12 United States Patent
Phillips et al.

US010649796B2

(10) Patent No.: US 10,649,796 B2
45) Date of Patent: May 12, 2020

(54) ROLLING RESOURCE CREDITS FOR
SCHEDULING OF VIRTUAL COMPUTER

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

(58)

RESOURCES

Applicant: Amazon Technologies, Inc., Reno, NV

(US)

Inventors: John Merrill Phillips, Seattle, WA

(US); William John Earl, Burien, WA
(US); Deepak Singh, Issaquah, WA

(US)

Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 0 days.
Appl. No.: 14/331,745
Filed: Jul. 15, 2014

Prior Publication Data

US 2015/0378753 Al Dec. 31, 201

Related U.S. Application Data

D

Provisional application No. 62/018,466, filed on Jun.

27, 2014.
Int. CL.
GOol 9/455 (2018.01)
GOol 9/50 (2006.01)
(Continued)
U.S. CL
CPC GO6F 9/455 (2013.01); GO6F 9/4881
(2013.01); GO6F 97505 (2013.01); GO6F
9/5005 (2013.01);
(Continued)
Field of Classification Search
CPC e, GO6F 9/5038; HO4L. 477/72

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,714,960 B1* 3/2004 Bitar GOO6F 9/4881
718/103
7,093,250 B1* 8/2006 Rector GOO6F 9/4881
718/100

(Continued)

FOREIGN PATENT DOCUMENTS

CN 18413551 10/2006
JP 2011198027 10/2011

OTHER PUBLICATIONS

Lee, Min, et al. “Supporting soft real-time tasks in the xen hypervi-
sor.” 2010. ACM Sigplan Notices. vol. 45. No. 7. ACM, 2010.*

(Continued)

Primary Examiner — Lewis A Bullock, Ir.
Assistant Examiner — Gilles R Kepnang

(74) Attorney, Agent, or Firm — Robert C. Kowert;
Kowert, Hood, Munyon, Rankin & Goetzel, P.C.

(57) ABSTRACT

A network-based virtual computing resource provider may
offer virtual compute instances that implement rolling
resource credits for scheduling virtual computing resources.
Work requests for a virtual compute instance may be
received at a virtualization manager. A resource credit bal-
ance may be determined for the virtual compute instance.
The resource credit balance may accumulate resource credits
in rolling fashion, carrying over unused credits from previ-
ous time periods. Resource credits may then be applied
when generating scheduling instructions to provide to a
physical resource to perform the work requests, such as a
physical CPU 1n order to increase the utilization of the
resource according to the number of credits applied. Applied
resource credits may then be deducted from the credit
balance.

20 Claims, 9 Drawing Sheets

virtualization host 310

compute compiite compute compute
instance mstance nstance instance
3308 330H 330¢c 3301
virtual compute
FesouUrce Work
requests —— e -
332 ¥ T
Y Y Y Y]
roliing resowrce credit batance scheduier moniforing agemnt - ;‘jﬁ;ﬁ? g
324 226 " 4g
scheduling instruction{(s) gredit balance/
for work requests 334 usage melrics report host meircs
362 (including credit metrics)

vitfual compuie resource schedliler

322

364
Virfuglizalion management

modiuie 320

physical scheduling insfruction;s)
for work requests 336

phiysical computing resounme(s)

240

US 10,649,796 B2

Page 2
(51) Int. CL 2011/0035749 Al 2/2011 Krishnakumar et al.
GOGF 9/48 (2006.01) 2011/0035752 Al* 2/2011 Krishnakumar GOGF 9/4881
GO6Q 20/22 (2012.01) 718/103
TOUZACY ...cvvvrivnn,
(52) U.S. Cl 2011/0119422 Al* 5/2011 Grouzd GO6F 9/4881
CPC GO6F 9/5027 (2013.01); G060 20/22 7107202
----------- (2013.01); O 2011/0202926 Al* 82011 Chambliss GO6F 9/5038
(2013.01); GOGF 9/4843 (2013.01); GOGF 71%/104
95077 (2013.01) 2012/0054762 ALl* 3/2012 MoON ..ovoovver.... GOGF 9/5077
718/103
(56) References Cited 2012/0216207 Al* 8/2012 Krishnakumar GO6F 9/4881
718/103
U.S. PATENT DOCUMENTS 2012/0221454 Al1* 82012 Morgan GO6F 9/5027
705/37
7,797,699 B2 9/2010 Kagi et al. 2012/0290348 Al* 11/2012 Hackettccooov..... G06Q 10/06
7,937,705 Bl 5/2011 Prael et al. 705/7.13
8,019,861 B2 9/2011 Ginzton 2013/0055279 Al* 2/2013 Sistareoocoovevvnnn... GO6F 9/50
8,045,563 B2 10/2011 Lee 718/104
8,091,088 B2* 1/2012 Kishan GOOF 9/485 2013/0167146 Al 6/2013 Dong et al.
718/104 2013/0346969 Al1* 12/2013 Shanmuganathan
8,214,835 B2 7/2012 Tsai et al. GO6F 9/4856
8,397,236 B2* 3/2013 Gibson GO6F 9/4881 718/1
718/100 2014/0013321 Al 1/2014 TLaoutaris et al.
8,429,276 B1* 4/2013 Kumar GO6F 9/45533 2014/0059551 Al* 2/2014 Umanesan HO041. 67/325
709/226 718/102
8,095,007 B2* 4/2014 Wada GO6F 9/45533 2014/0137104 Al1* 5/2014 Nelson GOG6F 9/45558
713/300 718/1
8,914,511 B1* 12/2014 Yemini G06Q 10/06 2014/0378094 Al* 12/2014 Gillick HO04M 15/7652
709/226 455/406
8,918,784 B1 12/2014 Jorgensen et al. 2014/0379924 Al* 12/2014 Das ..cccooovveveeeeen... HO041. 47/72
2003/0120914 Al* 6/2003 AXNIX .oocevrerrenne.. GO6F 9/5077 700/276
713/100 2015/0007189 Al* 1/2015 De Gruijl GO6F 9/5011
2004/0267932 Al* 12/2004 Voellmccco........ GOGF 9/5011 718/104
| 709/226 2015/0339170 Al* 11/2015 Guancoo....... GO6F 9/4881
2005/0273511 A1* 12/2005 Ferreira de Andrade 718/104
GOOF 9/5027 2016/0196168 Al* 7/2016 Koizumi GOG6F 9/5077
709/227 718/104
2006/0130062 AL* 6/2006 Burdick ... 718/100 2017/0034068 Al* 2/2017 Wattsccovenn.... HO41. 12/6418
2006/0174247 Al* 8/2006 Farrellcoo........ GO6F 9/5027
718/104
2006/0230400 Al* 10/2006 Armstrong GOGF 9/5077 OTHER PUBLICATIONS
718/1
2008/0022280 Al1* 1/2008 Cherkasova ... GO6F 9/4881 Angel, Sebastian, et al. “End-to-end Performance Isolation Through
718/102 Virtual Datacenters.” 2014. OSDI. vol. 14. (Year: 2014).*
2008/0320140 AL* 12/2008 Simard GO6LF 9/5016 U.S. Appl. No. 14/484,197, filed Sep. 11, 2014, William John Earl,
709/226 of al
. .
2009/0055829 Al 212009 GIDSOD ...ooevvvvvvnne, GO6F 974881 fice Action from Japanese Application No. 2016-573062, dated
2009/0183164 Al* 7/2009 Carlstrom H047Ll§1/71/(1)?) Feb. 20, 2018, pp. 1-29.
""""""" 718/103 Office Action from Chinese Application No. 201580034494 8, (Eng-
2010/0005532 Al* 1/2010 Van Steenbergen ... G06Q 10/10 lish Translation and Chinese Version), Amazon Technologies, Inc.,
776/28 dated Mar. 28, 2019, pp. 1-18.
2010/0146503 Al* 62010 Tsai ... GOGF 9/48%1 International Search Report and Written Opinion from PCT/US2015/
718/1 037443, Amazon Technologies, Inc., dated Oct. 8, 2015, pp. 1-11.
2010/0169968 Al* 7/2010 Shanbhogue GO6F 9/4812 http://wiki.xen.org/wiki/Credit_Scheduler, “Credit Scheduler Xen”,
726/22 Dowloaded Mary 27, 2015, pp. 1-4.
2011/0010721 Al* 1/2011 Gupta ..o, GO6F 9/5077
718/103 * cited by examiner

9=

98BS 1IP3UD DIIN0SOY mmmmemm JJUR|EY 1IPDID) 3IIN0OSOY = e 0Ll
89UBJRq JI08.10
SpOLIad BwiL 52/N0S8. [eniui

0t 6€ 8C L 9C SC V€ eC ¢ 1COC 6L BT LIOLTSLVPLELCTITIOL 6 8 £ 9 § ¥ € ¢ 1

r r r r r - r r - T -] L] r - v r -
: - . . ¢ A " ’ _- f ; * £ o 7 # ? A - ! P " " o " .

US 10,649,796 B2

-
m
Lt

-
F N N N I R

L
x

ol = N g N o il i R g g g i T T g R LI e il T o R T i R i T g g i il i g g i N T B i g N T g N g R il i s i L g g R L N g N L T e R T T N N i i ait LB i all a EE g pT T RE F T il laht E R PT a i E F BE T g T g g g i N T e i R U i R i T i g R i BT g g T L T e e g [g = N N = L [i N E g R R i i TS T P g R R e

L ARLLEALEALEALLELLLLLSR

\\ﬂ

s \
”’ \ - :

‘l.l.‘.i.n.-.-l.l.‘*ﬁ“ﬁHl‘ﬂl“l‘ﬂ“ﬁl!ﬁ‘l“l‘“ﬁl‘ﬁl**“ﬁl‘ﬁH“‘I:l‘l“ﬁlIﬁ““ll‘ﬂl“‘ﬂ“l**l‘ﬁﬂ‘ﬁl‘*‘1“!Iﬁ“ﬁ‘!ﬂ.l-lH.l.‘l.n.l_l.l.li..-.."i.ﬁ‘..!.“ﬁ.l.lﬂ.l.“.ﬁll.l.\I.l.‘lﬂ.l.‘.i.n.l.l.l.ll..-..“..-..l‘..l.-.-I..ﬁ.l.‘..!.l.“.l.ll.l.‘IH.I-“.I.!H.H.IH.!.‘.&..-..l‘..l.li.ﬁ.ﬂ‘ﬁﬁ‘“ll“l‘ﬁ“ﬁ‘!‘l‘ﬁﬂﬁ-1!‘1"ﬁﬁ‘ﬁl‘ﬁ‘lgﬁ\I“‘ﬁﬁ*l*ﬁI‘ﬁ‘*ﬁﬁ!ﬁﬂ‘ﬁ“ﬁhl"E‘W-h“\lﬂ.‘liﬂ‘.ﬁ.ﬂl‘ -

