12 United States Patent

Wel et al.

US010649981B2

US 10,649,981 B2
May 12, 2020

(10) Patent No.:
45) Date of Patent:

(54) DIRECT ACCESS TO OBJECT STATE IN A
SHARED LOG

(71) Applicant: Nicira, Inc., Palo Alto, CA (US)

(72) Inventors: Michael Wei, Palo Alto, CA (US);
Dahlia Malkhi, Palo Alto, CA (US);
Medhavi Dhawan, Cupertino, CA
(US); Maithem Munshed, Palo Alto,
CA (US); Anny Martinez Manzanilla,
Santa Clara, CA (US); Roger Michoud,
Menlo Park, CA (US); Zeeshan Altaf
Lokhandwala, Santa Clara, CA (US)

(73) Assignee: VMware, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 286 days.

(21) Appl. No.: 15/791,257

(22) Filed: Oct. 23, 2017
(65) Prior Publication Data
US 2019/0121888 Al Apr. 25, 2019
(51) Imt. CL
GO6F 16/00 (2019.01)
GO6F 16/23 (2019.01)
(52) U.S. CL
CpPC ... GO6F 16/2379 (2019.01); GO6F 16/2322

(2019.01); GO6F 16/2358 (2019.01); GO6F
16/2365 (2019.01)

(58) Field of Classification Search
CPC GO6F 17/30321; GO6F 17/30339; GO6F
17/30144; GO6F 17/303777;, GO6F
17/30368; GO6F 17/303°71; GO6F 17/30;
GO6F 16/90; GO6F 11/1448; GO6F 9/466;

bl shbddeblel delek deiek sheber

------ s

[
virtual object(s), 14 @

fransactons

virtual object(s), 14

virfual object(s), 14 @

GO6F 16/2228; GO6F 16/2282; GO6F
16/2379; GO6F 16/2358; GO6F 16/221;
GO6F 16/00; GO6F 16/2365; GO6F
16/1734; GO6F 16/2322; GO6F 11/1471;
GO6F 16/1865; GO6F 17/30386; GO6F

2201/80; GO6F 16/2308
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,237,001 Bl 5/2001 Bamford et al.
7,043,665 B2* 5/2006 Kernc.c..... GOO6F 11/2058
711/162
10,198,299 Bl 2/2019 Xu et al.
10,262,000 Bl 4/2019 Bent et al.
2002/0165724 Al 11/2002 Blankesteyn
2003/0177187 Al* 9/2003 Levineccccceevvnne, A63F 13/10
709/205
2004/0260899 Al* 12/2004 Kern GOO6F 11/2058
711/162

2010/0211554 Al 8/2010 Reid et al.

(Continued)

OTHER PUBLICATTONS

Yunq: Ye; Liangliang Xiao; I-Ling Yen; Farokh Bastani—*“Secure,
Dependable, and High Performance Cloud Storage”—IEEE Oct.
31, 2010-Nov. 3, 2010—New DelH1, India (IEEE Xplore: Nov. 9,
2010) pp. 194-203.*

(Continued)
Primary Examiner — Anh Ly

(57) ABSTRACT

A shared log 1n a distributed system provides for direct
access to the most current data state of an object stored in the
shared log. Directly accessing the data state of an object
obviates the need for a client to replay all the transactions
stored 1n the shared log made on the object.

17 Claims, 8 Drawing Sheets

'/10

transactons

shared log system, 100

P
seguencer

module, 104

log manager
module, 106

shared log, 102

US 10,649,981 B2

Page 2
(56) References Cited 2016/0086260 Al1* 3/2016 Vermeulen G06Q 40/00
705/35
U.S. PATENT DOCUMENTS 2016/0301753 Al1* 10/2016 Auch GO6F 15/167
2017/0010772 Al1* 1/2017 Matthews GO6F 16/148
2010/0332495 A1* 12/2010 Richter GO6F 16/2477 2017/0220617 Al 82017 Bortnikov
707/759 2017/0287090 A1* 10/2017 Hunn G06Q 50/18
2012/0011106 Al 1/2012 Reid et al. 2017/0344593 Al 11/2017 Mullick et al.
2012/0239886 Al* 9/2012 Rantanen GO6F 16/273 2018/0121099 Al* 5/2018 Vaquero Gonzalez
711/147 GO6F 16/1847
2013/0110767 Al* 5/2013 Tatemura GOG6F 16/27 2018/0260631 Al 9/2018 Watanabe
707/607 2018/0276234 Al 9/2018 Wel et al.
2013/0227236 Al 8/2013 Flynn et al 2018/0372435 Al* 12/2018 Krameroco.... FA1A 3/12
- | 2019/0129982 Al 5/2019 Wei et al.
2013/0325803 Al* 12/2013 Akirav GO6F 11/1451
e 071634 2019/0146853 Al 52019 Xu et al.
2014/0025770 A1* 1/2014 Warfield GOG6F 15/17331
709/213 OTHER PUBLICATIONS
2014/0095452 Al 4/2014 Lee et al.
2014/0101225 Al1* 4/2014 Abu-Libdeh HO4L 41/5096 Mahesh Balakrishnan et al., “CORFU: A Shared Log Design for
| | | _ 709/203 Flash Clusters”, 9th USENIX Symposium on Networked Systems
2014/0108642 Al 4/2014 Cheriton et al. . .
_ . . : Design and Implementation, Apr. 25-27, 2012, 14 pages.
2014/0172898 Al 6/2014 Augilera et al. . . .
2014/0317093 A1 10/2014 Sun et al. Mahesh Balakrishnan et al., “Tango: Distributed Data Structures
2015/0160974 Al* 6/2015 Kishore GOGF 9/4881 over a Shared Log”, Nov. 1, 2013, 16 pages.
718/106 Philip A. Bernstein et al., “Hyder—A Transactional Record Man-
2015/0277969 A1* 10/2015 Straussoocovvevvvensn. GO6F 9/466 ager for Shared Flash™, 5th Biennial Conference on Innovative Data
707/703 Systems Research (CIDR °11), Jan. 9-12, 2011, 12 pages.
2016/0070771 Al 3/2016 Vermeulen Michael Wei et al., “vCorfu: A Cloud-Scale Object Store on a
2016/0085772 Al* 3/2016 Vermeulen GO6F 16/21 Shared Log”, VMware Research Group, Jan. 2017, 15 pages.
707/615
2016/0085834 Al 3/2016 Gleeson * cited by examiner

US 10,649,981 B2

Sheet 1 of 8

May 12, 2020

U.S. Patent

\

| ‘b1

Z01 ‘Do| paJeys

90| ‘enpow e
Jabeuew 60 -~

»» Cl1 'spslqo

ffl/flifll\)'.ll\
¥0l ®mnpow | 5
Jaouanbas HWWOD
001 ‘waisAs bo| paleys

suoljoesuel)

suonoesuel)

suonoesuel)

1L ‘(s)108[go |enuIA

\ ||||||

1 ‘(s)108lqo |enuIA

1 ‘(s)108[qo |enuiIA

f

!

ecl

US 10,649,981 B2

Sheet 2 of 8

May 12, 2020

U.S. Patent

00<C ‘eI9e} gq Jasn Aseiqy
. o00$ | o | § | €e00-lb¥8
- oovs | v | 0 | ueslel
coc—~| o0t$ | b | L | 1626688
Z0c—~ ooes | e | & | 6886119
0z~ o000$ | o | ¥ | €000-655
4014 4014 4014 404

@

@

@
oo [5
—Rouen | v
—seuer | ¢
B
BN
L

1401

14014

¢ "bi4

cre
(s)@d1nep INdINO |

vve
(s)a21A8p 1ndul

O¢ ‘abelols

US 10,649,981 B2

BlED [BUISIXS

VA4S
a0BHaIUI O]

