16/427,190, filed May 30, 2019,

U.S. Non-Final Office Action for U.S. Appl. No. 14/671,692 dated
Aug. 23, 2017.

U.S. Non-Final Office Action for U.S. Appl. No. 14/671,692 dated
Feb. 26, 2018.

U.S. Final Office Action for U.S. Appl. No. 14/671,692 dated Sep.
20, 2018.

U.S. Advisory Action for U.S. Appl. No. 14/671,692 dated Nov. 29,
2018.

U.S. Non-Final Office Action for U.S. Appl. No. 14/705,377 dated
Sep. 26, 2017.

U.S. Final Ofhice Action for U.S. Appl. No. 14/705,377 dated Jan.
25, 2018.

U.S. Notice of Allowance for U.S. Appl. No. 14/705,377 dated May
29, 2018.

U.S. Notice of Allowance for U.S. Appl. No. 14/705,377 dated Now.
7, 2018.

U.S. Notice of Allowance for U.S. Appl. No. 14/705,377 dated Apr.
10, 2019.

U.S. Notice of Allowance for U.S. Appl. No. 14/705,377 dated May
29, 2019.

U.S. Notice of Allowance for U.S. Appl. No. 14/705,377 dated Jul.
16, 2019.

U.S. Non-Final Office Action for U.S. Appl. No. 15/150,493 dated
Dec. 15, 2017.

U.S. Final Office Action for U.S. Appl. No. 15/150,493 dated Jul.
11, 2018.

U.S. Advisory Action for U.S. Appl. No. 15/150,493 dated Oct. 16,
2018.

U.S. Non-Final Office Action for U.S. Appl. No. 15/150,493 dated
Jan. 11, 2019.

U.S. Non-Final Office Action for U.S. Appl. No. 15/850,363 dated
Feb. 4, 2019.

U.S. Notice of Allowance for U.S. Appl. No. 15/850,363 dated Apr.
30, 2019.

U.S. Non-Final Office Action for U.S. Appl. No. 15/850,383 dated
Feb. 19, 2019.

U.S. Notice of Allowance for U.S. Appl. No. 15/850,383 dated Apr.
12, 2019.

U.S. Non-Final Office Action for U.S. Appl. No. 14/664,714 dated
May 4, 2017.

U.S. Final Oflice Action for U.S. Appl. No. 14/664,714 dated Aug.
15, 2017.

U.S. Advisory Action for U.S. Appl. No. 14/664,714 dated Oct. 11,
2017.

U.S. Non-Final Office Action for U.S. Appl. No. 14/664,714 dated
Feb. 13, 2018.

U.S. Corrected Non-Final Oflice Action for U.S. Appl. No. 14/664,714
dated Feb. 21, 2018.

U.S. Final Oflice Action for U.S. Appl. No. 14/664,714 dated Jun.
18, 2018.

U.S. Advisory Action for U.S. Appl. No. 14/664,714 dated Aug. 23,
2018.

U.S. Notice of Allowance for U.S. Appl. No. 14/664,714 dated Jan.
14, 2019.

U.S. Non-Final Office Action for U.S. Appl. No. 14/671,664 dated
Aug. 28, 2017.

U.S. Final Ofhice Action for U.S. Appl. No. 14/671,664 dated Jan.
18, 2018.

U.S. Advisory Action for U.S. Appl. No. 14/671,664 dated Apr. 18,
2018.

US 10,650,011 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

U.S. Notice of Allowance for U.S. Appl. No. 14/671,664 dated May
29, 2018.

U.S. Corrected Notice of Allowability for U.S. Appl. No. 14/671,664
dated Aug. 30, 2018.

U.S. Restriction Requirement for U.S. Appl. No. 14/664,710 dated
Jul. 18, 2017.

U.S. Non-Final Office for U.S. Appl. No. 14/664,710 dated Aug. 23,
2017,

U.S. Notice of Allowance for U.S. Appl. No. 14/664,710 dated Nov.
7, 2017.

U.S. Non-Final Office Action for U.S. Appl. No. 13/918,302 dated
Jun. 17, 2015.

U.S. Final Office Action for U.S. Appl. No. 13/918,302 dated Dec.
31, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 13/918,302 dated Mar.
14, 2016.

U.S. Non-Final Office Action for U.S. Appl. No. 14/070,990 dated
Jun. 15, 2015.

U.S. Final Office Action for U.S. Appl. No. 14/070,990 dated Dec.
18, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 14/070,990 dated Mar.
25, 2016.

U.S. Non-Final Oflice Action for U.S. Appl. No. 13/918,313 dated
May 21, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 13/918,313 dated Oct.
5, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 13/918,313 dated Jan.
29, 2016.

U.S. Corrected Notice of Allowability for U.S. Appl. No. 13/918,313
dated Mar. 3, 2016.

U.S. Non-Final Oflice Action for U.S. Appl. No. 14/615,982 dated
May 22, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 14/615,982 dated Oct.
14, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 14/615,982 dated Jan.
25, 2016.

U.S. Corrected Notice of Allowability for U.S. Appl. No. 14/615,982
dated Mar. 3, 2016.

U.S. Non-Final Office Action for U.S. Appl. No. 13/753,740 dated
Dec. 17, 2014.

U.S. Notice of Allowance for U.S. Appl. No. 13/753,740 dated Apr.
15, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 13/753,740 dated Aug.
21, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 13/753,740 dated Jan.
15, 2016.

U.S. Non-Final Office Action for U.S. Appl. No. 14/471,079 dated
Oct. 8, 2015.

U.S. Final Oflice Action for U.S. Appl. No. 14/471,079 dated Feb.
17, 2016.

U.S. Notice of Allowance for U.S. Appl. No. 14/471,079 dated May
11, 2016.

U,S. Notice of Allowance for U.S. Appl. No. 14/471,079 dated Jul.
1, 2016.

U.S. Notice of Allowance for U.S. Appl. No. 14/471,079 dated Oct.
7, 2016.

U.S. Notice of Allowance for U.S. Appl. No. 14/471,079 dated Feb.
1, 2017.

U.S. Non-Final Office Action for U.S. Appl. No. 13/753,769 dated
Nov. 21, 2014.

U.S. Notice of Allowance for U.S. Appl. No. 13/753,769 dated Sep.
14, 2015.

U.S. Notice of Allowance for U.S. Appl. No. 13/753,769 dated Jan.
21, 2016.

U.S. Notice of Allowance for U.S. Appl. No. 14/471,272 dated Oct.
29, 2015.

U.S. Non-Final Office Action for U.S. Appl. No. 14/509,336 dated
Oct. 5, 2016.

U.S. Notice of Allowance for U.S. Appl. No. 14/509,336 dated Feb.
1, 2017.

