US010649776B2

12 United States Patent

Navon et al.

US 10,649,776 B2
*May 12, 2020

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR PREDICTION (56) References Cited
OF MULTIPLE READ COMMANDS |
DIRECTED TO NON-SEQUENTIAL DATA U.S. PATENT DOCUMENTS
(71) Applicant: Western Digital Technologies, Inc., 5,146,578 A 9/1992 Zangenehpour
San Jose, CA (US) 5,586,294 A 12/1996 Goodwin et al.
(Continued)
(72) Inventors: Ariel Navon, Revava (IL); Eran . -
Sharon, Rishon Lezion (IL); Idan FOREIGN PATENT DOCUMENTS
Alrod, Herzliya (IL)
EP 0671684 A2 * 9/1995 ... GO6F 9/3806
2
(73) Assignee: Western Digital Technologies, Inc., WO WO-2003016849 A2 212008 GO6L 9/3804
San Jose, CA (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 International Search Report and Written Opinion in International
U.S.C. 154(b) by 0 days. Application No. PCT/US2019/017823, dated May 20, 2019, 13
This patent 1s subject to a terminal dis- PESE .
claimer. (Continued)
(21) Appl. No.: 16/226,021 Primary Examiner — Jing-Yih Shyu
(22) Filed: Dec. 19. 2018 (74) Attorney, Agent, or Firm — Brinks Gilson & Lione
(65) Prior Publication Data (57) ABRSTRACT
US 2020/0004540 Al Jan. 2, 2020 Systems and methods for predicting read commands and
Related U.5. Application Data pre-fetching data when a memory device 1s receiving ran-
(63) Continuation-in-part of application No. 16/024,617, dom read commands to non-sequentially addressed data
filed on Jun. 29, 2018. locations are disclosed. A limited length search sequence of
prior read commands 1s generated and that search sequence
(51) Int. CL 1s then converted into an index value 1n a predetermined set
GO6F 13/00 (2006.01) of index values. A history pattern match table having entries
GO6F 9/355 (2018.01) indexed to that predetermined set of index values contains a
(Continued) plurality of read commands that have previously followed
(52) U.S. Cl. the search sequence represented by the index value. The
CPC GO6F 9/355 (2013.01); GO6F 3/0611 index value 1s obtained via application of a many-to-one
(2013.01); GOG6F 3 /0:559 (2013.01): algorithm to the search sequence. The index value obtained
(Conti j) j from the search sequence may be used to find, and pre-fetch
_ _ (:311 HIHE data for, a plurality of next read commands 1n the table that
(58) gls(l:d of gglg;lg?;?n(}%%?;l}o £11- GOGE 12/0867- previously followed a search sequence having that index
; ; : lue.
GO6F 3/0683: GO6F 3/0659: GO6F
0/3832
See application file for complete search history. 19 Claims, 18 Drawing Sheets
. AKCEVEA :i/“—-HM
% H*H umﬁfﬁm EP"““u““uuuuuuj

¥
S SUZATE MANY TS OHE
INDEX 44 UE FOM NEW,
SlAtCr [STOUCNCE

:) . R
_____________________ ey :

. o

. RTRIEYE DLBA A2 PR=DICTED 1 _ - wALIDDLEA n’hﬁ s "

' HEXT HZAN NES o HDER AL R - t MG PRE-CETCh | o ———
it B o

- bl

i CANYERT DUt T BTART

S #|{ LCAEASED ON SAZT LBA

OF CURRENT COMMAND
i

P e————— e —— ——

.. | EXSCUTE 2 PRE-
\J FETCH READ FROWM
I MEMOFY BASED S
| QK PREDICTIO
| LOCARCH

[ST ST S IR S S ER E S E

US 10,649,776 B2

Page 2
(51) Int. CL 2003/0018849 Al1* 1/2003 Takaichi GO6F 3/0601
Goer /6 (2006.01) 2003/0149837 Al 8/2003 Coker et al TR
: 1 oker et al.
gggﬁ 223/‘;862 (38128) 2006/0047914 Al 3/2006 Hofmann et al.
(.01) 2007/0016721 Al 1/2007 Gay
(52) U.S. CL 2011/0126154 Al 5/2011 Boehler et al.
CPC ... GO6F 3/0683 (2013.01);, GO6I 9/3832 %8%?8?;2?33} i ggg% éﬂd@fsf‘:ll ot al.
: 1 1 1 ux et al.
(2013.01); GO6F 12/0862 (2013.01) 2013/0179460 Al 7/2013 Acuna et al.
2014/0082324 Al 3/2014 Flhamias et al.
(56) References Cited 2014/0281458 Al* 9/2014 Ravimohan GO6F 9/4401
713/2
U.S. PATENT DOCUMENTS 2017/0075629 Al 3/2017 Manohar et al.
2017/0255556 Al 9/2017 Peng et al.
5659713 A /1997 Goodwin et al. 2018/0314421 Al 11/2018 Linkovsky et al.
5761 464 A 6/1998 Hopkins 2019/0129834 Al 5/2019 Purkayastha et al.
5,765,213 A 6/1998 Ofer
5,802,566 A 9/1998 Hagersten OTHER PUBILICATIONS
6,092,149 A 7/2000 Hicken et al.
6,721,870 Bl . 4/2004 Yochai et al. Adi Fuchs et al., “Loop-Aware Memory Prefetching Using Code
6,976,147 BL* 12/2005 Tsaacoccoovvne ook ﬁ Y802 Block Working Sets”, 2014, 47" Annual IEEE/ACM International
7186.675 R? 6/2008 Fachan Symposium on Microarchitecture, pp. 533-544.
7451348 B2 11/2008 Pecone et al. U.S. Appl. No. 15/497,547, filed Apr. 26, 2017.
8,225.047 B2 7/2012 Yano et al. Office Action 1n U.S. Appl. No. 16/024,617, dated Nov. §, 2019, 8
8,539,163 Bl 9/2013 Sivasubramanian et al. pages.
8,732,406 B1* 5/2014 Pasecc.e...... GO6F 12/0862

711/137

* cited by examiner

U.S. Patent May 12, 2020 Sheet 1 of 18 US 10,649,776 B2

TO HOST

3

 CONTROLLER

NON-VOLATILE
MEMORY SYSTEM
100

1: TO HOST
STORAGE MODULE @
- 200 -
NON-VOLATILE ' 202 oA
1 \‘ « | STORAGE

MEMORY

STORAGE SYSTEM
204 : I

102 | I 1102 I

4| CONTROLLER || -} CONTROLLER || 4| CONTROLLER ||
100 | r

; .
¥ F.
¥ s 2
3 2
%) X
3 2
3 ¥
3 2
i -

> & ® .
% . X
3 2
3 , ¥
3 2
3 i r
¥ . 1

K.
3 N A 3
¥ : kS
¥ 5
¥ : ¥ .
3 5
% : 1!
1 3
B)

3 i B N o o i ;
_ 3 r
3 K
F 3

. |

F R
o } NVM 1
3 ! i
K
B
¥
3

[HosT "« | HOST |— HIERARCHICAL STORAGE

~— SYSTEM

f _

202 ~ 202 | TAD AP
STORAGE L | | ' STORAGE e o ®
™1 CONTROLLER | 1 CONTROLLER '

: .
T B e & e e
kY 1 A 3
b 1

204 :g T i 204 { _ 1
“ | STORAGE | { STORAGE ¢+ »

US 10,649,776 B2

Sheet 2 of 18

May 12, 2020

SLININQINOD __
1134080 (>
H3H1IO

oi\\

..... HITIOWINOD
SNBANIWIDVYNYIN
H444NY

142

HIAVT
AGON N : TOHINQD HSY I

- IULYIOANON

e e ol s e s s s e alie i e i ple e e s i e e sl e aie s s sl e sl e e o i il e e aulie sl e aie alie e i sl e e

_ B 3oVANILNG m)
voL | 1 T ANOWIN v -

U B S S SR DI S D U B S D DI R S DR DI S DI S DI N DI S D S DR S S U S S S B S S B o
T P P P P e T el P el o e P el P i P Sl P i P ol PPl P il P

A._H.V AINCOW IO._.m_wrm_m&W
avIH NOANYY

4%

sl
114
L
=
143
[
SR
N
D
-
{14

f 1SOH

Ol

AMHd N\
PAAY

{AHOLSIHSSTHOQY
JONINOIS ;1 ANVAINOD VY 1 (7w ==

anmac] | AHOLSIH SS3Maay
e 1 aNviNGD Qv

Nz AT
9t i — HIATIONINGD

AOVAHIINI L
N N
.m-mo__ ’ - ONP

HOHVS

_
|
;
;
|
|
{
™~
i
\
=
<{
m.

e B B I T TR e e e e T e A T S e S e . . I R S e e e R S T e S .

NGO AN INOYS

U.S. Patent

AFLSAS AHOWIW I HLYTIOANON 20} ;N 001

US 10,649,776 B2

Sheet 3 of 18

May 12, 2020

U.S. Patent

RN SR S SR SR S S

AVHEY AdONIN
3 HLVIOA-NON

44

SIHILVIVLIVE

\ o3RIV VLIVQ

f LA N

B R R R R R R R g R R R R e e e gy
b w w b w w b w w b w w b w w b w w b w w

¥3Q003a SSIHAAY

..........)
JLIVLS /w&

b i e S o b e alien alien aie i nli ai e plie alion o alie als sl il al nlio iy ales alies e e allen ol e alien sl ol e sl i e sl pl e ale Sl of

Lo~ AMLINOHID y0l

AGONIWN FHLYIOANON

| SININOINOD
-1 3L3WOSIA YIHLO

dd1TI0HLINQD

WALEAS AGONIN 3 HLVIOA-NON

- 4 20} -

| 1SOH

911

U.S. Patent May 12, 2020 Sheet 4 of 18 US 10,649,776 B2

7~ 300 302 304

312 "\

FIG. 4

U.S. Patent May 12, 2020 Sheet 5 of 18 US 10,649,776 B2

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 .
1 1
. 1
1 1
] [
1 1
. 1
1 1
] [

RECEIVEREAD _
. COMMAND

~commanp 7
500 ~ ADDRESS
\ ~ HISTORY |

GENERATE 506
SEARCH ///’
SEQUENCE

e e e T M T T T T T T T T T T T T T T T ITAT T T T T T T TT T T T T T T T T

/ 503

SEARCH FOR
OCCURENCES OF SEARCH
SEQUENCE IN READ COMMAND
HISTORY

5 1 O A .
ar -
. =
.‘__..r' . -
'_.- * ‘\"'\1.
- L]
P “ ""‘1.“
-
J'. -l".' -h\.'.-
-~ . e e e e e e e e e e ————
. ., : :
‘_-l"'r H-.\] :
s -]
.]
;.-"‘" " k .
-,__.-r']
ry ’

LEAST ONE

< MATCH?. SKIP PRE-FETCH: :

YES

rrr

'RETRIEVE NEXT ADDRESS VALUE | 512
FlG 5 * AFTER MATCHED SEQUENCE AS |
 PREDICTEDLOCATION

A T A T T T T T W T T T T T T T OTIOT OTITITITTTITTTTTOTTTOTIOETOT T AT T T T T T T T T T T T TIET OTITTITTTTTTOTTTTTT T T

EXECUTE A PRE-FETCH READ
FROM MEMORY BASED ON -
PREDICTED LOCATION

U.S. Patent

614

' OCCURENCES OF SEARCH,//

ADDRESS
HiSTORY

COMMAND /

;”’GENERATE R 608
 SEARCH ﬁ

SEOUENCE

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

A dE NN BN BN N BN O B OB M MM W N W OEOEEEm m E EEE s EsEEEE s S EEES ...,

SEARCH FOR

SEQUENCE N READ

"'”'*\‘,*_*I____QQM_MAND HISTORY

1
IJ'
'n'
r"r' .

612 _
, "’..‘" -

AT LEAST ONE NO
“aESEQUENCE:ff
“.MATCH?, -

a
-

L]

LY J_,-!"'
Y
£ »
.
.

YES

May 12, 2020 Sheet 6 of 18
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | / 602
. RECENE READ
- COMMAND
CONVERT - 604
~ ADDRESSIN
- COMMAND TO |
’ DLBA '5
UF’DATE READ 608

610

RETRIEVE NEXT ADDRESS VALUE AFTER |
MATCHED SEQUENCE AS PREDICTED ’

L OCATION

CONVERT DLBA TOSTART |
- LBABASED ON STARTLBA

OF CURRENT COMMAND

US 10,649,776 B2

520

618 . ; ; §§
.~ EXECUTE APRE- | ;5
 FETCH READ FROM: 55

. MEMORY BASED |
. ONPREDICTED
 OCATION

US 10,649,776 B2

Sheet 7 of 18

May 12, 2020

U.S. Patent

LIl

004/ ASVEV.LVA AJOLSIH ONVIAWOD aV3d

[EE R S S R DT SR S G DR S DR SIS S S DI DI S S S N S SR o R S S B DI N DI S R W DR SR S S DR S D DI S S D S S S PR S S D DI U D DI DI D D S DI N DI S S DI SR S S S S o

N

-

P
. W

| _. m

| AYINT | AHLINS ALNI AS LN ASLNS AdLNS AciNg ASLNI AdLNG AHLINT A LN

| AYOLSH | AMOLSIH | AYOLSIH | AMOLSIH | AMOLSIH | AMOLSH | A¥OLISH | AMOLSH | AMOISH | . o | AMOLSH | AYOLSIH
 ONVIANOD | ONVININQD | GNVIAIRQD | ANVIANOOD | ONYIWNOD | ONVINNGO | ONVINIROD | GNVININQD i ONVAINQD | - ONVIRINGD | UNVIAIKOO
i dvad | Qv3d Qvdd dvdd gv3d avay | av3y Qv 3dd QV3d V3 vy

| . , I B
| |

FOV ANVYIWWOJ QV3H ONISYIHONI
ONVINNQOD dv3d
INFOIH LSO

V. Ol

US 10,649,776 B2

Sheet 8 of 18

May 12, 2020

U.S. Patent

Lib

ASYEVLIVU AJOLSIH ONVIWWOO GV3d

AHLNH
AHOLSIH

AHLINS

ONVINWOD | ONYWNOD

ASLNS
AHOLSH

ASLNS
AHOLSIH

ANVIANOD | ONVINNOD

gy3y

gvdu

AHLINS
AHOLSH
ONVYIWINQD
vy

AGLINA
AAOLSH
GNVYIINQD
QVd

AGLINS
AYOLSIH

oz&EEOOW.