76 ‘sng WelsAs

Sheet 3 of 8

0Zs ‘@oel8)ul _ 01 ¢ ‘ebeliols 1€ ‘Alowsw AR
UOIIBDIUNWIWOD Blep [eulajul (Uulew) walsAs Jlun Buissaooud

May 12, 2020

3¢c¢ — —
saINpow Wajshs 9EE ‘Belep FEC ‘suoneoljdde

U.S. Patent

U.S. Patent

shared log
102

May 12, 2020 Sheet 4 of 8

US 10,649,981 B2

log indices ("time")

Object ID
Member |D
operation(s)
object data

client ID log entry, 402a

storage cluster

log manager module, 10

write buffer, 502

Fig. 5

404

log entries, 402

U.S. Patent May 12, 2020 Sheet 5 of 8 US 10,649,981 B2

sequencer module, 104

latest time counter, 602

last

604a data object ID odified fime

c04b

OBJ-abc

Q0

OBJ-jkl

N
QO

OBJ-xyz

N

OBJ-abc.member1 8
OBJ-abc.member2

2

Q0

OBJ-jkl. member2

OBJ-xyz.member6

—

OBJ-xyz.member4 2

data objects table, 604

Fig. 6

U.S. Patent May 12, 2020 Sheet 6 of 8 US 10,649,981 B2

702

perform computations

704

verify correctness
with sequencer

708

commit write objects
to log manager

path |
path 11 path 111
(22
verify conflict
window(s) using
Treturned from sequencer
/32
/724
actual retry: read objects using
conflict? Y Tretumeq from sequencer

N
(26

retry: verify correctness

using VERIFIED parameter

FIG. 7

U.S. Patent May 12, 2020 Sheet 7 of 8 US 10,649,981 B2

receive verify request

from client 802

806

804

%EE&Z@% Y scan shared log, 102
N
810
808
is the read set N signal FAIL, return |atest

time counter (602) as T cturned

IN memory?

compare snapshot time

with last-modified times, 604b 812

820
814

any conflicts Y signal FAIL, return last

in the read set?

modified time (604b) as T cturned

increment latest time counter

and update data objects table 816

signal COMMIT and return
latest time counter, 602

818

Fig. 8

U.S. Patent

1002

1004

1006

1008

May 12, 2020 Sheet 8 of 8

recelve and buffer transaction
from client

log manager writes

write buffer to the shared log

Fig. 9

recelve read request

access state information
IN data objects table

access log entry In
shared log

return data state from
log entry

Fig. 10

US 10,649,981 B2

902

904

US 10,649,981 B2

1

DIRECT ACCESS TO OBJECT STATE IN A
SHARED LOG

CROSS REFERENCE TO RELATED
APPLICATIONS

This application i1s related to the following commonly
owned co-pending U.S. applications for patent, the content
of each of which 1s incorporated herein by reference 1n 1ts

entirety for all purposes:
U.S. application Ser. No. 15/652,981, filed Jul. 18, 2017

U.S. application Ser. No. 15/798,073, filed Oct. 30, 2017,
titled “Just-in-Time Multi-Indexed Tables 1n a Shared
Log”

U.S. application Ser. No. 15/791,280, filed concurrently,
titled “Fine-Grained Conflict Resolution in a Shared
Log”

BACKGROUND

Transactions are a fundamental building block for reliable
concurrent systems. They enable programmers to express a
unit of work which a system will perform, and provide
guarantees on how that unit of work will be executed with
respect to other transactions in the system. In a distributed
system, multiple clients can simultaneously request trans-
actions, and these transactions can sometimes conflict with
cach other, depending on the guarantees provided by the
system. For instance, two transactions in an object store can
try to modity the same object. In most systems, a transaction
manager can be used detect such contlicts and can abort one
of the transactions to maintain correctness. Conventional
systems typically achieve this through the use of locks or
write-ahead logging, global logging and the like, or other-
wise can relax certain guarantees provided by the system.
Locking and write-ahead logging require considerable over-
head, which can hamper throughput and increase latency,
and thus can be deemed “heavyweight” processes for this
reason. Global logging, on the other hand, 1s a technique
where conflict resolution 1s derived from recording every
transaction on a single global log. Global logging imposes a
burden on the client with having to perform their own
transaction resolution. Since no entity maintains the latest
version of each object, the client must playback the entire
log to find the latest versions of each object of interest 1n
order to determine whether or not a contlict occurs. In
addition, aborted transactions can be logged which can slow
the playback process and greatly limit the scalability of the
system as the number of clients grow.

BRIEF DESCRIPTION OF THE DRAWINGS

With respect to the discussion to follow and 1n particular
to the drawings, it 1s stressed that the particulars shown
represent examples for purposes of illustrative discussion,
and are presented 1n the cause of providing a description of
principles and conceptual aspects of the present disclosure.
In this regard, no attempt 1s made to show implementation
details beyond what 1s needed for a fundamental understand-
ing of the present disclosure. The discussion to follow, 1n
conjunction with the drawings, makes apparent to those of
skill 1n the art how embodiments in accordance with the
present disclosure may be practiced. Similar or same refer-
ence numbers may be used to 1dentify or otherwise refer to
similar or same elements in the various drawings and
supporting descriptions. In the accompanying drawings:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 shows a system comprising a shared log in
accordance with the present disclosure.

FIG. 2 shows an example to 1llustrate objects and mem-
bers of an object.

FIG. 3 shows an illustrative example of a computer
system 1n accordance with the present disclosure.

FIG. 4 shows a simplified representation of a shared log.

FIG. § shows a simplified representation of data that can
be used 1n some embodiments of a log manager module 1n
accordance with the present disclosure.

FIG. 6 shows a simplified representation of data that can
be used 1 some embodiments of a sequencer module in
accordance with the present disclosure.

FIG. 7 depicts an operational flow in a client 1n accor-
dance with the present disclosure.

FIG. 8 depicts an operational flow 1n a sequencer module
in accordance with the present disclosure.

FIG. 9 depicts an operational flow 1 a log manager
module 1 accordance with the present disclosure.

FIG. 10 depicts an operational tlow for processing a read
request 1n accordance with the present disclosure.

DETAILED DESCRIPTION

The present disclosure 1s directed to distributed transac-
tional systems in which the ordering of transactions can be
processed by a sequencer. A sequencer 1n accordance with
the present disclosure can replace conventional heavyweight
mechanisms that use locking, write-ahead logging, and other
processing that can burden the client. Funneling all trans-
actions through a lightweight transaction sequencer to per-
form contlict resolution and keep track of the state of each
object 1n the system (and in particular each member 1n that
object) can reduce the processing burdens on clients and
allows the system to scale up.

In the following description, for purposes of explanation,
numerous examples and specific details are set forth in order
to provide a thorough understanding of embodiments of the
present disclosure. Particular embodiments as expressed in
the claims may include some or all of the features in these
examples, alone or 1n combination with other features
described below, and may turther include modifications and
equivalents of the features and concepts described herein.

FIG. 1 shows an example of a distributed system 10
comprising a shared log system 100 1n accordance with the
present disclosure. The shared log system 100 represents
objects 112 that clients 12 can access (read and write);
objects 112 can be shared among the clients 12. In some
embodiments, for example, the shared log system 100
comprises a shared log 102 (also referred to as a distributed
log) that maintains the data state of objects 112 by storing
transactions made on those objects 112 by clients 12. Clients
12 can append entries to the shared log 102. Clients 12 can
read (e.g., a get operation) an entry at a particular offset in
the shared log 102. Clients 12 can interact with the shared
log 102 via transactions. Transactions can include operations
such as create, read, update, delete, various arithmetic
operations, and so on.