U.S. Notice of Allowance for U.S. Appl. No. 15/150,493 dated Now.
6, 2019.

Yan, W.P. et al., “Performing Group-By Before Join™, Proceedings
10th Int’l Conference on Data Engineering, 1994, pp. 1-30, IEEE,
United States.

Cleary, J.G., “Compact Hash Tables Using Bidirectional Linear
Probing”, IEEE Transactions on Computers, Sep. 1994, pp. 828-
834, vol. C-33, No. 9, United States.

Nan Hua. H., et al., “Rank-Indexed Hashing: A Compact Construc-
tion of Bloom Filters and Variants™, IEEE, 2008, pp. 73-82, United
States.

Xu, Y., “A Multi-Dimesional Progressive Perfect Hashing for High-
Speed String Matching”, Seventh ACM/ IEEE Symposium on
Architectures for Networking and Communications Systems, 2011,
pp. 167-177, IEEE Computer Society, United States.

Chang. S., “Recent Advances Of Compact Hashing for Large-Scale
Visual Search”, Columbia University, Oct. 2012, pp. 1-44, United
States.

Wang, W., et al.; “Investigating Memory Optimization of Hash-
index for Next Generation Sequencing on Multi-core Architecture”,
IPDPSW IEEE 26th Inter. Conf., May 21-25, 2012, pp. 665-674,
IEEE Computer Society, United States.

Cutt, B., et al.; “Improving Join Performance for Skewed Data-
bases”, IEEE, 2008, pp. 1-5, United States.

L1, Q., et al.; “Adaptively Reordering Joins during Query Execu-
tion”, IEEE, 2007, pp. 26-35, United States.

U.S. Appl. No. 14/509,336, “Embracing and Exploiting Data Skew
During a Jomn or Groupby”, filed Oct. 8, 2014, 38 pages, United
States.

U.S. Non-Final Office Action for U.S. Appl. No. 14/671,692 dated
Mar. 19, 2020.

* cited by examiner

US 10,650,011 B2

Sheet 1 of 9

May 12, 2020

U.S. Patent

8¢

| 'Ol

(S)8o1ne(]
[_UIB)IXT

0¢
Ja]edpy YIOMIaN

S EREIE]

Cv

0v

AOWB 0¢

Janag/wa)sAg Jaindwon

4’

¢l

Ae(dsI(a

{4

U.S. Patent May 12, 2020 Sheet 2 of 9 US 10,650,011 B2

-10

\
@
000

50

@pi\....
"
FIG. 2

O C-——-*""'@]
% =] N,
L =
—] VI
— G oo
000000

¢ Ol

09

8JEM]JOS pUB SIEMpIeH

US 10,650,011 B2

0L

uoyezI[enpiA

Sheet 3 of 9

08

juswebeuen

May 12, 2020

U.S. Patent

US 10,650,011 B2

Sheet 4 of 9

May 12, 2020

U.S. Patent

0Cy

10SS890.4

AyoJelalH 193(q0

N UM
abelo)g

137

¥ Ol

0¥

10SS820.d
puidde|y

| HUM

abelo)g

Oly

¢l

GOv

10SS890.d
puiyoel|
SS90y

U.S. Patent

May 12, 2020 Sheet 5 of 9

Lookup the Metadata Information for the
Superslots whose Tuple Sequence Number
Ranges Overlap the Identified Tuple

From the Metadata Information, ldentify the
Memory Pages Containing the Records
to be Accessed

If Any of the Identified Memory Pages are Not
in Physical Memory, Load those Pages Into
Physical Memory, Initialize Any Metadata
Information to be Tracked, for Any Newly
Loaded Pages

Update Any Tracked Access Frequencies for
Superslots whose Tuple Sequence Number
Ranges Overlap the Identified Tuple Sequence
Numbers

Update Tracked Current Number of Accessors

for Superslots whose Tuple Sequence Number

Ranges Overlap the Identified Tuple Sequence
Numbers

Update Tracked List of Addresses of
Memory Pages, |If New Pages were Loaded
Into Physical Memory

FIG. 5

US 10,650,011 B2

Identify Tuple Sequence Numbers for 510
Records that Need to be Accessed

520

530

540

550

560

570

U.S. Patent May 12, 2020 Sheet 6 of 9 US 10,650,011 B2

Obtain a Table 610

Obtain a Li f olumns from 615
the Table as Input

Increment the Global Reader
620
Count on a Superslot

Scan (startTSN, pagePtr) for

Each Column 029
[dentify a Targeted Page 630
-l
Page 635
NO Need Fixing in Buffer
Pool?
YES Load the Page 650
Mark Page is being Loaded
640 by cswp of Chosen Bits of the e Bufferono) P
PagePtr to an Indicator Value csWp Il WE BUTSTPOLT Fage 660
ID Into PagePtr
645
NO
Cswp Returned Set State to Pending on the
True? 1st Superlot that Points to it 665
YES for Boundry Pages that are

Shared Across Superlots

Read

Values from 670
Page

FIG. 6

U.S. Patent

May 12, 2020 Sheet 7

Allocate Memory Pages if Needed 710
to Hold Data Objects

of 9

Initialize Metadata Information to be
Tracked, for Any New Memory Pages

Allocated

Assign Tuple Sequence Numbers to the Records

Comprising the Inserted Data Obj
Assigned Sequence Numbers Fall Into New
Superslot Ranges, Initialize Metadata
Information to be Tracked for those New
Superslots. In this Metadata Information,
Include the Addresses of the Memory Pages

Comprising the Inserted Data O

FIG. 7

iects. If

bjects

US 10,650,011 B2

720

730

U.S. Patent May 12, 2020 Sheet 8 of 9 US 10,650,011 B2

300
Obtain a Table 510
Obtain a List of Rows from 815

the Table as Input

Create/Initialize New Superslot if
Necessary for New Rows (i.e., 390

the New Rows do Not Fit in an
Existing Superslot)

Atomically Increment TSN by # 330
Rows to be Inserted

Increment # Inserters by 1 340
(Loop over Fetch and cswp)

390

Page
Need Fixing in Buffer
Pool?