Qv3d

At LN
AHOLSIH
- OINYIINOD
- QY3

ALLNI
AYOLSIH

GNYININOD || ONVINWOD

|
| AYLNG
| AHOLSHH

R I B S B S M S U S S M S S T W S S SR S S D S S S D S U S D S D A R T S S D T S S S T D S S S U S U S S S S S S S W S S S R S S S B S D S S S D S D S W S S S R T D S S T U S S S W S U S W S U S S A W S S SR S S D S S S D S B S M S S S S D S R T S S D T N S U S S S S e R S U S S S S S S S W S S S R S D S S S D S D A M S B S R T S S S T W S S S G S S S R S S S S S S S S S S S S S S S D S W S D S U S S S S U S T D S S T N S S S D S S S W S U S S S W S S A R T S S R S D S S S D S B S S S S S R S W S S S N S S S U S U e W T S S S S W T S A S T D S R M D S S W D S S S M S D S R T M S S T N S S A S S S S W S S R S T S T S A W S D S S S D S S S D S B S S S U S W S W S S S S

U.S. Patent May 12, 2020 Sheet 9 of 18 US 10,649,776 B2

[
802 — X 702

START LBA
804
FIG. 8 TN e

806 — N

DATA LENGTH

U.S. Patent May 12, 2020 Sheet 10 of 18 US 10,649,776 B2

MaxDLBAsize {Bits]

806

804

. NEXT | NEXT

.E)(}:z §§11 ;. .Z: S:h;-; B ; fﬁﬁﬁﬁEéﬁé{tﬁ;;;;;;;%{Eﬁiﬁjﬁi;;é

=L
[
'
'
[
'
'
[
'

R R T T T R T T R R T T T T T I R R R R R A O A A A A |
K . H

oo s s d

S A

| 1
T, e L i
E; ______________ TR TR TP R TP e T TP i
L ¥ | T-T T T LT L LR LT LT T T T T T T R T T T T T T T T T T T
B = = = = = = = = = = = = = = = =/= = = = = = = = = = = = = = = = /= = = = = = = = = = = = = = = = d = = = = = = == e === e = = a R R R L

i T e T e T T e T T e T T T T e T T e e e e T et T T e T g T T e T e T e T T e T T e T T T T e e T e T e

i
i
1 H A
i
i

I i * i i

L]
T T T S B e 1
.‘.-.-.-.-.-.-. --------------- I-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-1-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.‘ LT LT Tt Tt LT LT -.-!-.- LT LT T T T T LT L T

900 | ?fffffﬁ?fff};gfffffﬁ?,’ff?ffﬁ?ffﬁ?ﬁfﬁ?ffﬁ?ffﬁ?ffﬁ?ffﬁ'?if??fﬁ?fffffﬁ?ffﬁ?ffﬁ?ffﬁ?ff?fiffﬁ?ffﬁ?fﬁ?fﬁ?ffﬁ?fﬁ?fﬁ?fﬁi?fffﬁ?ffﬁ?f?ﬁ?fﬁ?fﬁ?fﬁ?fﬁ?

h_a_s.m.3.2.5.5.5.3_3.5.5.2_3_3_3.2.5_32_5_5.5_5_34_3._5.5_4_31_5_35_3.5_3_5_5_.5_3_3_8._5.5_A_A_N._5._5.n_4_3._5.3_.3.3_3._3.5_3_3.5.5_3_.8_3_54.1_31_5._5_3.8_3_5_5_.5_ 1 8 A _R.B_N'

Memory-Length

r

r

r
.-l-l.l.l-l.l-l.l..l..l.-l..l..l.-l..].-l..l..l..l-l.l.l-l.l.l-l.l.l.-l..l.-l..l..I..l.-l..l..l.-l..]..l.-l..l..l.-l..l..l..l..l..l'.l..l..l.-l..l.-l.-l..l..l-l.l.l-l.l.l-l.h.l.-l..l..l.-l..l..1-1.1.1-1.1.1-1.1.11
r

r

i S
1

1 - - === === >=»=>= == == === === = = = = = = = = = = = ¥ - - - - = === === === = =/'= = = = = = = = = = = = = = = =
l++4++4++4++44+441 q-q-q-q-q-q-q-1-4-q-q-q-q-q-q-q-q-q-q-+4q-q-q-q-q-q-44444-#44444444444444441

.)

-

¢ . LU NI A R R R L N R R DR R I B LR R RN NI RN BRI NI NI LI R N N N L L SN BRI R I PR L 1

- s = = oa = oa = m o o= oaom P e s = = s = s m s = s m o mp s o= s o= o o= ox o= ox o= s o= s o= - = e = s == -.-...l

T R R A AR

117

Mem-Element-Size

FIG. 9

1002
START LBA

DLBA

DATA LENGTH

FIG. 10

U.S. Patent May 12, 2020 Sheet 11 of 18 US 10,649,776 B2

1102~

Read Command

R R R R R R R R R R R R R D B L R D R S R g u ag

| HASH Modulo
_______ FUNGTION ™! Operation

!rrrrrrrrrrrrrrrr

...
...
I i ety o e
................................

..

..

+++

/‘“ 1114

..

... _ Read DLRBA

...

..

T e L M e e e e e e e e e e e e e e N e e e e e e
b e e T e e T T T T L T T L T L L L L L
..

...

...

..

...

'Il'\I'I'\Il'Il'\I'lIl'\I'Il'\Il'I'\I'Il'\I'I'\Il'Il'\I'lIl'\I'Il'\Il'I'\I'Il'\I'I'\Il'Il'\I'lIl'\I'Il'\Il'I"'"I"I"'"I"I‘""I"I‘""I;

..

...............................
...

...
...
hhh

...

...
iii

...
...

e e e e e L e L e e L e L e e e L L e e e e e e e L e e e)
...
..

................................

...

...
'.'.'.'.'.'.'.'.'.'.'.'.1'.'.'.'.'.'.'.'.'.'.'.'.".'.'.'.'.'.'.'.'.'.'.'.I'.'.'.'.'.'.'.'.'.'.'.'.."'.'.'.'.'.'.'.'.'.'.'.'.

""

..
;;;

..

;;;

FIG. 11

U.S. Patent May 12, 2020 Sheet 12 of 18 US 10,649,776 B2

1202 TN Read Command

1204

Cal_culte DLBA;

DLBA(t) = Start LBA(1)-Start LBA(t-1

s sie sjn e e e e e ofe ofie ofe sie oie sje oie o e ofe ofie ofe ofie ofe oie sie o e e ofie sfe ofie o ofe sie o sl oie e o o ofie ofe ofe ole ol o

**““““““““d

e she sie sie sje e e e ofie ofs ofe s ofe sie sie sie e ofie sfe ofe ofie ofe s ol oie sje e e o ofis ofe ofe oie sie sie o e e ofie o ofe ol ole sie o ol e o o

- 1208
1242 eV 1eus

REGENERATE LAST INDEX | NO LAST HPM ™. ves RETRIEVE LAST HPM
\ﬁf}ﬁ&l_iﬂlEEEéF:!:{{:)ﬁyq l:}f;il{:}l:l :E;Eziﬂhj;z(::}ﬁi e o S XERRREREYERS %Mnxu lrk!{:}EE:>(;1deﬁkl_ldlle *H#;nﬂnﬂﬂﬂﬂﬂnﬁnﬁsﬁﬂ ir\l[:)izz}<:'\xZﬁxiﬂthEEE

_ ~AVAILABLE2"
SEQUENCE RN <

.. Hhhﬁxwgffﬁrfgf

AR R T M M S T R S D S R S S S R T U S S S S T S S R I S S R T S S S S D S D S S T S S D S S S S T N S S S R S S S W S U S S S

STORE DLBA FOR CURRENT |
READ IN TABLE ENTRY AT e
LAST HPM INDEX VALUE

.F'.F

M

-
T T T T i T i T e T T e e e e
bo--mmm LT T oo e T T L YooTT T I T - |) 1
b - R - VT .- - HEICEICE N gt L - - "
L LT T T BTt L ¥ - - L ST T T T s Tt LT L i - - 1 - .
- - I . N - - - ¥ - - T 1 - - . - - 1
b - L e e e BT TN T B o= = = = s e e e g e e e e e BTN [- 1 - - .
- - I - - - - - - bo- 1_- - - - - 1
. ST T T BTt T L ¥ - - r - T i - - 1 -
- 1 . ¥ - - - Yo - - 2. . - - 1
! - .- ST e s BT T T O - - 1 - - .
- - - - . N - - - ¥ - 1 - AT . - - 1
Pom o= e e e .y = S e BT T L ¥ - - L e i - - 1 -
- I . N - - - - - T 1 - 2L . - - 1
b e - ST L R Ce e e e e IR L R .
P B Ay i T T T T Y e B i R L e A . I N R

(=number of DLBAS)

-
T w W W T W T ERETTERTTETTRNTTFNYT YT TTT R . T T W T TR TERERTTETTFTTTFYF Y Y YYA Y YYRYFYFFYFQSYS S*SFTYFYTFTOROTCFSTCSCQST

- W W™ W T EETEETTTETTTETTTETTTET === = = ==k oh oA ddddAAEEESEESE.= &

R R U R R D N R U D R U M R S U W R SR N G SR S N R N D R S U S N R U R S U W R SR S R B D N G R D N R U D N U S R R U W R SR S R S S R R S D N R U D R R U R S U W R R S R R S g

-. émany;—T&One
Mapping

-

HASH 1 Modulo _
FUNCTION [Operation

= = = e e e e = e o = = o = = = = = = = o sk Ak -k A A AW

—ma -

-

[

]
]
1
1
]
1
1
]
1
1
]
1
1
]
1
]
]
1
1
]
1
1
]
1
3
]
l
"

e L L

B Y

L, oL, 1 ; {
.I..-.-.-.-.-.-.-.--.-.- ----- j-.--:-.--:-.--:-.--:-.--:-.--1-.--.-.-.-.-.-.- --------- :-‘:--.-.-.-.-.-.--.-.-.-.-.-.-..-.-.-.-.-.- --------- :-.--1
| R S N N S L LE EEPE e e I T N N N N B | SR S N N NN ;.;1
1 ! i s .

............. e e e e e e e e e e e

: P e e e e e e REEE RN . R gtesiaizlaisla el le e
- | 1 . 1
. _|| 1 |. J.I |.

It = 2 = a = 2 = a9 = 3 = a3 = 3 = 3 = 3 = 3 = 3 = 3,= 3 = 9 = 73 = 3 = 73 = 1 41 = 2 = = 4= a4 = q - J== = = = = = = = = = - - 3
L R I I R L L T -i--i--i--i-i-i-i-i-i-i-i-i-li-i-i-i-i-i-i-i-i-i-i-i-i-.h -
............. L e
1 1 L]
.......................... L T R S R R R SRR |
I, T 1-.-.-.-.-.-.",..-.-.-.-.-..'.-.-.-.-.-.-‘
LU TN N J-.I-.J-.I-.l-qI-.J-.I-.J-.I-.l-.I-.J-.I-.J-.I-.I-.II-.J-.I-.J-.I-.I-.I-.J-.I-.J-.I-.l-.-.J-.I-.J-.I-.l-.I-.J-.I-.J-.I-.l-.I-.'I-.I-.J-.I-.l-.I-.J-.I-.J-.I-.l-.ll-.l-‘
I . . . K 1
Toe e e e e e e e e Lo L e e e e e e e e e O i
T PR T TN U U U NN N DU NI
......................... Lk L
] - - I R R R o= = e e e e T LT T T T, Vom L,]
=TT T T T T T TTFTT T FTTS TSRS TR T SCSCTCCTCCTCCTDTTTE T T T T T T ET T T T T k- rrwrrwrw

R L R I A R R AP p P .:. PO

. R j : R Ve :
))] . LT T T LT T .|'.'.'.'-'.'.'.'.'.'-'.'1'.'.'.'.'.'.'.'.'.'.'.'.",'.'.'-'.'.'.'.'.'-'.'.'.‘.'.'.'.'.'.'.'.'.'.'.'.'1
N N _h.i.i.i.i.i.i.i.i.i.i.i.i.‘li.i.i.i.i.i.i.i.i.i.i.i.li.i.i.i.i.i.i.i.i.i.i.i.'i'_i.i.tttttttttt‘.tttttttttttt1
. F e W oe e e e e
............. F T T R e R |
. . . [N N N PR L U L U U S S SIENE N N N N B NN L L N N N NN BN i
. h------------------------1-------------ll-------------------------

HPM TABLE -

o T T T T T T T T T T S T T T T T T T T T T T T T T T T T S T T T T T T T T T ST TS T T ST T ST T ST T T ST T ST T T TeTTeToTs

i

-Ii-li-i-i-i-i-i-i-i-i-i-#*###########1—##i-i-i-i-i-i-i-i-i-i-I-##b##b##b##i‘############
Toe e e e e o L e e e e e e e e e e e e 1
.I ‘I 1 L L 1
A A 4 e
e T g T T T T T T T T T T
R Rl

R s S I B B D R I
R e e e R R R R T
T T LT ;
LI Y B S 1 e Ll o

BT T 4_ N N AR SR R L

T T T L T T T t_—— T LT T i P R T
-] q g

Vo EPRPE PRV VE VRV VLT T T P P PR PP T T TRV VLU VTP P Vo
[NN NI LT e UL AN N e
e e e e e e riileiels ¢

oo PP g Lo, LI
bttt 10 s e e e T g LT LT T T T, - - - - -ttt
= e e e T e St e P i T T e - Bt S S [kbt bt el EE bl el
oo T T T T Lo Voo
ISR B St NS s N i vl

IR L IR A A *

.I hhhhhhhhhhhh 1_ hhhhhhhhhhh 1.. hhhhhhhhhhhh -:p_ hhhhhhhhhhh . a_.a_. hhhhhhhhhhh .1
T e e e e e e e e o L T T 1
.I J 1 -I_ L L L 1
! - e e e e T T T T, {
_I||.. i &.d &4 &4 &4 &4 ..‘I i &kl &4 &4 &4 &4 .1. .l .l &L A E.L & .. .l .l &AL &4 &4 &4 L.I. .l &l &.d &AL &4 i1
TS o L P s e e e 1
............. F T T T T T R P |
I' = = = = = = & e e e aale e e eeee e eaaale e e e e ee e e e e e e e e e e e e L N R

U.S. Patent May 12, 2020 Sheet 13 of 18 US 10,649,776 B2

. /\- 1302

RECEIVE A

1300 — READ
\ COMMAND

CONVERT

~ ADDRESS IN — 1304
- COMMAND TO /

~ DLBA

| LOCATE OR REGENERATE PRIOR |
| SEARCH SEQUENCE INDEX VALUE |

¥
UPDATE READ COMMAND / — 1308
ADDRESS HISTORY AT THAT
MAPPING

FIG. 13 o

GENERATE 1310
SEARUH
SEQUENCE

.,L /— 1312

CALCULATE MANY-TO-ONE
INDEX VALUE FOR NEW
SEARCH SEQUENCE

1318

B

RETRIEVE DLBA AS PREDICTED ... A ot
NEXT READ ~JNDEX VALUE :3,..»

1316 ™

NO PRE.FETCH

RETRIEVE MOST FREQUENTLY OCCURRING
DLBA AS PREDICTED NEXT READ

CONVERT DLBA TO START
(BA BASED ON START LBA

OF CURRENT COMMAND

L

| EXECUTE APRE- |
{ FETCH READ FROM|
i MEMORY BASED s ;
ON PREDICTED |
LOCATION

1324

U.S. Patent May 12, 2020 Sheet 14 of 18 US 10,649,776 B2

__ / 1402

- COMMAND

U U U UL OO U

__

- UPDATE READ

 coumand /7 0
1400 ADDRESS
\ ~ HISTORY

GENERATE | 1406
SEARCH | /

 SEQUENCE

SEARCH FOR
OCCURENCES OF SEARCH
SEQUENCE IN READ COMMAND
HISTORY

..