The “data state” of an object 112 at a given point 1n time
refers to the value or values of the object at that time, namely
the state of the data that comprises the object 112. For
example, 11 the object 112 1s a numerical object, then at time
t, its data state might be the value 1.4142, and at another
time t, 1ts data state might be the value 3.14159, and so on.
Likewise, if the object 112 1s a textual object 1ts data state
can be a particular sequence of text at one time, and a
different sequence of text at another time.

US 10,649,981 B2

3

In shared log systems, such as depicted 1n FIG. 1, objects
112 typically are not persisted but rather exist only in terms
of the history of client transactions performed on the objects
112. A client 12 can instantiate and maintain 1ts own copies
of the objects 112 as virtual objects 14. The most current
data state of a virtual object 14, for example, can be obtained
by accessing individual transactions (updates) stored in the
shared log 102 that were made on an object 112 of interest,
and replaying those transactions by sequentially applying
the sequence of computations and/or operations made on the
object 112.

In accordance with the present disclosure, the shared log
system 100 can include a sequencer module 104 and a log
manager module 106. To append a transaction to the shared
log 102, the sequencer module 104 can provide the client 12
with the next free oflset in the shared log 102. The client 12
can complete the append operation by directly 1ssuing write
request (e.g., put operation) to the log manager module 106.
The log manager module 106 provides buflering of data
associated with transactions to be committed to the shared
log 102. These aspects of the present disclosure are dis-
cussed 1n more detail below.

In some embodiments, objects 112 can comprise struc-
tured data. Merely to illustrate this point, consider the
database table 200 of a library database shown 1n FI1G. 2. The
database table 200 may be a database table of users of the
library. Each record (row) 202 1n the library user database
table can include data fields 204 such as record ID, name,
city of residence, phone number, number of books on loan,
number of overdue books, total overdue fees, and so on.
Each row 202 1n the database table 200 can be considered an
object 112, and each data field 204 1n a row 202 can be
referred to as an “object member” of that object. In some
specific embodiments, objects 112 may be referred to as
“maps” and object members may be referred to a “keys.”
However, the more general terms “object” and “object
member” will be used throughout.

In some embodiments, where an object comprises mul-
tiple separate object members, it may be desirable to allow
two or more transactions to concurrently access different
object members within the same object without conflict.
Referring to the database table 200 1n FIG. 2 to 1llustrate this
point, for example, a first client can access the record
(object) for Gabby to update the “number of books on loan”
data field (object member), while a second concurrent client
can access the same record to update Gabby’s phone num-
ber. Although both clients access Gabby’s record, there 1s no
conflict since the clients access different data fields 1n
Gabby’s record. On the other hand, if the first and second
clients target the same data field, then a contlict can arise.
Thus, at the object level a conflict may be indicated, but at
the level of the object members, there may not be actual
conflict. The discussion will now turn to a description of
various embodiments 1n accordance with the present disclo-
sure to resolve “fine-grained™ (1.e., at the resolution of object
members of an object) conflicts as compared to “coarse-
grained” (at the resolution of the objects themselves) con-
flicts, which can improve system performance by allowing
transactions from multiple clients to concurrently access
and/or modily (update) a given object, but diflerent mem-
bers 1n that given object.

FIG. 3 1s a simplified block diagram of an illustrative
computing system 302 for implementing one or more of the
embodiments described herein. For example, the computing
system 302 can perform and/or be a means for performing,
either alone or 1n combination with other elements, opera-
tions in the shared log system 100 in accordance with the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

present disclosure. Computing system 302 can also perform
and/or be a means for performing any other steps, methods,
or processes described herein.

Computing system 302 can include any single or multi-
processor computing device or system capable of executing
computer-readable 1nstructions. Examples of computing
system 302 include, for example, workstations, laptops,
client-side terminals, servers, distributed computing sys-
tems, handheld devices, or any other computing system or
device. In a basic configuration, computing system 302 can
include at least one processing unit 312 and a system (main)
memory 314.

Processing unit 312 can comprise any type or form of
processing unit capable of processing data or interpreting
and executing instructions. The processing unit 312 can be
a single processor configuration in some embodiments, and
in other embodiments can be a multi-processor architecture
comprising one or more computer processors. In some
embodiments, processing umt 312 can receive instructions
from program and data modules 330. These 1nstructions can
cause processing unit 312 to perform operations in accor-
dance with the present disclosure.

System memory 314 (sometimes referred to as main
memory) can be any type or form of volatile or non-volatile
storage device or medium capable of storing data and/or
other computer-readable instructions. Examples of system
memory 314 include, for example, random access memory
(RAM), read only memory (ROM), flash memory, or any
other suitable memory device. In some embodiments com-
puting system 302 can include both a volatile memory unit
(such as, for example, system memory 314) and a non-
volatile storage device (e.g., data storage 316, 346).

In some embodiments, computing system 302 can also
include one or more components or elements 1n addition to
processing umt 312 and system memory 314. For example,
as 1llustrated 1n FIG. 3, computing system 302 can include
internal data storage 316, a communication interface 320,
and an I/O iterface 322 interconnected via a system bus
324. System bus 324 can include any type or form of
infrastructure capable of facilitating communication
between one or more components comprising computing
system 302. Examples of system bus 324 include, for
example, a communication bus (such as an ISA, PCI, PCle,
or similar bus) and a network.

Internal data storage 316 can comprise non-transitory
computer-readable storage media to provide nonvolatile
storage of data, data structures, computer-executable
instructions, and so forth to operate computing system 302
in accordance with the present disclosure. For instance, the
internal data storage 316 can store various program and data
modules 330, including for example, operating system 332,
one or more application programs 334, program data 336,
and other program/system modules 338. In some embodi-
ments, for example, the internal data storage 316 can store
one or more of the sequencer module 104, and the log
manager module 106 shown 1n FIG. 1, which can then be
loaded into system memory 314. In some embodiments,
internal data storage 316 can serve as the shared log 102.

Communication interface 320 can include any type or
form of communication device or adapter capable of facili-
tating communication between computing system 302 and
one or more additional devices. For example, in some
embodiments communication interface 320 can facilitate
communication between computing system 302 and a pri-
vate or public network including additional computing sys-
tems. Examples of communication interface 320 include, for
example, a wired network interface (such as a network

US 10,649,981 B2

S

interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface.

In some embodiments, communication interface 320 can
also represent a host adapter configured to facilitate com-
munication between computing system 302 and one or more
additional network or storage devices via an external bus or
communications channel. Examples of host adapters
include, for example, SCSI host adapters, USB host adapt-
ers, IEEE 1394 host adapters, SATA and eSATA host adapt-
ers, ATA and PATA host adapters, Fibre Channel interface
adapters Ethernet adapters, or the like.

Computing system 302 can also include at least one
output device 342 (e.g., a display) coupled to system bus 324
via I/O interface 322. The output device 342 can include any
type or form of device capable of visual and/or audio
presentation of information recerved from I/0 interface 322.

Computing system 302 can also include at least one input
device 344 coupled to system bus 324 via I/O interface 322.
Input device 344 can include any type or form of input
device capable of providing mput, either computer or human
generated to computing system 302. Examples of input
device 344 include, for example, a keyboard, a pointing
device, a speech recognition device, or any other input
device.

Computing system 302 can also include external data
storage 346 coupled to system bus 324. In some embodi-
ments, external data storage 346 can provide a storage
cluster (e.g., 40, FIG. 4) for the shared log 102. In some
embodiments, for example, the external data storage 346 can
comprise storage units with both server-attached SATA
SSDs (a pair of SSDs attached to a server accepting network
commands), and also networked-attached flash with a cus-
tom FPGA mmplementation (server functionality and net-
work protocols entirely in hardware).