YES

Mark Page is being Loaded
895 by cswp of Chosen Bits of the
PagePtr to an Indicator Value

NO

860
Cswp Returned NO
True?

YES
Memcpy Values Onto the 3495 862

Load the Page

Pages----Without Latch

Atomically Decrement #

Active Inserters (Loop Over 875 cswp in the Bufferpool Page
Fetch and cswp) ID Into PagePtr

865

FIG. 8

US 10,650,011 B2

Sheet 9 of 9

May 12, 2020

U.S. Patent

0¥6

810300 Ble(Uasoy) 8y} SA0N

026

£S199100
Ble(uasoyn ay)
Lim depsaQ Jey sjoslgo

ejeq Jo sbuidnolsy ay) ||y 1o} O
$J0SS820Y JualInY) JO
JOQWINN payoe.|
oy} §j

SdA

0E6

s108[g0 ejeq Jo sbuidnoic) pue

$109[00) Ble 8y] 10 SJUNOY) SSBITY paydel |
0] buIpJ022Yy ‘SAOJN 0] S109(q(Q) BB 8S00U)

SdA

0L6

ON

; S9UA| $S0I0Y
DOAOIN 27 0] posN
$1991q0 Ele(
0d

US 10,650,011 B2

1

EFFICIENT PERFORMANCE OF INSERT
AND POINT QUERY OPERATIONS IN A
COLUMN STORE

BACKGROUND

Embodiments of the invention relate to eflicient insert and
point query operations in a column store, i particular, for
dynamically moving hierarchical data objects across two or
more kinds of memories based on tracking levels of access
ol a subset of the data objects.

There 1s an increasing trend towards doing business
intelligence (BI) queries on real-time data in databases or
tabled data. Traditionally, there 1s a strict separation between
BI systems and online transaction processing (OLTP) sys-
tems. There 1s increasing market pressure for operational Bl,
and for both transactions and analytics to be performed on
the same database. For BI, the trend 1s to lay out data 1n a
column-major layout. This provides better query pertor-
mance, better butler pool utilization, and somewhat better
compression. OLTP data is traditionally laid out 1n a row-
major layout. But even OLTP workloads are dominated by
point queries, which benefit from a column major layout due
to better buller pool utilization and compression; column
major can result in an on-disk OLTP workload becoming an
in-memory OLTP workload.

SUMMARY

Embodiments of the invention relate to dynamically mov-
ing hierarchical data objects across two or more kinds of
memories based on tracking levels of access of a set of the
data objects. One embodiment includes a method that logi-
cally orgamizes, by an object hierarchy processor, data
objects 1n a first hierarchy. A portion of the data objects 1n
the first hierarchy logically includes groupings of other data
objects. The object hierarchy processor physically organizes
the data objects across two or more types of memory 1n a
second hierarchy. Another portion of the data objects 1n the
second hierarchy physically includes groupings of other data
objects. Groupings of the data objects in the second hierar-
chy are dynamically moved across the two or more types of
memory. Levels of access of the data objects are tracked
using a data structure that maps groupings of the data objects
in the first hierarchy onto metadata information including
combined access frequencies of the data objects, and current
number of accessors to the data objects, 1n each grouping of
the data objects.

These and other features, aspects and advantages of the
present mnvention will become understood with reference to

the following description, appended claims and accompa-
nying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing node, according to an
embodiment;

FIG. 2 depicts a cloud computing environment, according
to an embodiment;

FI1G. 3 depicts a set of abstraction model layers, according,
to an embodiment;:

FIG. 4 1s a block diagram illustrating a system for
dynamically moving hierarchical data objects across two or
more kinds of memories based on tracking levels of access
ol a subset of the data objects, according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. § illustrates a process for accessing records, updating,
access metadata and loading pages, according to an embodi-

ment,

FIG. 6 illustrates a process for mapping tuple sequence
numbers (ISNs) to pages for query operations, according to
an embodiment;

FIG. 7 illustrates a process for inserting data objects 1into
pages and 1nitializing metadata in superslots, according to an
embodiment;

FIG. 8 illustrates a process for mapping TSNs to pages for
isert operations, according to an embodiment; and

FIG. 9 1s a block diagram of a process for dynamically
moving hierarchical data objects across two or more kinds of
memories based on tracking levels of access of a subset of
the data objects, according to an embodiment.

DETAILED DESCRIPTION

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

It 1s understood 1n advance that although this disclosure
includes a detailed description of cloud computing, 1mple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines (VMs), and services) that can
be rapidly provisioned and released with minimal manage-
ment etflort or interaction with a provider of the service. This
cloud model may include at least five characteristics, at least
three service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed and automatically, without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous, thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or data center).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned and, 1 some cases, automatically, to quickly
scale out and rapidly released to quickly scale in. To the

US 10,650,011 B2

3

consumer, the capabilities available for provisioning often
appear to be unlimited and can be purchased i any quantity
at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active
consumer accounts). Resource usage can be monitored,
controlled, and reported, thereby providing transparency for
both the provider and consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s the ability to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface, such as a web browser (e.g., web-based email).
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, storage, or even mdividual application capabilities,
with the possible exception of limited consumer-specific
application configuration settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s the ability to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application-hosting
environment configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s the ability to provision processing,
storage, networks, and other fundamental computing
resources where the consumer 1s able to deploy and run
arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operat-
ing systems, storage, deployed applications, and possibly
limited control of select networking components (e.g., host
firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or oil-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load balancing
between clouds).

A cloud computing environment 1s a service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node 1s shown. Cloud computing node 10
1s only one example of a suitable cloud computing node and

5

10

15

20

25

30

35

40

45

50

55

60

65

4

1s not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 10 1s
capable of being implemented and/or performing any of the
functionality set forth hereimnabove.

In cloud computing node 10, there 1s a computer system/
server 12, which 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set-top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced 1n distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media, including memory storage devices.

As shown 1n FIG. 1, computer system/server 12 i cloud
computing node 10 i1s shown in the form of a general
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example and not limitation, such archi-
tectures include a(n) Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
12, and 1t includes both volatile/non-volatile media, and
removable/non-removable media.

System memory 28 can include computer system readable
media 1n the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-
puter system/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, a storage system 34 can
be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown and typically
called a “hard drive™). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “tloppy disk™), and an optical
disk drnive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM,

or other optical media can be provided. In such instances,

US 10,650,011 B2

S

cach can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored 1n a memory 28 by way of
example and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating systems, one or
more application programs, other program modules, and
program data or some combination thereof, may include an
implementation of a networking environment. Program
modules 42 generally carry out the functions and/or meth-
odologies of embodiments of the invention as described
herein.

Computer system/server 12 may also communicate with
one or more external devices 14, such as a keyboard, a
pointing device, etc.; a display 24; one or more devices that
enable a consumer to interact with computer system/server
12; and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via I/0O interfaces 22. Still yet, computer system/server
12 can communicate with one or more networks, such as a
local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via a
network adapter 20. As depicted, the network adapter 20
communicates with the other components of computer sys-
tem/server 12 via bus 18. It should be understood that
although not shown, other hardware and/or software com-
ponents could be used 1n conjunction with computer system/
server 12. Examples include, but are not limited to: micro-
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, data archival
storage systems, etc.