\\._

..l.lI.nl.l.li.!-.‘l..l‘..I|I.|I.I1111.1.‘.11‘.‘.l‘l‘.l.-I.I.l.-lli.h..l.l‘.l.-l.lI.I.l.li.‘.‘Hh\h"hhihh‘\HhH“\hh““‘h‘é“Hhihh‘\hh*H‘\Hh“"‘h“\h‘\H“Hhh\lﬂI..Il..l‘.I|1.|I..I.l.l‘.‘li.l..l‘H.—I.I.l.-lli.hl.l.l‘.-l.-l.l‘.I.-l.lI.‘|i.|1.1.‘.|‘.I..1|I.|I.I1111.."-.‘.11.1.-l.|‘.|I|i.-I.I.l.-llI.-l.-l.I.l.-IlI.nl.l.l‘.‘.‘.l.."lﬂ“ihh‘hh‘\hhhhh“‘“H“\h‘\h‘\h‘\E‘hh‘\HhkhhH“"h“\h“h‘\h“h‘HHH.-l-.l.l‘.I|1|1.I|‘.|1‘.—l.l..l‘.l.-I.I.l..l.l‘.-l.-ll..nILl.nI.I.‘.nu.‘.‘.u..nI.—l.nI.l..Inu.n‘.‘u‘

Sheet 1 of 9

T
L}

LML WL U R LU R R

\.\.
.\..\.
"

g A A A A g A A A A A g A A A A T A A A A A \\ﬁ\ﬁi‘\\ﬂaﬁ\iiﬂﬂﬁ\ﬁi\ W o o T A A g W A A A A A A A W A A T e T R A g o g oy

.\.\.
' 4
.\._
”

kﬁtﬁ‘hlEhlE‘IEW1E‘hl‘#lﬁﬁl%ll*ﬁ1E¥hlE‘lﬁ‘lﬁ“1Eﬁhlﬁﬁl‘#l&tl*ll‘ﬁ1F‘tﬂﬁtﬁ‘hlﬂ.l_l.__...E.I.._—..lr-..__—..lr.l.ll..l.l_.__...\.llri.ll.l.l_:.l..l.&...-..-....—..l.h.l-.&hri.r—..u\-..._—..l..l.llr.n.l.-_..l.l.__—.l.l.-_.-1.1__Tl.ll___._n.l._—...l.l._—..ul.l__—...-_.i.._—..ut.l._—..lr.l.l.-r.n.l.t..-..llr.l.l.__Tl.ll..-_.1F‘#lEEIE‘lﬁ‘lﬁ‘lﬁﬁhlﬁ#!*hlﬁt#‘#FF[lﬁﬁilE‘IE‘IE%iﬁ‘hlﬁ#l&t1?[1‘51*‘115415‘ L e T O o ok o o e

”

S}IP3J) 924n0S3Y

LR AL L L L ET L AL AL L AL L LT ALELLE L LA AR LR Y

S

E

L d
.\l._

May 12, 2020

.\.\.

0¢} s

n.h.ni.‘..h.ni.l.h.niulh.hhhhihhh‘*hhhh‘hhh\ihhﬁh‘hh‘hh\hhhEhhhhh‘é‘hhh&hhhhi‘hh\ﬁh‘Hhhi_h\Hh‘hithhkhhhhih\i.ﬂ.ﬂ.h-ﬂ.‘..ﬁ.‘.I.-.-..I.l.h.|1|t.|.-.|1|'..‘.|1.-...H.-ﬂ-!..i...t.'.-l.h..-...l..ﬁ-!..t...-..‘hh..ﬂ.!.‘.ﬁ.‘.l.-i.ni.i.h..‘-l..-..I.l.-.-.-I.t..l..!n!..‘h..'..l.h..!.‘.ﬁn!nt.n!.‘.t.h..ﬂ.'..l..ﬁ.ni.i...t.I-I..h..I.l.-.-.|1|-_..l.|ﬂ|t..‘Hh‘hihhh\hhk*ht‘hh\hh‘hhhhh‘hhh*hhhhi‘“hhhh‘hgh‘ih“hhhﬁh‘hhhEhthhh\‘hhhihhhhkhhﬂhhhhhﬂh.nt..‘..i.ni.‘.n.-.ninl.u.th

Hulj o’

”

aoUBje(q 1ips.o g
99.n08a. buijjo. y

W
L]

.l||-1|l1.l1|-1|l.|l1l.lll.|l|l1|l1|l|.l||llll1.l.llﬂll1.l1ll.|l..l||\.|l1‘l‘lh‘lhl‘h‘l\h“h‘khhhkh‘ﬁh‘Hh‘hk‘hh"hhhkh‘%‘Hh‘hk‘hh‘1*‘5“‘1%‘Hh.l||-1|l1.l1l1|l.|l1l—.lll-.ll|.l||ll|l1|—1|l.|l1.l.llIlll|.l||-I||l1.l||-1|l1|l1l1|l.|l1.l1|l1|l..l||l1|l1.l1|l.|l1.l1|-1|l||l||-1l‘hhl‘hhl‘h‘kh‘kh‘lhl‘hhl‘h‘l‘l‘.l1|l.|l1.l.lll-.l"HhhhkhhhhHhh‘kh‘hh‘ﬁh‘khh‘kk‘hh‘EhhhhHhhhkh‘hh‘kh‘kh‘hkh‘hh‘ht‘kh‘Hl‘l‘lhl‘.hhl‘hhi‘.l‘l.‘llﬂh‘|I||l1.l||-1|l1.l1|-1|l.|l1.l||l1|l|.l||l1|l1.l1|l.|l1.l1|l1

‘

... 00T 22UEISU] DINAWOD JBINJILIEG B JO) DSBS PUE BJUBleq 1IPDJD) 924N0SOY SUl]|OY

Fr T FFrfrdrerFffaFfrarrr FFFXFrrer @S T oS g L T F e rirear T FrrFrrfreraerfr FrErrrrrrFrFrFrrFrer@QFrrFrryFrECrrrEFrEe T FETfrArar e FrrerrrfarrFrrTrreSsreErrderTr ey rew L Ny

AR L AL L L E T Ll AL AL AL R E LAl AL AL L LN LE
L

e F e rd e

U.S. Patent

U.S. Patent May 12, 2020 Sheet 2 of 9 US 10,649,796 B2

/- -/ /-, /e /e e mm s mm e mm e, o mm e e e, mm e ™
| l
! . ; | |
| instance(s) instance(s) |
| 234a 234D 234n |
| o o o |
| virtualization manhagement virtualization management virtualization management |
moduie module module
| 2324 232b 232n |
| |
| virtualization host 230a virtualization host 230b virtiualization host 230n |
| |
; |
' '
| 99 |
| |
| — ' |
| resource reservation resource |
| management management monitoring management |
, 214 216 218 220 |
| |
' '
| 212 |
| l
| I
| |
network

260

client(s) I
202

FIG. 2

US 10,649,796 B2

Sheet 3 of 9

May 12, 2020

U.S. Patent

(SoLBLU JIpa.d buiphioul)

81¢
buriojuow

P9t

SILIBW Jsoy poda.

oJ2IN0SA]

& Ol

0vE
($)904n0Sa. bunnduwiod jeaisAyd

Qee S1S0Nhal YIOM 0]
(S)uonangsur buynpayas [easAyd

0C€ amnpow
Justuabeuew uonezieniin A
19JNPa8YIS 82.4N0Sa8.1 9)NALWI0D [eNLIA
¢9¢
SaLjoW vbesn Lee 180nba. YoM 0]
/A3Ue[eq Jipa.o (S)uononysur bunpayos

Z43
J8INpayos sauejeq JipaJd 821n0Sa. builjo.

9¢¢
jusbe buriojuow |

qoge BOEE

JOEE
aoUR)SUI
aNaLoa

UpEe

sougysur |+ " -
aINALI0d

20UR)SUI aouR]SUl
aInawo? anawio

0LE 1SOY uopezijeniin

¢et
S1S9nba.l

|).I0M 82.N0S8.
| 9)NAWI09 BN

v Ol

OCE Aeldsiqy aLpsyy eoueisuf

US 10,649,796 B2

Sheet 4 of 9

May 12, 2020

U.S. Patent

¢l 2NN 0Ll ol gl Ll 9l Gl vl £l Al L1
0 w e 00v
GT | 057
. . o 006
L : 009
0l | 059
0Ly :
962.10js G1e-6r9/0ad2 gy)
Buiomeu 61e6p90082 apir""()
NdIA L0IRINDIIU0Y ‘U0IBIO) CLy-€8.L1047 mw:“\o
vy obesn wpesd (@) a6e.0js siesrosianz 9"
Bupiompau 61e6p920087 qzir—"()
22y oouereg wpeiy (@)
NdoA uopembyuod uonead] GLe-r9/iadz ety (@)
U0/}99[aS Il aauelsul 921N0S9Y uondLiasaqg aaueisuy q] doue}suj

OF 90BLIS3UI S1IPaID 821n0Sal Bulljo.

U.S. Patent May 12, 2020 Sheet 5 of 9 US 10,649,796 B2

Receive, at a virtualization manager for a
virtualization host, a work request for one or more
virtual computer resources of a virtual compute
instance hosted at the virtualization host
510

Determine a current resource credit balance for the
compute instance respective to the one or more
virtual computer resources that accumulates unused
resource credits applied according to a resource
credit accumulation rate
220

Generate scheduling instructions to perform the work
request based, at least in part, on applying resource
credit(s) of the current resource credit balance
930

Update the current resource credit balance to deduct
the applied resource credit(s)
240

FIG. 5

U.S. Patent May 12, 2020 Sheet 6 of 9 US 10,649,796 B2

Receive, at a virtualization manager for a
virtualization host, a work request for one or more
vCPUs of a virtual compute instance hosted at the

virtualization host
610

Determine a current resource credit balance for the
compute instance that accumulates resource credits
for idle vCPU time periods according to a resource
credit accumulation rate
620

Generate scheduling instructions to send to a
scheduler for physical CPU(s) implemented as part
of the virtualization host in order to perform the work
request based, at least in part, on applying resource
credit(s) of the current resource credit balance
630

Send the scheduling instructions to the scheduler

640

Update the current resource credit balance to deduct
the applied resource credits
660

FIG. 6

U.S. Patent May 12, 2020 Sheet 7 of 9 US 10,649,796 B2

Check current resource credit balance
to apply a resource credit for

performing a work request for a virtual
compute instance
/10

Remaining
resource credit to

apply?
720

yes

Apply the resource credit to increase
utilization of the resource for
performing the work request for the
virtual compute instance
740

Incrementally lower utilization of the
resource for performing the work
request to a baseline utilization for the
virtual compute instance
/30

FIG. 7

U.S. Patent May 12, 2020 Sheet 8 of 9 US 10,649,796 B2

Record credit balance metrics for the current
resource credit balance over time for a virtual
compute instance

810

Record credit usage metrics for applied resource
credits to perform work requests over time for the
virtual compute instance
820

Recelve a request for the credit

balance metrics and/or the credit

usage metrics for the virtual compute
instance via an interface

830

Monitor the credit balance metrics
and/or the credit usage metrics for the
virtual compute instance
850

Alarm triggered?

Provide via the interface the credit 860

balance metrics and/or the credit

usage metrics
040

yes

Provide notification of the triggered

alarm
870

FIG. 8

U.S. Patent May 12, 2020 Sheet 9 of 9 US 10,649,796 B2

computer system 1000

I/O
device(s)

persistent

c . Storage
1010a 1010n 1060

Processor Processor

1080

I/0 interface
1030

system memory 1020 network

Interface
1040

program
da 1‘1803 %O" < instructions

1025

computer . remote
system(s) VO ?ggéces storage

1090 1070

FIG. 9

US 10,649,796 B2

1

ROLLING RESOURCE CREDITS FOR
SCHEDULING OF VIRTUAL COMPUTER
RESOURCES

RELATED APPLICATIONS

This application claims benefit of priority to U.S. Provi-
sional Application Ser. No. 62/018,466, entitled “Rolling
Resource Credits for Scheduling of Virtual Computer
Resources,” filed, Jun. 27, 2014, and which 1s incorporated
herein by reference in 1ts entirety.