/ 1408

r 'l-.\.
-""r * .
'f.- "“\.\,_
- .
. . T .,‘\\‘.I‘
A .
- -ﬁ"\. ______________________________________ b
L 1«._“‘ : :
*]
S ' :
b k

. SEQUENCE - ug '
~ MATCH?, -~

l b
.) b +
R ' b
. b

; b
; b
; b b
YES ______________________________________

RETRIEVE AT LEASTTWO / 4417

FlG . 1 4 ADDRESS VALUES AFTER

MATCHED SEQUENCE AS
PREDICTED LOCATIONS

T T T T TETETTETTTFTTTTTYTTFTTFTTYTSTFTTYTYTSTSTSTTYTSTRSTRTSTSTTRTSTRTSTSTSTSTCSTRTR] OFYTCYO”FORNOYTNCTYTYRCTYTCYTYTYTYTYTTRTYTTRITTRIYT YRR YTYT®RYTTRT®ETR®TTETYET T O™

1414 \

PR EL R RL RL L RL L EL L RL L BL L EE RL RL EL BL RL EL KL RLEL RERL RL L RE EL BLEL R R oL RL] EmTEETETEETECECE TR TR R TR CECECm B RE R EL RL R RE RL RL EL R EL RL EL RL I

. EXECUTE A PRE-FETCH READ
. FROM MEMORY BASED ON |
THE AT LEAST TWO
PREDICTED LOCATIONS

T T T T T T AW T T W T A T T T W T W T T AT T T T M T M T T T T T T T T T T OTTETTETTTTTTETETrTTETTETETrTrrrrrereseeeoe ot

U.S. Patent May 12, 2020 Sheet 15 of 18 US 10,649,776 B2

1602

++

..................................

""""""""""""""""""""""""""""""""""

e

__

""""""""""""""""""""""""""""""""""
--

""""""""""""""""""""""""""""""""""

""""""""""""""""""""""""""""""""""

..
444

1602
START LBA STARTLBA

1604

DLBA o DLBA

bl e e o e e e i o o o e o i e sl i sl sl e i sl ol Sl i Sl o i ol o R i b b

- 1606

DATA LENGTH DATALENGTH

FIG. 16

U.S. Patent May 12, 2020 Sheet 16 of 18 US 10,649,776 B2

COMMANDS AND RESET READ COMMAND COUNTER TO oo
NUMBER OF PRE-FETCHED COMMANDS

MATCH ORDER OF NO

PREFETCHED DATA?

MATCH ANY PRE-
FETCHED DATA

i

¥

r

i

i

r

i

¥

r

i

¥

r

i

.- !

' L

! !

' L

: t

' L

! '

' L

: t

1 L

! '

' L

: t

' L

! !

' L

: t

' L

! '

' L

: t

iR)

. r

t

: t
.. T
t

t

r

i

¥

’ r

: i

¥

r

i

j . ; ¥

- | | OM |
. x. -I T

. . . . 3 -r

i

¥

r

i

¥

r

i

i

r

i

t

i e e i e e e e i e e i i e e e i e e e e i e e T +
t

t

r

i

t

L O S S S i

i

¥

r

i

i

r

i

b ¥

' r

' i

b ¥

' r

b i

b : L3

: r

t

t

. r
L. T

. . ' '
o . . . - T
. L . T
i -)
r

L T
u :
r

i

¥

r

i

¥

r

i

’ ¥

r

i

. . T

; . . -~) -r
. . . . k A) . . - . . - . . -r
= . . - - i -r
. . . i .)) . .) . -r

¥

r

i

¥

- i

¥

r

i

¥

t

t

t

t

t

1708 TES
PROVIDE PRE-FETCHED DATA TO HOST oo ¥
1710
1712
NO A YES
S - COMMANDS S z'

PROCESSED?

U.S. Patent

May 12, 2020

Sheet 17 of 18

1802 RN

Read Command

1304

4

%Mahy-Tc-Oneié
Mapping |

index Value From Many-to-One

Mapping

Calculate DLBA:

| CALCULATION

A

""""""""""""""""""""""

——————————————————————————————————————

.......................................
......................................

""""""""""""""""""""""

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

......................................

.....................................

""""""""""""""""""""""

--

......................................

""""""""""""""""""""""

""""""""""""""""""""""

""""""""""""""""""""""

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

.....................................

""""""""""""""""""""""

......................................

""""""""""""""""""""""

......................................

......................................

;_:;:;:;:;'—;:L:;'—;:;:;'—;:J:;:;:;:;'—;:;

.....................................

.....................................

..
--

""""""""""""""""""""""

"""""""""""""""""""""""""""

""""""""""""""""""""""
...................
.......................................
""""""""""""""""""""""
'.l..l..l.l.l.l.l.l.l.l.l.l. ..

......................................

......................................

""""""""""""""""""""""

......................................

""""""""""""""""""""""

.....................................

""""""""""""""""""""""

I

......................................

""""""""""""""""""""""

--

""""""""""""""""""""""

44

......................................
.....................................

...................

""""""""""""""""""""""

......................................

""""""""""""""""""""""

+++

......................................

t-=====-==-= ---------------------------

.....................................

.....................................

""""""""""""""""""""""

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

.....................
..........................

..........................

HPMTABLE

lll

———

JJJJJJJJJJJJJJJJJJJJJJJ

CRC
CALCULATED
FROM
SEARCH

..
....................................

..

__

| SELECTED
NEXT READ
. ENTRY

i el el

..

++++++++++++++++++++++++

.........................

bbbbbbbbbbbbbbbbbbbbbbbb

US 10,649,776 B2

R 1818

PROCEED
WITH PRE-
FETCH

SEQUENCE

'CRCFROM | COMPARISON

CRC

|
1814 —\/}\\

CRC
<\

P

_/ >

_ ;\j:ES
MATCH’ P

| ~
'_.

~ 1816

U.S. Patent May 12, 2020 Sheet 18 of 18 US 10,649,776 B2

1902 TN

Read Command

-

Calculate DLBA; |

DLBA(Y) = Start LBA(1)-Start LBA(t-1)

- N
L
EY E..;:

! CRC
| CALCULATION

Many-To-One|
Mapping e, e

LD LR L L L L L L L L L L L L L L

T

..
..

...
T T T T T T I I AT T I ITITITTTTITITITITTIONTITTTTTITITTTS

--

...

e i,y e e, o .

) : T T F b, L L PR e
n ex a ue rom any- 0-’ ne :,_'.,.:,.'.,.:,_'.,.:,_'.,_:,.'.,.:,:,.:ﬂl:,_:,.'.,_:,.'.,.:,.'.,_:,.'.,_:,.'.,.:,.:,_:,.'.,_:,_'.,.:,.'.,.:,.'.,.:,_'.,.:,_'.T:,.'.,.:,_'.,.:,_'.,.:,.'.,.:,_'.,.:,_'.,_':_'.,.:,.'.,.:,.'.,_:,.'.,_:,.'.,.:,.'.,_:,.

..

.................................

Mapping

..

..

...................................

..

.l.. A. 4. 4, L. &, &, L. L. & L. l...ul. A. L. &, L. L. &, L. &, & L. l..l.ll.. A.A. L. L. A L. L. A L. LA 8L L L. L L L. LA L.L.AL l..il.
...
...
""""""""""""""""""""""""""""""""""""""

rr

..
..
........................ D e e T e e T T T T T T T e e e T T T e e e e e T T T T e e T T T T T e e e e T T T T T T T T Y

.................................

L e L L L L L L L L L L L L L L L D L L L L e D D L L L

.................................

—_—_— e e e e e e e e e e e . —— — —— —— ————————— —_—— e, e e e e e e e e e e e —— — —— —]

::l_:._'_._:._:._2._2._:._'_._2._:._2._ﬂ._‘:‘_'—::l_:._'_._2._:._2._2._:._'_._Z::._'_._:._:._'_._2._:._'_._2._:._2._:._ ._'_._2._:._'_._2._:._'_._2._:._'_._2._:1'_._:._:._'_._2._:._'_._2._:._2._:._:._'_

.................................

JJJ

US 10,649,776 B2

1

SYSTEM AND METHOD FOR PREDICTION
OF MULTIPLE READ COMMANDS
DIRECTED TO NON-SEQUENTIAL DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 16/024,617, filed Jun. 29, 2018, pend-
ing, the entirety of which 1s hereby incorporated by refer-
ence herein.

BACKGROUND

Storage systems, such as solid state drives (SSDs) includ-
ing NAND flash memory, are commonly used in electronic
systems ranging from consumer products to enterprise-level
computer systems. SSDs and similar storage devices are
often rated on how fast they can respond to requests from a
host device, commonly referred to as read requests, to access
and retrieve data from the storage device. Another metric
used to rate storage devices 1s throughput, generally mean-
ing the average number of operations completed per unit of
time. A read request triggers a sequence of actions 1n a
storage device that culminates 1n the host device obtaining
the requested data. For example, one action in the sequence
of actions performed by a storage device may be translating
a logical address for the data requested 1n the read request to
a physical address where that requested data 1s located.

Each action in the sequence of actions performed by the
storage device takes a certain amount of time. When a host
1s requesting data from a storage device 1n a sequential read
mode, where the storage device receives requests to read
large chunks of data that include a consecutive address
space, the storage device may operate 1 a sequential read
mode, since 1t knows where to look to pre-fetch data. The
pre-fetched data would be the next amount of data that 1s
sequentially contiguous 1n the logical address space with the
data being retrieved 1n the current read command. By not
waiting for the next read command to arrive and instead
predicting the location of the data for that next read com-
mand, a storage device may improve performance by start-
ing the sequence of actions for the predicted next read while
already working on the prior read command. Although
attempting to pre-fetch data in anticipation of a next read
command may work for sequential mode read commands
where data 1s contiguous, when the recerved read commands
are for random, rather than sequential, address groups of
data, the typical pre-fetch techniques, such as read look
ahead mechanisms, may not provide any performance
advantage at the storage device, and may, 1n fact, slow down
the storage device and/or increase power usage due to
pre-fetching incorrect data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of an example non-volatile
memory system.

FIG. 1B 1s a block diagram illustrating an exemplary
storage module.

FIG. 1C 1s a block diagram illustrating a hierarchical
storage system.

FIG. 2A 15 a block diagram illustrating exemplary com-
ponents ol a controller of a non-volatile memory system.

FIG. 2B 1s a block diagram illustrating exemplary com-
ponents of a non-volatile memory of a non-volatile memory
storage system.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 illustrates an example physical memory organiza-
tion of the non-volatile memory system of FIG. 1A.

FIG. 4 shows an expanded view of a portion of the
physical memory of FIG. 3.

FIG. 5 1s a flow diagram illustrating one implementation
of predicting and pre-fetching data for random data reads
utilizing a non-volatile memory.

FIG. 6 1s a flow diagram 600 illustrating an alternative
implementation of the embodiment of FIG. 5.

FIG. 7A 1s a block diagram of a command sequence
search 1n a read command history database for use in the
methods of FIG. 5 or 6.

FIG. 7B 1s a block diagram of the command sequence
search of FIG. 7A representing a pattern match and the
location of the predicted next read data to be retrieved
relative to the match.

FIG. 8 1s an example read command history database
entry.

FIG. 9 1s an example of a read history pattern match
database having a finite number of hash-indexed entries.

FIG. 10 1s an example read history pattern match table
entry for use 1n the table of FIG. 9.

FIG. 11 1s a flow diagram 1100 1illustrating a process for
predicting a pre-fetching random read pattern data using a
many-to-one mndexing process.

FIG. 12 1s a flow diagram illustrating a process for
updating a read history pattern match data structure using a
many-to-one mdexing process.

FIG. 13 1s a flow diagram 1300 of the combined read
prediction and update procedures for a many-to-one mdexed
history pattern matching table of FIGS. 11-12.

FIG. 14 1s a flow diagram 1400 of an opportunistic read
process for pre-fetching multiple predicted read commands
at one time.

FIG. 15 illustrates an example read history pattern
matcher table having multiple read command predictions per
entry.

FIG. 16 illustrates a memory element format for the next
read entries of the multiple read command prediction table
of FIG. 15.

FIG. 17 1s an embodiment of a multiple pre-fetch method.

FIG. 18 15 a flow diagram 1800 of a read command
prediction process using an entry uniqueness marker.

FIG. 19 15 a flow diagram 1900 of an update process for
a read history pattern matching table using an entry unique-
ness marker.

DETAILED DESCRIPTION

In order to improve performance of a storage device when
receiving read request in a random read mode, where
consecutive read commands include requests to read non-
consecutive sequences of addresses, a system and method
for managing random read mode read requests 1s disclosed
below.

As used herein, random data, which may also be referred
to herein as random read mode data, describes data
addresses associated with consecutive read requests where
the data addresses for data requested 1n a first read command
are not consecutive with data addresses for data in an
immediately following next read command. Also, random
read mode data may include short command length read
commands where a read command may not be broken down
into several successive commands of sequential data. Situ-
ations where the type and location of upcoming read com-
mands are unknown may occur during execution of specific
applications where the memory device will receive more

US 10,649,776 B2

3

random read commands with a low command queue depth
such that the memory device cannot see upcoming read
commands 1n a queue and pre-fetch data accordingly.

An example of a sequential read 1s the read operations that
occur when copying a folder from a hard-disk/SSD to a
Universal Serial Bus (USB) drive. In this example, the data
chunk size may be 1n terms of gigabytes (GBs) of continu-
ously addressed data that i1s serially read. In contrast, one
example of an operation characterized by mostly random
read operations 1s a ZIP compression operation, where
successive multiple accesses to a database occur 1n a non-
sequential manner. Although a given read command typi-
cally includes a sequential address for data to be read for that
read command, the sequential run of data addresses in that
read command may be non-sequential with the sequential
run of data associated with a next read command from a
same or different host application. Also, although the non-
sequential runs of data are referred to herein as random data
reads (or random read mode reads), there may be cases
where there 1s some predictability, on a larger command
grouping scale, where the otherwise random location and/or
amount of the next read command can be predicted. For
example, 11 activity on a host tends to lead to a certain group
of reads being clustered together, then that same cluster of
read commands accessing data at the same locations may
repeat. To take advantage of this potential read command
pattern correlation, methods and systems to predict random
reads are provided below.

In a first aspect, a memory device 1s disclosed having a
first memory, and a second memory. The second memory
may include a search sequence bufler and a prior read
command data structure, where the prior read command data
structure has only a predetermined number of entries that are
cach indexed with a respective index value within a prede-
termined range of index values. The memory device may
turther 1include a controller in communication with the first
memory and the second memory. The controller may be
configured to recerve a current read command having read
command data including a start logical block address (LBA)
and a data length, where the start LBA of the current read
command 1s discontiguous with an address range associated
with a last read command received prior to the current read
command. The controller may be configured to generate a
search sequence 1n the search sequence buller based on at
least the current read command. The controller 1s also
configured to calculate an index value based on the search
sequence that 1s within the predetermined range of index
values. Once the index value 1s calculated, the controller 1s
then configured to retrieve, from an entry in the prior read
command data structure indexed by the calculated index
value, address data representative of a sequence of historical
next read commands associated with the calculated index
value. With this retrieved address data, the controller may
then pre-fetch data from the first memory to the second
memory, where the historical next read commands represent
a predicted sequence of next read command for the control-
ler to use to pre-fetch data prior to receiving the next read
command. In some implementations, the search sequence
comprises the current read command and at least on com-
mand received prior to the current read command.

According to another aspect, a method for predicting
multiple random read commands 1s described. The method
may 1nclude receiving at a memory device a current read
command for data located at a starting address that is
discontiguous with an address range associated with the last
read command received prior to the current read command.
The controller of the memory device may then generate a

10

15

20

25

30

35

40

45

50

55

60

65

4

search sequence of multiple prior read commands, including,
at least the current read command and the last read com-
mand. The method continues with the controller calculating,
based on the search sequence, an index value within a
predetermined range of index values, where the calculated
index value 1s calculated based on the search sequence. The
method continues with the controller retrieving, from an
entry 1n a prior read command data structure stored 1n a first
memory of the memory device, where the entry 1s mdexed
by the calculated index wvalue, data representative of a
historical next read command associated with the calculated
index value. The method continues with pre-fetching data
from a second memory of the memory device to the first
memory of the memory device based on the predetermined
plurality of historical next read commands associated with
the calculated index value.

