12 United States Patent

US010649901B2

(10) Patent No.: US 10,649,901 B2

Drerup et al. 45) Date of Patent: May 12, 2020
(54) VICTIM CACHE LINE SELECTION (56) References Cited
U.S. PATENT DOCUMENTS
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION, 5,353,425 A * 10/1994 Malamy GO6F 12/126
711/136
Armonk, NY (US) 5,509,135 A * 4/1996 Steely, Jt. GOGF 12/0864
711/147
(72) Inventors: Bernard Drerup, Austin, TX (US); 6,098,152 A * 82000 Mounes-lousst ... G06F7ﬁ;}§,:11
Guy L. Guthrie, Austin, 1X (US); 6,629,210 Bl 9/2003 Arimilli et al.
Jeffrey Stuecheli, Austin, 1TX (US): 6,732,238 B1* 5/2004 Evans GOGF 12/0864
Phillip Williams, Leander, TX (US) 365/49.1
6,802,663 Bl 3/2005 Bateman
(73) Assignee: International Business Machines (Continued)
Corporation, Armonk, NY (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Jim Handy. The Cache Memory Book. 1993. Academic Press. 2nd
patent 1s extended or adjusted under 35 ed. pp. 51-63. (Year: 1993).%
U.S.C. 154(b) by 278 days. (Continued)
Primary Examiner — Nathan Sadler
(21) Appl. No.: 15/668,452 (74) Attorney, Agent, or Firm — Michael R. Long;
Nathan Rau
(22) Filed: Aug. 3, 2017 (57) ABSTRACT
A set-associative cache memory 1ncludes a plurality of ways
and a plurality of congruence classes. Each of the plurality
(65) Prior Publication Data of congruence classes includes a plurality of members each
US 2019/0042439 Al Feb. 7. 2019 belonging to a respective one of the plurality of ways. In the
’ cache memory, a data structure records a history of an
immediately previous N ways from which cache lines have
(51) Int. CL been evicted. In response to receipt of a memory access
GOGF 12/0864 (2016.01) request specilying a target address, a selected congruence
GOGF 12/123 (2016.01) class among a plurality of congruence classes 1s selected
GOGF 12/0893 (2016.01) based on the target address. At least one member of the
o selected congruence class 1s removed as a candidate for
(52) U.S. Cl. selection for victimization based on the history recorded 1n
CPC ... GO6F 12/0864 (2013.01); GOGF 12/0893 the data structure, and a member from among the remaining
(2013.01); GO6F 12/123 (2013.01) members of the selected congruence class is selected. The
(58) Field of Classification Search cache memory then evicts the victim cache line cached in the

CPC .o, GO6F 12/0864; GO6F 12/123-125
See application file for complete search history.

Master 244

selected member of the selected congruence class.
15 Claims, 5 Drawing Sheets

240

S

Cache Directory 260

v 64 | TagField 266 | State Field 268 |

242

Cache Array 248 _#£80n

Replacement

2 T

Repiacement
logic 270
50z

Snocper 246

US 10,649,901 B2

Page 2
(56) References Cited 2016/0335187 Al1* 11/2016 Greenspan GO6F 12/0864
2017/0168957 Al1* 6/2017 Chnstidis GOO6F 12/124
U.S. PATENT DOCUMENTS 2019/0213142 A1* 7/2019 Takeda GO6F 12/08
6,950,904 B2 9/2005 Erdner et al.
7,363,433 B2* 4/2008 Bell, Jr. GO6F 12/126 O1HER PUBLICAIIONS
711/145

8,688,915 B2 4/2014 Daly et al.