BACKGROUND

The advent of virtualization technologies for commodity
hardware has provided benefits with respect to managing
large-scale computing resources for many customers with
diverse needs, allowing various computing resources to be
ciiciently and securely shared by multiple customers. For
example, virtualization technologies may allow a single
physical computing machine to be shared among multiple
users by providing each user with one or more virtual
machines hosted by the single physical computing machine,
with each such virtual machine being a software simulation
acting as a distinct logical computing system that provides
users with the 1llusion that they are the sole operators and
administrators of a given hardware computing resource,
while also providing application 1solation and security
among the various virtual machines. As another example,
virtualization technologies may allow data storage hardware
to be shared among multiple users by providing each user
with a virtualized data store which may be distributed across
multiple data storage devices, with each such virtualized
data store acting as a distinct logical data store that provides
users with the illusion that they are the sole operators and
administrators of the data storage resource.

Virtualization technologies may be leveraged to create
many different types of services or perform different func-
tions for client systems or devices. For example, virtual
machines may be used to implement a network-based ser-
vice for external customers, such as an e-commerce plat-
form. Virtual machines may also be used to implement a
service or tool for internal customers, such as information
technology (I'T) service implemented as part of an internal
network for a corporation. Utilizing these virtual resources
clliciently, however, may require flexible utilization options
for many different types of virtual resource workloads. In
some environments multiple virtual machines may be hosted
together on a single host, creating the possibility for con-
tention and conflicts when utilizing different virtual com-
puting resources that may rely upon the same physical
computer resources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a graph illustrating a rolling resource credit
balance for a virtual compute instance, according to some
embodiments.

FIG. 2 1s a block diagram illustrating a network-based
virtual computing service that provides virtual compute
instances 1mplementing rolling resource credits for sched-
uling wvirtual computer resources, according to some
embodiments.

FIG. 3 1s a block diagram 1llustrating a virtualization host
that implements rolling resource credits for scheduling vir-
tual computer resources, according to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s an example 1llustration of an interface providing
rolling credit metrics for a virtual compute 1nstance, accord-
ing to some embodiments.

FIG. § 1s high-level flowchart 1llustrating various methods
and techniques for implementing rolling computer resource
credits for scheduling virtual computer resources, according
to some embodiments.

FIG. 6 1s a high-level flowchart 1llustrating various meth-
ods and techniques for mmplementing rolling computer
resource credits for scheduling processing resources for a
virtual computer, according to some embodiments.

FIG. 7 1s high-level flowchart 1llustrating various methods
and techniques for lowering or raising utilization of a
physical computer resource according to available resource
credits for a work request for a virtual compute instance,
according to some embodiments.

FIG. 8 15 a high-level flowchart illustrating various meth-
ods and techniques for recording and utilizing data metrics
for virtual compute instances implementing rolling credit
resources for scheduling virtual computer resources, accord-
ing to some embodiments.

FIG. 9 1s a block diagram illustrating an example com-
puting system, according to some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that the embodiments
are not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning having the potential to), rather than the

mandatory sense (1.¢., meaning must). Similarly, the words

“include”, “including”, and “includes” mean including, but

not limited to.

DETAILED DESCRIPTION

The systems and methods described herein may imple-
ment rolling resource credits for scheduling virtual comput-
ing resources, according to some embodiments. Diflerent
clients implementing virtual computing resources have dii-
terent resource demands. For example, some clients” work-
loads are not predictable and may not utilize fixed resources
ciliciently. Virtual compute instances implementing rolling
resource credits for scheduling virtual computing resources
may provide dynamic utilization of resources to provide
flexible high performance, without wasting unutilized fixed
resources. Resource credits are accumulated for individual
virtual compute mstances. When a virtual compute instance
needs to perform work at high performance, the resource
credits may be applied to the work, effectively providing tull
utilization of underlying physical resources for the duration
of the resource credits. When a virtual compute instance 1s
using less than 1ts share of resources (e.g., little or no work
1s being performed), credits may be acquired and used for a
subsequent task. Resources may, 1n various embodiments,
be any virtualized computer resource that 1s implemented or
performed by a managed physical computer resource,
including, but not limited to, processing resources, comimu-
nication or networking resources, and storage resources.

US 10,649,796 B2

3

Virtual compute 1nstances may 1mplement rolling
resource credits for scheduling virtual computing resources,
providing for responsiveness and high performance for
limited periods of time, and low cost. FIG. 1 1s a graph
illustrating a rolling resource credit balance for a virtual
compute instance, according to some embodiments. Graph
100 illustrates both the resource credit usage and resource
credit balance for a compute instance implementing rolling
resource credits for scheduling. An initial resource credit
balance 110 may be provided (e.g., 30 credits) which may be
used immediately. Over time, the compute instance may
accumulate more credits until reaching a rolling resource
credit balance limit 120, in some embodiments. This limit
may be enforced by excluding certain accumulated resource
credits after a period of time (e.g., 24 hours). When applied,
a resource credit may provide full utilization of a resource
for a particular time (e.g., a computer resource credit may
equal 1 minute of full central processing unit (CPU) utili-
zation, 30 seconds for a particular networking channel, or
some other period of use that may be guaranteed), 1n some
embodiments. Resource credits may be deducted from the
resource credit balance when used.

Consuming resource credits, a virtual compute instance
may utilize suflicient resources (e.g., CPU cores, network
interface card functions, etc.) to obtain high performance
when needed. For example, the credit resource usage at time
5 1s less than the resource credit balance at time 5. Thus, the
work carried out at time S5 was performed with full utiliza-
tion for the life of the task, as more resource credits in the
current resource credit balance were available for consump-
tion than was necessary to perform the task. Moreover, as no
further resource credit usage 1s indicated, the resource
credits continue to carry over until reaching the balance limait
120, saving further physical resources for the next heavy
usage period (or another work request for another compute
instance hosted on the same virtualization host). I no
resource credits are available when performing a task, a
baseline utilization guarantee may still be applied to perform
a work request. In some embodiments, the baseline utiliza-
tion guarantee may be the amount of time the wvirtual
compute mstance can use the resource without spending any
credits 1n the credit resource balance.

In at least some embodiments, the baseline utilization
guarantee may correspond to the resource credit accumula-
tion rate. If, for instance, a resource credit 1s equivalent to
one minute full utilization per hour, then a 6 resource credit
accumulation rate per hour 1s equivalent to 6 minutes out of
60 minutes, or 10% utilization of a resource for the hour. In
this example, the baseline guarantee may be 10% utilization
of a resource for an hour. However, in some embodiments,
the resource credit accumulation rate may be independent of
the baseline guarantee (e.g., 12 resource credit accumulation
rate per hour and a 10% baseline guarantee), allowing a
resource credits to accrue to the resource credit balance even
iI a compute instance submits work requests that utilize the
allotted baseline utilization guarantee. Please note that the
previous examples are not intended to be limiting to the
various ways or combinations that resource credit accumu-
lation rate and baseline performance may be implemented.

Rolling resource credits for scheduling virtual computer
resources may be implemented for multiple virtual compute
instances hosted at the same virtualization host (as 1llus-
trated 1n FIGS. 2 and 3 discussed below). Implementing a
rolling resource credit balance limit 120 may keep any one
compute mstance from amassing enough resource credits to
block the performance of work requests for other instances.
For example, 11, as illustrated in FIG. 1, the rolling resource

10

15

20

25

30

35

40

45

50

55

60

65

4

credit balance limit 1s set to 144 resource credits, then the
most any one virtual compute instance may monopolize a
physical computer resource 1s 2 hours and 24 minutes
(assuming resource credits are equivalent to a 1 minute full
utilization of a resource).

Please note that previous descriptions are not intended to
be limiting, but are merely provided as an example of a
rolling resource credit balance and usage for a compute
instance. Accumulation rates, initial balances and balances
limits may all be different, as may be the various amounts 1n
which resource credits may be used.

This specification next includes a general description
virtual computing resource provider, which may implement
a network entity registry for network entity handles included
in network trailic policies enforced for a provider network.
Then various examples of a virtual computing resource
provider are discussed, including different components/
modules, or arrangements of components/module that may
be employed as part of implementing a virtual computing
resource provider. A number of different methods and tech-
niques to implement a network entity registry for network
entity handles included 1n network traflic policies enforced
for a provider network are then discussed, some of which are
illustrated 1n accompanying flowcharts. Finally, a descrip-
tion of an example computing system upon which the
various components, modules, systems, devices, and/or
nodes may be implemented 1s provided. Various examples
are provided throughout the specification.

FIG. 2 1s a block diagram 1illustrating a network-based
virtual computing service that provides virtual compute
instances 1mplementing rolling resource credits for sched-
uling virtual computing resources, according to some
embodiments. Network-based virtual computing service 200
may be set up by an entity such as a company or a public
sector organization to provide one or more services (such as
various types of cloud-based computing or storage) acces-
sible via the Internet and/or other networks to clients 202.
Network-based virtual computing service 200 may include
numerous data centers hosting various resource pools, such
as collections of physical and/or virtualized computer serv-
ers, storage devices, networking equipment and the like,
needed to implement and distribute the infrastructure and
services ollered by the network-based virtual computing
service 200. In some embodiments, network-based virtual
computing service 200 may provide computing resources.
These computing resources may in some embodiments be
offered to clients 1n units called “instances,” 234 such as
virtual compute instances.

In various embodiments, network-based virtual comput-
ing service 200 may implement a control plane 210 in order
to manage the computing resource oflerings provided to
clients 202 by network-based virtual computing service 200.
Control plane 210 may implement various different compo-
nents to manage the computing resource offerings. Control
plane 210 may be implemented across a variety of servers,
nodes, or other computing systems or devices (such as
computing system 1000 described below with regard to FIG.
9). It 1s noted that where one or more instances of a given
component may exist, reference to that component herein
may be made 1n either the singular or the plural. However,
usage of either form 1s not intended to preclude the other.

In at least some embodiments, control plane 210 may
implement mterface 212. Interface 212 may be configured to
process mcoming requests received via network 260 and
direct them to the appropriate component for further pro-
cessing. In at least some embodiments, interface 212 may be
a network-based interface and may be implemented as a

US 10,649,796 B2

S

graphical interface (e.g., as part of an administration control
panel or web site) and/or as a programmatic interface (e.g.,
handling various Application Programming Interface (API)
commands). In various embodiments, interface 212 may be
implemented as part of a front end module or component
dispatching requests to the various other components, such
as resource management 214, reservation management 216,
resource monitoring 218, and billing 220. Clients 202 may,
in various embodiments, may not directly provision, launch
or configure resources but may send requests to control
plane 210 such that the illustrated components (or other
components, functions or services not illustrated) may per-
form the requested actions.