FIG. 4 shows a simplified representation of a shared log
102 1n accordance with the present disclosure. In some
embodiments, for example, the shared log 102 can be built
on top a distributed storage system (e.g., storage cluster 40).
The shared log 102 can comprise a set of log entries 402, one
such entry for each transaction. Each log entry 4024 can map
to one or more pages of storage on the storage cluster 40 and
store the details of 1ts corresponding transaction, including
an object identifier that identifies the target object of the
transaction, a member 1dentifier that identifies the object
member 1n the target object, current values of the objects,
operations specilied in the transaction, any data associated
with the operations, an i1dentifier of the client 12 that
requested the transaction, and so on. A log entry 402a can
store multiple target objects 11 the transaction updates mul-
tiple target objects.

Each log entry 402 can be 1dentified by a log index (oflset)
404 that represents 1ts ordinal position 1n the shared log 102.
Since log entries 402 are sequentially appended, the log
index 404 can represent the “time™ of a log entry 402 relative
to other log entries 1n the shared log 102. For example, a log
entry 402 having a log index of n occurs earlier in time than
a log entry having a log index of n+1, and later in time than
a log entry having a log index ol n-1. The log index 404 can
be referred to variously as an oflset, an address, sequence
number, version number, timestamp, time referenee and so
on. The remainder of the present disclosure can use these
various terms interchangeably.

FIG. 5 shows s simplified representation of data that can
be used by the log manager module 106. In some embodi-
ments, for example, the log manager module 106 can
include a transaction write butler 502. The transaction write

10

15

20

25

30

35

40

45

50

55

60

65

6

bufler 502 can serve as an intermediate area to hold a
transaction received from a client 12 before the transaction
1s written to the shared log 102. In some embodiments, for
example, the transaction write builer 502 can provide a
caching function.

FIG. 6 shows a simplified representation of components
in the sequencer module 104 to manage fine-grained conftlict
resolution 1n accordance with the present disclosure. The
contlict resolution 1s “fine-grained” 1n that conflict resolu-
tion occurs at with respect to object members 1n structured
objects rather than at the level of the objects themselves
(course-grain). In some embodiments, the sequencer module
104 can include a time reference called the latest time
counter 602, which can be an integer value of suitable size
(e.g., a 64-bit value). The latest time counter 602 can
represent a sense ol time in the shared log system 100. In
some embodiments, the latest time counter 602 can be the
log index 404 of the most recent entry (the tail) in the shared
log 102. The latest time counter 602 can be incremented
cach time a transaction 1s committed to the shared log 102.

The sequencer module 104 can include a data objects
table 604 that stores information relating to each object
member of each object 112 1n the shared log system 100. As
used herein, the term “data object” will refer to a particular
object member of a particular object; although in some
embodiments where object 112 does not comprise structured
data, the term “data object” can refer to the entire object 112
such as disclosed in commonly owned U.S. application Ser.
No. 15/652,981.

The data objects table 604 1nclude information for each
data object that can be collectively referred to as state
information, metadata, and the like for that data object. The
data objects table 604, for example, can include a column of
data object 1identifiers 604a that identily the data objects 1n
the shared log system 100. In some embodiments, for
example, a data object identifier 604a can be formed by
computing a hash value using a name (e.g., a text string) of
the object and a name of the object member 1n that object.
The computed hash values can be used to as an index to the
data objects table 604.

The data objects table 604 can include a column of
last-modified times that stores a last-modified time 6045 for
cach data object. The last-modified time of a data object 1s
a time reference (e.g., using the latest time counter 602) of
when the data object was last updated/modified. In some
embodiments, the last-modified time can be the log index
404 of the log entry 402 that contains the transaction for the
data object. Merely to illustrate this point, FIG. 6 shows
three objects OBlJ-abc, OBJ-ghi, OBJ-xyz and respective
members of those objects. For example, the data objects
table 604 shows that “memberl” of object OBJ-abc was last
modified at time reference 18. In other words, 18 1s the log
index of the log entry that contains the transaction that last
updated the data object OBJ-abc.memberl. Likewise, for
“member2” of object OBJ-abc (last modified at time refer-
ence 6) and “member2” of object OBJ-1kl (last modified at
time reference 28).

In some embodiments, the data objects table 604 can
include entries for the object s themselves. In some embodi-
ments, for example, the last-modified time field 6045 for the
entire object can represent the time that any member of that
object was last modified. FIG. 6, for example, shows that the
entry for OBJ-abc has a last-modified time of 18 because 1ts
member memberl was last modified at that time.

The discussion will now turn to a description of various
operational flows 1n the shared log system 100 for process-
ing a transaction in accordance with the present disclosure,

US 10,649,981 B2

7

beginning with processing in a client. A basic flow 1n the
shared log system 100 can begin with a client writing a
transaction to the shared log 102. The client can obtain from
the sequencer module 104 an oflset into the shared log 102.
The oflset (e.g., log index 404) identifies a log entry 402 1n
the shared log into which the transaction can be stored. In
accordance with the present disclosure, the sequencer mod-
ule 104 can verily the correctness of the transaction before
issuing an oflset. Refer now to FIG. 7, 1n conjunction with
the previous figures, for a high level operational flow in a
client (e.g., 12a).

At operation 702, a client 12a can perform a series of
operations and/or computations on one or more data objects
in the shared log system 100 to produce data for a transac-
tion (transaction result). The operations and/or computations
that comprise the transaction can include a set of data objects
that serve as the source of data for the transaction (call these
the “source data objects”). The transaction can include a set
of data objects that are to be modified with the results of the
operations and/or computations (call these the “target data
objects”™).

The source data objects can come from the client’s local
copy (e.g., virtual objects 14 stored in the client’s memory)
of the data, rather than from the shared log 102. Maintaining
a local copy of the source data objects can reduce the
processing overhead that can be incurred when having to
access the shared log 102 for the data. Maintaining a local
copy of the source data objects can become outdated if other
client, however, incurs the risk that the source data objects
are outdated due to other clients making updates to those
data objects.

At operation 704, when the client 12a has completed 1ts
computations and 1s ready to submit a transaction to the
shared log 102, the client 124 can communicate with the
sequencer module 104 to obtain the log index 404 of the next
free log entry 1n the shared log 102. In accordance with the
present disclosure, the sequencer module 104 can verity the
correctness of that transaction as a pre-condition of 1ssuing
the log index 404. Recall from FIG. 1 that each client stores
a copy ol data objects from the shared log 102 in their own
virtual objects 14. Accordingly, computations made by client
12a using source data objects from 1its virtual objects 14 may
be incorrect if the same source data objects have been
subsequently updated by other clients; this i1s referred to as
a “contlict.” Verification of correctness 1n accordance with
the present disclosure can be performed to determine
whether a conflict exists or not. Accordingly, 1n some
embodiments, the client 12q can send a verily request to the
sequencer module 104 to verity whether there 1s a contlict 1n
the transaction and obtain the next free log index. The verily
request can include a set of identifiers (the “write set”) for
cach of the target data objects to be updated, a set of
identifiers (the “read set”) for each of the source data
objects, and a snapshot time. The “snapshot time” 1s a time
reference that indicates the most recent data state of the
source data objects as stored in the virtual objects 14 of
client 12a.

In accordance with the present disclosure, the information
load 1n the vernity request that 1s provided to the sequencer
module 104 can be kept to a mimimum. In other words, the
verily request can contain the mimmum amount of infor-
mation that the sequencer module 104 needs to do 1ts job.
For example, parameters for the verily request can comprise
only 1dentifiers of the target data objects and 1dentifiers of
the source data objects. In some embodiments, for example,
the client 12a can compute hash values (e.g., 8-byte values)
as 1dentifiers of the target and source data objects. For

10

15

20

25

30

35

40

45

50

55

60

65

8

instance hash values can be computed using the text string
of the name of the object and of the name of the member 1n
that object. An 8-byte hash value of a data object can be
much more compact than a lengthy textual identifier of the
data object.