2004/0083341 Al* 4/2004 Robmson GOoF 12/126
711/133
2005/0102475 Al* 5/2005 Reohr GO6F 12/0862
711/128
2006/0069876 Al* 3/2006 Bansal GO6F 12/121
711/134
2008/0209131 Al* 8/2008 Kornegay GO6F 12/121
711/135
2009/0164730 Al* 6/2009 Harikumar GO6F 12/084
711/129
2010/0153650 Al 6/2010 Guthrie et al.
2013/0145104 Al* 6/2013 Hsucoooeeevviernnnnnn, GO6F 12/126
711/141

Kdzierski et al. “Adapting Cache Partitioning Algorithms to Pseudo-
LRU Replacement Policies.” 2010. IEEE. IPDPS 2010. (Year:
2010).%

Guan et al. “WCET Analysis with MRU Caches: Challenging LRU
for Predictability.” 2012. IEEE. RTAS 2012. pp. 55-64. (Year:
2012).%

Gaur et al. “Bypass and Insertion Algorithms for Exclusive Last-
level Caches.” Jun. 2011. ACM. ISCA’11. pp. 81-92.%

Wong, Wayne A., and J-L. Baer. “Modified LRU policies for
improving second-level cache behavior.” High-Performance Com-

puter Architecture, 2000. HPCA-6. Proceedings. Sixth International
Symposium on. IEEE, 2000.

* cited by examiner

US 10,649,901 B2

Sheet 1 of 5

May 12, 2020

U.S. Patent

qz01 9POoN buissaooid

OL1

001

[aunbuy,

B70)] 9PON buIsss00.id

US 10,649,901 B2

Sheet 2 of §

May 12, 2020

U.S. Patent

71e
18]j0U0) O/

yC anbup

01¢ 91607
JusLsbeuey

Z21¢ 01007
108UU02IBU|

90¢ DI

80UBJ8y0%

00¢ Ayotelsl 8yoen) pue 8107 J0SS800.d

¥0l Hun buissaooid

US 10,649,901 B2

Sheet 3 of 5

May 12, 2020

U.S. Patent

¢ 9Yoe) €

00¢

D 2nbLy

0€Z 8Yyoe) 7

0 ©yoe) |7

Z0¢ 9107 10SS820.4

US 10,649,901 B2

Sheet 4 of 5

May 12, 2020

U.S. Patent

upg

Qyz Aelly ayoen

)74

S

D¢ anbi

25T ¢

¥/¢ J84Nna
AJOISIH

0/¢ 160
Juswaor|day

2/ helly
Juswaoe|day

097 Al0joalig ayoen

vy JO1SeN

US 10,649,901 B2

Sheet 5 of 5

May 12, 2020

U.S. Patent

¢ aunbiy,

g1¢ sanuoLd Jegusw
LU0 paseq SJaquis 8)epIpued
bululewsal Wolj Jaquisl 10888

0| € Jayng aoﬁ_c au)

Ul papJooal Jaguiaw Yoes ‘WijoiA
aU)) JOJ} 9)EPIPUBD B SB ‘OA0WSY

¥1¢ Aelle Juswaoe|dal
LU0J} sanjliond Jequisl pesy

0Z€ pu3

Z1.¢ Aelie Juswaoe|da.

Ui sanlond Jagqwaw ayepdn

01 Jaynqg Alojsiy
Ul JaguiaW pa)os|as pJooay

80C WIOIA
SE Sieguiaw piieAul JO 8UO 108j8S

SO A

90t

¢ Slequia
PlEAUE

AUy

ON

70¢ Slequuall SSe|o aousnJbuod
| JO Spjal} AjipifeA pesy

70¢C Ssalppe [eal Jobie) uo paseq

SSe|0 90UaNIBU09 auIWIS)a(]

00¢ uibeg

US 10,649,901 B2

1
VICTIM CACHE LINE SELECTION

BACKGROUND

The present application relates 1n general to data process-
ing and more particularly to data caching in a data process-
Ing system.

A conventional symmetric multiprocessor (SMP) com-
puter system, such as a server computer system, includes
multiple processing units all coupled to a system 1ntercon-
nect, which typically comprises one or more address, data
and control buses. Coupled to the system interconnect 1s
system memory, which represents the lowest level of
directly addressable memory 1n the multiprocessor computer
system and generally 1s accessible for read and write access
by all processing units. In order to reduce access latency to
instructions and data residing in the system memory, each
processing unit 1s typically further supported by a respective
multi-level cache hierarchy, the lower level(s) of which may
be shared by one or more processor cores.