Control plane 210 may implement resource management
module 214 to manage the access to, capacity of, mappings
to, and other control or direction of computing resources
offered by provider network. In at least some embodiments,
resource management module 214 may provide both a direct
sell and 3™ party resell market for capacity reservations
(e.g., reserved compute mstances). For example, resource
management module 214 may allow clients 202 via interface
212 to learn about, select, purchase access to, and/or reserve
capacity for computing resources, either from an 1nitial sale
marketplace or a resale marketplace, via a web page or via
an API. For example, resource management component
may, via mterface 212, provide a listings of different avail-
able compute instance types, each with a different credit
accumulation rate. Additionally, in some embodiments,
resource management module 214 may be configured to
offer credits for purchase (1n addition to credits provided via
the credit accumulation rate for an instance type) for a
specified purchase amount or scheme (e.g., lump sum,
additional periodic payments, etc.). For example, resource
management module 214 may be configured to receive a
credit purchase request (e.g., an API request) and credit the
virtual instance balance with the purchased credits. Simi-
larly, resource management module 214 may be configured
to handle a request to increase a credit accumulation rate for
a particular instance. Resource management 214 may also
ofler and/or implement a flexible set of resource reservation,
control and access interfaces for clients 202 via interface
212. For example resource management module 214 may
provide credentials or permissions to clients 202 such that
compute instance control operations/interactions between
clients and in-use computing resources may be performed.

In various embodiments, reservation management module
216 may be configured to handle the various pricing
schemes of instances 234 (at least for the mitial sale mar-
ketplace) 1in various embodiments. For example network-
based virtual computing service 200 may support several
different purchasing modes (which may also be referred to
herein as reservation modes) 1n some embodiments: for
example, term reservations (1.e. reserved compute
instances), on-demand resource allocation, or spot-price-
based resource allocation. Using the long-term reservation
mode, a client may make a low, one-time, upifront payment
for a compute 1nstance or other computing resource, reserve
it for a specified duration such as a one or three year term,
and pay a low hourly rate for the instance; the client would
be assured of having the reserved instance available for the
term of the reservation. Using on-demand mode, a client
could pay for capacity by the hour (or some appropriate time
unit), without any long-term commitments or upiront pay-
ments. In the spot-price mode, a client could specily the
maximum price per unit time that 1t 1s willing to pay for a
particular type of compute instance or other computing
resource, and if the client’s maximum price exceeded a

10

15

20

25

30

35

40

45

50

55

60

65

6

dynamic spot price determined at least in part by supply and
demand, that type of resource would be provided to the
client.

During periods when the supply of the requested resource
type exceeded the demand, the spot price may become
significantly lower than the price for on-demand mode. In
some 1mplementations, 11 the spot price increases beyond the
maximum bid specified by a client, a resource allocation
may be imterrupted—i.e., a resource instance that was pre-
viously allocated to the client may be reclaimed by the
resource management module 330 and may be allocated to
some other client that 1s willing to pay a higher price.
Resource capacity reservations may also update control
plane data store 222 to reflect changes 1n ownership, client
use, client accounts, or other resource information.

In various embodiments, control plane 210 may imple-
ment resource monitoring module 218. Resource monitoring
module 218 may track the consumption of various comput-
ing instances, (e.g., resource credit balances, resource credit
consumption) consumed for different virtual computer
resources, clients, user accounts, and/or specific instances.
In at least some embodiments, resource monitoring module
218 may implement various administrative actions to stop,
heal, manage, or otherwise respond to various different
scenarios 1n the fleet of wvirtualization hosts 230 and
instances 234. Resource monitoring module 218 may also
provide access to various metric data for client(s) 202 as
well as manage client configured alarms. FIG. 8, discussed
in detail below provides further examples of various tech-
niques that resource monitoring module may implement.

In various embodiments, control plane 210 may 1mple-
ment billing management module 220. Billing management
module 220 may be configured to detect billing events (e.g.,
specific dates, times, usages, requests for bill, or any other
cause to generate a bill for a particular user account or
payment account linked to user accounts). In response to
detecting the billing event, billing management module may
be configured to generate a bill for a user account or
payment account linked to user accounts.

A virtual compute 1stance 234 may, for example, com-
prise one or more servers with a specified computational
capacity (which may be specified by indicating the type and
number of CPUs, the main memory size, and so on) and a
specified software stack (e.g., a particular version of an
operating system, which may i1n turn run on top of a
hypervisor). A number of different types of computing
devices may be used singly or in combination to implement
the compute instances 234 of network-based virtual com-
puting service 200 i different embodiments, including
general purpose or special purpose computer servers, stor-
age devices, network devices and the like. In some embodi-
ments 1nstance clients 202 or other any other user may be
configured (and/or authorized) to direct network tratlic to a
compute instance 234.

Compute 1instances 234 may operate or implement a
variety ol different platforms, such as application server
instances, Java™ virtual machines (JVMs), general purpose
or special-purpose operating systems, platforms that support
various 1nterpreted or compiled programming languages
such as Ruby, Perl, Python, C, C++ and the like, or high-
performance computing platforms) suitable for performing
client 202 applications, without for example requiring the
client 202 to access an 1nstance 234. There may be various
different types ol compute instances. In at least some
embodiments, there may be compute nstances that imple-
ment rolling resource credit balances for scheduling virtual
computer resource operations. This type of instance may

US 10,649,796 B2

7

perform based on resource credits, where resource credits
represent time an instance can spend on a physical resource
doing work (e.g., processing time on a physical CPU, time
utilizing a network communication channel, etc.). The more
resource credits an instance has for computer resources, the
more time 1t may spend on the physical resources executing
work (increasing performance). Resource credits may be
provided at launch of an instance, and may be defined as
utilization time (e.g., CPU time, such as CPU-minutes),
which may represent the time an 1nstance’s virtual resources
can spend on underlying physical resources performing a
task.

In various embodiments, resource credits may represent
time or utilization of resources in excess of a baseline
utilization guarantee. For example, a compute 1instance may
have a baseline utilization guarantee of 10% for a resource,
and thus resource credits may increase the utilization for the
resource above 10%. Even 1f no resource credits remain,
utilization may still be granted to the compute instance at the
10% baseline. Credit consumption may only happen when
the instance needs the physical resources to perform the
work above the baseline performance. In some embodiments
credits may be refreshed or accumulated to the resource
credit balance whether or not a compute instance submits
work requests that consume the baseline utilization guaran-
tee of the resource.

Different types of compute mnstances implementing roll-
ing resource credits for scheduling computer resources may
be offered. Different compute instances may have a particu-
lar number of virtual CPU cores, memory, cache, storage,
networking, as well as any other performance characteristic.
Configurations of compute mstances may also include their
location, 1n a particular data center, availability zone, geo-
graphic, location, etc . . . and (in the case of reserved
compute instances) reservation term length. Diflerent com-
pute mstances may have diflerent resource credit accumu-
lation rates for different virtual resources, which may be a
number of resource credits that accumulate to the current
balance of resource credits maintained for a compute
instance. For example, one type of compute instance may
accumulate 6 credits per hour for one virtual computer
resource, while another type of compute instance may
accumulate 24 credits per hour for the same type of virtual
computer resource, 1 some embodiments. In another
example the resource credit accumulation rate for one
resource (e.g., vCPU) may be different than the resource
credit accumulation rate for a different virtual computer
resource (e.g., networking channel) for the same virtual
compute nstance. In some embodiments, multiple different
resource credit balances may be maintained for a virtual
compute mstance for the multiple different virtual computer
resources used by the virtual compute instances. A baseline
performance guarantee may also be implemented for each of
the virtual computer resources, which may be different for
cach respective virtual computer resource, as well as for the
different 1nstance types.

Baseline performance guarantees may be included along
with the resource credit accumulation rates, 1n some
embodiments. Thus, 1n one example, an 1nstance type may
include a specific resource credit accumulation rate and
guaranteed baseline performance 1for processing, and
another specific resource credit accumulation rate and guar-
anteed baseline performance rate for networking channels.
In this way, network-based virtual computing service 200
may ofler many different types of instances with diflerent
combinations of resource credit accumulation rates and
baseline guarantees for different virtual computer resources.

10

15

20

25

30

35

40

45

50

55

60

65

8

These different configurations may be priced differently,
according to the resource credit accumulation rates and
baseline performance rates, 1n addition to the various physi-
cal and/or virtual capabilities. In some embodiments, a
virtual compute mstance may be reserved and/or utilized for
an hourly price. While, a long-term reserved instance con-
figuration may utilize a diflerent pricing scheme, but still
include the credit accumulation rates and baseline perfor-
mance guarantees.

As 1llustrated 1n FIG. 2, a virtualization host 230, such as
virtualization hosts 230a, 2305, through 2307, may imple-
ment and/or manage multiple compute instances 234, in
some embodiments, and may be one or more computing
devices, such as computing system 1000 described below
with regard to FIG. 9. A virtualization host 230 may include
a virtualization management module 232, such as virtual-
ization management modules 232a, 2326 through 232n,
capable of instantiating and managing a number of different
client-accessible virtual machines or compute instances 234.
The virtualization management module 232 may include, for
example, a hypervisor and an administrative instance of an
operating system, which may be termed a “domain-zero™ or
“dom0O” operating system 1n some implementations. The
domO operating system may not be accessible by clients on
whose behalf the compute instances 234 run, but may
instead be responsible for various administrative or control-
plane operations of the network provider, including handling
the network tratlic directed to or from the compute instances
234.

Client(s) 202 may encompass any type of client configu-
rable to submit requests to network-based virtual computing
service 200. For example, a given client 202 may include a
suitable version of a web browser, or may include a plug-in
module or other type of code module configured to execute
as an extension to or within an execution environment
provided by a web browser. Alternatively, a client 202 may
encompass an application such as a dashboard application
(or user interface thereol), a media application, an office
application or any other application that may make use of
compute instances 234 to perform various operations. In
some embodiments, such an application may include sufli-
cient protocol support (e.g., for a suitable version of Hyper-
text Transier Protocol (HTTP)) for generating and process-
ing network-based services requests without necessarily
implementing full browser support for all types of network-
based data. In some embodiments, clients 202 may be
configured to generate network-based services requests
according to a Representational State Transter (REST)-style
network-based services architecture, a document- or mes-
sage-based network-based services architecture, or another
suitable network-based services architecture. In some
embodiments, a client 202 (e.g., a computational client) may
be configured to provide access to a compute instance 234
in a manner that 1s transparent to applications implement on
the client 202 utilizing computational resources provided by
the compute instance 324.

Clients 202 may convey network-based services requests
to network-based virtual computing service 200 via network
260. In various embodiments, network 260 may encompass
any suitable combination of networking hardware and pro-
tocols necessary to establish network-based communica-
tions between clients 202 and network-based virtual com-
puting service 200. For example, a network 260 may
generally encompass the various telecommunications net-
works and service providers that collectively implement the
Internet. A network 260 may also include private networks
such as local area networks (LANs) or wide area networks

"y

US 10,649,796 B2

9

(WANSs) as well as public or private wireless networks. For
example, both a given client 202 and network-based virtual
computing service 200 may be respectively provisioned
within enterprises having their own internal networks. In
such an embodiment, a network 260 may include the hard-
ware (e.g., modems, routers, switches, load balancers, proxy
servers, etc.) and software (e.g., protocol stacks, accounting
soltware, firewall/security software, etc.) necessary to estab-
lish a networking link between given client 202 and the
Internet as well as between the Internet and network-based
virtual computing service 200. It 1s noted that in some
embodiments, clients 202 may communicate with network-
based virtual computing service 200 using a private network
rather than the public Internet.