Referring now to FIG. 2, an illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, 1n one or more networks, such as private, commu-
nity, public, or hybrid clouds as described hereinabove, or a
combination thereot. This allows the cloud computing envi-
ronment 50 to offer infrastructure, platforms, and/or soft-
ware as services for which a cloud consumer does not need
to maintain resources on a local computing device. It 1s
understood that the types ol computing devices 54 A-N
shown 1n FIG. 2 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type ol network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by the cloud computing environment 50
(FIG. 2) 1s shown. It should be understood 1n advance that
the components, layers, and functions shown i FIG. 3 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components

10

15

20

25

30

35

40

45

50

55

60

65

6

include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents 1nclude network application server software 67 and
database soltware 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: wvirtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, a management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment and billing or invoicing for
consumption ol these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94 transaction processing 95. As mentioned above, all of the
foregoing examples described with respect to FIG. 3 are
illustrative only, and the invention 1s not limited to these
examples.

It 1s understood all functions of one or more embodiments
as described herein are typically performed by the system
shown 1 FIG. 4, which can be tangibly embodied as
modules of program code 42 of program/utility 40 (FI1G. 1).
However, this need not be the case. Rather, the functionality
recited herein could be carried out/implemented and/or
enabled by any of the layers 60, 70, 80 and 90 shown 1n FIG.
3.

It 1s reiterated that although this disclosure includes a
detailed description on cloud computing, implementation of
the teachings recited herein are not limited to a cloud
computing environment. Rather, the embodiments of the
present invention may be implemented with any type of
clustered computing environment now known or later devel-
oped.

Embodiments of the invention relate to dynamically mov-
ing hierarchical data objects across two or more kinds of
memories based on tracking levels of access of a set of the
data objects. One embodiment includes a method that logi-
cally organizing, by an object hierarchy processor, data
objects 1n a first hierarchy. A portion of the data objects 1n
the first hierarchy logically includes groupings of other data
objects. The object hierarchy processor physically organizes
the data objects across two or more types of memory in a
second hierarchy. Another portion of the data objects 1n the
second hierarchy physically includes groupings of other data

US 10,650,011 B2

7

objects. Groupings of the data objects in the second hierar-
chy are dynamically moved across the two or more types of
memory. Levels of access of the data objects are tracked
using a data structure that maps groupings of the data objects
in the first hierarchy onto metadata information including
combined access frequencies of the data objects, and current
number of accessors to the data objects, 1n each grouping of
the data objects.

One or more database operations (e.g., updates (inserts/
deletes) or queries (data retrieval)) are typically grouped into
a transaction. An update query 1s used to modily the existing
records 1n a table. Transactions on a database may occur in
parallel and do not necessarily commit in the order they are
mitiated. These events may be recorded i a database
transaction log, an event log, etc. Database data storage
pages (which are fixed sized, and stored in a contiguous
virtual address region 1n memory) are managed by the bufler
pool component of the database system. Operations typi-
cally performed by a bufler pool include loading of pages
into the bufler pool managed memory, pinning pages in the
butler pool memory to prevent page eviction while the pages
are 1n use, tracking the usage of pages 1n the bufler pool
through reference counting, and the eviction of (unpinned)
pages from memory when space 1s required to load another
page.

In one embodiment, data objects are organized 1n at least
two hierarchies. A first hierarchy includes a hierarchy of
logical subsumption of data objects, where some objects are
comprised of groupings of other data objects. In one
example, records are logical groupings of individual values.
A superslot 1s a logical grouping of a certain number of
contiguous logical records, which can be identified individu-
ally by tuple identifiers. In one example, the tuple 1dentifiers
may exist in an ordered numerical sequence, which 1s
referred to as tuple sequence numbers (TSNs). A second
hierarchy includes a physical organization of objects across
two or more types ol memory, where some objects physi-
cally contain groupings of other data objects. In one
example, this may be memory pages holding individual
values. Superslots may be employed for purposes of pinning,
and unpinning pages (which 1s usually done to prevent pages
from being evicted while 1n use; this 1s done be increment-
ing/decrementing current reference counts) containing dif-
ferent columns of a table in eflicient ways by multiple
concurrent processes. One embodiment groups contiguous
TSNs into the super-slots to avoid contention among con-
current processes (for example, avoiding the acquisition of
latches within the bufler pool manager to synchronize con-
current page pinning and unpinning operations) and to
determine the location of those TSNs on pages, one page per
column of a column store. In one embodiment, the superslot
1s an across-column data structure that 1s organized at a
granularity of a particular number of rows. In one embodi-
ment, levels of access of sets of the data objects are tracked
using a data structure that maps groupings of those objects
according to the first hierarchy onto metadata information.
This metadata information may include combined access
counts, access Ifrequencies, and recent access times for each
set. In one embodiment, the superslot may be used as that
data structure, and coarse reference counting 1s performed
outside of any database builer pool 1n the superslot, while
still maintaining separate reference counts for each column.
In one embodiment, a direct mapping from row 1dentifier to
the virtual memory address of all data pages straddling that
row (in any column) are stored in the superslot. In one

5

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment, the reference counting used 1s hierarchical, so
that point queries only pull in columns of interest into the
bufler pool.

In one embodiment, the movement of data objects across
types of memory 1s performed as per the second (physical)
hierarchy. This movement, for each object or set of objects,
1s controlled by checking the tracked levels of access of
overlapping sets 1n the first huerarchy. In one embodiment,
an object or grouping of data objects 1s allowed to be moved
only 1f the tracked current access count 1s zero for all
overlapping sets 1n the first hierarchy.

FIG. 4 1s a block diagram illustrating a system for
dynamically moving hierarchical data objects across two or
more kinds of memories based on tracking levels of access
ol a subset of the data objects, according to an embodiment.
In one embodiment, the system includes a server 12 includ-
ing a storage unit 1 405 through storage unit N 406 (where
N 1s an 1nteger greater than 1), an access tracking processor
410, a mapping processor 415, and an object hierarchy
processor 420. In one embodiment, the storage units 1-N
405-406 may be external to the server 12. In one embodi-
ment, the storage units 1-N 4035-406 store objects, such as
rows/columns/individual values, tables, etc. In a relational
database, a table (or file) organizes the information about a
single topic mnto rows and columns. In one embodiment, the
storage umts 1-N 4035-406 are different types ol memory
storage, such as a bufler pool, cloud based storage, different
types of objects pools, etc.

In one embodiment, the object hierarchy processor 420
dynamically moves hierarchical data objects across the
storage units 1-N 405-406. In one embodiment, the access
tracking processor 410 tracks levels of access of one or more
subsets of the hierarchical data objects using a data structure
by using the mapping processor 415 to map ranges of
sequence numbers of those data objects (e.g., TSNs) onto
metadata information, that includes access counts and the
locations of one or more memory pages holding the data for
those subsets of data objects. In one embodiment, the object
hierarchy processor 420 determines which hierarchical data
objects to move based on tracked levels of access.