Since verification 1n accordance with the present disclo-
sure does not require the actual data associated with the
source and target data objects, the verily request can omit
such data. Likewise, the verily request can omit the opera-
tions and/or computations used to compute the data for the
target data objects, further reducing the overhead 1n com-
municating with the sequencer module 104. These can be
important considerations because all clients 12 1n the system
10 go through the sequencer module 104 to verity the
correctness of their respective transactions, and so the appli-
cation programming interface (API) to the sequencer mod-
ule 104 should be kept as “lightweight” as possible by
omitting any extraneous information in the verify request
APl to minimize commumcation overhead with the
sequencer module 104.

For illustrative purposes only, an example ol a verily
request can include the following parameters:

source data objects 1n read set:

A.memberl (1.e., object A and object member mem-
berl)
A.member3
B.memberl
target data objects 1n write set:
A.member6
C.member5s
C.member9

snapshot time: 15
This example illustrates various points. The transaction read
set (source data objects) can comprise more than one data
object to make the computation. The transaction write set
can target several data objects; e.g., diflerent members 1n
different objects, diflerent members within the same object,
different members in one of the source objects (e.g., a
member 1n object A can be a source data object and a
different member 1n object A can be a target data object), and
SO On.

In accordance with some embodiments, the verily request
can 1nclude only a single snapshot time (1n keeping with the
goal of achieving a lightweight interface to the sequencer
module 104), despite that the read set can comprise several
data objects. In some embodiments, the snapshot time can be
the time reference of the source data object that was most
recently updated. Recall that each client maintains 1ts own
virtual copy of data objects. Accordingly, each client will
maintain 1ts own time references for when those data objects
were most recently updated. Using the example above, for
instance, suppose the wvirtual objects 14 1n client 12qa
includes the following state information for the read set:

A.memberl —most recently updated at time reference 12

A.member3—most recently updated at time reference 15

B.memberl—most recently updated at time reference 11
Client 12a would use time reference 15 as the snapshot time
in the verily request (as shown in the example above)
because A.member3 is the most recently updated data object
among the source data objects stored among the virtual
objects 14 of client 12a.

At operation 706, the client 12a can receive a response to
the verily request indicating whether the transaction can be
committed (COMMIT) or should be aborted (FAIL). For
example, 1 response to the client 12a receiving a COMMIT
from the sequencer module 104, processing 1n the client 12q
can proceed to operation 708 to commit the transaction. On

US 10,649,981 B2

9

the other hand, 1n response to the client 12a receiving a
negative response (e.g., FAIL), the client 12a can proceed
along processing paths I, II, III explained below.

At operation 708, the client 124 can respond to a COM-
MIT from the sequencer module 104. A COMMIT response
indicates that the data states of the source data objects as
stored in the client 12a matches the sequencer module’s data
states of the same source data objects. Accordingly, the
computation can be deemed to be correct with respect to
those source data objects. In addition to receiving a COM-
MIT from the sequencer module 104, the client 12a can
receive the value of the latest time counter 602 from the
sequencer module 104, which identifies the log index 404 of
the next free log entry 402 1n the shared log 102.

In response to receiving a COMMIT from the sequencer
module 104, the client 12a can commit the transaction. In
some embodiments, for example, the client 12a can submat
a write transaction to the log manager module 106 to update
the target data objects. The write transaction can 1include the
value of the latest time counter 602, which 1dentifies the log
entry 402 1n the shared log 102 to store the transaction.
Client 12a can send a message to the log manager module
106 to bufler the transaction 1n the log manager module’s
transaction write bufler 502 to be written to the shared log
102. The value of the latest time counter 602 from the
sequencer module 104 can also be used to update the local
time references of the target data objects stored 1n the client
12a. Processing can return to operation 702 to process
another transaction.

Returnming to operation 706, the client 12a 1n the alterna-
tive can recerve a FAIL response from the sequencer module
104. In some 1nstances, a FAIL response can indicate that not
all the source data objects used to make the computatlons for
the transaction were at their latest data state; i other words,
there was a contlict between the data state of at least one of
the source data objects 1n the client 12a versus the data state
of that source data object in the shared log 102. Conse-
quently, the computations performed by client 12a may be
incorrect. This 1s an example of an “actual contlict.”

In other instances, a FAIL response can indicate a failure
in the sequencer module 104, whereby access to state
information (e.g., last-modified time 6045, FIG. 6) for one
or more of the source data objects i1dentified in the verily
request 1s not possible or available. This 1s an example of
false 1indication of a contlict (a “non-contlict”). This aspect
of the present disclosure 1s discussed 1 more detail below.

In response to recerving a FAIL from the sequencer
module 104, the client 12¢ in some embodiments can
proceed along any one of three processing paths I, 11, III. The
client 12a does not know whether the FAIL 1s due to an
actual contlict or 1s a non-conflict failure 1n the sequencer
module 104 (e.g., a collision in the hash function used to
generate object 1identifiers). Accordingly, 1n some 1nstances,
the client 12a can abort the transaction and return to opera-
tion 702 to process another transaction (processing path I).
In other instances, the client 12a can proceed to operation
722 (processing path II) or to operation 732 (processing path
III) and attempt to retry the venfication. Processing paths 11
and III are discussed next.

Processing Path 11

At operation 722, the client 12a can respond to the FAIL
indication by scanning entries in the shared log 102, and
manually determining whether or not an actual conflict
exists. In some embodiments, the sequencer module 104 can
return a time reference T, . . to the client 12q along with
the FAIL indication. Depending on the nature of the FAIL
condition, T,_, _.can be the log index 404 of the log entry

10

15

20

25

30

35

40

45

50

55

60

65

10

402 1n the shared log 102 of the source data object, among
all the source data objects 1n the read set, that was most
recently updated (in the case of an actual conflict). In the
case of a non-conflict failure 1n the sequencer module 104,
T, . . .can be the value of the latest time counter 602 (i.¢.,
the log index 404 of the log entry 402 at the tail of the shared
log 102).

In accordance with some embodiments, the client 124 can
scan the shared log 102 for each source data object for any
updates made within a conflict window, to determine
whether or not an actual conflict exists. In some embodi-
ments, the “contlict window” for a data object can be defined
as the window of time between T, . _ . (the time reference
returned by the sequencer module 104) and the client’s time
reference for that data object, keeping 1n mind that each
client in the system maintains its own virtual copy of data
objects and corresponding time references. Using the
examples above, for instance, the conflict window for the
data object A.memberl 1s the time between time reference
12 (the client side time reference) and T, _, The conflict
window for the data object A.member3 1s the time between
time reference 15 and T, ., . and for the data object
B.memberl the contlict window 1s between time reference
11 and 1,7, cq-

Consider the scanning for data object A.memberl, for
example. In some embodiments, the client 12a can query the
shared log 102, for each increment 1n time within the conflict
window (from time reference 12to T, , _.) to look for any
updates to A.memberl. Thus, client 12a can query the
shared log 102 for any updates to A.memberl made at time
reference 13 (e.g., read the log entry at log index=13), then
at time reference 14, and soonup to T, _, . _ .. IT an update
has been made to data object A.memberl at any time
between 12 and T, . . ., then an actual conflict of data
object A.memberl exists; in other words, the copy of
A.memberl held by client 12q 1s older than the current state
of A.member]l in the shared log 102. Otherwise, there 1s no
actual conflict with A.memberl.

At operation 724, 1n response to detecting an actual
contlict with any one of the source data objects, client 124
can proceed to operation 732. If no actual conflict 1s
detected, processing 1n the client 12a can proceed to opera-
tion 726.