FIG. 3 1s a block diagram 1llustrating a virtualization host
that implements rolling resource credits for scheduling vir-
tual computer resources, according to some embodiments.
As noted above 1 FIG. 2, virtualization hosts may serve as
a host platiorm for one or more virtual compute nstances.
These virtual compute instances may utilize virtualized
hardware interfaces to perform various tasks, functions,
services and/or applications. As part of performing these
tasks, virtual compute instances may utilize virtualized
computer resources (e.g., virtual central processing unit(s)
(vCPU(s)) which may act as the wvirtual proxy for the
physical CPU(s)) implemented at the virtualization host in
order to perform work on respective physical computer
resources for the respective compute instance.

FIG. 3 1llustrates virtualization host 310. Virtualization
host 310 may host compute instances 330a, 33056, 330c,
through 330#%. In at least some embodiments, the compute
instances 330 may be the same type of compute instance. In
FIG. 3, compute mstances 330 are compute instances that
implement rolling resource credits for scheduling wvirtual
computer resources. Virtualization host 310 may also imple-
ment virtualization management module 320, which may
handle the various interfaces between the virtual compute
instances 330 and physical computing resource(s) 340 (e.g.,
various hardware components, processors, 1/0 devices, net-
working devices, efc.).

In FIG. 3, virtualization management module 320 may
implement rolling resource credit balance scheduler 324.
Rolling resource credit balance scheduler 324 may act as a
meta-scheduler, managing, tracking, applying, deducting,
and/or otherwise handling all resource credit balances for
cach of compute instances 330. In various embodiments
rolling resource credit balance scheduler 324 may be con-
figured to receive virtual compute resource work requests
332 from computes instances. Each work request 332 may
be directed toward the virtual computer resource corre-
sponding to the compute 1nstance that submitted the work.
For each request 332, rolling resource credit balance sched-
uler may be configured to determine a current resource
credit balance for the requesting compute instance 330, and
generate scheduling instructions to apply resource credits
when performing the work request. In some embodiments,
rolling resource credit balance scheduler 324 may perform
or direct the performance of the scheduling instructions,
directing or sending the work request to the underlying
physical computing resources 340 to be performed. For
example, 1 some embodiments different hardware queues
may be implemented and rolling resource credit balance
scheduler 324 may be used to place tasks for performing
work requests in the queues according to the applied
resource credits (e.g., queuing tasks according to the amount
of time of applied resource credits). However, in some
embodiments the resource scheduling instructions may be

10

15

20

25

30

35

40

45

50

55

60

65

10

sent 334 to virtual compute resource scheduler 322, which
may be a scheduler for the physical resources 340, such as
CPU(s), implemented at virtualization host 310. Rolling
resource credit balance scheduler 324 may be configured to
perform the various techniques described below with regard
to FIGS. 5-7, in order to apply resource credits, deduct
resource credits, and/or otherwise ensure that work requests
are performed according to the applied resource credits.

In some embodiments, 1n response to receiving the sched-
uling instructions, virtual compute resource scheduler 322
may provide physical scheduling instructions for work
requests 336 to physical computing resources, such as
physical CPU(s), in various embodiments. In at least some
embodiments, virtual compute resource scheduler 322 may
be a credit-based scheduler for one or more CPUs.

Rolling resource credit balance scheduler 324 may also
report credit balance and usage metrics 362 to monitoring
agent 326, which may in turn report these metrics along with
any other host metrics 364 (health information, etc.) to
resource monitoring module 218.

As noted above, with regard to FIG. 2, a network-based
interface for a virtual computing resource provider may be
implemented graphically. FIG. 4 1s an example illustration
of an 1nterface providing rolling credit metrics for a virtual
compute mstance, according to some embodiments. Rolling
resource credits interface 400 may be implemented as net-
work-based site accessible various clients. In some embodi-
ments, rolling resource credits intertace 400 may be 1mple-
mented as a downloadable or locally run application which
may communicate with a network-based virtual computing
resource provider via a programmatic iterface, such as an
API.

Area 410 illustrates a listing of various instances for
which metrics data may be displayed. Various diflerent user
interface elements, such as selectors 412a, 41254, 412c,
414a, 4145 and 414¢ may be implemented to indicate which
physical resource and particular instance data should be
retrieved for. Area 420 illustrates the different types of
metrics data that may be selected for display. For example,
in some embodiments resource credit balance metrics 422
for a particular instance may be selected, as well as resource
credit usage 424 by the selected mstance. In some embodi-
ments, the credit refresh rate for a particular instance may be
illustrated. Area 430 may represent an instance metric dis-
play area. The retrieved instance metrics may be displayed
in various forms (such as the illustrated line graph, charts,
tables, or any other graphical or textual data representation
technique). Area 440 may represent diflerent user interface
clements to change the format of the displayed metric data.
For example, display settings 444 may be selected, opening
a pop-window or dialog box which allows for different
display settings, such as the range of time for which data 1s
displayed, to be modified. Display metrics element 442 may
be selected to enact the changes made, generating or regen-
erating the displayed data in instance metric display 430.
The export metrics 446 clement may be configured to
provide various mechanisms for extracting raw metrics data
to be downloaded or stored 1n a location specified by a user
(e.g., opening a file dialog window). Tools element 448 may
be selectable to run various different tools, analysis, or other
recommendation engines based on the metric data. For
example, a tool may be selected that recommends whether
or not to change instance type (e.g., to a bigger or smaller
burst processing instance).

Please note, that the illustration and accompanying
description for FIG. 4 1s merely ntended to provide an
example of a graphical user interface. Various other con-

US 10,649,796 B2

11

figurations and interfaces, not including graphical interfaces
may be implemented, and thus the previous example 1s not
intended to be limiting. For example, the various requests
for data, metrics, or other information discussed above may
be requested from the virtual computing resource provider
via a programmatic interface (API) and the raw data pro-
vided back to a requesting client. If, for mnstance a client
requested via an API for the virtual computing resource
provider, credit usage and reifresh rates for a particular
compute instance, the metrics or tracked information for the
client may be provided to the client.

The examples of implementing rolling resource credits for
scheduling virtual computing resources discussed above
with regard to FIGS. 2-4 have been given 1n regard to virtual
computing resources ollered by a network-based computing
resource service. Various other types or configurations of
virtual computing resources may implement these tech-
niques, which may or may not be oflered as part of a
network-based service. Other virtual computing resources,
for example, which want to be available for burst processing
or other burst utilization at high performance levels for
shorter periods of time, for instance, may implement rolling
resource credits for scheduling virtual computing resources.
FIG. 5 1s high-level flowchart illustrating various methods
and techniques for implementing rolling resource credits for
scheduling virtual computer resources, according to some
embodiments. These techniques may be implemented using
various components of network-based virtual computing
service as described above with regard to FIGS. 2-4 or other
virtual computing resource hosts.

As indicated at 510, a work request for one or more virtual
computer resources may be recerved at virtualization host
for a virtual compute nstance. The request may 1dentily the
virtual computer resource (e.g., processing, networking,
storage, etc.). The work request may identify the workload
or amount of tasks to be performed 1n order to complete the
work request.

As indicated at 520, a current resource credit balance for
the compute instance respective the wvirtual computer
resources may be determined. A resource credit accumula-
tion rate may be a number of resource credits added to a
current resource credit balance that are unused 1n a time
period, 1n various embodiments. For example, 1if the
resource credit accumulation rate 1s set at 12 resource credits
per hour, then every resource credit not consumed during the
hour may be added to the current resource credit balance
total (e.g., 11 9/12 are not used, then 9 may be added). In
some embodiments, the resource credit accumulation rate
may correspond to a baseline utilization or performance
guarantee for the virtual compute instance. The higher the
current resource credit balance, the longer the virtual com-
pute instance may be able to sustain a higher level of
performance using the virtual computer resource. As mul-
tiple different resource credit balances may be implemented
for different virtual computer resources, the determined
credit resource balance may be specific to the virtual com-
puter resources performing the work request.

In at least some embodiments, resource credit accumula-
tions may be limited to a particular time period. Thus,
unused resource credits that were accumulated prior to the
resource credit accumulation time period may not be
included 1n a current resource credit balance. For example,
in some embodiments the resource credit accumulation time
may be 24 hours, excluding any unused resource credits
accumulated earlier than 24 hours prior to a given point 1n
time. In various embodiments, at least one of the resource

5

10

15

20

25

30

35

40

45

50

55

60

65

12

credits available 1n the current resource credit balance 1s
carried over from a time period prior to a current time
period.

As 1ndicated at 530, scheduling instructions may be
generated to perform the work request based, at least 1n part,
on applying one or more resource credits. Thus, the sched-

uling instructions may, 1 some embodiments, specily a
duration at which underlying physical computer resource(s)
that performs the work request for/as the virtual computer
resource(s) are utilized. In some embodiments, the generated
scheduling instructions may be implemented as task or
hardware queues for the physical computer resource(s). In
some embodiments, another scheduler or virtual computer
resource driver or manager may receive the instructions as
input, parameters, and/or other mformation upon which to
direct the performance of the work request at the physical
resource(s). FIG. 7, discussed below, describes various
techniques for applying available resource credits, as well as
handling the scenario when resource credits are unavailable
to perform the work request. As indicated at 540, the current
resource credit balance may be updated to deduct the applied
resource credit(s).

Please note, that the various elements described in FIG. 5
may be repeated multiple times, in some embodiments, for
performing work requests for different virtual computer
resources relying upon different physical resources. Addi-
tionally, different orderings of the elements may be per-
formed. Thus, the 1llustration and previous discussion 1s not
intended to be limiting.

FIG. 6 1llustrates an example of performing the various
techniques described above with regard to FIG. 5 for pro-
cessing resources. As mndicated at 610, a work request for
one or more virtual central processing units (vCPUSs) of a
virtual compute 1nstance may be recerved at a virtualization
manager for a virtualization host that hosts the wvirtual
compute mnstance. A work request may be for a particular
process, task, or other action to be performed by the one or
more vCPUs of the virtual compute instance. For example,
the particular process may be to execute one or more
instructions implementing a particular program or applica-
tion performed or executed by the virtual compute 1nstance.
The work request may indicate the load or amount of
processing to be used, 1n some embodiments.

As indicated at 620, a current resource credit balance for
the compute instance that accumulates resource credits for
idle vCPU time periods according to a resource credit
accumulation rate may be determined. As noted above, a
resource credit accumulation rate may be a number of
resource credits added to a current resource credit balance
for a virtual instance that 1s 1dle for a time period, in various
embodiments. For example, if the resource credit accumu-
lation rate 1s set at 12 resource credits per hour, then every
resource credit not consumed during the hour may be added
to the current resource credit balance total (e.g., 1f 9/12 are
not used, then 9 may be added). In some embodiments, the
resource credit accumulation rate may correspond to a
baseline utilization or performance guarantee for the virtual
compute instance. For example, 11 the baseline utilization or
performance guarantee for the virtual compute 1nstance 1s
10% for an hour period, then a virtual compute instance may
be said to have 6 minutes of exclusive processing time on the
physical CPU(s). If none or only some of those 6 minutes are
used, then the remaining minutes may be effectively carried
over to the next time period (e.g., next hour). The higher the
current resource credit balance, the longer the virtual com-
pute instance may be able to sustamn a higher level of

US 10,649,796 B2

13

performance, as resource credits may be consumed when the
physical CPU perform the requested work.