Typically, when a congruence class of a set-associative
cache becomes full, a victim cache line 1s selected for
removal from the congruence class and the contents of the
cache line are evicted to make room for a new cache line.
The evicted cache line may then be discarded or written to
a lower-level cache or system memory. Because cache
accesses tend to exhibit temporal locality, the victim cache
line 1s often selected based on which cache line of the
congruence class has been least recently accessed, that is,
using a least recently used (LRU) algorithm.

SUMMARY

Binary digital memory arrays are inherently most efli-
cient, and therefore most common, in sizes based around
integer powers of 2, given that the address imnput 1s binary. As
digital memory arrays scale to larger sizes, the delay to
access a memory array can grow from one to multiple clock
cycles. To design a memory array that can supply data every
clock cycle, multiple arrays can be aggregated, for example,
implementing each way of a set-associative cache with a
different memory array.

To be most eflective, these aggregated arrays must be
accessed 1n a manner that distributes memory access
requests across the aggregated arrays, preventing multiple
requests to the same array in close temporal proximity. A
well-known techmique to distribute accesses to memory
arrays 1s to utilize spatial locality of reference. If sequential
accesses are mapped to sequentially accessed arrays, a
perfect round robin distribution can be achieved.

This access distribution technique does not work in two
situations. First, 11 the access sequence 1s not sequential, the
access pattern will not be uniformly distributed across the
aggregated memory arrays. Second, the access pattern will
not be uniformly distributed if the aggregated arrays cannot
be indexed directly from the lower order address bits of the
target addresses of the memory accesses, as 1s the case where
the cache associativity 1s not an integer power of 2.

The techniques disclosed herein address these two situa-
tions. In general, memory access ordering tends to be
repetitive as cache lines are repeatedly accessed. Thus, 1f a
way history indicating the historical order 1n which cache
lines are installed ito the ways of an aggregated memory
array 1s utilized to temporally space installation of cache
lines 1nto the ways, future accesses to the cache lines
installed into the aggregated memory array (1.e., hits) will
likewise be distributed across the ways.

10

15

20

25

30

35

40

45

50

55

60

65

2

In at least one embodiment, a set-associative cache
memory includes a plurality of ways and a plurality of
congruence classes. Fach of the plurality of congruence
classes includes a plurality of members each belonging to a
respective one of the plurality of ways. In the cache memory,
a data structure records a history of an immediately previous
N ways from which cache lines have been evicted. In
response to receipt of a memory access request specifying a
target address, a selected congruence class among a plurality
of congruence classes 1s selected based on the target address.
At least one member of the selected congruence class 1s
removed as a candidate for selection for victimization based
on the history recorded 1n the data structure, and a member
from among the remaining members of the selected con-
gruence class 1s selected. The cache memory then evicts the
victim cache line cached in the selected member of the
selected congruence class.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s high level block diagram of an exemplary data
processing system in accordance with the present invention;

FIG. 2A 1s a high level block diagram of a processing unit
from FIG. 1;

FIG. 2B 1s a more detailed block diagram of an exemplary
embodiment of a processor core and associated cache hier-
archy from FIG. 2A;

FIG. 2C 1s an exemplary embodiment of a cache memory
from FIG. 2B; and

FIG. 3 1s a high level logical flowchart of an exemplary
process for selecting a victim cache line in accordance with
one embodiment.

DETAILED DESCRIPTION

With reference now to the figures and, 1n particular, with
reference to FIG. 1, there 1s illustrated a high level block
diagram of an exemplary embodiment of a multiprocessor
data processing system 1n accordance with the present
invention. As shown, data processing system 100 includes
multiple processing nodes 102qa, 1025 for processing data
and instructions. Processing nodes 102a, 1026 are coupled
to a system 1nterconnect 110 for conveying address, data and
control information. System interconnect 110 may be imple-
mented, for example, as a bused interconnect, a switched
interconnect or a hybrid interconnect.