In a column store, every isert into a table has to modify
N pages (where N 1s the number of columns 1n the table),
and similarly every point query has to access M pages
(where M 1s the number of columns referenced 1n the query).
Each such page reference mvolves updating a reference
count 1n a hash table (e.g., a database management system
(DBMS) bufler pool), and possibly acquiring latches (or
performing atomic read-modify-write instructions). Access-
ing a row 1nvolves accessing N columns and 2N accesses to
hash table or other mapping data structure per point or UDI
(update, delete, msert) query, where N 1s a positive integer:
N accesses are needed to map aTSN onto page IDs and N
accesses are needed to map page IDs onto bufller pool
address (and to increment the reference count for each page).
In one embodiment, a superslot data structure that contains
16K TSNs 1s implemented with system.

In one embodiment, a PageMap 1s provided as follows:
for each column, a list of (startTSN, pagePtr). In one
embodiment, only a cache i1s used for the superslot struc-
ture—that 1s, 1t 1s not backed on disk. In one embodiment,
the object hierarchy processor 420 uses the superslot data
structure to provide for adding a new TSN (allocate space/
pages as needed)—upon insert operations. In one embodi-
ment, the mapping processor directly maps TSNs or ranges
of TSNs to virtual memory address of columns, or subranges
of columns, (or sub-objects) of a table (or object). In one
embodiment, a butler pool pin (a bufler operation to indicate

US 10,650,011 B2

9

that the page 1s under use and cannot be moved to another
layer of memory) 1s performed the first time the page 1s used.

In one embodiment, a hierarchical reference count 1is
maintained at an access granularity of a superslot, which
corresponds to a consecutive range of rows (e.g., 16384). In
addition, an access count 1s also maintained for each column
within a superslot. This almost entirely avoids overhead for
incrementing reference counts per page in a database buller
pool, and 1s especially eflicient 1n the case that the hot data
fits 1n memory, while still allowing fine grained movement
ol data between types ol memory. For example, individual
pages can still be moved. In one embodiment, the mapping,
processor 415 provides for mapping from a row-wise 1den-
tifier to a column-wise 1dentifier 1n a table that 1s laid out
column major. In the following, the TSN refers to the row
identifier. The actual data layout 1s column major, but two
common operations produce results 1n row major layout.
First, ingest (load/insert) produces rows to be added to a
table. Those rows need to be split up and appended to
separate columns. Second, point queries produce TSNs
(usually via index lookups), which need to be mapped onto
pages for each column. This complicates performance and
concurrency. For example, 11 a conventional bufler pool and
an 1ndex structure 1s used to map TSN to page IDs per
column, a point query on a table with N columns has to
perform 2N hash table accesses, after the secondary index
lookup, N for the N pagemaps to map TSN to page IDs; and
N bufler pool fixes (which involve N reference count incre-
ments) to fix the pages. To avoid this, 1n one embodiment
both reference counting and TSN to page mapping at a TSN
granularity 1s performed by the mapping processor 415,
rather than a per-page granularity (as with page map or a
conventional builer pool). In one embodiment, the superslot
data structure represents approximately 16384 TSNs.

In one embodiment, a superslot has, for each column, an
array of (start'SN, pagePtr). The startTSN 1s the TSN of the
starting TSN 1n each page, for that column. Boundary pages
may be shared among neighbor superslots within each
column. In one embodiment, a superslot includes reference
counts for each column, 1n addition to a global reference
count that records all active (read or write) references to the
rows of the superslot. In one embodiment, in-place updates
are not permitted, so the global and per-column counts only
track a count of the number of readers. In other embodi-
ments, if m-place updates are allowed, reference counts for
the number of writers are also maintained. The pagePtr 1s a
pointer to a page, which may be 1n the builer pool or on disk
when the memory hierarchy has only two levels: buller pool
and disk. Therefore, the pageptr 1s a union of (bufler pool
page 1D, tablespace page 1D), where the table space page 1D
1s an 1dentifier for pages on disk. In general, the pagePtr may
be a union of pointers across the memory hierarchy, 1t need
not necessarily hold only bufler pool and disk page 1denti-
fiers.

FIG. 5 illustrates a process for accessing specific records,
updating access metadata as needed during such access, and
loading into the bufler pool any pages that contain those
records and are not already loaded in the bufler pool,
according to one embodiment. In one embodiment, block
510, the TSNs corresponding to the records to be accessed
are 1dentified. In block 3520, the superslots whose TSN
ranges overlap with the TSNs of the records to be accessed
are 1dentified, and the access metadata for those superslots
1s looked up. In block 330, from this metadata, the memory
pages containing the records to be accessed are determined.
In block 540, 1t 1s 1dentified whether each of the determined
memory pages 1s 1 physical memory (1n the bufler pool). I

10

15

20

25

30

35

40

45

50

55

60

65

10

any ol them are not, those pages are loaded into physical
memory. The access metadata 1s also 1nitialized for these
newly loaded pages. In block 550, the current number of
accessors 1s incremented for each of these 1dentified super-
slots. In one embodiment, in block 560, the access frequen-
cies for these superslots are also updated. In block 570, the
list of memory page addresses 1n the superslots are also
updated, for any newly loaded pages.

FIG. 6 illustrates a process 600 for mapping TSNs to
pages (I'SN—pages) for point query operations, according
to an embodiment. In one embodiment, 1n block 610 a table
(or object) to be accessed 1s obtained from the query. In one
embodiment, 1 block 615 a list of columns (e.g., sub-
objects) for the table 1s obtained from the query, indicating
the columns that need to be accessed. The superslot then
increments the access count for each of those columns (for
example, by performing superslot.cols.numreaders++ (on
the needed columns)). In one embodiment, i block 620 a
global reader counter 1s incremented on a superslot data
structure. In one embodiment, in block 625 a scan 1s
performed for each column (scan (startTSN, pagePtr).

In one embodiment, in block 630 a targeted page 1s
identified. In one embodiment, 1n block 635 1t 1s determined
if the page needs fixing in the bufler pool. Page fixing 1s the
operation that fixes/pins/keeps the page in the bufler pool,
first reading it 1nto the bufler pool from persistent storage
(disk or ssd) 1t 1t 1s not currently present, and keeping 1t there
for the duration of some operation on the page until the page
1s un-fixed/un-pinned after which point the butler pool could
decide to evict the page. In one embodiment, the determi-
nation in block 635 1s based on whether the targeted page 1s
present in the buller pool already or not. In one embodiment,
if the buller pool page needs fixing (allocation), i block 640
a page that 1s being loaded 1s marked by performing a
compare-and-swap (cswp) for chosen bits of the PagePtr to
an indicator value which specifies that the page load 1s 1n
progress and others should not try to load the page. In one
embodiment, in block 645 1t 1s determined 1f the cswp
returned true or not. In one embodiment, 11 the cswp does not
return a true value, then process 600 continues to block 635.
In one embodiment, 11 the cswp has returned a true value, the
process continues to block 650 where the page 1s loaded.