As dicated at 630, scheduling instructions may be
generated to perform the work request based, at least in part
on the determined current resource credit balance, in some
embodiments. The scheduling instructions may be generated
in a format to be sent to a scheduler that schedules tasks or
work for one or more physical central processing units
(CPUs). These CPU(s) may perform the actual processing of
the work requests that the virtualization host directs to its
own vCPU(s), as discussed above. The istructions them-
selves may be configured to apply resource credits (i
available) to increase the utilization of the physical CPU(s)
for a current time period. Resource credits may represent an
amount of work or time for which the physical CPU may be
exclusively utilized by the virtual compute host. Thus, the
istructions may be configured to ensure that the scheduler
schedules time of full utilization equivalent to the applied
resource credits. For example, the scheduler for the physical
CPU(s) may be configured to receive diflerent parameters
instructing how work requests for a particular virtual com-
pute istance are to be handled. These parameters may
include, but are not limited to sizing time slices, priorities,
proportional shares, accounting periods, and/or capacities.
In at least some embodiments, the scheduler may be a
credit-based scheduler that provides a proportional, fair-
share scheduler. As discussed below with regard to FIG. 7,
i resource credits 1n the current resource credit balance run
out prior to the completion of a work request (or are not there
at the beginning of performing the work request), then the
generated 1nstructions may be configured to perform the
work request according to a baseline performance require-
ment (e.g., 10%, 20% or 40% CPU utilization) or to incre-
mentally lower the performance of the work request to equal
the baseline performance requirement after a certain period
of time has elapsed.

As mdicated at 640, the scheduling instructions may then
be sent to the scheduler for the physical CPU(s), 1n various
embodiments. Sending the scheduling instructions may
include programmatically calling, invoking, or launching
the scheduler to perform the work request, passing along
various parameters and/or other information to schedule the
performance of the work request according to the generated
scheduling instructions. As indicated at 550, the current
resource credit balance may be updated to deduct resource
credits that are applied when performing the work request.

Please note, that the various elements described in FIG. 6
may be repeated multiple times, in some embodiments, for
performing various sub parts of a work request. Addition-
ally, different orderings of the elements may be performed,
such as updating the resource credit balance prior to sending
the scheduling instructions to the scheduler. Thus, the illus-
tration and previous discussion 1s not intended to be limiting.

As noted above, resource credits may raise the amount of
time for which a particular virtual compute instance may
utilize a physical resource, such as one or more CPUs.
Conversely, a lack of resource credits may lower the utili-
zation of a physical resource. FIG. 6 1s high-level flowchart
illustrating various methods and techmques for lowering or
raising utilization of a physical computer resource according,
to available resource credits for a work request for a virtual
compute instance, according to some embodiments.

As indicated at 610, a current resource credit balance for
a virtual compute instance may be checked to apply a
resource credit for performing a work request, i various
embodiments. If there 1s a resource credit to apply, as
indicated by the positive exit from 620, then the resource

10

15

20

25

30

35

40

45

50

55

60

65

14

credit may be applied to increase the utilization of the
physical resource(s) for performing the work request for the
virtual compute instance, as indicated at 640. A resource
credit, as stated previously may provide additional time to
utilize a physical resource for performing a work request. If,
for instance the baseline processing rate for a virtual com-
pute mstances 1s 6 minutes every hour (e.g., 10% utiliza-
tion), then adding an additional computing resource credit of
equaling 1 additional minute may raise the processing
utilization rate to 7 minutes every hour (e.g., 11.667%
utilization) for a work request directed toward vCPU(s).

If, however, no resource credit remains to apply, as
indicated by the negative exit from 620, then the utilization
of physical resources for performing the work request may
be incrementally lowered to a baseline utilization rate for the
virtual resource at the wvirtual compute instance. For
example, the current utilization of a vCPU for a virtual
compute instance (e.g., 25%) may be lowered 1n increments
spread out over a particular time period (e.g., 15 minutes) to
gradually lower the utilization rate. Therefore, 1f the baseline
utilization rate for the vCPU at the virtual compute instance
1s 10%, then the 15% utilization may be divided up into
individual changes to the rate spread evenly (or nearly
evenly) across the 15 minute time period. Lowering the
utilization incrementally may prevent virtual compute
instances (and any clients or systems interaction with them)
that are out of resource credits from facing fast performance
drop ofl.

Unlike virtual compute instances that provide dedicated
resources for a particular client, the behavior or use of
virtual mnstances that implement rolling resource credits for
scheduling virtual computer resources may need to be
analyzed in order to determine 1f the allocated resource
utilization 1s suiliciently meeting a particular client’s needs
that purchased or reserved the virtual compute instance.
Clients or customers may want to determine 1f they have
made the proper selection of a particular type of compute
instance providing rolling resource credits. For example, a
customer that reserved a virtual compute resource that
provides a medium size resource credit accumulation rate
may be able to discern based on the credits used and/or the
history of the credit balance whether a smaller or larger
virtual compute instances may be approprnate. FIG. 8 1s a
high-level flowchart illustrating various methods and tech-
niques for recording and utilizing data metrics for virtual
compute mstances implementing rolling credit resources for
scheduling virtual computer resources, according to some
embodiments.

As 1ndicated at 810, credit balance metrics may be
recorded for the current resource credit balance over time for
a virtual compute instance. The current resource credit
balance may be recorded at varying levels of granularity. For
example, 1n some embodiments, the current resource credit
balance may only be recorded when a change occurs (e.g.,
wherein the balance i1s increased or decreased). In another
example, a very small period of time elapse between record-
ing the current resource credit balance, even though no
change may have occurred. In some embodiments, clients,
administrators, or other users may be able to tune the
granularity of the time intervals when the data 1s recorded.
The credit balance metrics may be stored 1n a persistent data
storage system, such as a database. The data metrics may be
stored 1n a database so as to be selectively retrievable. For
example, storing the metrics 1n a database may allow for
specific queries to obtain particular ranges of information,
min values, max values, or other more specialized or select
data sets, without returning the entire data set of metrics.

US 10,649,796 B2

15

As 1ndicated at 820, credit usage metrics for applied
resource credits to perform work requests over time for the
virtual compute 1stance may be recorded. As with credit
balance metrics, credit usage metrics may be stored or
recorded at different times or 1n response to diflerent events.
For example, in some embodiments, usage values may be
recorded every time a particular credit 1s applied to perform
a work request. Alternatively, aggregate usage amounts,
such as the amount of credits applied to an entire work
request (e.g., 30) may be represented as a single data point.
Of course various other combinations or granularities 1n
between these two examples may be implemented (e.g.,
recording the applied credits that are used in performing a
portion of a particular work request, such as 4 applied credits
out of a 9 credit total cost for the work request). As with the
credit balance metrics discussed above, credit usage metrics
may be stored 1n such as to be selectively maintained. For
example, storing the metrics 1n a database may allow for
specific queries to obtain particular ranges of information,
min values, max values, or other more specialized or select
data sets, without returning the entire data stet ol metrics.

Recorded metrics for a virtual compute instance may be
used 1n many ways. Live reporting or streaming of metrics
may be performed as new metrics are recorded for example
in a dashboard or other user interface that provides current
virtual resource information at a glance. Particularly, in
some embodiments, the metrics for credit balances and
credit usage may be provided to clients in response to a
request. For example, as indicated at 830 a request may be
received for the credit balance metrics and/or the credit
usage metrics for the virtual compute instance via an inter-
face. Like interface 212, the interface may be a network-
based interface (e.g., accessible via a network such as the
Internet) and may provide various graphical or program-
matic ways of communicating. For example, in some
embodiments, the network-based interface may be an Appli-
cation Programming Interface (API). A particular request for
the data may be formatted according to the API including
various different parameters or limitations on the particular
data set to be returned. Similarly, a graphical interface, such
as may be hosted or implemented for a website or other
displayable application may allow users to select particular
information to be provided (such as discussed above with
regard to FIG. 4). In response to receiving the request, the
requested metrics (some, none or all of the usage metrics
may be provided back via the network-based interface (e.g.,
via a response formatted according to an API or graphics or
textual data displayed for a requestor to view), as indicated
at 840.

In some embodiments, various different dynamic tools,
monitors, components, or other devices may be used to
analyze metric data. In some embodiments, clients of the
virtual computing resource provider network may define,
modily, or set alarms and notifications which may be trig-
gered. As indicated at 850, the credit balance metrics and the
user value metrics for the virtual compute instance, in
various embodiments, may be monitored. For example, the
current values (e.g., current resource credit balance or credit
usage value) may be evaluated for particular or acute
changes. For example, 1f resource credit usage increases
quickly or crosses some kind of threshold, then an alarm
may be triggered, as indicated at 860. Long term trends and
other types of mmformation may be gleaned from monitoring
the credit balance and/or credit usage metrics for the virtual
compute instance. For example, 11 long term trends show
low credit use (or carrying a high current resource credit
balance for a particular percentage of the time, such as 98%)

-~

10

15

20

25

30

35

40

45

50

55

60

65

16

then an alarm maybe triggered, as indicated 860. More
generally, alarms may be configured to evaluate the credit
balance metrics and/or the credit usage metrics 1n many
ways. If no alarm 1s triggered, as indicated by the negative
exit from 860, then monitoring of the credit balance metrics
and/or usage metrics may continue.

When an alarm 1s triggered, as indicated by the positive
exit from 860, notification of the triggered alarm may be
provided, as indicated at 870, in various embodiments. For
example, messaging systems (e.g., voice, text or electronic
mail) may be used to notily an alarm owner/creator or the
responsible party (which may be a client/customer of the
virtual computing resource provider network) for the
instance which triggered the alarm. In addition to providing
notification of the alarm, in some embodiments, automated
or programmatic action may be taken to solve or react to the
alarm. If, for instance, a particular virtual 1nstance 1s seeing
high resource credit utilization, then the some of the work
performed by the virtual instance may be shifted to another
virtual instance on another virtualization host so as to scale
up the number of virtual compute instances performing
certain processes.

In addition to providing recorded resource credit balance
metrics and/or resource credit usage metrics to clients or
others on an individual virtual computer instance basis, a
network-based virtual computing service provider or other
implementer, operator, administrator, or other control sys-
tem or agent may find an aggregate view of the credit
balance metrics and/or the resource credit usage metrics
insightful in to the behavior and performance of the net-
work-based virtual computing resource provider as a whole.

For example, 1n some embodiments, system administra-
tors, controls systems, or other components may implement
heat or contention management to detect particular virtual
compute 1nstances that are either receiving too much traflic
and, thus may be not be satistying service guarantees to
clients, or there may be too much competing activity
between virtual compute mstances on particular host (e.g.,
contention). The recorded data for each virtual compute
instance on a virtualization host may be aggregated together,
as discussed above with regard to resource monitoring
module 218 in FIG. 2. Then based, on the aggregated
metrics, administrative decisions with respect to the virtu-
alization host may be made. For instance, 1 the usage
metrics for different virtual compute istances on a virtual-
1zation host appear to request work on vCPUs at a similar
time, then the usage metrics may indicate some level of
contention among the virtual instances on the virtualization
host. If, the contention level exceeds some max contention
threshold, then one or more of the virtual compute instances
may be moved or restarted on a different virtualization host,
free up computing resources to perform the work requests of
remaining virtual compute instances with greater tlexibility.

Instead of relying upon (or solely upon) reporting of
virtual compute instance behavior, in some embodiments a
control plane, system administrator, health component, or
other system or device may launch benchmark instances to
run alongside other virtual compute 1nstances on virtualiza-
tion hosts. These benchmark instances may be configured to
perform certain kinds of actions, such as requesting certain
s1zes or types of workloads for vCPUs 1n order to test the
allect such requests may have on the performance of work
requests for other virtual compute instances. Benchmark
instances may also be configured to collect and report the
results of their tests directly to a reporting module or service,
such as resource monitoring module 218. Please note that
the previous examples are not intended to be limiting, but

US 10,649,796 B2

17

are some ol the many different ways in which collected
metrics for rolling credit resources may be used.