In the depicted embodiment, each processing node 102 1s
realized as a multi-chip module (MCM) containing four
processing units 104a-104d, each preferably realized as a
respective integrated circuit. The processing units 104a-
1044 within each processing node 102 are coupled for
communication by a local iterconnect 114, which, like
system interconnect 110, may be implemented with one or
more buses and/or switches. Local interconnects 114 and
system 1nterconnect 110 together form an mterconnect fab-
ric, which preferably supports concurrent communication of
operations of differing broadcast scopes. For example, the
interconnect fabric preferably supports concurrent commus-
nication of operations limited 1n scope to a single processing
node 102 and operations broadcast to multiple processing
nodes 102.

The devices coupled to each local interconnect 114
include not only processing units 104, but also one or more
system memories 108a-1084d. Data and instructions residing,
in system memories 108 can generally be accessed and
modified by a processor core (FIG. 2A) 1n any processing

umt 104 in any processing node 102 of data processing

US 10,649,901 B2

3

system 100. In alternative embodiments of the invention,
one or more system memories 108 can be coupled to system
interconnect 110 rather than a local interconnect 114.

Those skilled 1n the art will appreciate that data process-
ing system 100 can include many additional unillustrated
components, such as peripheral devices, 1nterconnect
bridges, non-volatile storage, ports for connection to net-
works or attached devices, etc. Because such additional
components are not necessary for an understanding of the
present invention, they are not illustrated in FIG. 1 or
discussed further herein. It should also be understood,
however, that the enhancements provided by the present
invention are applicable to data processing systems of
diverse architectures and are in no way limited to the
generalized data processing system architecture illustrated
in FIG. 1.

Referring now to FIG. 2A, there 1s depicted a more
detailed block diagram of an exemplary processing unit 104
in accordance with the present invention. In the depicted
embodiment, each processing unit 104 includes multiple
instances ol a processor core and associated cache hierarchy,
which are collectively 1dentified by reference numeral 200.
In the depicted embodiment, each processing umt 104 also
includes an integrated memory controller (IMC) 206 that
controls read and write access to one or more of the system
memories 108a-1084 within 1ts processing node 102 in
response to requests received from processor cores and
operations snooped on the local interconnect 114.

Still referring to FIG. 2A, each processing unit 104 also
includes an instance of coherence management logic 210,
which implements a portion of the distributed snoop-based
coherency signaling mechanism that maintains cache coher-
ency within data processing system 100. In addition, each
processing unit 104 includes an instance of interconnect
logic 212 for selectively forwarding communications
between its local interconnect 114 and system interconnect
110. Finally, each processing unit 104 includes an integrated
I/O (input/output) controller 214 supporting the attachment
of one or more /O devices, such as I/O device 216. /O
controller 214 may 1ssue operations on local interconnect
114 and/or system interconnect 110 1n response to requests
by I/O device 216.

With reference now to FIG. 2B 1s a more detailed block
diagram of an exemplary embodiment of a processor core
and associated cache hierarchy 200 from FIG. 2A. Processor
core 202 includes circuitry for processing instructions and
data. In the course of such processing, the circuitry of
processor core 202 generates varlous memory access
requests, such as load and store requests.

In this example, the operation of processor core 202 1s
supported by a cache memory hierarchy including a store-
through level one (LL1) cache 204 within each processor core
202, a store-1n level two (L2) cache 230, and a lookaside L3
cache 232, which can be configured as a victim cache for .2
cache 230 and accordingly be filled by cache lines evicted
from L2 cache 230. In contrast to many conventional victim
cache arrangements, the contents of L3 cache 232 need not
exclusive of the contents of L2 cache 230, meaning that a
grven memory block may be held concurrently in L2 cache
230 and L3 cache 232.