In one embodiment, 1 block 660 a cswp 1n the builer pool
page ID into the PagePtr 1s performed to indicate that the
page load has completed and that the page 1s ready for use.
In one embodiment, 1n block 665, the state 1s set to pending
on the first superslot that points to it, in the case of boundary
pages that are shared across superslots. In one embodiment,
for pages that are not unfixed when the transaction finishes,
a superslot-level latch 1s used to decide which ones can be
unfixed (superslot.cols.readerCount). In one embodiment,
for BI queries, process 600 may be used except that the
reader count 1s incremented only on the needed columns. In
one embodiment, process 600 continues to block 670 where
values are read from a page, and the process 600 completes.

FIG. 7 illustrates a process for inserting data objects and
initializing metadata 1n superslots for tracking access meta-
data, according to one embodiment. In one embodiment,
block 710 the data objects are allocated memory pages
where they will be stored. In block 720, 11 any new memory
pages needed to be allocated to store these data objects, the
metadata 1s 1mitialized for tracking access information for
these pages. In block 730, TSNs are assigned to these
objects. In one embodiment, 11 any of the TSNs falls outside
the range of existing superslots, new superslots are created

US 10,650,011 B2

11

and mitialized. In these new superslots are stored the
addresses of the memory pages holding the objects falling at
those TSNS.

FIG. 8 illustrates a process 800 for mapping TSNs to
pages for insert operations in which all of the column values
have a fixed length, according to an embodiment. In one
embodiment, 1 block 810 a table (or object) i1s obtained
from storage. Each inserter thread knows exactly how many
rows to append and picks up the rows to insert. Each
superslot has two atomically modified counters: max used
TSN on that superslot and the number of active inserter
threads on that superslot. In one embodiment, 1n block 815,
a list of rows (or sub-objects) 1s obtained from the table. In
one embodiment, 1n block 820 a superslot 1s 1itialized 1f
needed for any of the new rows. When a superslot 1s
initialized, all the slots (a slot 1s a (startI'SN, page pointer))
are filled with pages allocated on table space as needed (all
slots filled, pages allocated. In one embodiment, for the
insert operation, in block 830 the TSN 1s atomically incre-
mented by the number of rows to be inserted. In block 840
the number of inserters 1s incremented by one (loop over
fetch and cswp).

In one embodiment, 1n block 850 1t 1s determined 1t the
page needs fixing 1n the bufler pool. In another embodiment,
this may be provided by allocating all the pages when the
superslot 1s mnitialized in block 820. In one embodiment, the
determination in block 850 1s based on whether the targeted
page 1s present in the bufler pool already or not. In one
embodiment, 1f pages do not need fixing 1n the butfler pool,
control flows to block 845. In one embodiment, 1f the pages
need fixing i the bufler pool, 1n block 855 an atomical
compare-and-swap (cswp) for the last few bits of the
PagePtr 1s performed, to a state indicating that load 1is
pending for that page. In one embodiment, in block 860 1t 1s
determined 1f the cswp returns a true value or not. In one
embodiment, 1 the cswp does not return a true value,
process 800 continues back to block 850. In one embodi-
ment, 1I the cswp has returned a true value, the process
continues to block 862 where the page 1s loaded, and then to
block 865 where the address (bufler pool page ID) of the
loaded page 1s stored 1n PagePtr via another cswp operation.
Subsequently control tlows to block 845.

In one embodiment, in block 845 a memory copy (imem-
cpy) for values onto the pages 1s performed (mapping of
TSN to pages 1s done by scanning the slots), without
additional latches. In one embodiment, control then flows to
block 875 where the number of active 1nserters 1s atomically
decremented, by performing a loop of fetch and cswp
instructions, when this count is at O, background operations
such as index updating, compression and space reclaim may
access this superslot because its contents are stable.

In one embodiment, for handling variable-length col-
umns, each inserter thread, under a latch, increments a
counter indicating the number of bytes to be used (a separate
such counter for each variable-length field). Once this coun-
ter 1s incremented, the thread has reserved space for the
variable-length data it needs to mnsert. When the number of
such varnable-length columns 1s small, this can also be done
via atomics or hardware transactional memory.

In one embodiment, each table has an array of pointers to
superslots and an atomic indicating the number of used
superslots. If an 1nserter needs to msert more rows than waill
{it on a superslot, the mserter first inserts as many as will {it.
Then the inserter forms a new superslot for the rest. This
involves a latch and a wait, one thread will successtully
increment the number of used superslots atomically, and
then form a new superslot, and cswp 1n a pointer to 1t; while

10

15

20

25

30

35

40

45

50

55

60

65

12

any other threads trying to do the same have to wait. To
make waits rare, 1n one embodiment the process 800 pro-
actively forms a superslot when the previous superslot
becomes more than half full.

FIG. 9 1s a block diagram of a process for dynamically
moving hierarchical data objects across two or more kinds of
memories based on tracking levels of access of the data
objects, according to an embodiment. In one embodiment, 1n
block 910 1t 1s determined 11 data objects need to be moved
across diflerent types of memory (e.g., static RAM, dynamic
RAM, hard disks and solid state disks). If 1t 1s determined
that data blocks need to be moved across different types of
memory, 1n block 920, data blocks are chosen to be moved
according to tracked access counts of the data objects and
data object groupings. Otherwise, the process proceeds back
to the start and block 910. In block 930 1t 1s determined 1t
the tracked number of current accessors 1s zero for all of the
groupings of data objects that overlap with the chosen data
objects. If block 930 1s false, the process continues back to
block 920. Otherwise, the process continues to block 940. In
block 940, the chosen data blocks are moved across different
types of memory.

In one embodiment, the process may include logically
organizing, by an object hierarchy processor, data objects 1n
a first hierarchy. In one example, a portion of the data objects
in the first hierarchy logically comprise groupings of other
data objects. In one embodiment, the process further
includes physically organizing, by the object hierarchy pro-
cessor, the data objects across two or more types of memory
in a second hierarchy. In one example, another portion of the
data objects 1n the second hierarchy physically comprise
groupings of other data objects. The process further includes
dynamically moving groupings of the data objects in the
second hierarchy across the two or more types of memory,
tracking levels of access of the data objects using a data
structure that maps groupings of the data objects 1n the first
hierarchy onto metadata information including combined
access frequencies of the data objects, and current number of
accessors (e.g., clients, threads, processes, etc.) to the data
objects, 1 each grouping of the data objects.