In different 1implementations of the method, the step of
calculating, based on the search sequence, the mndex value
may 1nclude the controller applying a many-to-one mapping
function to the search sequence to assign one of the prede-
termined range of index values as the index value. The
many-to-one mapping function may be a low latency func-
tion, such as an O(1) complexity function. For example, the
O(1) complexity function may be a hash function followed
by a modulo operation. The controller may apply a value of
the generated search sequence as input for the hash function
and process the result of that hash function with a modulo
operation that 1s configured to provide an output limited to
index values 1n the predetermined range.

Referring now to FIG. 1A, a block diagram 1llustrating a
non-volatile memory system 1s shown. The non-volatile
memory (NVM) system 100, which may also be referred to
herein as a memory device, includes a controller 102 and
non-volatile memory that includes one or more non-volatile
memory die 104. As used herein, the term die refers to the
set of non-volatile memory cells, and associated circuitry for
managing the physical operation of those non-volatile
memory cells, that are formed on a single semiconductor
substrate. Controller 102 interfaces with a host system and
transmits command sequences for read, program, and erase
operations to non-volatile memory die 104.

The controller 102 (which may be a flash memory con-
troller) can take the form of processing circuitry, one or more
microprocessors or processors (also referred to herein as
central processing units (CPUs)), and a computer-readable
medium that stores computer-readable program code (e.g.,
soltware or firmware) executable by the (micro)processors,
logic gates, switches, an application specific integrated
circuit (ASIC), a programmable logic controller, and an
embedded microcontroller, for example. The controller 102
can be configured with hardware and/or firmware to perform
the various functions described below and shown in the flow
diagrams. Also, some of the components shown as being
internal to the controller can also be stored external to the
controller, and other components can be used. Additionally,
the phrase “operatively in communication with” could mean
directly 1n communication with or indirectly (wired or
wireless) in communication with through one or more
components, which may or may not be shown or described
herein.

As used herein, a flash memory controller 1s a device that
manages data stored on flash memory and communicates
with a host, such as a computer or electronic device. A flash
memory controller can have various functionality 1n addition
to the specific functionality described herein. For example,
the tflash memory controller can format the flash memory to
ensure the memory 1s operating properly, map out bad flash

US 10,649,776 B2

S

memory cells, and allocate spare cells to be substituted for
tuture failed cells. Some part of the spare cells can be used
to hold firmware to operate the flash memory controller and
implement other features. In operation, when a host needs to
read data from or write data to the flash memory, 1t will
communicate with the flash memory controller. If the host
provides a logical address to which data is to be read/written,
the tlash memory controller can convert the logical address
received from the host to a physical address 1n the flash
memory. The flash memory controller can also perform
various memory management functions, such as, but not
limited to, wear leveling (distributing writes to avoid wear-
ing out specific blocks of memory that would otherwise be
repeatedly written to) and garbage collection (after a block
1s full, moving only the valid pages of data to a new block,
so the full block can be erased and reused).

Non-volatile memory die 104 may include any suitable
non-volatile storage medium, including NAND flash
memory cells and/or NOR flash memory cells. The memory
cells can take the form of solid-state (e.g., flash) memory
cells and can be one-time programmable, few-time program-

mable, or many-time programmable. The memory cells can
also be single-level cells (SLC), multiple-level cells (MLC),

triple-level cells (TLC), quad-level cells (QLC) or use other
memory cell level technologies, now known or later devel-
oped. Also, the memory cells can be fabricated in a two-
dimensional or three-dimensional fashion.

The interface between controller 102 and non-volatile
memory die 104 may be any suitable tlash interface, such as
Toggle Mode 200, 400, or 800. In one embodiment, memory
system 100 may be a card based system, such as a secure
digital (SD) or a micro secure digital (micro-SD) card. In an
alternate embodiment, memory system 100 may be part of
an embedded memory system.

Although in the example illustrated in FIG. 1A NVM
system 100 includes a single channel between controller 102
and non-volatile memory die 104, the subject matter
described herein i1s not limited to having a single memory
channel. For example, in some NAND memory system
architectures, such as 1n FIGS. 1B and 1C, 2, 4, 8 or more
NAND channels may exist between the controller and the
NAND memory device, depending on controller capabili-
ties. In any of the embodiments described herein, more than
a single channel may exist between the controller and the
memory die, even 1 a single channel 1s shown in the
drawings.

FIG. 1B illustrates a storage module 200 that includes
plural NVM systems 100. As such, storage module 200 may
include a storage controller 202 that interfaces with a host
and with storage system 204, which includes a plurality of
NVM systems 100. The interface between storage controller
202 and NVM systems 100 may be a bus interface, such as
a serial advanced technology attachment (SATA) or periph-
eral component interconnect express (PCle) interface. Stor-
age module 200, 1n one embodiment, may be a solid state
drive (SSD), such as found 1n portable computing devices,
such as laptop computers, and tablet computers.

FIG. 1C 1s a block diagram illustrating a hierarchical
storage system. A hierarchical storage system 210 includes
a plurality of storage controllers 202, each of which controls
a respective storage system 204. Host systems 212 may
access memories within the hierarchical storage system via
a bus interface. In one embodiment, the bus interface may be
a non-volatile memory express (NVMe) or a fiber channel
over Ethernet (FCoE) interface. In one embodiment, the
system 1llustrated in FIG. 1C may be a rack mountable mass
storage system that 1s accessible by multiple host computers,

10

15

20

25

30

35

40

45

50

55

60

65

6

such as would be found 1n a data center or other location
where mass storage 1s needed.

FIG. 2A 1s a block diagram illustrating exemplary com-
ponents ol controller 102 1n more detail. Controller 102
includes a front-end module 108 that interfaces with a host,
a back-end module 110 that interfaces with the one or more

non-volatile memory die 104, and various other modules
that perform functions that will now be described in detail.
A module may take the form of a packaged functional
hardware unit designed for use with other components, a
portion of a program code (e.g., software or firmware)
executable by a (micro)processor or processing circuitry that
usually performs a particular function of related functions,
or a seli-contaimned hardware or software component that
interfaces with a larger system, for example.

Modules of the controller 102 may include a random read
pre-fetch module 112 present on the die of the controller
102. As described below, the random read pre-fetch module
112 may provide functionality for predicting the data that
will be requested 1n a next data read and pre-fetching that
predicted data before the next command 1s received. The
random read pre-fetch module 112 of the controller 102 may
accomplish this by comparing a pattern of data locations
formed by a current read command and a predetermined
number of prior read command data locations and compar-
ing that search sequence 121 to sequentially ordered prior
commands 1n a datastore, such as a read command history
database 117. If the search sequence 121 matches a sequen-
tial pattern of read command address information 1n the read
command history data base 117, the random read pre-fetch
module 112 will select the next read command address
immediately following the matched sequence 1n the database
and use that to identify and pre-fetch data for a predicted
next read command.

As also described 1n greater detail herein, 1n other 1imple-
mentations a large read command history database 117 and
sequential comparison of a search sequence 121 to that
database may be avoided by the pre-fetch module generating
a smaller type of datastore for the read command history and
then utilizing a many-to-one conversion of search sequences
to search the abridged read command history. In yet other
implementations, the pre-fetch module 112 may be config-
ured to predict more than one next read command and
pre-fetch data for multiple predicted next read commands at
one time, or pre-fetch as many of the multiple predicted next
read commands at a time as system configurations permit,
where the multiple predicted next reads may be pre-fetched
during what would otherwise be memory device 1dle times
(when no host commands are pending). In yet other imple-
mentations, when using an abridged version of a read
command history database, a uniqueness i1dentifier tied to a
particular search sequence may be included in the read
command history database to decrease the likelihood of an
erroneous pre-fetch that may occur in an abridged read
command history database where different search sequences
have the same many-to-one index value command history
database.

A bufler manager/bus controller 114 manages buflers 1n
random access memory (RAM) 116 and controls the internal
bus arbitration of controller 102. A read only memory
(ROM) 118 stores system boot code. Although illustrated 1n
FIG. 2A as located separately from the controller 102, 1n
other embodiments one or both of the RAM 116 and ROM
118 may be located within the controller 102. In yet other
embodiments, portions of RAM 116 and ROM 118 may be
located both within the controller 102 and outside the

US 10,649,776 B2

7

controller. Further, 1n some implementations, the controller
102, RAM 116, and ROM 118 may be located on separate
semiconductor die.

The RAM 116 1n the NVM system 100, whether outside
the controller 102, inside the controller or present both
outside and inside the controller 102, may contain a number
of items, including a copy of one or more pieces of the
logical-to-physical mapping tables and group address tables
(GAT) for tracking mappings between logical groups for the
NVM system 100. The RAM 116 may contain the read
command history database 117 that, in one embodiment,
may be a sequential list of read command data address
information for prior read command data locations, where
sequential 1n this context refers to the fact that the list 1s
organized in the time ordered sequence of arrival of the prior
read commands at the controller 102. The RAM 116 may
also 1nclude a search sequence 121 of the current read
command data location information and read command
address information for a fixed number of sequentially prior
read commands. As described 1n greater detail below, this
search sequence may be used to compare against the read
command history to predict the next read command data and
pre-fetch that data.

Front-end module 108 includes a host interface 120 and a
physical layer mterface (PHY) 122 that provide the electri-
cal mterface with the host or next level storage controller.
The choice of the type of host interface 120 can depend on
the type of memory being used. Examples of host interfaces
120 include, but are not limited to, SATA, SATA Express,
SAS, Fibre Channel, USB, PCle, and NVMe. The host
interface 120 typically facilitates transfer for data, control
signals, and timing signals.

Back end module 110 includes an error correction con-
troller (ECC) engine 124 that encodes the data bytes
recerved from the host, and decodes and error corrects the
data bytes read from the non-volatile memory. A command
sequencer 126 generates command sequences, such as pro-
gram and erase command sequences, to be transmitted to
non-volatile memory die 104. A RAID (Redundant Array of
Independent Drives) module 128 manages generation of
RAID parity and recovery of failed data. The RAID parity
may be used as an additional level of integrity protection for
the data being written 1into the NVM system 100. In some
cases, the RAID module 128 may be a part of the ECC
engine 124. A memory interface 130 provides the command
sequences to non-volatile memory die 104 and receives
status information from non-volatile memory die 104. In one
embodiment, memory iterface 130 may be a double data
rate (DDR) imterface, such as a Toggle Mode 200, 400, or
800 interface. A flash control layer 132 controls the overall
operation of back end module 110.

Additional components of NVM system 100 1llustrated 1n
FIG. 2A include the media management layer 138, which
performs wear leveling of memory cells of non-volatile
memory die 104 and manages mapping tables and logical-
to-physical mapping or reading tasks. NVM system 100 also
includes other discrete components 140, such as external
clectrical interfaces, external RAM, resistors, capacitors, or
other components that may interface with controller 102. In
alternative embodiments, one or more of the physical layer
interface 122, RAID module 128, media management layer
138 and bufler management/bus controller 114 are optional
components that are not necessary in the controller 102.

FIG. 2B 1s a block diagram illustrating exemplary com-
ponents of non-volatile memory die 104 1n more detail.
Non-volatile memory die 104 includes peripheral circuitry
141 and non-volatile memory array 142. Non-volatile

5

10

15

20

25

30

35

40

45

50

55

60

65

8

memory array 142 includes the non-volatile memory cells
used to store data and includes address decoders 148, 150.
The non-volatile memory cells may be any suitable non-
volatile memory cells, including NAND flash memory cells
and/or NOR flash memory cells in a two-dimensional and/or
three-dimensional configuration. Peripheral circuitry 141
includes a state machine 152 that provides status informa-
tion to controller 102. Non-volatile memory die 104 further
includes a data cache 156 that caches data being read from
or programmed into the non-volatile memory cells of the
non-volatile memory array 142. The data cache 156 com-
prises sets of data latches 1358 for each bit of data 1n a
memory page ol the non-volatile memory array 142. Thus,
cach set of data latches 158 may be a page 1n width and a
plurality of sets of data latches 158 may be included 1n the
data cache 156. For example, for a non-volatile memory
array 142 arranged to store n bits per page, each set of data
latches 158 may include N data latches where each data latch
can store 1 bit of data.

In one implementation, an individual data latch may be a
circuit that has two stable states and can store 1 bit of data,
such as a set/reset, or SR, latch constructed from NAND
gates. The data latches 158 may function as a type of volatile
memory that only retains data while powered on. Any of a
number of known types of data latch circuits may be used for
the data latches in each set of data latches 138. Each
non-volatile memory die 104 may have 1ts own sets of data
latches 158 and a non-volatile memory array 142. Peripheral
circuitry 141 includes a state machine 152 that provides
status information to controller 102. Peripheral circuitry 141
may also 1nclude additional input/output circuitry that may
be used by the controller 102 to transier data to and from the
latches 158, as well as an array of sense modules operating
in parallel to sense the current 1n each non-volatile memory
cell of a page of memory cells 1n the non-volatile memory
array 142. Each sense module may include a sense amplifier
to detect whether a conduction current of a memory cell n
communication with a respective sense module 1s above or
below a reference level.

The non-volatile flash memory array 142 in the non-
volatile memory 104 may be arranged 1n blocks of memory
cells. A block of memory cells 1s the unit of erase, 1.e., the
smallest number of memory cells that are physically eras-
able together. For increased parallelism, however, the blocks
may be operated 1n larger metablock units. One block from
cach of at least two planes of memory cells may be logically
linked together to form a metablock. Referring to FIG. 3, a
conceptual illustration of a representative flash memory cell
array 1s shown. Four planes or sub-arrays 300, 302, 304 and
306 of memory cells may be on a single integrated memory
cell chip, on two chips (two of the planes on each chip) or
on four separate chips. The specific arrangement 1s not
important to the discussion below and other numbers of
planes may exist in a system. The planes are individually
divided into blocks of memory cells shown in FIG. 3 by
rectangles, such as blocks 308, 310, 312 and 314, located 1n
respective planes 300, 302, 304 and 306. There may be
dozens or hundreds of blocks 1n each plane. Blocks may be
logically linked together to form a metablock that may be
crased as a single unit. For example, blocks 308, 310, 312
and 314 may form a first metablock 316. The blocks used to
form a metablock need not be restricted to the same relative
locations within their respective planes, as 1s shown 1n the

second metablock 318 made up of blocks 320, 322, 324 and
326.

The individual blocks are 1n turn divided for operational
purposes 1nto pages of memory cells, as illustrated 1n FIG.

US 10,649,776 B2

9

4. The memory cells of each of blocks 308, 310, 312 and
314, for example, are each divided into eight pages PO-P7.
Alternately, there may be 16, 32 or more pages of memory
cells within each block. A page 1s the unit of data program-
ming within a block, containing the minimum amount of
data that are programmed at one time. The minimum unit of
data that can be read at one time may be less than a page. A
metapage 400 1s illustrated mn FIG. 4 as formed of one
physical page for each of the four blocks 308, 310, 312 and
314. The metapage 400 includes the page P2 1n each of the
tour blocks but the pages of a metapage need not necessarily
have the same relative position within each of the blocks. A
metapage 1s typically the maximum unit of programming,
although larger groupings may be programmed. The blocks
disclosed 1 FIGS. 3-4 are referred to herein as physical
blocks because they relate to groups of physical memory
cells as discussed above. As used herein, a logical block 1s
a virtual unit of address space defined to have the same size
as a physical block. Fach logical block may include a range
of logical block addresses (LBAs) that are associated with
data recerved from a host. The LBAs are then mapped to one
or more physical blocks in the non-volatile memory system
100 where the data 1s physically stored.