At operation 726, the client 12a can retry veniiying the
transaction and obtaining a log index when no actual conflict
exists. In accordance with the present disclosure, the client
12a can include an additional parameter, referred to herein
as a VERIFIED flag, in the vernily request. The VERIFIED
flag can serve to indicate to the sequencer module 104 that
the client 12q has verified that the source data objects are not
in conflict with the shared log 102 as of time reference
T . . Accordingly, the client 12a can use the time
reference T, . as the snapshot time parameter in the
verily request.

Since a source data object can be updated by another
client subsequent to veritying the conflict windows (opera-
tion 722) and prior to receiving confirmation from the
sequencer module 104 to commit the transaction, the
sequencer module 104 may respond with another FAIL
indication. Accordingly, processing in the client 12a can
continue at operation 706 to repeat the process.
Processing Path 111

At operation 732, the client 12a can respond to the FAIL
indication by re-computing the transaction. In accordance
with some embodiments, the client 124 can use the time
reference T, . returned by the sequencer module 104 to
obtain the latest data state of the source data objects used 1n

US 10,649,981 B2

11

computing the transaction. For example, using T, . _ . the
client 12a can replay transactions from the shared log 102 up
to'l, . . .1or each data object, thus updating the data state
of the source data objects to the time reference of T, . . _ .
The client 12a can then recompute the transaction beginning
at operation 702 with the updated source data objects.

The discussion will now turn to a description of additional
detail 1n the sequencer module 104 1n accordance with some
embodiments. As noted above, the sequencer module 104
can 1ndicate FAIL as a result of an actual conflict, where the
data state in the shared log 102 of a source data object i1s
more current than the data state in the client. In some
embodiments, for example, an actual contlict can exist when
the log index 404 of the most recent entry 402 of a source
data object 1n the shared log 102 1s greater than the time
reference for that source data object in the client.

It 1s further noted that the sequencer module 104 can
indicate FAIL where there 1s no actual conflict (a non-
conilict). In some embodiments, a non-contlict FAIL can
arise 1f the data objects table 604 does not contain an entry
for a source data object. In some embodiments, for example,
it may not be practical to store the entire data objects table
604 1n main memory. In specific instances, for example, the
data objects table 604 can contain thousands to hundreds of
thousands to millions of entries. Accordingly, only portions
of the data objects table 604 may be stored 1n main memory,
for example, 1n a cache. Being a cache memory, portions of
the cache can be evicted from main memory, for example,
due to memory pressure, or during the course of normal
memory management in the computer system (e.g., 302,
FIG. 3), and so on. It 1s therefore possible that information
for a source data object of a verify request 1s 1n a part of the
data objects table 604 that i1s not presently cached 1n main
memory, in which case the sequencer module 104 can
indicate a FAIL.

In some embodiments, a non-conflict FAIL can arise due
to a hash collision. As noted above, 1n some embodiments,
a data object 1n the data objects table 604 can be indexed
according to a hash value (hash code) computed from the
identifier of the object and the 1dentifier of the member 1n
that object. Clients can transmit hash codes to identity data
objects 1n the read set and data objects 1n the write set 1n
order to minimize I/O with the sequencer module 104. In the
case ol a hash collision for a data object, the sequencer
module 104 can respond with a FAIL because the data object
cannot be identified due to the collision.

Referring to FIG. 8, the discussion will now turn to a
description of processing in the sequencer module 104 1n
accordance with some embodiments of the present disclo-
sure. FIG. 8, in conjunction with previous figures, shows a
high level operational flow in the sequencer module 104 for
verilying the correctness of a transaction in accordance with
the present disclosure. In some embodiments, for example,
the sequencer module 104 can include computer executable
program code, which when executed by a computer system
(e.g., 302, FIG. 3), can cause the computer system to
perform processing in accordance with FIG. 8. The opera-
tion and processing blocks described below are not neces-
sarily executed 1n the order shown, and can be allocated for
execution among one ore more concurrently executing pro-
cesses and/or threads.

At operation 802, the sequencer module 104 can receive
a verily request from a client (see operations 704, 726, FIG.
7, for example). As explained above, the verily request can
include 1dentifiers of data objects 1n the read set (source data
objects) and data objects in the write set (target data objects)
of the verily request, and a snapshot time. The client can

10

15

20

25

30

35

40

45

50

55

60

65

12

provide any suitable time reference as the snapshot time. For
example, the client can provide a snapshot time that 1t
believes represents the latest state of the data 1n the source
data objects. As noted above, the verily request does not
include (nor does it require) the data or operations used to
compute the transaction. In this way, the sequencer module
104 can be quickly mvoked and executed (lightweight
Process).

At operation 804, the sequencer module 104 can deter-
mine 11 the verity request includes the VERIFIED parameter
(see operation 726,F1G. 7). As explained above, this param-
cter can be used when the client receives a FAIL from the
sequencer module 104. The parameter can serve to indicate
that the client has manually verified the source data objects
up to the time indicated by the snapshot time (operation
726). In response to the verily request having a VERIFIED
parameter, the sequencer module 104 can proceed to opera-
tion 806; otherwise, the sequencer module can proceed to
operation 808.

At operation 806, the sequencer module 104 can vernily
cach source data object by scanning the shared log 102. As
explained above, inclusion of the VERIFIED parameter 1n
the verily request indicates the client has manually verified
the data objects up to the snapshot time provided in the
verily request 1n response to a FAIL indication. Accordingly,
the sequencer module 104 needs only to scan that portion of
the shared log 102 from the time of the snapshot time to the
latest entry 1n the shared log 102 (e.g., pointed to by the
latest time counter 602) to verily the source data objects,
instead of having to scan the entire shared log 102. If none
of the data objects appear 1n the shared log 102 subsequent
to the snapshot time, the data objects can be deemed to be
verified; 1.e., no conflict. IT one of the data objects appears
in shared log 102 subsequent to the snapshot time, this can
be deemed to be a contlict. The sequencer module 104 can
proceed to operation 814.

At operation 808, the sequencer module 104 can deter-
mine 1f all the source data objects are 1n memory. As
explained above, only portions of the data objects table 604
may be cached 1in main memory. As such, 1t 1s possible that
portion(s) of the data objects table 604 that contain one or
more of the source data objects may not be 1n main memory.
Accordingly, in response to a determination that one or more
of the source data objects are not in main memory, the
sequencer module 104 can proceed to operation 810; oth-
erwise, the sequencer module 104 can proceed to operation
812.

At operation 810, the sequencer module 104 can signal a
FAIL to the client since the portion(s) of the data objects
table 604 that contains one or more source data objects are
not 1n main memory. As such, the sequencer module 104
does not have the last-modified times (6045, FIG. 6) for
those data objects, and cannot determine i1f they are current
with respect to the snapshot time provided in the verily
request. The sequencer module 104 can return a value for
T,tothe client. In this situation, the value for T, .
can be the time reference of the latest entry 1n the shared log
102; for example, the sequencer module 104 can return the
value of the latest time counter 602 as T, _, . .. Since the
sequencer module 104 does not have state information for
one or more of the source data objects, the client can rescan
a portion of the shared log 102 using T, to manually
determine 11 a contlict exists (see N branch of operation 706,
FIG. 7). This shifting of the rescanning process from the
sequencer module 104 to the clients reduces the burden of
rescanning in the sequencer module 104 to enable eflicient
processing of verily requests from other clients as a light-

US 10,649,981 B2

13

weight process. Accordingly, the sequencer module 104 can
return to operation 802 to process the next verily request.

At operation 812, the sequencer module 104 can verily
the actual state of the source data objects against the
snapshot time provided 1n the verity request, for example, by
comparing the snapshot time to time references of the source
data objects’ most recent updates in the shared log 102 to
determine whether the snapshot time represents the most
current data state of the source data objects. In some
embodiments, for instance, the sequencer modules 104 can
compare the last-modified time 6045 of each source data
object 1n the data objects table 604 against the snapshot time
received 1n the verily request.