Although the illustrated cache hierarchy includes only
three levels of cache, those skilled in the art will appreciate
that alternative embodiments may include a greater or lesser
number of levels of on-chip or off-chip 1n-line or lookaside
cache, which may be fully inclusive, partially inclusive, or
non-inclusive. Further, any of the various levels of the cache
hierarchy may be private to a particular processor core 202

10

15

20

25

30

35

40

45

50

55

60

65

4

or shared by multiple processor cores 202. For example, 1n
some 1mplementations, the cache hierarchy includes an L2
cache 230 for each processor core 202, with multiple of the
[.2 caches 230 sharing a common L3 victim cache 232.

Referring now to FIG. 2C, there 1s depicted an exemplary
embodiment of a cache memory 240 that may be utilized to
implement L1 cache 204, L.2 cache 230 or L3 cache 232
from FIG. 2B. As shown, cache memory 240 includes an
array and directory 242, as well as a cache controller
comprising a master 244 and a snooper 246. Snooper 246
snoops operations from local interconnect 114, provides
appropriate responses, and performs any accesses to array
and directory 242 required by the operations. Master 244
initiates transactions on local interconnect 114 and system
interconnect 110 and accesses array and directory 242 1n
response to memory access (and other) requests originating
within the processor core and cache hierarchy 200. In at least
some embodiments, master 244 also handles casting out data
to lower levels of the memory hierarchy (e.g., L3 cache 232
or system memory 108).

Array and directory 242 includes a set associative cache
array 248 including multiple ways 250a-250%. Each way
250 includes multiple entries 252, which in the depicted
embodiment each provide temporary storage for up to a full
memory block of data, e.g., 128 bytes. Each cache line or
memory block of data 1s logically formed of multiple
sub-blocks 254 (in this example, four sub-blocks of 32 bytes
cach) that may correspond in size, for example, to the
smallest allowable access to system memories 108a-1084.
In at least some embodiments, sub-blocks 254 may be
individually accessed and cached in cache array 248. In at
least some embodiments, the number of ways 250 1s not an
integer power ol two (e.g., 2, 4, 8, 16, etc.), but 1s instead
another integer number. As one example suitable for use as
an LL1 cache 204, cache array 248 can be a 10 kB cache
constructed of ten ways 250, each of which 1s a 1 kB
memory array.

Array and directory 242 also includes a cache directory
260 of the contents of cache array 248. As 1n conventional
set associative caches, memory locations 1n system memo-
ries 108 are mapped to particular congruence classes within
cache arrays 248 utilizing predetermined index bits within
the system memory (real) addresses. The particular cache
lines stored within cache array 248 are recorded in cache
directory 260. In the depicted embodiment, each directory
entry 262 in cache directory 260 includes at least a valid
fiecld 264 indicating the validity of the contents of the
directory entry 262, a tag field 266 specifying the particular
cache line, 11 any, stored 1n the corresponding entry of cache
array 248 utilizing a tag portion of the corresponding real
address, and state field 268 indicating the coherence state of
the corresponding entry of cache array 248.

In the depicted embodiment, replacement of cache lines 1n
cache array 248 and the associated directory entries in cache
directory 260 1s performed by replacement logic 270. In this
example, replacement logic 270 maintains and accesses two
data structures to assist in the determination of which entries
to evict from array 248 and directory 260, namely, a replace-
ment array 272 and a history builer 274.

In a preferred embodiment, replacement array 272
includes one entry corresponding to each congruence class
of array 248 and directory 260. Each entry of replacement
array indicates the relative replacement priority of each
member of the corresponding congruence class. In a typical
embodiment, the replacement priority of the members 1n a
congruence class 1s based on some form of access chronol-
ogy (e.g., least recently used, most recently used, etc.). In

US 10,649,901 B2

S

some embodiments, the replacement priority can be
expressed utilizing a chronology vector indicating an access
chronology (or priority) of each congruence class member
with respect to all other congruence class members.

In at least one embodiment, history bufler 274 1s imple-
mented as an ordered list of a maximum of N ways (where
N 1s a positive mteger) from which cache lines have been
evicted (and into which new cache lines have been
installed). The integer N can be an implementation-specific
number determined based on, for example, the number of
ways, how long a way remains busy after an access, and/or,
in data processing system implementing a weak memory
mode, the timing variability of memory accesses attributable
to the reordering of memory access instructions. In general,
N 1s less than the total number of ways. In various embodi-
ments, history builer 274 can maintain a single list across all
congruence classes, can maintain multiple lists each corre-
sponding to a different group of congruence classes, or can

maintain a respective mdividual list for each congruence
class.