Referring to FIG. 5, a read command data prediction and
pre-fetch technique 3500 for sequential read commands
directed to data at non-sequential LBAs, also referred to
herein as random read commands, 1s shown. Utilizing a
memory, such as NVM system 100 of FIGS. 2A-2B, a read
command 1s received at the controller 102 (at 502). The read
command may include logical address information identi-
tying the starting logical block address (starting LBA) at
which the data being requested begins, as well as a length
indicator that identifies the contiguous logical block address
range starting at the starting logical block address. Upon
receipt of the read command, the random read pre-fetch
module 112 of the controller 102 may update the read
command history database 117 to include the starting
address and length information (at 504).

The controller 102 may also generate a search sequence in
a search sequence stack stored in the controller memory (at
506). The search sequence consists of a sequential list of
read address location information from the current read
command and from a previous N commands, where N may
be a predetermined fixed integer. For example, 1n one
implementation, N may be 8, and thus the search sequence
would be the read address information for the current read
command and the last 7 prior read commands arranged 1n a
list or stack in time order of read command receipt. In the
embodiment of FIG. 5, the read address information stored
in each entry of the search sequence stack may include only
the start LBA of the read command, or may include both the
start LBA and the length information from the respective
read commands. The search sequence stack may be a
fixed-size search sequence bufler 121 1n RAM 116 having
space to hold N entries, where the oldest entry 1s removed
from search sequence builer 121 when the read address
information from the current read command 1s inserted.
Although the example search sequence (also referred to
herein as a search sequence stack) example provided below
assumes a set of N previous commands 1n addition to the
current read command where N 1s greater than 0, 1n other
implementations the entire search sequence may comprise
only a single prior command such as the current read
command.

Using the search sequence with the current search com-
mand search address information that has been generated
and stored 1n the search sequence bufler 121, the controller

5

10

15

20

25

30

35

40

45

50

55

60

65

10

102 may search for any occurrences of the search sequence
that appear 1n the read command history database 117 (at
508). Any of a number of database search techniques may be
used by the controller 102 to try to find a match between the
search sequence and read command data entries 1n the time
ordered read command data entries of the database 117. For
example, the search technique may include comparing the
search sequence 1n the search sequence bufler 121 to the
time ordered entries in the read command database 117 1n
reverse time order (from newest entries to oldest entries)
until a match 1s found. Alternatively, the search sequence
may be compared to the database entries in the opposite
direction, starting with the oldest database entries up until
the newest. In one embodiment, the controller 102 may scan
the entire database looking for every match, or in other
embodiments, the controller 102 may stop searching after
finding a first match, or stop searching after any of a number
ol other pre-defined match scenarios.

If at least one match 1s found (at 510) to the search
sequence 1n the read command database then the random
read pre-fetch module of the controller 102 may retrieve the
address value 1n the read command data immediately after
(more recent in time order) the matched sequence. This
retrieved address information 1s then considered to be the
predicted location of data that 1s expected to be requested in
the next read command (at 512). The controller 102 may
then pre-fetch the data at that identified address and store the
pre-fetched data in RAM 116 1n anticipation that the next
read command will ask for that data (at 514). If the next read
command does ask for that pre-fetched data, then significant
time has been saved and the pre-fetched data may be
immediately sent to the host. If the next read command does
not request the pre-fetched data, then a regular read opera-
tion for the data requested in the read command may be
executed and the pre-fetched data simply discarded or
written over.

I1, mnstead of finding a match between the search sequence
and entries of the read command history database, no match
1s Tound (at 510), then a pre-fetch operation may be skipped
(at 516). Alternatively, some other pre-fetch address selec-
tion scheme may be used as a default, such as the controller
pre-fetching data at the next sequentially contiguous address
after the last address of data retrieved for the prior read
command.

The accuracy and amount of time 1t takes to predict the
next random read command and pre-fetch the data for that
predicted next read command may be adjusted by adjusting
the size of the read command history database 117 and the
s1ze of the search sequence bufler 121. In one implementa-
tion, the read command history database may be sized to
hold data address information for 200,000 of the most recent
read commands and the search sequence bufler 121 as
discussed above, holds data address information for the 8
read commands (providing space for of the last 7 read
commands and the most recently received read command).
The larger the read command history database 117, the more
likely 1t may be to find a match, but the time needed to parse
the entire database and compare 1t to the search sequence
also may increase. Similarly, length of the search sequence
bufler 121 may be adjusted to suit the specific memory
device application. For example, a longer search sequence
(and thus larger search sequence bufler 121) may reduce the
frequency of matches found 11 the memory device tends to
have shorter patterns of read commands, and too short of a
search sequence may result in more matches but less accu-
rate predictions. The above-noted example sizes of the read
command history database 117 and the search sequence

US 10,649,776 B2

11

builer 121 are simply provided by way of example and other
larger or smaller sizes for each may be implemented 1n
different embodiments.

In the method of FIG. 5, the controller 102, via the
random read pre-fetch module 112, utilizes the start LBA
address that comes 1n each read command to form the search
sequence 1n the search sequence bufler 121 and to populate
the read command history database 117. In an alternative
implementation, as shown 1n FIG. 6, the method and system
may be adapted to determine and use a differential LBA
(also referred to herein as a delta LBA or DLBA) rather than
the start LBA. A DLBA 1s determined for each read com-
mand by taking the start LBA provided in the current read
command and calculating the difference between 1t and the
start LBA of the immediately prior received read command.
For example, 11 the start LBA of the last read command was
2000 and the start LBA ot the current read command 1s 5000,
then the DLBA would be 3000. A direction of the DLBA
may also be included to account for situations where a lower

start LBA 1s 1n the current read command. For example, 11
the start LBA of the last read command was 5000 and the
start LBA of the current read command 1s 2000, the DLBA
would be -3000.

Use of DLBA rather than start LBA 1n the process of FIG.
6 may reduce the number of unique values in the search
sequence and read command history database and increase
the potential pattern-matching rate. As shown 1n FIG. 6, the
method for using DLBA information includes first receiving
a read command (at 602), but then converting the start LBA
that arrives in the read command mto a DLBA (at 604). In
one 1mplementation, to convert the start LBA to a DLBA,
the controller 102 stores the start LBA of both the current
and 1mmediate prior read command 1n a start LBA bufler.
The start LBA bufler may be any of a number of memory
locations 1n the controller 102 or the memory device 100
generally. The controller may then subtract the value of the
start LBA of the immediate prior read command from the
start LBA of the current read command that has just been
received. The result of that calculation 1s the DLBA for the
current read command. This DLBA 1s then stored in the
search sequence stack to generate a new search sequence
and 1s also stored in the read command history database (at
606, 608).

In different embodiments, the search sequence entries and
the read command history database entries may include just
the DLBA, the DLBA and length information received from
the read command, or the DLBA and the length and start
LBA information received from the read command. After
generating the search sequence stack and updating the read
command history, the controller may then search for occur-
rences of the search sequence 1n the read command history
in much the same manner as in FIG. 5, but this time based
on the DLBA information (at 610). If no match 1s found (at
612), then the pre-fetch process based on the current DLBA
1s skipped (at 620) or alternatively some other predeter-
mined pre-fetch location 1s used, such as a predetermined
oflset from the current read command storage LBA address,
for a pre-fetch operation.

If a match 1s found (at 612), then the DLBA value in the
next entry of the read command history database following
the matched search sequence 1s retrieved (at 614) and

converted back into a start LBA address (at 616). The
conversion of the retrieved DLBA back into a start LBA
format may be accomplished by retrieving the current read
command start LBA and adding the DLBA value to 1t. The
current read command start LBA may be retrieved from the
start LBA bufler noted above, or from the search sequence

10

15

20

25

30

35

40

45

50

55

60

65

12

queue entry or read command history entry for the current
read command 1n embodiments where one of those entries 1s

also configured to store the start LBA. Once the retrieved
DLBA 1s converted to a start LBA of a predicted group of
read data, the controller may execute a pre-fetch operation

of data at that predicted start LBA (at 618).

For both the start LBA embodiment of FIG. 5 and the
DLBA embodiment of FIG. 6, the execution of the pre-fetch
operation may include using the start LBA retrieved (or
calculated from the DLBA retrieved) from the read com-
mand history database entry identified as the predicted next
read command and determining a physical address 1n non-
volatile memory, for example from a logical-to-physical
mapping table that 1s stored 1n volatile memory (RAM 116)
and/or non-volatile memory 104 1n the memory device 100.
An amount of data retrieved from that physical address
location may be a default amount or the amount 1dentified by
any length information that 1s stored in the read command
history database entry. The pre-fetch operation 1s executed
prior to receiving the next read command and the data may
be retrieved 1n parallel with the data for the current read
command or during a next available 1dle time of the memory
device. The pre-fetched data may be stored 1n any memory
region of the memory device, for example n RAM, and
provided to the host i1if the actual next read command
received 1s for that data.

The manner 1n which the search sequence having DLBA
entries 1s used to parse the read command database with
DLBA entries may be the same as 1n the start LBA bodiment
of FIG. 5. The search may start from the most recent
commands backward 1n read command sequence, from the
oldest command forward in read command sequence, or
starting from any other point 1n the read command database.
What constitutes a match of the search sequence 1n the read
command database may also be the same in either of the start
LBA or DLBA implementations. For example, 1n the DLBA
implementation, a match may be a match of all of the DLBA
search sequence entries to a consecutive sequence of prior
read command database entries. In implementations where
length of the read command 1s stored with the DLBA 1n each
search sequence and read command data base entry, then the
match may be required to include the same the length and
DLBA values i each paired entry of the compared search
sequence and read command database entries.

Referring to FIG. 7A, a graphical example of the con-
troller parsing the read command history database 117 by
comparing the entries of the search sequence bufler 121 to
the entries of the read command history database 1s shown.
The search sequence 1s represented 1n FIG. 7A as a search
window 704 containing the time ordered last 8 (in this
example) received read commands including the current
read command, 1n chronological order by time of receipt by
the controller. Starting with the most recent read command
entries 702 1n the continuous chronologically ordered linked
list 700 of prior read command information in the read
command history database 117, the controller compares this
window 704 of the search sequence to 8 read command
history database entries 702 at a time. The controller 102, via
the random read pre-fetch module 112, searches by eflec-
tively sliding the search window 704 one entry 702 at a time
looking for a match between the search sequence and the
sequence entries covered by the search window 704. As
illustrated 1n FIG. 7B, when the search sequence, repre-
sented by the search window 704, matches the current
pattern of prior read command entries 702 being compared
to the search window 704, the first read command entry after

US 10,649,776 B2

13

the matched prior read entry pattern (next most recent in
time) 1s 1dentified as the predicted next read command 706.

The start LBA and DLBA implementations of FIGS. 5-6
may conclude the search for matches after a first match 1s
found, or may search for some fixed number of matches, or
all matches, of the search sequence found in the read
command history database 117. Additionally, if multiple
matches are found having differing results for the predicted
next start LBA or DLBA, then the start LBA or DLBA
selected as the predicted next read command 706 may be the
start LBA/DLBA from the most recent read command 1n the
list 700 of prior read command information that matches
search sequence. Alternatively, the start LBA or DLBA may
be chosen from the predicted next read command 706 that
occurs most frequently 1n the pattern matches that are found
for that search sequence.

FIG. 8 shows an embodiment of a format for a read
command history entry 702 that may be used in the read
command history database 117. In the embodiment of FIG.
8, each entry 702 may represent the read command data
location information for a single previously received read
command. The entry 702 may include a start LBA field 802,
a DLBA field 804 and a data length field 806. The start LBA
may be the actual starting LBA address that was receirved
with the prior command. The DLBA may be the differential,
also referred to as delta LBA, calculated for the start LBA
based on the difference between the start LBA of the
command and the start LBA of the prior read command, The
data length, also referred to as just “length™, ficld 806 may
be the address range length that was originally recerved with
the start LBA 1n the read command. In alternative embodi-
ments, other parameters relating to the read command could
also, or alternatively, be saved 1n other fields with each read
command history entry, such as other “metadata”-type of
parameters, including error correction code (ECC) configu-
rations and flash parameters or configurations.

The embodiment of FIG. 8 1s just one of many contem-
plated vanations of the format for a read command history
entry 702. In different implementations, the entry 702 may
include only the start LBA or only the DLBA, and may omit
the length information for the read command. For example,
rather than recording the length of the data that a particular
read command includes, the prediction and pre-fetch tech-
nique may be simplified to matching search sequence and
read command history data base entries based only on start
LBA or DLBA. The pre-fetch operation then initiated by the
controller may be of a default amount of data from the
location of the predicted next read command 706 rather than
using length of data information that was originally associ-
ated with the predicted read command, but not recorded 1n
the entry 702. Alternatively, when the read command history
entry 702 1identified as the predicted next read command 706
includes the data length field 806, the controller 102 may
retrieve the specific amount of data at the location of the start
LBA or DLBA also 1n that 1identified read command history
entry 702.

It should be noted that the search to find a match between
the search sequence and a sequence of read history com-
mand entries 1n the read history command dataset (at 508 in
FIG. 5 or at 610 1n FIG. 6) may be based on matching only
the start LBA fields or DLBA fields, respectively. In other
embodiments, more than one field for each search sequence
entry and each read command history entry may be required
to match, such as start LBA (or DLBA) and length fields in
each command. Also, a match 1s considered to be a 100%
match of the fields being compared in the search sequence
and the read command history entries. In alternative

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments, it 1s contemplated that a fixed amount of
matches between the search sequence and the read command
history entries less than 100% may be considered a match
for purposes of 1dentifying a predicted next read command.

The embodiments discussed above address ways of pre-
dicting next read commands where a pattern of read com-
mands 1s searched for from a comparison of a search
sequence to a relatively large and continuous time-ordered
database of read command address history. In certain imple-
mentations, the memory device may have a limited amount
of memory in which to store prior read command history, or
may have other constraints that require less processing time
or faster pattern matching capabilities than the embodiments
of FIGS. 5-6 may be able to provide, as these previous
embodiments are based on relatively long search operation
for each pattern matching occasion. Having a smaller
amount of read command history data may result 1n some-
what less accurate read command prediction capability,
however that may be an acceptable tradeofl for lowering the
amount storage space needed for the read prediction process
and increasing the speed (decreasing the latency) of the
pattern matching operation. As discussed 1n greater detail
below, any of a number of algorithms, such as a hash-based
algorithm, may be implemented to reduce the size of or
access time to the history pattern matching information.