A data object 1s deemed to be “‘verified” if 1its last-
modified time 6045 1s less than or equal to the snapshot time;
in other words, when the snapshot time 1s not earlier in time
than any of the data object’s most recent update. Stated
differently, a data object 1s deemed to be verified 1t the
snapshot time represents the most current data state of the
data object.

Conversely, 1f the last-modified time 6045 of the data
object 1s greater than the snapshot time, then that data object
can be deemed to be at a state that 1s more recent than
indicated by the snapshot time; in other words, there 1s a
contlict. Stated differently, a conflict can exist when the most
current data state of the data object occurs later 1n time than
the snapshot time.

In accordance with the present disclosure, the sequencer
module 104 can consider the last-modified times of the
object members of an object, rather than the last-modified
time of the object 1tself. Recall that a data object refers to an
object (source object) and an object member (source object
members) 1n that object; e.g., a record 202 1n database table
200 1n FIG. 2 can be viewed as an object, and the data fields
204 can be viewed as object members. A source data object
can be deemed verified with respect to the snapshot time,
even though other members 1n that object may have been
updated later than the snapshot time. Consider the transac-
tion example discussed above 1 FIG. 7:

source data objects 1n read set:

A.memberl (1.e., object A and object member mem-
berl)
A.member3
B. memberl
target data objects in write set:
A.member6
C.member5
C.member9

snapshot time: 135
If an object member called member2 in object A was
updated at time reference 16, the source data objects com-
prising the read set are still deemed verified because A.mem-
ber2 1s not part of the read set, even though the most current
data state of A.member2 occurs later 1n time than the
snapshot time. By comparison, 1 object A itself was the
basis for verification, then verification of the read set can fail
because object A would have an update time no earlier than
time reference 16, which 1s subsequent to the snapshot time.

At operation 814, 1f no conflicts were detected 1n opera-
tion 812 (or operation 806), then the computations/opera-
tions made using the source data objects can be deemed to
be “correct” and the sequencer module 104 can continue
processing at operation 816. On the other hand, 11 at least
one conflict was detected 1n operation 812 (or operation
806), then whatever computations were made using the
source data objects can be deemed to be “incorrect” and the
sequencer module 104 can process a FAIL at operation 820.

10

15

20

25

30

35

40

45

50

55

60

65

14

At operation 816, the sequencer module 104 has deter-
mined that the transaction 1s “correct” in terms of the data
objects used to compute the transaction, and can allow the
transaction to be committed. In accordance with some
embodiments of the present disclosure, for example, the
sequencer module 104 can increment the latest time counter
602 to point to the next (new) free entry 1n the shared log 102
in which the transaction will be stored (FIG. 9).

The sequencer module 104 can update the data objects
table 604 with respect to the target data objects. For
example, the sequencer module 104 can find one or more
entries 1n the data objects table 604 that contain that target
data objects. If a target data object 1s not already 1n the data
objects table 604, the sequencer module 104 can create a
new entry. For each target data object in the data objects
table 604, the sequencer module 104 can update 1ts last-
modified time field 6045 with the value of the latest time
counter 602 to indicate the log entry 402 1n the shared log
102 that contains the operation(s) applied to the target data
objects. The data objects table 604, therefore, provides
information (e.g., via the last-modified time field 604a) of
the latest updates to data objects 1n the shared log 102.

At operation 818, the sequencer module 104 can signal
the client to COMMIT the transaction. The sequencer mod-
ule 104 can also provide the latest time counter 602 (see
operation 708, FIG. 7) to the client. This allows the client to
update the last modified times of 1ts local copy of the target
data objects.

At operation 820, the sequencer module 104 can signal a
FAIL to the client in response to detecting a contlict, where
the client can retry sending the verify request (see N branch
of operation 706, FIG. 7). The sequencer module 104 can
return a value for T, . . to the client. In this situation, the
value for T,_, . can be the time reference of the source
data object 1n the read set that was most recently updated,
rather than using the most recent log entry 402 in the shared
log 102 (operation 810). For example, the sequencer module
104 can scan the data objects table 604 and return the largest
value of the last-modified time 6045 among the source data
objectsas T, _ . As explained above, shifting the rescan-
ning process from the sequencer module 104 to the clients
keeps the sequencer module a lightweight process so that 1t
can quickly process verily requests from other clients in the
system. Accordingly, the sequencer module 104 can return
to operation 802 to process the next verily request.

As noted above, processing 1n accordance with the pres-
ent disclosure allows the client to verity correctness of the
transaction in a single roundtrip message, without having to
employ time consuming heavyweight mechanisms such as
locking, write-logging, and the like. Processing by the
sequencer module 104 is eflicient; 1t needs only to maintain
a counter (last-modified time) per data object, and do simple
In-memory comparisons to assess correctness of the trans-
action without the need for the source data objects or the
operations and/or computations of the transaction. This
lightweight interface to the sequencer module 104 allows
clients 1n the shared log system 100 to quickly access the
sequencer module 104. The lightweight processing 1n the
sequencer module 104 allows all clients to perform conflict
resolution with greatly reduced loading on the system as
compared to conventional approaches.

FIG. 9, 1n conjunction with the previous figures, shows a
high level operational tlow 1n the log manager module 106
for commuaitting a transaction in accordance with the present
disclosure. In some embodiments, for example, the log
manager module 106 can include computer executable pro-
gram code, which when executed by a computer system

US 10,649,981 B2

15

(e.g., 302, FIG. 3), can cause the computer system to
perform processing in accordance with FIG. 9.

At operation 902, the log manager module 106 can
receive a transaction from a client 12 (see operation 708,
FIG. 7, for example) to be commutted to the shared log 102.
The transaction can include the log index (provided by the
sequencer module 104, operation 816) of the log entry 402
in the shared log 102 to store the transaction. The received
transaction can include one or more target data objects to be
written. Fach target data object can include, among other
things, an object 1dentifier, an 1dentifier of a member in the
object, the data associated with the transaction, and so on.
The log manager module 106 can butler the received trans-
action 1n 1ts transaction write bufler 502.

At operation 904, the log manager module 106 can write
the received transaction stored in the transaction write bufler
502 to the shared log 102. In some embodiments, for
example, the log manager module 106 can allocate space for
another log entry 402 1n the shared log 102 to store the target
data objects. The write buller 502 can retain the target data
objects for subsequent read operations on the target data
objects, and thus act as a caching mechanism.

The present disclosure will now turn to a discussion of
accessing the most recent update to a data object stored 1n a
shared log 102. Conventionally, a client 12 can generate the
latest state of a data object by replaying all the transactions
made to that object from the time of i1ts instantiation. The
idea of “replay” 1s a well known and understood concept.
Briefly, to replay a given object the client 12 issues indi-
vidual read operations to oflsets in the shared log 102 to
access log entries 402 for transactions made to the object of
interest. The client 12 serially applies those transactions to
the object starting {rom the time of the object’s mstantiation.
It can be appreciated that replaying the shared log 102 can
greatly increase latency, especially when the client 12 1s just
interested 1n a single update. Some systems improve on this
brute force approach by separating the log into per-object
streams. However, this alternative still requires playback of
a “stream,” which although smaller than the log, still can
contain many updates that the client may not be interested 1n
but has to replay 1n order to access the most recent update.

FIG. 10, in conjunction with previous figures, shows a
high level operational flow 1n the computer system 302 for
accessing the most recent update of a data object 1n accor-
dance with the present disclosure. In some embodiments, for
example, the computer system 302 can include computer
executable program code, which when executed by a pro-
cessing unit (e.g., 312, FIG. 3), can cause the processing unit
to perform operations i accordance with FIG. 10. The
operation and processing blocks described below are not
necessarily executed in the order shown, and can be allo-
cated for execution among one ore more concurrently
executing processes and/or threads.