With reference now to FIG. 3, there 1s illustrated a high
level logical flowchart of an exemplary process for selecting
a victim cache line for eviction from a cache memory 240 1n
accordance with one embodiment. The illustrated process
can be performed, for example, by replacement logic 270.

The process of FIG. 3 begins at block 300, for example,
in response to receipt by cache memory 240 of a storage
modifying request of the associated processor core 202 that
specifles a target real address that misses 1n cache directory
260. In response to the storage modilying request, replace-
ment logic 270 determines the congruence class from which
a member 1s subject to eviction (and into which a new cache
line will be 1nstalled) based on the target real address of the
storage modilying request (block 302). In various imple-
mentations, the relevant congruence class can be deter-
mined, for example, directly from middle order bits of the
target real address or by performing an address hash.
Replacement logic 270 therealiter reads the validity field 264
of each of the members of the congruence class determined
at block 302 and determines whether the congruence class
currently contains any invalid members (blocks 304-306).

In response to replacement logic 270 determining that the
selected congruence class does not contain any invalid
members, the process proceeds from block 306 to block 314,
which 1s descried below. However, 1n response to replace-
ment logic 270 determiming at block 306 that that selected
congruence class contains at least one mvalid member, the
process ol FIG. 3 passes to block 308. Block 308 depicts
replacement logic 270 selecting one of the invalid
member(s) of the congruence class as the victim to be
evicted. If the congruence class contains more than one
invalid member, replacement logic 270 preferably selects
the victim randomly (e.g., based on the output of a linear
teedback shift register (LFSR)) 1n order to avoid frequent
reuse of the same way 250. Replacement logic 270 records
the member selected as the victim 1n history bufller 274, 1
necessary, displacing the oldest entry recorded in the rel-
evant list of recently used ways 250 (block 310). Replace-
ment logic 270 also updates the relative priorities of the
members of the congruence class in replacement array 272
(block 312). Thereaftter, the process of FIG. 3 ends at block
320. At thus point, replacement logic 270 can actually
perform the eviction of the selected victim from cache
directory 260 and cache array 248 by discarding the contents
of the victim cache line and directory entry or by writing
back the contents of the victim cache line (and optionally
some or all of the victim directory entry) to a lower level of
the memory

10

15

20

25

30

35

40

45

50

55

60

65

6

hierarchy. The new cache line can then be mstalled i place
of the evicted victim cache line.

Referring now to block 314, 1n the case that the selected
congruence class does not contain any invalid members,
replacement logic 270 reads from replacement array 272 the
member priorities indicating the relative replacement order-
ing of the members of the congruence class. At block 316,
replacement logic 270 additionally accesses history bufler
274 and removes, as candidates for selection as the victim,
cach member of the congruence class recorded 1n the rel-
evant list of history bufler 274. For example, assuming the
congruence class contains ten total members and the history
bufler list has a maximum length N of three or four, six or
seven congruence class members may remain as candidates
for selection as the victim. Replacement logic 270 selects a
victim from among the remaining candidate members of the
congruence class based on the member priorities read from
replacement array 272 (block 318). For example, 1n one
specific embodiment, replacement logic 270 may select the
least recently used member among the candidate members
remaining aiter the removal of the recently victimized ways
at block 316. The process proceeds from block 318 to blocks
310-320, which have been described.