As shown in FIGS. 9-13, systems and methods are
provided to reduce the read command history database of
sequentially ordered prior read commands to a history
pattern matching data structure of potentially smaller size
and faster pattern matching capabilities. Referring to FIG. 9,
instead of a datastore that i1s the read command history
database 117 containing a continuous time-ordered history
of read command 1information 1n a list 700 such as shown 1n
FIG. 7A, a smaller history pattern match data structure may
be stored and maintained in read command history database
117. The history pattern match data structure may be a
history pattern matching (HPM) table 900 of fixed memory
length of M table entries, where each table entry 902 1is
identified by a unique index number 904 (1-M) and 1ncludes
a memory eclement (sometimes referred to herein as a
memory location) 906 for holding a predicted next read
entry. The unique index number 904 represents a many-to-
one conversion of the full search sequence of recent read
commands, for example a many-to-one mapping of the 8
entry search sequence described with respect to FIGS. 5-6.
The predicted next read command entry i a memory
clement 906 may be a DLBA for a read command that last
followed the search sequence corresponding to index num-
ber 904. In addition, 1n some implementations the length of
the predicted next command may also be included with the
start LBA or DLBA.

It should be noted that, in other embodiments, the read
command history database 117 used for storing data on prior
read commands, whether 1n the form of a list 700, an HPM
table 900, or other format, may include more than just prior
read command entries. For example the read command
database 117 may include entries for other types of com-
mands, such as write commands, flush commands and/or
other commands, and not only read commands. In such
embodiments where more than one command type 1s present
in the database 117, the search sequence (pattern of prior
commands) may also include several command type 1den-
tifier bits to 1dentity the command types being searched for
among the multiple types of commands in the database. This
command type 1dentifier may be included 1n addition to the
start LBA, DLBA or data length information so that a match
of both command type and the one or more other data types

US 10,649,776 B2

15

may be searched for. The search sequence, used with either
the list 700 or HPM table 900 versions, may then include the
sequence prior commands of any type stored 1n the database
117 that preceded a read command.

Referring to FI1G. 10, the format of a memory element 906
in a table entry 902 may be the same as that for the linear list
700 1n FIG. 7. Specifically, each next read command entry
stored 1n a memory element 906 may have only one or both
of the start LBA 1002 or the DLBA 1004 of a read command
that was previously received after the search sequence that
led to the index value 904 for that table entry. Additionally,
the memory element 906 may include the read command
length information 1006 and/or fields for any other param-
cter related to the read command. One example of another
parameter related to the read command that maybe stored 1n
the memory element as part of a next read command entry
1s a time difference between when the read command
identified 1n the memory element 906 and the last read
command received prior to that read command.

In order to use the history pattern matching data structure,
also referred to herein as a prior read command data struc-
ture, such as the history pattern matching (HPM) table 900
of FIG. 9, the random read pre-fetch module 112 of the
controller 102 uses a many-to-one conversion techmque on
the search sequence generated 1n the search sequence bufler
121 after each read command 1s received. Any of a number
ol many-to-one mapping functions adapted to take a large
number of potential combinations and map them to a smaller
fixed number of entries and having an order 1 (also referred
to as O(1)) access-time complexity may be used. As used
herein, the term O(1) refers to an algorithm that will always
execute 1n the same time (or space) regardless of the size of
the 1put data set.

In one implementation, a hash function combined with a
modulo operation may be used by the controller 102 as the
O(1) complexity operation. The hash function and modulo
operation provide a O(1) complexity calculation that can
reduce all of the possible diflerent search sequence combi-
nations of search sequence length L (where L equals the
number of read commands 1n the search sequence) and map
them to a smaller, predetermined range of index numbers
904. It should be noted that the search sequence refers to a
pattern of read commands, where the pattern of read com-
mands may be described as a specific sequence of read
commands over a period of time, hence the terms pattern and
sequence may be used mterchangeably herein. The hash and
modulus (also referred to as modulo) functions may be
selected such that the index numbers 904 generated as an
output of these functions 1s limited to the fixed size (memory
length M) HPM table 900 of FIG. 9. Thus, the modulus
operation may be X MOD M, where X is the output of the
hashed search sequence and M 1s the number of table entries
supported. The modulus function would take the hash out-
put, divide that output by M (memory length of HPM table
in RAM) and return an integer remainder that would fall 1in
the range of 0 to M-1, for a total of M possible index values.
By limiting the potential index values to a predetermined
range, the many-to-one algorithm provides a way of assign-
ing each search sequence only one imndex value, but where
cach index value may apply to more than one different
search sequence. A simplified example of the next data read
prediction steps using a many-to-one mapping and the
resulting HPM table 900 1s shown 1n FIG. 11.

As 1llustrated in FIG. 11, when the memory device 100
receives a read command (at 1102), the controller 102 may
convert the start LBA data for that read command to a
DLBA (at 1104) and use the DLBA to generate a new search

10

15

20

25

30

35

40

45

50

55

60

65

16

sequence of recent DLBAs (at 1106) and then save the that
search sequence 1n the search sequence bufler 121. As
previously noted, the conversion to and from start LBA to
DLBA 1s one way 1n which to form the search sequences, but
it 15 optional and start LBA only may be used for the search
sequence 1n other implementations.

With this index value that the controller 102 has generated
from the search sequence, the controller may then go to the
HPM table 900 and retrieve a DLBA value from the HPM
table associated with that index value as the predicted next
read (at 1114). In one implementation, the HPM table 900
only includes a single memory element 906 for a single next
read command entry associated with each index value 904.
Thus, the single next read command entry in the memory
clement 906 may be selected and, 11 in the form of a DLBA,
converted to a start LBA for pre-fetching the data identified.
In other implementations, the HPM table 900 may be si1zed
to include several memory elements 906 per index value 904
and the memory element 906 selected as containing the
predicted next read information may be the most recently
written of the memory elements. Alternatively, the memory
clement 906 selected for the predicted next read may be the
one contaiming the most frequent of the occurring DLBA
value 1in the memory elements for the indexed table entry
902. In yet other implementations where each table entry
902 includes multiple memory elements 906, the controller
may only store each different predicted next value having the
same 1ndex value only one time and include counter or
histogram information with the value that tallies the number
of occurrences of that value has been stored. This may
provide a way of only writing a value one time per table
entry 902 and thus allowing the memory elements 906 1n a
table entry 902 to hold other values. The options for selec-
tion of the predicted next read from that indexed table entry
902 may then be based on selecting the memory element 906
containing the next read entry associated with the highest
frequency counter/histogram value.

Assuming that the memory elements 906 of the HPM
table only store a DLBA value for a next read prediction, the
controller 102 may then convert the DLBA to a start LBA by
adding the DLBA value to the start LBA value of the current
read command and then proceed to retrieve the predicted
next read command data prior to receiving any next read
command as discussed above.

Referring to FIG. 11, one embodiment of a process 1100
of predicting a next read using a many-to-one mapping of
search sequences 1s shown. A read command 1s received and
the read command start LBA data converted to a DLBA
value (at 1102, 1104). The DLBA value, as discussed above,
may be generated by subtracting the start LBA value of the
prior read command from the start LBA value 1n the recerved
read command. The new DLBA value 1s used to generate a
new search sequence (at 1106) of predetermined pattern
length (L) by 1nserting the new DLBA into the prior search
sequence and removing the oldest. DLBA read command
DLBA from the prior sequence. In this embodiment, L 1s
shown as 8 total read commands. The search sequence (at
1106) may be stored in the search sequence bufler 121 as
described previously.

The controller 102 then passes the search sequence
through a many-to-one mapping operation (at 1108) that
may include a hash function (at 1110), followed by a modulo
operation (at 1112) to make sure the hash value stays within
the predetermined index value range supported by the HPM
data structure. The controller 102 may utilize any of a
number of hash functions, for example Bernstein’s hash
function djb2, Kernighan and Ritchie’s hash function,

US 10,649,776 B2

17

NDBM, SDBM, SHA-1 (Merkle-Damgard construction),
Zobrist hashing (variable XOR) and so on. The controller
may treat the search sequence as a string or as a number
according to the Hash algorithm used. As one simplified
example, where the search sequence 1s a time ordered
sequence of 4 start LBAs for the current read command and
the 3 last read commands prior, and the numbers were 210,
350, 600 and 7000, the string used as input for the hash
function may be the concatenation of the search sequence
numbers: 2103506007000.

The many-to-one mapping routine 1108 may be executed
by the controller 102 via the random read pre-fetch module
112. Once the index value 1s determined from the hash
process, the index value 1s used to 1dentify the entry in the
HPM table 900, as described previously, and the next read
prediction 1s selected from the i1dentified index entry in the
table 900. In one implementation, when the HPM table
includes multiple memory elements 906 1n a table entry 902,
the most recent DLBA information of the memory elements
906 1n the table entry 902 identified by the index value 1s
selected as the predicted next read.

As 1illustrated in FIG. 12, a method of updating a read
command history database 117 1s illustrated for an HPM
table 900 version of predicting read commands. For an
update of the read command history database 117 on the
memory device 100, when the read command history 1s
tracked 1n a sequential list 700 of all prior read commands,
the update may be as simple as adding 1n the current read
command information (start LBA and/or DLBA and other
read command parameters) as another entry to that list. In
one 1mplementation, the list 700 1s simply adjusted 1n a
“shift left” operation through to the oldest of the read
command history entries 702 and the newest read command
added to the right side of the list 700 (assuming, without loss
of generality, that the newest 1s on the right side). The
concept of shifting older entries toward one end of the list
and adding 1n a new entry on the opposite end may apply to
any direction the list may be oriented. In that way, the arrival
order of the commands at the controller 1s tracked according
to 1ts entry location in the list.

Unlike the sequential list 700 of read commands, the
HPM table 900 updates need to include the intermediate step
of mapping the currently received read command to an
indexed search sequence of read prior read commands.
Thus, as i1llustrated 1n FIG. 12, when the new read command
1s recerved, the last generated search sequence may be used
to regenerate the index value of where the current read
command 1s to be added to the HPM table 900. Alternatively,
if the index value for the last search sequence (used to
predict the read command and pre-fetch data for the com-
mand that has now been received) 1s still stored in the
controller memory, that index value may be used by the
controller 102 to store the actual read command information
in a memory element of the table entry 902 having that index
value.

As 1s evident from the prediction and update procedures
for using a many-to-one mapping of prior read commands,
where a data structure such as a HPM table 900 are used, a
preferred order of activity 1s to first update the HPM table
900 and then proceed with the prediction of the next read
command. This allows potential reuse of the last calculated
index value for the pattern of prior reads used to predict the
current read, or use of the search sequence still residing 1n
the search sequence bufler 121 for those prior reads.
Momentarily delaying generating the search sequence
update, and new HPM table index calculation from the
newly generated search sequence, until aiter the HPM table

10

15

20

25

30

35

40

45

50

55

60

65

18

900 1s updated with the recerved read command permits the
prior index calculation or prior search sequence to be used.
Otherwise, a separate buller 1s necessary for the last search
sequence and/or last index calculation.

In other implementations, the HPM table 900 update may
not occur prior to the prediction and instead only take place
when the memory device 1s otherwise 1dle (e.g., at times
when no host command 1s pending), so that there 1s no delay
in executing the next read prediction process. In this alter-
native embodiment, read command information for several
read commands may be accumulated, and then the HPM
table 900 may be updated at a later time, such as when the
memory device has some i1dle time where there are no
pending host commands.

As illustrated 1n FI1G. 12, an update process 1200 1s shown
for embodiments using the HPM table 900. For each read
command that arrives (at 1202) at the memory device 100,
the HPM table 900 1s updated prior to the read prediction
operation. The start LBA for the most recent read command
1s converted to DLBA format (at 1204) and 1s used to update
the HPM table 900.

The last search sequence received and converted via the
many-to-one conversion process, such as hashing and per-
forming a modulo operation, may be used to locate the
correct index location that the DLBA information for the
current read command 1s to be written to.

Any number of techniques for retrieving or generating the
prior indexed search sequence for use in updating the HPM
table may be utilized. For example, the hashed index value
for the prior search sequence may be retained 1n short term
memory at the controller 102 and used to store the current
read command DLBA 1n the indexed past search sequence
location. Accordingly, if the last HPM index value 1s still

available 1n controller memory or elsewhere in the memory
device (at 1206), it 1s retrieved (at 1208). The controller 102

then uses the retrieved last HPM index value to select the
correct table entry 902 1n the HPM table 900 and to store the
DLBA for the current read command 1n a memory element
906 for that indexed table entry 902 (at 1210). Alternatively,
when the last HPM 1ndex value 1s not available (at 1206), the
controller may regenerate the last HPM 1ndex value from the
prior search sequence (at 1212). The search sequence from
the last read command prediction operation may be retrieved
from the search sequence bufler 121 before updating 1t with
the DLBA of the current read command (as will occur when
the read predict process of FIG. 11 moves forward, and the
index value recalculated with the same many-to-one map-
ping procedure of hashing and then applying a modulus
operation as discussed with respect to FIG. 11. Using the
search sequence from the last prediction that 1s still stored 1n
the search sequence bufler 121 and recalculating the index
number, the DLBA information for the current command
may be stored in the correct table entry 902 with the
recalculated last HPM index value for the prior search
sequence (at 1210).

In one implementation, where there are unused memory
clements available 1n the table entry 902 of HPM table 900
for that index value 904, the DLBA {for the current read
command 1s simply stored in the open memory element 906,
regardless of whether or not 1t 1s the same value as another
DLBA value stored in a diflerent memory element 906 at
that index value 904. In other implementations, with more
than one memory element per table entry, a value may only
be written once and any repeat of writing that same value
will trigger a counter or tag being added, or a histogram
value generated, that tracks the number of times the value
occurred. In this manner, other memory elements 906 1n the

US 10,649,776 B2

19

table entry 902 may be freed up rather than writing the same
value to multiple memory elements of that table entry. Also,
when using the most frequently occurring value as the
selected next read prediction, the controller can simply look
at the counter rather than counting occurrences each time.

When more than one memory element 906 1s associated
with each table entry 902 and all of the memory elements are
tull, a “shaft leit” type of insertion and deletion of next read
command entry data from the data elements may be used
when new read command data 1s to be written to that table
entry 902. For example the last (oldest) value of read
command data may be shifted out on the left side, the newer
values previously written to the table entry are shifted to the
left by one memory element, and the new value 1nserted at
the right most memory element of that table entry 902. The
specific “shift left” discussion above 1s sitmply one example
of a time-order update. Any of a number of arrangements are
contemplated where a time-order 1s being kept (such that the
“oldest” command could be dropped in order to make room
for the newer command, or 1n order to prioritize the newer
command) when producing the predicted next read com-
mand. In another implementation, where only a single
memory element 906 1s included for each table entry 902 in
the HPM table 900, a new read command data value will
overwrite the old value. In yet other implementations, when
all of the one or more available DLBA memory locations for
the particular index value have been written to previously,
the new value may be discarded and the memory element
kept fixed with the prior written DLBA information such
that no updating of the HPM table 900 after an initial DLBA
write has been made to memory elements.

As 1s to be expected when a many-to-one mapping
technique 1s used on a large set of variations of data
combinations (here a large number of potential combina-
tions of search sequences converted to a smaller set of
available index locations), there will be times when the
different search sequences vyield the same hashed index
value. For example, 1f the potential number of search
sequence combinations was 1000 and the hash algorithm 1s
configured to only output numbers from 1 to 100, there
could be, on average, 10 different combinations mapped to
the same HPM table entry (assuming a perfect distribution
of mappings among index values). To allow for different
next read command results for the same index value 1n the
HPM table, the number of memory elements 1n the HPM
table may be more than one so that different results may be
recorded 1n the HPM table at different memory elements in
the same table entry 902.

Similar techniques for selecting the predicted next read
from among the multiple memory elements 906 at the same
indexed table entry 902 may be used as were discussed with
reference to FIGS. 5-6. In one implementation, the value
returned from the HPM table 900 after determining an index
value 904 from a current search sequence may be the last
(most recent in time) memory element 906 written to for the
corresponding table entry 902. Alternatively, the predicted
next read data may be selected based on which predicted
next read data value appears the most times in the memory
clements 906 of that table entry 902.