The methods described herein may in various embodi-
ments be implemented by any combination of hardware and
software. For example, in one embodiment, the methods
may be implemented by a computer system (e.g., a computer
system as 1n FIG. 9) that includes one or more processors
executing program instructions stored on a computer-read-
able storage medium coupled to the processors. The program
instructions may be configured to implement the function-
ality described herein (e.g., the functionality of various
servers and other components that implement the network-
based wvirtual computing resource provider described
herein). The various methods as 1llustrated 1n the figures and
described herein represent example embodiments of meth-
ods. The order of any method may be changed, and various
clements may be added, reordered, combined, omitted,
modified, etc.

Embodiments of rolling credit resources for scheduling
virtual computer resources as described herein may be
executed on one or more computer systems, which may
interact with various other devices. FIG. 9 1s a block diagram
illustrating an example computer system, according to vari-
ous embodiments. For example, computer system 1000 may
be configured to implement nodes of a compute cluster, a
distributed key value data store, and/or a client, 1n different
embodiments. Computer system 1000 may be any of various
types of devices, mcluding, but not limited to, a personal
computer system, desktop computer, laptop or notebook
computer, mainirame computer system, handheld computer,
workstation, network computer, a consumer device, appli-
cation server, storage device, telephone, mobile telephone,
or 1n general any type of computing device.

Computer system 1000 includes one or more processors
1010 (any of which may include multiple cores, which may
be single or multi-threaded) coupled to a system memory
1020 via an mput/output (I/O) interface 1030. Computer
system 1000 further includes a network interface 1040
coupled to I/O interface 1030. In various embodiments,
computer system 1000 may be a uniprocessor system includ-
ing one processor 1010, or a multiprocessor system 1nclud-
ing several processors 1010 (e.g., two, four, eight, or another
suitable number). Processors 1010 may be any suitable
processors capable of executing instructions. For example,
in various embodiments, processors 1010 may be general-
purpose or embedded processors implementing any of a
variety of instruction set architectures (ISAs), such as the
x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable
ISA. In multiprocessor systems, each of processors 1010
may commonly, but not necessarily, implement the same
ISA. The computer system 1000 also includes one or more
network communication devices (e.g., network interface
1040) for communicating with other systems and/or com-
ponents over a communications network (e.g. Internet,
AN, etc.). For example, a client application executing on
system 1000 may use network intertace 1040 to communi-
cate with a server application executing on a single server or
on a cluster of servers that implement one or more of the
components of the data warchouse system described herein.
In another example, an instance of a server application
executing on computer system 1000 may use network inter-
tace 1040 to communicate with other instances of the server
application (or another server application) that may be
implemented on other computer systems (e.g., computer
systems 1090).

In the illustrated embodiment, computer system 1000 also
includes one or more persistent storage devices 1060 and/or

10

15

20

25

30

35

40

45

50

55

60

65

18

one or more /O devices 1080. In various embodiments,
persistent storage devices 1060 may correspond to disk
drives, tape drives, solid state memory, other mass storage
devices, or any other persistent storage device. Computer
system 1000 (or a distributed application or operating sys-
tem operating thereon) may store instructions and/or data in
persistent storage devices 1060, as desired, and may retrieve
the stored instruction and/or data as needed. For example, in
some embodiments, computer system 1000 may host a
storage system server node, and persistent storage 1060 may
include the SSDs attached to that server node.

Computer system 1000 includes one or more system
memories 1020 that are configured to store instructions and
data accessible by processor(s) 1010. In various embodi-
ments, system memories 1020 may be implemented using
any suitable memory technology, (e.g., one or more of
cache, static random access memory (SRAM), DRAM,
RDRAM, EDO RAM, DDR 10 RAM, synchronous
dynamic RAM (SDRAM), Rambus RAM, EEPROM, non-
volatile/Flash-type memory, or any other type of memory).
System memory 1020 may contain program instructions
1025 that are executable by processor(s) 1010 to implement
the methods and techniques described herein. In various
embodiments, program instructions 1025 may be encoded 1n
platform native binary, any interpreted language such as
Java™ byte-code, or in any other language such as C/C++,
Java™, etc., or in any combination thereof. For example, 1n
the 1illustrated embodiment, program instructions 1025
include program instructions executable to implement the
functionality of a virtual computing resource provider net-
work, 1n different embodiments. In some embodiments,
program instructions 1025 may implement multiple separate
clients, server nodes, and/or other components.

In some embodiments, program instructions 1025 may
include instructions executable to implement an operating
system (not shown), which may be any of various operating
systems, such as UNIX, LINUX, Solaris™, MacOS™,
Windows™, etc. Any or all of program instructions 1025
may be provided as a computer program product, or soft-
ware, that may include a non-transitory computer-readable
storage medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to various
embodiments. A non-transitory computer-readable storage
medium may include any mechanism for storing information
in a form (e.g., software, processing application) readable by
a machine (e.g., a computer). Generally speaking, a non-
transitory computer-accessible medium may include com-
puter-readable storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM
coupled to computer system 1000 via I/O interface 1030. A
non-transitory computer-readable storage medium may also
include any volatile or non-volatile media such as RAM
(e.2. SDRAM, DDR SDRAM, RDRAM, SRAM, efc.),
ROM, etc., that may be included in some embodiments of
computer system 1000 as system memory 1020 or another
type of memory. In other embodiments, program instruc-
tions may be communicated using optical, acoustical or
other form of propagated signal (e.g., carrier waves, inirared
signals, digital signals, etc.) conveyed via a communication
medium such as a network and/or a wireless link, such as
may be implemented via network interface 1040.

In some embodiments, system memory 1020 may include
data store 1045, which may be configured as described
herein. In general, system memory 1020 (e.g., data store
1045 within system memory 1020), persistent storage 1060,
and/or remote storage 1070 may store data blocks, replicas

US 10,649,796 B2

19

of data blocks, metadata associated with data blocks and/or
their state, configuration information, and/or any other infor-
mation usable in implementing the methods and techniques
described herein.

In one embodiment, I/O mterface 1030 may be configured
to coordinate I/O traflic between processor 1010, system
memory 1020 and any peripheral devices in the system,
including through network itertace 1040 or other peripheral
interfaces. In some embodiments, I/O interface 1030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component
(¢.g., system memory 1020) into a format suitable for use by
another component (e.g., processor 1010). In some embodi-
ments, /O mterface 1030 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O 1nter-
face 1030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments, some or all of the functionality
of I/O mtertace 1030, such as an interface to system memory
1020, may be incorporated directly into processor 1010.

Network interface 1040 may be configured to allow data
to be exchanged between computer system 1000 and other
devices attached to a network, such as other computer
systems 1090 (which may implement one or more storage
system server nodes, database engine head nodes, and/or
clients of the database systems described herein), for
example. In addition, network interface 1040 may be con-
figured to allow communication between computer system
1000 and various I/O devices 1050 and/or remote storage
1070. Input/output devices 1050 may, in some embodi-
ments, include one or more display terminals, keyboards,
keypads, touchpads, scanning devices, voice or optical rec-
ognition devices, or any other devices suitable for entering
or retrieving data by one or more computer systems 1000.
Multiple input/output devices 1050 may be present 1n com-
puter system 1000 or may be distributed on various nodes of
a distributed system that includes computer system 1000. In
some embodiments, similar mput/output devices may be
separate from computer system 1000 and may interact with
one or more nodes of a distributed system that includes
computer system 1000 through a wired or wireless connec-
tion, such as over network interface 1040. Network interface
1040 may commonly support one or more wireless network-
ing protocols (e.g., Wi-FVVIEEE 802.11, or another wireless
networking standard). However, 1n various embodiments,
network interface 1040 may support communication via any
suitable wired or wireless general data networks, such as
other types of Ethernet networks, for example. Additionally,
network interface 1040 may support communication via
telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks,
via storage area networks such as Fibre Channel SANs, or
via any other suitable type of network and/or protocol. In
various embodiments, computer system 1000 may include
more, fewer, or diflerent components than those 1llustrated
in FI1G. 9 (e.g., displays, video cards, audio cards, peripheral
devices, other network interfaces such as an ATM interface,
an Ethernet interface, a Frame Relay interface, etc.)

It 1s noted that any of the distributed system embodiments
described herein, or any of their components, may be
implemented as one or more network-based services. For
example, a compute cluster within a computing service may
present computing services and/or other types of services
that employ the distributed computing systems described

10

15

20

25

30

35

40

45

50

55

60

65

20

herein to clients as network-based services. In some embodi-
ments, a network-based service may be implemented by a
solftware and/or hardware system designed to support
interoperable machine-to-machine interaction over a net-
work. A network-based service may have an interface
described in a machine-processable format, such as the Web
Services Description Language (WSDL). Other systems
may interact with the network-based service in a manner
prescribed by the description of the network-based service’s
interface. For example, the network-based service may
define various operations that other systems may invoke,
and may define a particular application programming inter-
face (API) to which other systems may be expected to
conform when requesting the various operations. though

In various embodiments, a network-based service may be
requested or ivoked through the use of a message that
includes parameters and/or data associated with the net-
work-based services request. Such a message may be for-
matted according to a particular markup language such as
Extensible Markup Language (XML), and/or may be encap-
sulated using a protocol such as Simple Object Access
Protocol (SOAP). To perform a network-based services
request, a network-based services client may assemble a
message including the request and convey the message to an
addressable endpoint (e.g., a Uniform Resource Locator
(URL)) corresponding to the network-based service, using
an Internet-based application layer transfer protocol such as
Hypertext Transter Protocol (HTTP).

In some embodiments, network-based services may be
implemented using Representational State Transfer (“REST-
tul”) techniques rather than message-based techniques. For
example, a network-based service implemented according to
a REST1ul technique may be mvoked through parameters
included within an HTTP method such as PUT, GET, or
DELETE, rather than encapsulated within a SOAP message.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
may be made as would become apparent to those skilled in
the art once the above disclosure 1s fully appreciated. It 1s
intended that the following claims be interpreted to embrace
all such modifications and changes and, accordingly, the
above description to be regarded 1n an 1llustrative rather than
a restrictive sense.