As has been described herein, 1n at least one embodiment,
a set-associative cache memory includes a plurality of ways
and a plurality of congruence classes. Each of the plurality
ol congruence classes includes a plurality of members each
belonging to a respective one of the plurality of ways. In the
cache memory, a data structure records a history of an
immediately previous N ways from which cache lines have
been evicted. In response to receipt of a memory access
request specilying a target address, a selected congruence
class among a plurality of congruence classes 1s selected
based on the target address. At least one member of the
selected congruence class 1s removed as a candidate for
selection for victimization based on the history recorded 1n
the data structure, and a member from among the remaining
members of the selected congruence class 1s selected. The
cache memory then evicts the victim cache line cached in the
selected member of the selected congruence class. In this
manner, over-use ol particular ways of the cache memory 1s
avoided, which 1s particularly helpful 1n caches 1n which the
number of ways 1s not an integer power of two.

While various embodiments have been particularly shown
and described, 1t will be understood by those skilled 1n the
art that various changes in form and detail may be made
therein without departing from the spirit and scope of the
appended claims and these alternate implementations all fall
within the scope of the appended claims. For example,
although aspects have been described with respect to a
computer system executing program code that directs the
functions of the present invention, 1t should be understood
that present mnvention may alternatively be implemented as
a program product imncluding a computer-readable storage
device storing program code that can be processed by a
processor ol a data processing system to cause the data
processing system to perform the described functions. The
computer-readable storage device can include volatile or
non-volatile memory, an optical or magnetic disk, or the
like, but excludes non-statutory subject matter, such as
propagating signals per se, transmission media per se, and
forms of energy per se.

As an example, the program product may include data
and/or 1nstructions that when executed or otherwise pro-
cessed on a data processing system cause the data processing
system to perform the operations described herein. The
program product may include data and/or instruction that

US 10,649,901 B2

7

when executed or otherwise processed generate a logically,
structurally, or otherwise functionally equivalent represen-
tation (including a simulation model) of hardware compo-
nents, circuits, devices, or systems disclosed herein. Such
data and/or 1nstructions may include hardware-description
language (HDL) design entities or other data structures
conforming to and/or compatible with lower-level HDL
design languages such as Verilog and VHDL, and/or higher
level design languages such as C or C++. Furthermore, the
data and/or 1nstructions may also employ a data format used
for the exchange of layout data of integrated circuits and/or

symbolic data format (e.g. information stored in a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable
format for storing such design data structures).

What 1s claimed 1s:

1. A method of evicting a victim cache line from a
set-associative cache memory including a plurality of ways,
said method comprising:

recording, 1n a data structure of the cache memory, an

eviction history of an immediately previous N ways
from which cache lines have been evicted, wherein N
1s an 1nteger greater than 1, wherein recording the
eviction history includes recording the ordering of
evictions from an immediately previous N ways from
which cache lines have been evicted, and wherein the
ordering specifies ways belonging to different congru-
ence classes among a group of multiple congruence
classes 1including the selected congruence class;

1n response to receipt ol a memory access request speci-

fying a target address, selecting a selected congruence
class among a plurality of congruence classes 1n the
cache memory based on the target address, wherein
cach of the plurality of congruence classes includes a
plurality of members each belonging to a respective
one of the plurality of ways;

removing, as a candidate for selection, multiple members

of the selected congruence class based on the eviction
history recorded 1n the data structure;

selecting a selected member from among remaining mem-

bers of the selected congruence class that remain as
candidates after the removing; and

evicting a victim cache line cached 1n the selected mem-

ber of the selected congruence class.

2. The method of claim 1, wherein a total number of the
plurality of ways 1s not an integer power of two.

3. The method of claim 1, wherein:

the method further comprises the cache memory deter-

mining whether the selected congruence class mcludes
any invalid members;

the cache memory chooses the victim cache line utilizing

the step of removing and the step of selecting in
response to the determining that the selected congru-
ence class contains no invalid members; and

the cache memory chooses the selected member randomly

from among 1nvalid members 1n response to determin-
ing that the selected congruence class includes multiple
invalid members.

4. The method of claim 1, wherein:

the method further comprises recording relative replace-

ment priorities of the plurality of members of the
selected congruence class 1n a replacement data struc-
ture; and

the selecting includes selecting the selected member

based on the relative replacement priorities recorded in
the replacement data structure.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

5. The method of claim 4, wherein the relative replace-
ment priorities prioritize a least recently used member for
replacement.