One version of the combined processes of predicting a
next read command for pre-fetching data (FIG. 11) and of
updating the read command history database when using an
HPM Table 900 (FIG. 12) are summarized in FI1G. 13. Aread
command 1s received at the memory device 100 (at 1302).
The start LBA for the read command may then be converted
to a DLBA value as described in FIGS. 11-12 (at 1304).

Also, the mndex value of the search sequence generated prior

10

15

20

25

30

35

40

45

50

55

60

65

20

to receiving the current read command 1s retrieved or
regenerated from the search sequence values already stored
in the search sequence builer prior to receiving the current
read command (at 1306). Using the retrieved index value, or
the regenerated imndex value, the controller may update the
HPM table by writing the current read command DLBA to
the HPM table entry 902 identified by the index value (at
1308).

After updating the HPM table 900, the controller 102
generates a new search sequence in the search sequence
bufler 121 by adding the new DLBA value and removing the
oldest read command DLBA value to the search sequence (at
1310). In this manner, the search sequence pattern length
(e.g., the number of read command DILBAs) 1s maintained
at a fixed predetermined size. The controller 102 then
applies the many-to-one mapping algorithm, in this example
a hash function and modulo operation, to the newly gener-
ated search sequence to determine a new index value (at
1312). The controller then looks for any valid DLBA data at
the memory element 906 or memory elements of the table
entry 902 associated with the index value. If there 1s no valid
DLBA to be found at that table entry 902, then the pre-fetch
process may be skipped or some other default pre-fetch
location may be used to pre-fetch data for a predicted next
read (at 1314, 1318).

If only a single valid DLBA 1s found at the table entry 902
for the resulting index value 904 (at 1314, 1316), then that
DLBA becomes the predicted next read. If more than one
valid DLBA 1s found at the table entry 902, then any of a
number of selection algorithms may be implemented (at
1320). For example, the DLBA that appears most frequently
in the table entry 902 may be selected as the predicted next
read (at 1320) or, 1n another implementation, the most recent
DLBA stored at the indexed table entry 902 may be selected.
The DLBA imnformation for the selected predicted next read
1s then converted to a start LBA by adding the DLBA value
to the start LBA of the current read command (at 1322).
Once the start LBA 1s determined, a default amount of data
starting at the start LBA, or the data length information (1f
any) stored 1n the table with the predicted next read DLBA,
may be used to search the logical-to-physical mapping table
in the memory device to execute a pre-fetch operation for the
identified data (at 1324). With the obtained physical
addresses associated with the amount of data identified by
the start logical address and length information, the control-
ler may then retrieve the data from non-volatile memory at
those addresses before receiving the next read command.

It should be noted that FIG. 13 illustrates one possible
way of combiming the prediction and update processes of
FIGS. 11-12. In other embodiments, the update process does
not need to happen before the prediction process. Also, the
prediction process of FIG. 11 1s not necessarily triggered
upon arrival of a new command, but may instead be delayed
alter receipt of a read command until the controller 102,
based on other controller operating parameters, decides to
trigger the prediction/pre-fetch process. For example, in
certain memory device configurations, a controller operating
system may need to adhere to strict power consumption
requirements and may delay triggering of a prediction/pre-
fetch process, or the update process of the read command
history database, until after the power consumption param-
cters of 1ts operating system allow it to do so.

The embodiment of FIGS. 11-13 includes conversions to
and from DLBA values of the start LBA received in the next
read command and of the retrieved DLBA of the predicted
next read, respectively. In other implementations, the start
L.BA may be used to generate the search sequence that may

US 10,649,776 B2

21

be hashed, and HPM entries may include start LBA data
rather than any DLBA data. Thus, the steps of converting
start LBA to DLBA, and vice versa, may be skipped and
start LBA used 1n other embodiments. Although the HPM
table 900 and list 700 versions of the read command history
database 117 are illustrated as stored in volatile memory,
along with the search sequence bufler 121, they may be
maintained in non-volatile memory in other embodiments.
Also, these data structures may be automatically backed up
into non-volatile memory when the memory device goes to
sleep, or at memory device shut down, 1n other embodi-
ments. Additionally, in different embodiments the data the
recetved read commands are directed to, or where the data
to be pre-fetched based on prior read commands 1s pre-
tetched from, may be stored 1n volatile memory, non-volatile
memory, or a combination of different types of memory.

As with the other versions above of predicting random
reads and pre-fetching data at the locations predicted by
prior patterns ol read commands, 11 the actual next read
command was correctly predicted, significant time savings
and 1nput/output performance may be improved. If the
predicted next read command was incorrect, then the
memory device simply retrieves the correct data for that
command. It should be noted that the process of using a hash
function or another many-to-one mapping routine and
smaller lookup table may be based on a DLBA conversion
of start LBA information in each read command, but may
also be based on just indexing start LBA or other read
command specific data.

The embodiments above have illustrated examples of
single next read predictions and pre-fetch for random data
read operations. Depending on memory device RAM or
other builer memory capabilities, and depending on the type
of workload the memory device experiences, 1t may be
advantageous to predict more than one next read command
at a ttime and to pre-fetch data for that predicted series of
read commands all at one time. This more opportunistic
prediction of upcoming random read commands may be
implemented 1n a number of ways.

In a first implementation of a multiple read command
prediction and multiple pre-fetch system and method, the
continuous list 700 version of maintaining all prior read
commands 1n the read command history database may be
used. In this embodiment, as shown 1n FIG. 14, the process
predicting and pre-fetching read data may share several
similarities with the single read prediction and pre-fetch of
data for the single predicted read of FIGS. 5 and 6. The
memory device recerves a read command (at 1402), and the
continuous list 700 of prior read commands may be updated
with the start LBA (and/or DLBA) and length information
from the recerved read command (at 1404). Also, a new
search sequence of a last predetermined number of read
commands may be generated and stored in the search
sequence buffer 121 (at 1406). Similarly, the search of the
list 700 of sequential prior read commands 1n the read
command history database 117 may proceed as described 1n
FIGS. 5-6 (at 1408), where 1 no matches are found, the
pre-fetch may be skipped (at 1410, 1416). However, with the
multiple read command prediction and pre-fetch aspects of
this embodiment, when a match 1s found, at least two next
read command history entries immediately after (more
recent 1n time than) the set of read command history entries
that matched the search sequence are used as predicted next
read commands and the data at those at least two next
locations 1s pre-fetched (at 1412, 1414).

The at least two next predicted read commands that are
retrieved may be a fixed higher number of next read com-

10

15

20

25

30

35

40

45

50

55

60

65

22

mands 1n the list 700 version of the read command history
database of FIGS. 7A and 7B or may be variable. In one
implementation, if more than one match 1s found between
the search sequence and the read command history data
base, and 1 more than two subsequent read command
history entries after any two of the matched sequences match
cach other, than the number of retrieved addresses may be
dynamically extended to the number of matching read
command history entries 702 that follow each of the two
matched sequences. Additionally, future read command pre-
dictions in this embodiment may be delayed until the
number of read commands subsequently received alter pre-
tetching data for multiple read commands equals the number
of read commands for which data was pre-fetched.

With respect to embodiments using the version of the read
command history database 117 holding a hash table, such as
the HPM table 900, different versions of the HPM table, and
of the method for predicting read commands, are contem-
plated. As shown 1n FIG. 15, a multiple read prediction HPM
table 1500 includes a limited number of M table entries 1502
indexed by an index value 1504 an including predicted read
information 1506 at each table entry 1502. The same type of
many-to-one conversion algorithm as described above may
be used to generate the limited number of table entries 1502
in this version of the HPM table 1500. However, as shown
in FI1G. 16, unlike the single read command data 1n next read
command entries of the HPM table 900 of FIG. 9, each
memory element 1506 1n the HPM table 1500 of FIG. 15
includes a predicted sequence of multiple prior read com-
mands associated with a search sequence, where the read
entries may include prior read command start LBAs 1602,
DLBAs 1604 or length information 1606 organized 1in
sequential sets that are retrieved, and the data for those
predicted reads 1s pre-fetched.

In one implementation, as indicated i FIG. 17, the
controller may implement a method of pre-fetching multiple
predicted read commands at one time, hut then discard the
multiple pre-fetched data when future reads do not match the
predicted reads. For example, when data 1s pre-fetched for
multiple predicted next reads, using the modified continuous
l1st 700 matching technique or the modified HPM table 1500
technique discussed previously, a counter may be set by the
controller equal to the number of predicted read commands
that have been pre-fetched (at 1702). The counter may be
stored 1n any available volatile memory, such as 1n internal
register of the controller or RAM. When a next read com-
mand 1s received (at 1704), the controller checks first to see
if the read command 1s directed to pre-fetched data content
and order. If the received command matches the content and
predicted read order, then the controller may provide the
pre-fetched data to the host (at 1706, 1708). I the recerved
read command doesn’t match the pre-fetched data in the
pre-fetched order, but 1s directed to some of the data that was
pre-fetched, despite not being in the expected order (at
1714), then the controller may still provide the pre-fetched
data to the host (at 1708). After providing the pre-fetched
data to the host, the read command counter 1s decremented
and, 1t the read counter value does not yet indicate that all
the pre-fetched data for the current group of predicted reads
has been processed, the process repeats and the next read
command 1s looked for (at 1710, 1712, 1704).

Alternatively, if the received read command does not
match any of the pre-fetched data, or all of the predicted read
commands have been processed, then a new pre-fetch opera-
tion of data for multiple predicted read commands 1s per-
formed (at1714,1712,1702). The option of triggering a new
pre-fetch when any one actual read command data request

US 10,649,776 B2

23

does not match any of the pre-fetched data may be modified
to perform another pre-fetch only if two or more consecutive
mismatches of pre-fetched and actual read commands are
experienced. In yet another embodiment, the triggering of
another multiple pre-fetch operation may automatically
occur 1f the order of the actual read commands does not
match the pre-fetched command order. In yet other imple-
mentations, the number of predicted read commands that are
pre-fetched may be modified, increased or decreased, based
on the number of correct pre-fetches, a percentage of correct
pre-fetches 1n the most recent pre-fetch operation, or accord-
ing to a current average of correct pre-fetches determined
over a predetermined period of time. Other variations of
changing the frequency of a multiple pre-fetch, or the
amount of multiple read commands pre-fetched, 1n response
to the success rate of the pre-fetched data matching the read
requests that come 1n, are contemplated.

An aspect of predicting read commands and pre-fetching
the data from non-volatile memory for those predicted
commands 1s the power usage and efliciency. Predicting and
pre-fetching data for read commands may provide for sig-
nificant performance benefits when the predictions are cor-
rect, but may lead to higher power usage. This may be
particularly true when multiple read commands are pre-
dicted and pre-fetched at the same time as discussed with
respect to FIGS. 14-17. One method and system for avoiding,
at least some wasted pre-fetch operations and potentially
improving on the success rate of pre-fetched data matching
the actual later received read commands 1s applicable to the
many-to-one mapping versions using hash tables discussed
previously.

As already noted with respect to using a limited size hash
table such as HPM tables 900 and 1500, the relatively fast
look up time of predicted read commands using the hash
function as compared to a potentially lengthy parsing of a
list 700 of all read command history 1s an attractive feature.
However, one tradeoft 1s that the limited size HPM table
may lead to multiple search sequence patterns mapping to a
same table entry 902 and the uncertainty of whether the
predicted next read entry 1n a memory element 906 in that
table entry 902 1s for one search sequence or another. One
mechanism for potentially increasing the likelihood of
selecting the correct next read prediction from a table entry
mapped to more than one search sequence 1s to add a second
layer of read prediction identification in the form of a
uniqueness calculation.

As 1illustrated 1mn FIG. 18, one such type of uniqueness
calculation 1s a cyclic redundancy check (CRC) calculation.
A CRC calculation may be appended as a stamp to each next
read prediction entry n a HPM table entry during table
updates. The CRC stamp may then be calculated separately
from the hash (many-to-one) calculation of the table index
value during the read prediction process. Although this CRC
“uniqueness verification” may have particular application to
pre-fetching data of longer sequences of predicted read
commands, it may be useful generally for improving the
likely success of selecting the intended next read prediction
of single read command predictions 1n the context of HPM
tables. For example, the CRC stamp may permit the con-
troller to avoid prefetching read command when the CRC
stamp stored with an entry at the indexed location does not
match the expected CRC stamp value.

The CRC stamp used depends on the number of allocated
bits for each entry of the HPM table entry. If m bits are
allocated for the checksum, then m parity check may be
applied to the pattern to produce the m parity bits of the
checksum. A common method to produce a checksum 1is

5

10

15

20

25

30

35

40

45

50

55

60

65

24

using a CRC based on a polynomial division of the pattern
with a degree m primitive polynomial, such that the
reminder of division serves as the checksum.

In FIG. 18, a read prediction using a CRC vernfication 1s
shown. When a read command 1s recerved (at 1802), the start
LBA in the read command may be converted to a DLBA
value (at 1804) 1n the manner described previously. In other
embodiments, the start LBA may be used without calcula-
tion and use of a DLBA. A new search sequence 1s generated
(at 1806) 1n the search sequence builer 121 by adding in the
received read command data (here the calculated DLBA).
The controller then creates an 1ndex value using a many-to-
one mapping function such as a hash (at 1808) and sepa-
rately performs a CRC calculation on the search sequence
(pre-hash) (at 1810). The index value 1s used to select the
table entry 1n the HPM table and a next read command entry
in the table entry 1s chosen, for example the most recent next
read command entry. Additionally, a CRC stamp previously
stored 1 the selected next read entry 1s retrieved and
compared with the CRC calculation made on the search
sequence (at 1812).

Assuming that the search sequence originally associated
with the selected next read command entry 1n the table 1s the
same as the current search sequence, the CRC calculation
and previously stored CRC should match, in which case the
next read command data (DLBA, start LBA and potentially
command length information) may be used to proceed with
a pre-fetch operation (at 1814, 1818). I, on the other hand,
the current search sequence CRC stamp does not match the
CRC stamp stored with the next read command entry 1n a
memory element 906, then 1t 1s likely that the next read
command entry 1s directed to a diflerent search sequence that
has a same index value. Thus, 1f the CRC information does
not match, then the controller may prevent the pre-fetch
from moving forward on the memory element 906 contain-
ing this next read entry as the next read command entry
would likely not be the correct predicted next read for the
search sequence (at 1814, 1816).