In one embodiment, the process may include determining,
whether to move each grouping of the data objects based on
the tracked levels of access of the data object groupings in
the first hierarchy that overlap with the grouping of data
objects targeted for moving. In one embodiment, the second
hierarchy comprises memory pages and individual values,
and the first hierarchy comprises data records, sequences of
the data records, and individual values. In one example,
infrequently accessed data objects and data objects that the
inirequently accessed data objects are moved to slower types
of memory. In one embodiment, prior to moving a particular
data object, a verification 1s performed using tracked levels
ol access information that a current number of accessors 1s
zero for all groupings of data objects that overlap with the
particular data object, and a determination to move a data
object 1s based on a predetermined least recent access time.

In one embodiment, the arrangement of data objects 1n a
sequence of data records 1s indicated by a TSN, and the
metadata information includes addresses of one or more
memory pages holding a grouping of data objects. In one
example, the data structure comprises a list of logical
groupings ol a particular number of contiguous TSNs 1den-
tifying logical collections of data records, and a list of the
metadata information for logical groupings of data objects.
In one embodiment, upon execution of an operation that
adds additional data objects, one or more memory pages are
allocated as needed to hold the additional data objects, and

US 10,650,011 B2

13

the allocated memory pages determine an assignment of the
data objects to groupings in the second hierarchy, and the
additional data objects are also assigned to one or more
groupings 1n the first hierarchy.

As will be appreciated by one skilled in the art, aspects of >

the present invention may be embodied as a system, method

or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident soitware, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module”™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RFE, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone soiftware package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or

10

15

20

25

30

35

40

45

50

55

60

65

14

the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a

general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified 1n the tlowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

References 1n the claims to an element in the singular 1s
not mtended to mean “one and only” unless explicitly so
stated, but rather “one or more.” All structural and functional
equivalents to the elements of the above-described exem-
plary embodiment that are currently known or later come to
be known to those of ordinary skill in the art are intended to
be encompassed by the present claims. No claim element
herein 1s to be construed under the provisions of 35 U.S.C.
section 112, sixth paragraph, unless the element 1s expressly
recited using the phrase “means for” or “step for.”

US 10,650,011 B2

15

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used 1n this specification, specily the
presence of stated features, integers, steps, operations, e¢le-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the mnvention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the mmvention. The embodiment was chosen and
described 1n order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the imnvention for
vartous embodiments with various modifications as are

suited to the particular use contemplated.

What 1s claimed 1s:

1. A method comprising:

logically organizing, by an object hierarchy processor,
data objects 1n a first hierarchy, wherein a portion of the
data objects 1n the first hierarchy logically comprise
groupings ol other data objects, each logical grouping
containing a certain number of contiguous logical
records, 1dentified individually by tuple i1dentifiers as
tuple sequence numbers (TSNs);

physically organizing, by the object hierarchy processor,
the data objects across two or more types of memory in
a second hierarchy, wherein another portion of the data
objects 1n the second hierarchy physically comprise
groupings ol other data objects;

dynamically moving groupings of the data objects 1n the
second hierarchy across the two or more types of
memory;

tracking levels of access of groups of the data objects
using an across-column data structure, organized at a
particular number of rows, that maps ranges of tuple
sequence numbers of the data objects 1 the first
hierarchy onto metadata information including com-
bined access frequencies of the data objects, and cur-
rent number of accessory to the data objects, 1n each
grouping of the data objects, wherein the across-col-
umn data structure comprises, for each column of data:
an array pair of a starting tuple sequence number
(startISN) and pointer (pagePTR) to a memory page
(start TSN, pagePTR), the startISN 1s a TSN of the
starting TSN 1n each memory page for a particular
column of data, a pageP'TR 1s a union of pointers across
the first hierarchy and the second hierarchy, the across-
column data structure stores a direct mapping from an
identifier for a particular row to a virtual memory
address of all data pages straddling the particular row
in any column are stored in the across-column data
structure, and coarse reference counting, to record all
active reference to rows of the across-column data
structure, 1s performed outside of any database bufler

10

15

20

25

30

35

40

45

50

55

60

65

16

pool 1n the across-column data structure while main-
taining separate reference counts for each column;
recerving a query with a list of columns for the table;
incrementing the access count for each of the columns and
a global reader counter in the across-column data
structure;

scanning (startTSN, pagePTR) for each column of the list

of columns;

identifying a targeted page based on a determination that

the targeted page 1s present in the first hierarchy; and
reading values from the target page and returning to the
query.

2. The method of claim 1, further comprising:

determining whether to move each grouping of the data

objects based on the tracked levels of access of the data
object groupings 1n the first hierarchy that overlap with
the grouping of data objects targeted for moving.

3. The method of claim 2, wherein the second hierarchy
comprises memory pages and individual values, and the first
hierarchy comprises data records, sequences ol the data
records, and 1ndividual values.

4. The method of claim 3, wherein:

the arrangement of data objects 1 a sequence of data

records 1s indicated by a TSN, and the metadata infor-
mation includes addresses of one or more memory
pages holding a grouping of data objects;

the pointer to a page comprises a union of pointers across

memory hierarchy; and

the across-column data structure further comprises, for

cach column of data: reference counts for each column
of data, and a global reference count that records all
active references to rows ol the across-column data
structure.

5. The method of claim 4, wherein upon execution of an
operation that adds additional data objects, one or more
memory pages are allocated as needed to hold the additional
data objects, and the allocated memory pages determine an
assignment of the data objects to groupings in the second
hierarchy, and the additional data objects are also assigned
to one or more groupings in the first hierarchy.

6. The method of claim 1, wherein inirequently accessed
data objects and data objects that the infrequently accessed
data objects are moved to slower types of memory, and the
types of memory comprise static RAM, dynamic RAM, hard
disks and solid state disks.

7. The method of claim 6, wherein prior to moving a
particular data object, a verification i1s performed using
tracked levels of access information that a current number of
accessors 1s zero for all groupings of data objects that
overlap with the particular data object, and a determination
to move a data object 1s based on a predetermined least
recent access time.