6. A set-associative cache memory comprising:

a cache array 1ncluding a plurality of congruence classes,
wherein each of the plurality of congruence classes
includes a plurality of members each belonging to a
respective one of a plurality of ways;

a cache directory of contents of the cache array;

a history data structure that records an eviction history of
an 1mmediately previous N ways from which cache
lines have been evicted, wherein N 1s an integer greater
than 1, wherein the eviction history records an ordering
of evictions from an immediately previous N ways
from which cache lines have been evicted, and wherein
the ordering specifies ways belonging to different con-
gruence classes among a group of multiple congruence
classes 1mncluding the selected congruence class;

replacement logic configured to perform:

in response to receipt of a memory access request
specilying a target address, selecting a selected con-
gruence class among the plurality of congruence
classes based on the target address,

removing, as a candidate for selection, multiple mem-
bers of the selected congruence class based on the
history recorded 1n the history data structure;

selecting a selected member from among remaining
members of the selected congruence class that
remain as candidates after the removing; and

evicting a victim cache line cached in the selected
member of the selected congruence class.

7. The cache memory of claim 6, wherein a total number
of the plurality of ways 1s not an integer power of two.

8. The cache memory of claim 6, wherein:

the replacement logic 1s further configured to perform:
determining whether the selected congruence class

includes any invalid members;

choosing the victim cache line by the removing and the
selecting 1n response to the determining that the
selected congruence class contains no mmvalid mem-
bers; and

choosing the selected member randomly from among
invalid members in response to determining that the
selected congruence class includes multiple 1nvalid
members.

9. The cache memory of claim 6, and further comprising:

a replacement data structure that records relative replace-
ment priorities of the plurality of members of the
selected congruence class, wherein the replacement
logic performs the selecting based on the relative
replacement priorities recorded in the replacement data
structure.

10. The cache memory of claim 9, wherein the relative
replacement priorities prioritize a least recently used mem-
ber for replacement.

11. A data processing system, comprising:

a processor core; and

a set-associative cache memory coupled to the processor
core, said set-associative cache memory including:

a cache array including a plurality of congruence
classes, wherein each of the plurality of congruence
classes includes a plurality of members each belong-
ing to a respective one of a plurality of ways,
wherein N 1s an integer greater than 1;

a cache directory of contents of the cache array;

a history data structure that records an eviction history
of an immediately previous N ways from which

US 10,649,901 B2

9

cache lines have been evicted, wherein the eviction
history records an ordering of evictions from an
immediately previous N ways from which cache
lines have been evicted, and wherein the ordering
specifies ways belonging to different congruence
classes among a group of multiple congruence

classes including the selected congruence class;

replacement logic configured to perform:
in response to receipt of a memory access request
specilying a target address, selecting a selected
congruence class among the plurality of congru-
ence classes based on the target address,

removing, as a candidate for selection, multiple
member of the selected congruence class based on
the history recorded 1n the history data structure;
selecting a selected member from among remaining
members of the selected congruence class that

remain as candidates after the removing; and
evicting a victim cache line cached in the selected

member of the selected congruence class.
12. The data processing system of claim 11, wherein a
total number of the plurality of ways 1s not an integer power
of two.

10

15

20

10

13. The data processing system of claim 11, wherein:
the replacement logic 1s further configured to perform:
determining whether the selected congruence class
includes any invalid members;

choosing the victim cache line by the removing and the
selecting 1n response to the determining that the
selected congruence class contains no mvalid mem-
bers; and

choosing the selected member randomly from among
invalid members in response to determining that the
selected congruence class includes multiple invalid
members.

14. The data processing system of claim 11, and further

comprising;

a replacement data structure that records relative replace-
ment priorities of the plurality of members of the
selected congruence class, wherein the replacement
logic performs the selecting based on the relative
replacement priorities recorded 1n the replacement data
structure.

15. The data processing system of claim 14, wherein the

relative replacement priorities prioritize a least recently used
member for replacement.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