An example of the update procedure for adding the CRC
stamp 1 an HPM table embodiment i1s shown i FIG. 19.
The update for an imcoming command preferably occurs
prior to the read prediction because, as explained previously,
the prior search sequence and/or prior index value mapping
made to predict the current read command may be used to
store the actual received command before the search
sequence and/or index value of the search sequence are
overwritten with the actual read command. During the
update phase, the read command that 1s received (at 1902)
may be converted to a DLBA value (at 1904) for storage at
the appropriate table entry on the HPM table. The appro-
priate table entry for this read command 1s the last calculated
index value for the search sequence currently 1n the search
sequence buffer 121. If the index value of that search
sequence 1s still available, then the controller may use that
to directly i1dentity the correct table entry 1n which to store
the new read command DLBA or other data of that read
command. Otherwise, the controller 102 may recalculate the
index value from the search sequence still stored in the
search sequence bufler (at 1906, 1910). In addition to
retrieving or recalculating the index value to identily the
correct HPM table entry to update, in this embodiment a
CRC calculation 1s also made on the search sequence to
generate a CRC stamp that i1s then stored in the next read
command entry in the identified HPM table entry (at 1906,
1908). As already described with respect to FIG. 18, the
CRC stamp acts as a unique search sequence verification
check upon read command prediction. In one embodiment,

US 10,649,776 B2

25

a CRC stamp 1s calculated and stored for each element 906,

1506 of the each indexed table entry 902, 1502 of the HPM
table 900, 1500. Thus, 1f there are 5 different elements 906,
1506 containing next read commands located at a given
table entry (where the calculated index value 904, 1504 1s
the same for 5 different search sequences), then a unique
CRC value 1s stored 1n each of the 5 different elements 906,
1506. In this manner, the controller may skip any pre-fetch
if no stored CRC of any element 906, 1506 matches the CRC
of the current search sequence. Also, the controller may
parse the CRC stamps of each element 1n a table entry
corresponding to the determined index value and only
pre-fetch the data associated with the element 906, 1506
having a CRC that matches the CRC of the current search
sequence 1n order to improve the accuracy of the prediction.

In the present application, semiconductor memory
devices such as those described 1n the present application
may include volatile memory devices, such as dynamic
random access memory (“DRAM”) or static random access
memory (“SRAM™) devices, non-volatile memory devices,
such as resistive random access memory (“ReRAM”), elec-
trically erasable programmable read only memory (“EE-
PROM™), flash memory (which can also be considered a
subset of EEPROM), ferroelectric random access memory
(“FRAM?”), and magnetoresistive random access memory
(“MRAM”), and other semiconductor elements capable of
storing information. Each type of memory device may have
different configurations. For example, tlash memory devices
may be configured in a NAND or a NOR configuration.

The memory devices can be formed from passive and/or
active elements, in any combinations. By way of non-
limiting example, passive semiconductor memory elements
include ReRAM device elements, which 1n some embodi-
ments mclude a resistivity switching storage element, such
as an anti-fuse, phase change material, etc., and optionally a
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele-
ments include EEPROM and tlash memory device elements,
which 1n some embodiments include elements containing a
charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric matenal.

Multiple memory elements may be configured so that they
are connected 1n series or so that each element 1s 1ndividu-
ally accessible. By way of non-limiting example, flash
memory devices in a NAND configuration (NAND
memory) typically contain memory elements connected in
series. A NAND memory array may be configured so that the
array 1s composed of multiple strings of memory 1n which a
string 1s composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively,
memory elements may be configured so that each element 1s
individually accessible, e.g., a NOR memory array. NAND
and NOR memory configurations are exemplary, and
memory elements may be otherwise configured.

The semiconductor memory elements located within and/
or over a substrate may be arranged 1n two or three dimen-
sions, such as a two-dimensional memory structure or a
three-dimensional memory structure.

In a two dimensional memory structure, the semiconduc-
tor memory elements are arranged 1n a single plane or a
single memory device level. Typically, 1n a two-dimensional
memory structure, memory elements are arranged 1n a plane
(e.g., 1n an x-Z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a waler over or in
which the layer of the memory elements are formed or 1t
may be a carrier substrate that i1s attached to the memory

10

15

20

25

30

35

40

45

50

55

60

65

26

clements after they are formed. As a non-limiting example,
the substrate may include a semiconductor such as silicon.

The memory elements may be arranged 1n the single
memory device level m an ordered array, such as i a
plurality of rows and/or columns. However, the memory
clements may be arrayed in non-regular or non-orthogonal
configurations. The memory elements may each have two or
more electrodes or contact lines, such as bit lines and word
lines.

A three-dimensional memory array 1s arranged so that
memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (1.e., 1n the X, v and z directions, where the y
direction 1s substantially perpendicular and the x and z
directions are substantially parallel to the major surface of
the substrate).

As a non-limiting example, a three-dimensional memory
structure may be vertically arranged as a stack of multiple
two dimensional memory device levels. As another non-
limiting example, a three-dimensional memory array may be
arranged as multiple vertical columns (e.g., columns extend-
ing substantially perpendicular to the major surface of the
substrate, 1.¢., 1 the y direction) with each column having
multiple memory elements 1 each column. The columns
may be arranged 1n a two dimensional configuration, e.g., in
an x-z plane, resulting 1n a three dimensional arrangement of
memory c¢lements with elements on multiple vertically
stacked memory planes. Other configurations of memory
clements 1n three dimensions can also constitute a three-
dimensional memory array.

By way of non-limiting example, 1n a three dimensional
NAND memory array, the memory elements may be coupled
to form a NAND string within a single horizontal (e.g., x-z)
memory device levels. Alternatively, the memory elements
may be coupled to form a vertical NAND string that
traverses across multiple horizontal memory device levels.
Other three dimensional configurations can be envisioned
wherein some NAND strings contain memory elements 1n a
single memory level while other strings contain memory
clements which span through multiple memory levels. Three
dimensional memory arrays may also be designed 1n a NOR
configuration and 1n a ReRAM configuration.

Typically, in a monolithic three dimensional memory
array, one or more memory device levels are formed above
a single substrate. Optionally, the monolithic three-dimen-
sional memory array may also have one or more memory
layers at least partially within the single substrate. As a
non-limiting example, the substrate may include a semicon-
ductor such as silicon. In a monolithic three-dimensional
array, the layers constituting each memory device level of
the array are typically formed on the layers of the underlying,
memory device levels of the array. However, layers of
adjacent memory device levels of a monolithic three-dimen-
sional memory array may be shared or have intervening
layers between memory device levels.

Then again, two-dimensional arrays may be formed sepa-
rately and then packaged together to form a non-monolithic
memory device having multiple layers of memory. For
example, non-monolithic stacked memories can be con-
structed by forming memory levels on separate substrates
and then stacking the memory levels atop each other. The
substrates may be thinned or removed from the memory
device levels before stacking, but as the memory device
levels are mnitially formed over separate substrates, the
resulting memory arrays are not monolithic three dimen-
sional memory arrays. Further, multiple two dimensional
memory arrays or three dimensional memory arrays (mono-

US 10,649,776 B2

27

lithic or non-monolithic) may be formed on separate chips
and then packaged together to form a stacked-chip memory
device.

Associated circuitry 1s typically required for operation of
the memory elements and for communication with the 5
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate 10
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip
and/or on the same substrate as the memory elements.

One of skill 1n the art will recognize that this invention 1s
not limited to the two-dimensional and three-dimensional 15
exemplary structures described but cover all relevant
memory structures within the spirit and scope of the inven-
tion as described herein and as understood by one of skill in
the art.

Methods and systems have been disclosed for predicting 20
random read mode data where consecutive read commands
are directed to logical addresses that are not contiguous.
Multiple solutions for searching for patterns of read com-
mands 1n historical read command information are pre-
sented. The systems and methods disclosed may allow 25
pre-fetching of read command data with improved success
rates, and thus overall improvement of input/output opera-
tions per second (IOPS) and average operation latency, for
a non-volatile memory system.

It 1s mntended that the foregoing detailed description be 30
understood as an 1llustration of selected forms that the
invention can take and not as a definition of the invention.

It 1s only the following claims, including all equivalents, that
are intended to define the scope of the claimed invention.
Finally, 1t should be noted that any aspect of any of the 35
preferred embodiments described herein can be used alone

or 1n combination with one another.

We claim:
1. A memory device comprising: 40
a first memory;
a second memory comprising;
a search sequence bufler; and
a prior read command data structure having a plurality of
entries representing a read command history of the 45
memory device; and
a controller in communication with the first memory and
the second memory, the controller configured to:
receive a current read command comprising read com-
mand data including a start logical block address 50
(LBA) and a data length, wherein the start LBA of
the current read command 1s discontiguous with an
address range associated with a last read command
recetved prior to the current read command;
generate a search sequence in the search sequence 55
bufler based on at least the current read command,
wherein the search sequence comprises the current
read command and at least one read command
recerved prior to the current read command;
calculate an 1ndex value based on the search sequence; 60
retrieve, from an entry in the prior read command data
structure 1ndexed by the calculated index value,
address data for a sequence of historical next read
commands with the calculated index value; and
pre-fetch data for the sequence of historical next read 65
commands from the first memory to the second
memory based on the retrieved address data.

28

2. The memory device of claim 1, wherein:

the prior read command data structure comprises only a
predetermined number of entries that are each mndexed
with a respective index value within a predetermined
range of index values.

3. The memory device of claim 1, wherein:

the first memory comprises non-volatile memory; and

the second memory comprises volatile memory.

4. The memory device of claim 3, wherein the non-
volatile memory comprises a substrate formed with a three-
dimensional memory structure.

5. The memory device of claim 1, wherein the search
sequence Comprises:

the start LBA of the current read command; and

a respective start LBA. of each of a predetermined num-

ber of prior read commands arranged chronologically
in order of read command receipt at the controller.
6. The memory device of claim 1, wherein:
the search sequence comprises a list, arranged chrono-
logically by time of read receipt at the controller, of
differential logical block address (DLBA) information
for the current read command and each other of a
predetermined number of prior read commands; and

cach DLBA comprises a difference between a start LBA
of a respective read command and a start LBA of a last
read command received prior to the respective read
command.

7. The memory device of claim 1, further comprising a
read command counter, wherein the controller, to pre-fetch
the data for the sequence of historical next read commands,
1s further configured to reset the read command counter
equal to a number of historical next read commands 1n the
sequence of historical next read commands associated with
the search sequence that have been pre-fetched.

8. The memory device of claim 7, wherein the controller
1s further configured to, responsive to a next read command
being received after pre-fetching the sequence of historical
next read commands associated with the search sequence:

determine whether the received next read command 1s

directed to pre-fetched data for one of the sequence of
historical next read commands associated with the
search sequence; and

responsive to the received next read command not being

directed to the pre-fetched data, initiate a new pre-fetch
operation for a new sequence of historical next read
commands associated with a new search sequence.

9. The memory device of claim 8, wherein the controller
1s Turther configured to:

responsive to the received next read command being

directed to the pre-fetched data, provide the pre-fetched
data associated with the received next read command to
a host and change a value of the read command counter;
and

responsive to the value of the read command counter

indicating that all of the pre-fetched data for the
sequence ol historical next read commands associated
with the search sequence have been processed, initiate
the new pre-fetch operation for the new sequence of
historical next read commands associated with the new
search sequence.

10. A method for predicting multiple random read com-
mands, the method comprising:

recerving, at a memory device, a current read command

for data located at a starting address discontiguous with
an address range associated with a last read command
received prior to the current read command;

US 10,649,776 B2

29

generating, with a controller of the memory device, a
search sequence comprising a predetermined plurality
of prior read commands 1ncluding at least the current
read command and the last read command, wherein
generating the search sequence comprises storing a

start logical block address (LBA) for each of the

predetermined plurality of prior read commands,
arranged chronologically in order of read command
receipt at the controller, 1n a search sequence buller in
the memory device;
calculating, with the controller, based on the search
sequence, an index value within a predetermined range
of index values, the calculated index value representa-
tive of the search sequence, wherein calculating the
index value comprises:
applying a value of the search sequence as mput for a
many-to-one mapping operation and,
processing a result of the many-to-one mapping
operation with a modulo operation having an
output limited to index values in the predeter-
mined range ol index values;
retrieving, from an entry in a prior read command data
structure stored 1n a first memory of the memory device
and 1indexed by the calculated index value, data repre-
sentative ol a predetermined plurality of historical next
read commands associated with the calculated index
value; and
pre-fetching data for each of the predetermined plurality
of historical next read commands from a second
memory of the memory device to the first memory of
the memory device based on the retrieved data repre-
sentative of the predetermined plurality of historical
next read commands associated with the calculated
index value.
11. The method of claim 10, wherein many-to-one map-

ping operation comprises a hash function.

12. The method of claim 10, wherein:
generating the search sequence comprises storing a dif-
ferential logical block address (DLBA) for each of the
predetermined plurality of prior read commands,
arranged chronologically 1in order of read command
receipt at the controller, in a search sequence butler 1n
the memory device, wherein each DLBA comprises a
difference between a start logical block address (LBA)
of a respective read command and a start LBA of a last
read command recerved prior to the respective read
command; and
calculating the index value comprises:
applying a value of the search sequence as mput for a
many-to-one mapping operation; and
processing a result of the many-to-one mapping opera-
tion with a modulo operation having an output
limited to index values 1n the predetermined range of

index values.
13. The method of claim 12, further comprising the

controller, after pre-fetching the data for each of the prede-
termined plurality of historical next read commands:

receiving a next read command; and

responsive to the next read command not g directed to the
pre-fetched data, imtiating a new pre-fetch operation
for a new predetermined plurality of historical next
read commands associated with a new search sequence.

14. The method of claim 13, further comprising the

controller:

responsive to the recerved next read command being
directed to the pre-fetched data:

10

15

20

25

30

35

40

45

50

55

60

65

30

providing the pre-fetched data associated with the
recetved next read command to a host; and
changing a value of a read command counter 1n the first
memory, the read command counter representative
of a number of the sequence of historical read
commands that have been processed; and
responsive to the value of the read command counter
indicating that all of the pre-fetched data for the pre-
determined plurality of historical next read commands
associated with the search sequence has been pro-
cessed, mitiating the new pre-fetch operation for the
new predetermined plurality of historical next read
commands associated with the new search sequence.
15. The method of claim 10, further comprising the

controller:

receiving next read commands; and

responsive to an order of the next read commands not
matching an order of the pre-fetched data for the
plurality of historical next read commands, mnitiating a
new pre-fetch operation for a new predetermined plu-
rality of historical next read commands.

16. The method of claam 10, further comprising the

controller, after pre-fetching the data for each of the prede-
termined plurality of historical next read commands:

recerving next read commands; and
responsive to at least two consecutive next read com-
mands not matching any of the pre-fetched data:
discarding the pre-fetched data; and
initiating a new pre-fetch operation for a new prede-
termined plurality of historical next read commands
associated with a new search sequence.
17. The method of claim 10, further comprising:
calculating, with the controller, based on the search
sequence, a uniqueness value for the search sequence;
and
retrieving the data representative of the predetermined
plurality of historical next read commands associated
with the calculated index value only responsive to the
calculated uniqueness value matching a stored umique-
ness value in the entry of the prior read command data
structure 1ndexed by the calculated index value.
18. The method of claim 17, wherein:
calculating the index value comprises applying a hash
function to the search sequence; and
calculating the uniqueness value comprises applying a
cyclic redundancy check function to the search
sequence.
19. A memory device comprising:
a first memory;
a second memory comprising:
a search sequence bufler; and
a prior read command data structure having a plurality
of entries representing a read command history of the
memory device;
means for receiving a current read command comprising
read command data including a start logical block
address (LBA) and a data length, wherein the start LBA
of the current read command 1s discontiguous with an
address range associated with a last read command
received prior to the current read command;
means for generating a search sequence in the search
sequence buller based on at least the current read
command, wherein the search sequence comprises the
current read command and at least one read command
received prior to the current read command;
means for calculating an index value based on the search
sequence;

US 10,649,776 B2
31

means for retrieving from an entry of a prior read com-
mand data structure indexed by the calculated index
value address data for a sequence of historical next read
commands with the calculated index value; and

means for pre-fetching data for the sequence of historical 5
next read commands from the first memory to the
second memory based on the retrieved address data.

¥ ¥ e ¥ ¥

32

	Front Page
	Drawings
	Specification
	Claims