What 1s claimed 1s:

1. A system, comprising;

a compute node, comprising at least one respective pro-
cessor and a memory, that implements a virtualization
host;

the virtualization host comprising executable instructions,
configured to:
receive a work request for one or more virtual central

processing units (vCPUs) submitted by a virtual
compute 1nstance as part of performing an applica-
tion for a client that reserved the virtual compute
instance;
automatically add a same number of resource credits, at
a resource credit accumulation rate set for the
vCPUSs, to a current resource credit balance {for
respective consecutive time periods to calculate the
current resource credit balance for the virtual com-
pute instance respective to the vCPUs, wherein:
the current resource credit balance comprises a set of
current resource credits that, when used, increase
processing time allocated for a time period in
excess of a baseline amount of processing time
provided by a baseline utilization guarantee; and

US 10,649,796 B2

21

at least one current resource credit of the current
resource credit balance was automatically added
to the current resource credit balance from a
particular time period prior to the current time
period, wherein during the particular time period,
the virtualization host had performed one or more
prior work requests, submitted by the virtual com-
pute 1nstance as part of performing the application
for the client, that utilized a prior amount of
processing time not 1 excess of the baseline
amount ol processing time provided by the base-
line utilization guarantee;
determine that a current amount of processing time to
perform the work request, for the current time
period, submitted by the virtual compute instance as
part of performing the application for the client, 1s 1n
excess of the baseline amount of processing time
provided by the baseline utilization guarantee for the
current time period, and responsive to the determi-
nation:

use the at least one current resource credit, automati-

cally added for the particular time period prior to
the current time period, from the current resource
credit balance to increase allocation of processing
time of the respective at least one processor for the
current time period 1 excess of the baseline
amount of processing time provided by the base-
line utilization guarantee for the virtual compute
instance;

generate one or more scheduling instructions that

schedule the work request for performance utiliz-
ing the respective at least one processor of the
compute node according to the use of the at least
one resource credit;

perform the work request utilizing the respective at

least one processor of the compute node according
to the one or more scheduling instructions; and
update the current resource credit balance to deduct
the at least one resource credit applied to perform
the work request.

2. The system of claim 1, wherein to generate the one or
more scheduling instructions, the virtualization host 1s fur-
ther configured to:

subsequent to the application of the one or more resource

credits to the work request:

in response to a determination that there 1s no remain-
ing resource credit i the current resource credit
balance to apply to the work request, configure at
least some of the one or more scheduling instructions
such that utilization of the respective at least one
processor 1s incrementally lowered to the baseline
utilization for the virtual compute instance.

3. The system of claim 1,

wherein the virtualization host comprises a monitoring

agent, configured to track the current resource credit
balance for the virtual compute instance over time and
applied resource credits for work requests for the
virtual compute instance over time;

wherein the compute node 1s implemented as part of a

plurality of compute nodes that together implement a
network-based virtual computing service, wherein the
network-based virtual computing service comprises a
network-based interface configured to provide to the
client of the network-based virtual computing service
the current resource credit balance for the virtual com-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

pute nstance over time or applied resource credits for
work requests for the virtual compute instance over
time.

4. The system of claim 3, wherein the virtual compute
instance 1s one of a plurality of different, types of virtual
compute nstance oflered via the network-based virtual
computing service, and wherein each of the different types
of virtual compute instance corresponds to a di
respective resource credit accumulation rate.

5. A method, comprising:

performing, by one or more computing systems:

receiving, at a virtualization manager for a virtualiza-

"y

‘erent

tion host, a work request utilizing one or more virtual
computer resources submitted by a virtual compute
instance hosted as part of performing an application
for a client that reserved the virtual compute instance
at the virtualization host;

automatically adding a same number of resource cred-

1ts, at a resource credit accumulation rate set for the

one or more virtual computer resources, to a current

resource credit balance for the wvirtual compute

instance respective to the one or more virtual com-

puter resources, wherein:

the current resource credit balance comprises a set of
current resource credits that, when used, increase
processing time of the one or more virtual com-
puter resources for a time period 1n excess of a
baseline amount of processing time provided by a
baseline utilization guarantee; and

at least one current resource credit of the current
resource credit balance was automatically added
to the current resource credit balance from a
particular time period prior to the current time
period, wherein during the particular time period,
the virtualization host had performed one or more
prior work requests, submitted by the virtual com-
pute 1nstance as part of performing the application
for the client, that utilized a prior amount of
processing time not 1 excess of the baseline
amount of processing time provided by the base-
line utilization guarantee;

determining that a current amount of processing time to

perform the work request for the current time period,
submitted by the virtual compute instance as part of
performing the application for the client, 1s in excess
of the baseline amount of processing time provided
by the baseline utilization guarantee for the current
time period, and responsive to the determination:
using the at least one current resource credit, auto-
matically added for the particular time period prior
to the current time period, from the current
resource credit balance to increase processing
time of the respective one or more virtual com-
puter resources for the current time period 1n
excess of the baseline amount of processing time
provided by the baseline utilization guarantee for
the virtual compute 1nstance;
generating one or more scheduling instructions that
schedule the work request for performance at one
or more physical computer resources implemented
as part of the virtualization host according to the
use of the at least one resource credit;
performing the work request utilizing the respective
at least one processor of the compute node accord-
ing to the one or more scheduling instructions; and

US 10,649,796 B2

23

updating the current resource credit balance for the
one virtual compute mnstance to deduct the at least

one resource
request.

credit applied to perform the work

6. The method of claim 3, further comprising:

wherein said receiving, said determining, said applying,
said generating, said performing, and said updating are
performed for a plurality of different work requests;

recording, as credit balance metrics, the determined cur-

rent resource credit balance for each of the plurality of

different work requests; and
recording, as credit usage metrics, the applied one or more
resource credits for each of the plurality of different

work requests.

7. The method of claim 6, further comprising:
receiving a request via a network-based interface for at
least some of the credit balance metrics for the virtual

compute instance;

and

in response to recerving the request, providing the at least
some credit balance metrics for the virtual compute
instance via the network-based interface.

8. The method of claim 6, turther comprising;:

receiving a request via a network-based interface for at

least some of the
compute instance;

credit usage metrics for the virtual
and

in response to recerving the request, providing the at least
some credit usage metrics for the virtual compute
instance via the network-based interface.

9. The method of claim 6, further comprising:

monitoring the credit balance metrics or the credit usage
metrics for the virtual compute instance;

based, at least 1n part, on said monitoring, detecting an
alarm event for the virtual compute 1nstance; and

in response to detecting the alarm event, providing a

notification of the
instance.

alarm event for the virtual compute

10. The method of claim 5, wherein said generating the

one or more scheduling
COmMprises:

instructions to send to the scheduler

subsequent to applying the one or more resource credits to

the work request:

determining that there 1s no remaining resource credit
in the current resource credit balance to apply to the

work request;

in response to determining that there 1s no remaining
resource credit, configuring at least one of the one or
more generated scheduling instructions such that
utilization of the one or more physical computing
resources 1s incrementally lowered to the baseline
utilization for the virtual compute instance.

11. The method of

claim 5, wherein the one or more

virtual computer resources are one or more virtual central
processing units (vCPUs), wherein the one or more physical

computer resources arc

one or more central processing units

(CPUs), and wherein the method further comprises sending
the one or more scheduling instructions to a scheduler for the
one or more physical CPUs.

12. The method of claim 5, wherein said determining the

current resource credit

balance for the one virtual compute

instance comprises excluding, from the current resource
credit balance, those unused resource credits accumulated
prior to a resource credit accumulation time period.

13. The method of

claim 5, wherein the one or more

virtual computer resources are some ol a plurality of differ-
ent computer resources, wherein a diflerent respective cur-
rent resource credit balance 1s maintained for different ones

of the plurality of dif

‘erent computer resources, wherein

10

15

20

25

30

35

40

45

50

55

60

65

24

another work request 1s recerved for another one of the
plurality of different computer resources, and wherein said
determining, said applying, said generating, said perform-
ing, and said updating are performed for the other work
request.

14. A non-transitory, computer-readable storage medium,
storing program instructions that when executed by one or
more computing devices cause the one or more computing
devices to implement:

recerving, at a virtualization manager for a virtualization

host, a work request for one or more virtual computer
resources submitted by a virtual compute instance as
part of performing an application for a client that
reserved the virtual compute instance for the client
hosted at the virtualization host;

automatically adding a same number of resource credits,

at a resource credit accumulation rate set for the one or
more virtual computer resources, to a current resource
credit balance for respective consecutive time periods
to calculate the current resource credit balance for the

virtual compute instance respective to the one or more
virtual computer resources, wherein:
the current resource credit balance comprises a set of

current resource credits that, when used, increase
processing time of the one or more virtual computer
resources for a time period 1 excess of a baseline
amount of processing time provided by a baseline
utilization guarantee; and

at least one current resource credit of the current

resource credit balance was automatically added to
the current resource credit balance from a particular
time period prior to the current time period, wherein
duns the particular time period, the virtualization
host had performed one or more prior work requests,
submitted by the virtual compute instance as part of
performing the application for the client, that utilized
a prior amount of processing time not 1n excess of the
baseline amount of processing time provided by the
baseline utilization guarantee;

determiming that a current amount of processing time to
perform the work request for the current time period,
submitted by the virtual compute instance as part of
performing the application for the client, 1s in excess of
the baseline amount of processing time provided by the
baseline utilization guarantee for the current time
period, and responsive to the determination:
using the at least one current resource credit, automati-

cally added for the particular time period prior to the
current time period, from the current resource credit
balance to increase the current amount of processing
time of the respective one or more virtual computer
resources for the current time period 1n excess of the
amount of processing time provided by the baseline
utilization guarantee for the wvirtual compute
instance;

generating one or more scheduling instructions that

schedule the work request for performance utilizing
at one or more physical computer resources 1mple-
mented as part of the virtualization host, according to
the use of the at least one resource credits;

performing the work request utilizing the one or more

physical computer resources according to the one or
more scheduling instructions; and

updating the current resource credit balance for the one

virtual compute stance to deduct the at least one
resource credit applied to perform the work request.

US 10,649,796 B2

25

15. The non-transitory, computer-readable storage
medium of claim 14, wherein the program instructions cause
the one or more computing devices to further implement:

wherein said receiving, said determining, said applying,

said generating, said performing, and said updating are
performed for a plurality of different work requests;
recording, as credit balance metrics, the determined cur-

rent resource credit balance for each of the plurality of

different work requests; and

recording, as credit usage metrics, the applied one or more
resource credits for each of the plurality of different
work requests.

16. The non-transitory, computer-readable storage
medium of claim 15, wherein the program instructions cause
the one or more computing devices to further implement:

monitoring the credit balance metrics or the credit usage

metrics for the virtual compute instance;

based, at least 1n part, on said monitoring, detect an alarm

event for the virtual compute instance; and

in response to detecting the alarm event, providing a

notification of the alarm event for the virtual compute
instance.

17. The non-transitory, computer-readable storage
medimum of claim 14, wherein the one or more virtual
computer resources are one or more networking resources
and wherein the one or more physical computer resources
are one or more network communication devices.

18. The non-transitory, computer-readable storage
medium of claim 14, wherein, in said generating the one or

10

15

20

25

26

more scheduling instructions to send to the scheduler, the
program 1nstructions cause the one or more computing
devices to implement:

subsequent to applying the one or more resource credits to

the work request:

determiming that there 1s no remaining resource credit 1n

the current resource credit balance to apply to the work
request;

in response to determining that there 1s no remaining

resource credit, configuring at least one of the one or
more generated scheduling instructions such that utili-
zation of the one or more physical computer resources
1s incrementally lowered to the baseline utilization for
the virtual compute 1nstance.

19. The non-transitory, computer-readable storage
medium of claim 14, wherein, 1 said determining the
current resource credit balance for the virtual compute
instance, the program instructions cause the one or more
computing devices to implement excluding, from the current
resource credit balance, those unused resource credits accu-
mulated prior to a resource credit accumulation time period.

20. The non-transitory, computer-readable storage
medium of claim 14, wherein the virtualization host 1s
implemented as part of a network-based virtual computing
service, wherein the one virtual compute instance 1s one of

a plurality of different types of virtual compute instance
oflered via the network-based virtual computing service, and
wherein each of the different types of virtual compute
instance corresponds to a diflerent respective resource credit
accumulation rate.

	Front Page
	Drawings
	Specification
	Claims