At operation 1002, the computer system 302 can receive
a read request from a client to access the most recent data
state of a (target) data object. The read request can include
an 1dentifier that 1dentifies the target data object. In some
embodiments, the identifier can be a hash value computed by
the client using a name (e.g., a text string) of the object and
a name of the object member in that object that constitute the
target data object.

At operation 1004, the computer system 302 can use the
identifier of the target data object to access an entry in the
data objects table 604 corresponding to the target object. In
some embodiments, for example, the hash value that 1den-
tifies the target data object can be used to index into the data

objects table 604.

10

15

20

25

30

35

40

45

50

55

60

65

16

At operation 1006, the computer system 302 can access a
log entry 402 1n the shared log 102. In some embodiments,
for example, the last-modified time 6045 of the entry in the
data objects table 604 that corresponds to the target data
object can be used as a log index 404 1nto the shared log 102
to access the log entry 402. A transaction stored in the
accessed log entry 402 can include the most recent opera-
tions performed on the target data object and thus represents
the most recent update made to the target data object.

At operation 1008, the computer system 302 can provide
information relating to the most current data state of the
target object to the client. Processing in the sequencer
module 104 can continue at operation 1002 to process the
next read request.

These and other variations, modifications, additions, and

improvements may fall within the scope of the appended
claims(s). As used 1n the description herein and throughout
the claims that follow, “a”, “an”, and “the” includes plural
references unless the context clearly dictates otherwise.
Also, as used i the description herein and throughout the
claims that follow, the meaning of “in” includes *“in” and
“on” unless the context clearly dictates otherwise.

The above description illustrates various embodiments of
the present disclosure along with examples of how aspects
of the present disclosure may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flex-
ibility and advantages of the present disclosure as defined by
the following claims. Based on the above disclosure and the
tollowing claims, other arrangements, embodiments, imple-
mentations and equivalents may be employed without
departing from the scope of the disclosure as defined by the

claims.

The mvention claimed 1s:

1. A method 1n a computer system that provides a shared
log, the shared log concurrently accessible by a plurality of
clients, the method comprising:

storing, by the computing system, a plurality of transac-

tions 1n a corresponding plurality of log entries in the
shared log, each transaction comprising one or more
operations that update data states of one or more data
objects;

storing, by the computing system, state information for a

plurality of data objects associated with transactions
stored 1n the shared log, the state information for each
of the plurality of data objects including a time refer-
ence ol the latest update made to that data object,
wherein the time reference of the latest update made to
a particular data object i1dentifies a log entry in the
shared log that stores a most recent transaction that
comprises one or more operations that update a data
state of the particular data object;

receiving, by the computing system, via an I/O interface

a read request for a data object (target data object) to be
read from the shared log;

accessing, by the computing system, state information for

the target data object;
accessing, by the computing system, a log entry in the
shared log based on the time reference of the accessed
state information for the target data object; and

providing, by the computing system, a data state of the
target data object to a client that sent the read request,
the data state included in a transaction stored in the
accessed log entry, wherein the data state represents the
latest update made to the target data object.

US 10,649,981 B2

17

2. The method of claim 1, wherein the target data object
1s a member of an object among a plurality of members that
comprise the object.

3. The method of claim 1, wherein the time reference 1s
associated with an index of a log entry 1n the shared log.

4. The method of claim 1, wherein the read request
includes an identifier of the target data object, the method
turther comprising accessing the state information for the
target data object using the i1dentifier.

5. The method of claim 4, wherein the identifier of the
target data object 1s a hash value computed using one or
more name associated with the target data object.

6. The method of claim 1, further comprising updating the
stored state information in response to storing a new trans-
action 1n a new log entry 1n the shared log, including
identifyving data objects that are updated by the new trans-
action and updating the time reference in the state informa-
tion for each of the identified data objects based on an index
of the new log entry so that the time reference represents the
latest update made to the identified data objects.

7. The method of claim 6, wherein updating the time
reference mcludes setting the time reference to the value of
the index of the new log entry.

8. A non-transitory computer-readable storage medium
having stored thereon computer executable instructions,
which when executed by a computer device, cause the
computer device to:

store a plurality of transactions 1n a corresponding plu-

rality of log entries in the shared log, each transaction
comprising one or more operations that update data
states ol one or more data objects;

store state information for a plurality of data objects

associated with transactions stored in the shared log,
the state information for each of the plurality of data
objects including a time reference of the latest update
made to that data object, wherein the time reference of
the latest update made to a particular data object
identifies a log entry in the shared log that stores a most
recent transaction that comprises one or more opera-
tions that update a data state of the particular data
object;

receive via and I/0 1nterface of the computer device a read

request for a data object (target data object) to be read
from the shared log;

access state information for the target data object;

access a log entry in the shared log based on the time

reference of the accessed state information for the
target data object; and

provide a data state of the target data object to a client that

sent the read request, the data state included in a
transaction stored in the accessed log entry, wherein the
data state represents the latest update made to the target
data object.

9. The non-transitory computer-readable storage medium
of claim 8, wherein the target data object 1s a member of an
object among a plurality of members that comprise the
object.

10. The non-transitory computer-readable storage
medium of claim 8, wherein the time reference 1s associated
with an 1index of a log entry 1n the shared log.

11. The non-transitory computer-readable storage
medium of claim 8, wherein the read request includes an
identifier of the target data object, wherein the computer
executable instructions, which when executed by the com-
puter device, further cause the computer device to access the
state information for the target data object using the i1den-
tifier.

10

15

20

25

30

35

40

45

50

55

60

65

18

12. The non-transitory computer-readable storage
medium of claim 11, wherein the identifier of the target data
object 1s a hash value computed using one or more name
associated with the target data object.

13. The non-transitory computer-readable storage
medium of claim 8, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to update the stored state
information 1n response to storing a new transaction 1n a new
log entry 1n the shared log, including identiiying data objects
that are updated by the new transaction and updating the
time reference in the state nformation for each of the
identified data objects based on an index of the new log entry
so that the time reference represents the latest update made
to the 1dentified data objects.

14. An apparatus comprising:

one or more computer processors;

an I/0 interface; and

a computer-readable storage medium comprising nstruc-

tions for controlling the one or more computer proces-
sors to be operable to:

store a plurality of transactions 1 a corresponding plu-

rality of log entries in the shared log, each transaction
comprising one or more operations that update data
states ol one or more data objects;

store state information for a plurality of data objects

associated with transactions stored in the shared log,
the state information for each of the plurality of data
objects including a time reference of the latest update
made to that data object, wherein the time reference of
the latest update made to a particular data object
identifies a log entry in the shared log that stores a most
recent transaction that comprises one or more opera-
tions that update a data state of the particular data
object;

recerve via the I/O interface a read request for a data

object (target data object) to be read from the shared
log:

access state information for the target data object;

access a log entry 1n the shared log based on the time

reference ol the accessed state information for the
target data object; and

provide a data state of the target data object to a client that

sent the read request, the data state included in a
transaction stored in the accessed log entry, wherein the
data state represents the latest update made to the target
data object.

15. The apparatus of claim 14, wherein the target data
object 1s a member of an object among a plurality of
members that comprise the object.

16. The apparatus of claim 14, wherein the time reference
1s associated with an index of a log entry in the shared log.

17. The apparatus of claim 14, wherein the computer-
readable storage medium further comprises instructions for
controlling the one or more computer processors to be
operable to update the stored state information 1n response
to storing a new transaction in a new log entry in the shared
log, including 1dentifying data objects that are updated by
the new transaction and updating the time reference 1n the
state information for each of the 1dentified data objects based
on an index of the new log entry so that the time reference
represents the latest update made to the identified data
objects.

	Front Page
	Drawings
	Specification
	Claims