8. A computer program product for moving hierarchical
data objects across two or more kinds of memories, the
computer program product comprising a computer readable
storage medium having program code embodied therewith,
the program code executable by a processor to:

logically organize, by the processor, data objects 1n a first

hierarchy, wherein a portion of the data objects 1n the
first hierarchy logically comprise groupings of other
data objects, each logical grouping containing a certain
number of contiguous logical records, 1dentified indi-
vidually by tuple identifiers as tuple sequence numbers
(TSNs);

physically organize, by the processor, the data objects

across two or more types of memory in a second

US 10,650,011 B2

17

hierarchy, wherein another portion of the data objects 1n
the second hierarchy physically comprise groupings of
other data objects;

dynamically move, by the processor, groupings of the data

objects 1n the second hierarchy across the two or more
types of memory;
track levels, by the processor, of access of groups of the
data objects using an across-column data structure,
organized at a particular number of rows, that maps
ranges of tuple sequence numbers of the data objects in
the first hierarchy onto metadata information including
combined access frequencies of the data objects, and
current number of accessors to the data objects, 1n each
grouping ol the data objects, wherein the across-col-
umn data structure comprises, for each column of data:
an array pair of a starting tuple sequence number
(startTSN) and pointer (pagePTR) to a memory page
(start TSN, pagePTR), the startISN 1s a TSN of the
starting TSN 1n each memory page for a particular
column of data, a pageP'TR 1s a union of pointers across
the first hierarchy and the second hierarchy, the across-
column data structure stores a direct mapping from an
identifier for a particular row to a virtual memory
address of all data pages straddling the particular row
in any column are stored in the across-column data
structure, and coarse reference counting, to record all
active reference to rows of the across-column data
structure, 1s pertformed outside of any database bufler
pool 1n the across-column data structure while main-
taining separate reference counts for each column;

receiving a query with a list of columns for the table:

incrementing the access count for each of the columns and
a global reader counter in the across-column data
structure;

scanning (start SN, pagePTR) for each column of the list

of columns;

identifying a targeted page based on a determination that

the targeted page 1s present in the first hierarchy; and
reading values from the target page and returming to the
query.

9. The computer program product of claim 8, further
comprising program code executable by a processor to:
determine, by the processor, whether to move each grouping
of the data objects based on the tracked levels of access of
the data object groupings in the first hierarchy that overlap
with the grouping of data objects targeted for moving.

10. The computer program product of claim 9, wherein
the second hierarchy comprises memory pages and indi-
vidual values, and the first hierarchy comprises data records,
sequences of the data records, and individual values and
infrequently accessed data objects and data objects that the
infrequently accessed data objects are moved to slower types
of memory, and the types of memory comprise static RAM,
dynamic RAM, hard disks and solid state disks.

11. The computer program product of claim 10, wherein
prior to moving a particular data object, a verification 1s
performed using tracked levels of access information that a
current number of accessors 1s zero for all groupings of data
objects that overlap with the particular data object.

12. The computer program product of claim 10, wherein
a determination to move a hierarchical data object 1s based
on a predetermined least recent access time.

13. The computer program product of claim 10, wherein
the arrangement of data objects 1n a sequence of data records
1s indicated by a TSN, and the metadata information
includes addresses of one or more memory pages holding a
grouping of data objects.

10

15

20

25

30

35

40

45

50

55

60

65

18

14. The computer program product of claim 13, wherein
the pointer to a page comprises a union ol pointers across
memory hierarchy, and the across-column data structure
turther comprises, for each column of data: reference counts
for each column of data, and a global reference count that
records all active references to rows of the across-column
data structure.

15. The computer program product of claim 13, wherein
upon execution of an operation that adds additional data
objects, one or more memory pages are allocated as needed
to hold the additional data objects, and the allocated memory
pages determine an assignment of the data objects to group-
ings in the second hierarchy, and the additional data objects
are also assigned to one or more groupings in the first
hierarchy.

16. A system comprising:

a Processor;

two or more storage units coupled to the processor,

wherein the two or more storage units comprise difler-
ent memory types;
an object hierarchy processor that:
logically organizes data objects 1 a first hierarchy,
wherein a portion of the data objects i the first
hierarchy logically comprise groupings of other data
objects, each logical grouping containing a certain
number of contiguous logical records, 1dentified 1ndi-
vidually by tuple 1dentifiers as tuple sequence numbers
(TSNs),

physically organizes the data objects across the two or
more storage units 1 a second hierarchy, wherein
another portion of the data objects in the second
hierarchy physically comprise groupings of other data
objects, and
dynamically moves groupings of the data objects 1n the
second hierarchy across the two or more storage units;

an access tracking processor that tracks levels of access of
groups ol the data objects using an across-column data
structure, organized at a particular number of rows, that
maps ranges ol tuple sequence numbers of the data
objects 1n the first hierarchy onto metadata information
including combined access Irequencies of the data
objects, and current number of accessors to the data
objects, 1 each grouping of the data objects, wherein
the across-column data structure comprises, for each
column of data: an array pair of a starting tuple
sequence number (start TSN) and pointer (pagePTR) to
a memory page, the start1SN 1s a TSN of the starting
TSN 1n each memory page for a particular column of
data, a pagePTR 1s a union of pointers across the first
hierarchy and the second hierarchy, and the across-
column data structure stores a direct mapping from an
identifier for a particular row to a virtual memory
address of all data pages straddling the particular row
in any column are stored in the across-column data
structure, and coarse reference counting, to record all
active reference to rows of the across-column data
structure, 1s performed outside of any database bufler
pool 1n the across-column data structure while main-
taining separate reference counts for each column;

recerving a query with a list of columns for the table;

incrementing the access count for each of the columns and
a global reader counter in the across-column data
structure;

scanning (startT'SN, pagePTR) for each column of the list

of columns;

identifying a targeted page based on a determination that

the targeted page 1s present in the first hierarchy; and

US 10,650,011 B2

19

reading values from the target page and returning to the
query.

17. The system of claim 16, wherein the object hierarchy

processor further determines whether to move each grouping,

of the data objects based on the tracked levels of access of 5

the data object groupings in the first hierarchy that overlap
with the grouping of data objects targeted for moving.
18. The system of claim 17, wherein:

the second hierarchy comprises memory pages and indi-
vidual values, and the first hierarchy comprises data
records, sequences of the data records, and individual
values:

infrequently accessed data objects and data objects that

the ifrequently accessed data objects are moved to
slower types of memory;

the types of memory comprise static RAM, dynamic
RAM, hard disks and solid state disks;

prior to moving a particular data object, a verification 1s
performed using tracked levels of access information
that a current number of accessors 1s zero for all
groupings ol data objects that overlap with the particu-
lar data object; and

10

15

20

a determination to move a data object 1s based on a
predetermined least recent access time.

19. The system of claim 18, wherein the arrangement of
data objects 1 a sequence of data records 1s indicated by a
TSN, the metadata information includes addresses of one or

more memory pages holding a grouping of data objects, the
pointer to a page comprises a union of pointers across
memory hierarchy, and the across-column data structure
turther comprises, for each column of data: reference counts
for each column of data, and a global reference count that
records all active references to rows of the across-column
data structure.

20. The system of claim 19, wherein upon the processor
executing an operation that adds additional data objects, one
or more memory pages are allocated as needed to hold the
additional data objects, and the allocated memory pages
determine an assignment of the data objects to groupings 1n
the second hierarchy, and the additional data objects are also

20 assigned to one or more groupings 1n the first hierarchy.

G s x ex e

	Front Page
	Drawings
	Specification
	Claims

