12 United States Patent

Yasin et al.

US0106496838B1

10) Patent No.: US 10,649,688 B1
45) Date of Patent: May 12, 2020

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

PRECISE LONGITUDINAL MONITORING
OF MEMORY OPERATIONS

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Ahmad Yasin, Haifa (IL); Michael
Chynoweth, Placitas, NM (US);
Rajshree Chabukswar, Sunnyvale, CA

(US); Muhammad Taher, Umm Fl

Fahm (IL)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 9 days.

Appl. No.: 16/177,642
Filed: Nov. 1, 2018
Int. CI.
GO6F 3/06 (2006.01)
Gool 11/34 (2006.01)
U.S. CL
CPC GO6F 3/0656 (2013.01); GO6L 3/0604
(2013.01); GO6F 3/0653 (2013.01); GO6F
3/0673 (2013.01); GO6F 11/3466 (2013.01)
Field of Classification Search
None
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
8,037,465 B2* 10/2011 Tiancoocoevvvvvinnnnnn, GO6F 8/45
717/131
9,304,811 B2* 4/2016 Yaoccoovvvvinninnnnn. GO6F 9/5038

2016/0179541 Al* 6/2016 Gramunt et al. ... GO6F 11/3024

712/208

OTHER PUBLICATTIONS

Ayers, Grant, et al., “Memory Hierarchy for Web Search,” In High
Performance Computer Architecture (HPCA), IEEE International
Symposium on High Performance Computer Architecture (HPCA),

Vienna, pp. 643-656, 2018.

Yasin, A., “A Top-Down Method for Performance Analysis and
Counters Architecture,” International Symposium for Perfromance
Analysis of System and Software (ISPASS), v1.02, 10 pages, 2016.
Dean, Jefirey, et al., “ProfileMe: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors,” MICRO, 12 pages,
Dec. 1997,

Shimpi, Anand Lal, “AMD’s Phenom II X4 965 Black Edition,”
AnandTech, http://www.anandtech.com/show/2819/6, 9 pages, Aug.
13, 2009.

Gwennap, L. “Server Processor Competition Heats Up,” p. 4, 2017.

* cited by examiner

Primary Examiner — Nicholas J Simonett
(74) Attorney, Agent, or Firm — Lowenstemn Sandler LLP

(57) ABSTRACT

A processor includes a memory subsystem having a first
memory subunit that includes a status register and an
execution engine unit coupled to the memory subsystem.
The execution engine unit 1s to: randomly select a load
operation to monitor; determine a re-order bufler identifier
of the load operation; and transmit the re-order builler
identifier to the memory subsystem. Responsive to receipt of
the re-order buller 1dentifier, the first memory subunit stores
a piece of information, related to a status of the load
operation, in the status register. Responsive to detection of
retirement of the load operation, the first memory subunit 1s
to store the piece of information from the status register into
a particular field of a record of a memory bufler, wherein the
particular field 1s associated with the first memory subunit.

22 Claims, 12 Drawing Sheets

i
Randomiy select 3 load operation to monttor. |
i

:

1heterming a re-oroer tutter denfitar {RGH !D}J

_______________________ —

{ Tramsmit the RGE D by memory sulisysism, l

530~

Sar Siore, 1 & staius register by memnry .
1= . ap

"N | stubiit(s), a piecs of information related fo o |
status of the load operalion.

l

225~
b

‘L """"""""""" 5

N response o dispatch of inad oparation Tor
axecution, stal incrermeniing insfrucion
lalehcy counter assaciaied with OB 0,

¥

Detact g write back 1o ROB of ihe load
eReration rom e mamory subhaysiem.

1

| Siop 2 counter value of the insiruction latency
L pounter in resooiiss o the wiite back ic ROB
| from memory stibsystem.

530‘“\ Detect retrernent of the wean operation.

"""""""""""" [

Store, i response io detection ofthe |
5B0-~, revvamient, e piece of inforamation from each §
- atatus register, the data access addiess, and

o~

the counter valug into corresponding fields of 23
L
recard of ineimory buffer,

_______________________ I

o U““xh Software reads oud senes of memory buffer
recoras as performantce monitoning cats.

~alriove cata access adoress of
Inac opetation.

L Dl

]
e e e e 1

]

]

1

]

]

1

.]

*]

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii "
]

1

]

]

1

]

]

1

]

SIHELG

dyil
08y

SIHEIG

Vit
§238

o SRS

US 10,649,688 Bl

. b ke, ol . ke, ol . ke, ol e ke, ol e ke, e e ke, ol e ke, e
P A R R A R R S R R N R R R R R g A

AR
HUngng
AJOWIBIN 1841

doil
HURGNG
AIOLUBIY pUOSaS

JACLL
HUNGNS
ASOLISIA it

Ol NFZ]
AJOLIBI HUNGNS

AIOLURIAL UIN

0l1
USISASONG

AOUWIBIN

PR S SU SR SR T MU SO S S A SO T SO SO SN S SUPE T S SO TR T SUR SO T S SU SO S SN SU SO S SN SO S SN SO S SO SO TR S SUJ SO T SN S SO S S S S

T S -

Sheet 1 of 12

I o GL1 {s)picosy
4! UOW 1S

APOTORMY || e e

sapng AowBy

May 12, 2020

(& L % % % & N | [8 & 8 & L R K}

(g0Y) Jeung BNPBLOS
1B0IC-3) poiiufy
.. i)

0GT un eubuz uopnnaxy UMY PUS U0

B R R L U U R R e g A e g U S s U U e R U R R R R R S R R R R R R R L R R R L N U U R N R g g R L U g U U I R S R R S R R S R L N S U R R U U R U R R N S g

201 8307 J0838004d

U.S. Patent

o

US 10,649,688 Bl

Sheet 2 of 12

h-ﬂ...nﬂ...nﬂhu.......nﬂ#n.ﬂhu....#.qﬂ#.-...nﬂ....#\ﬂ...nﬂﬂﬂ.qnﬂ#nﬂhq...-....uﬂ#nﬂhu...-k.qﬂ#.-...-ﬂ...-kuﬂ...nﬂ* AR R e I
: "1.._...“_...-_._._-.__.._. _u.n.-.._..-_L.r_-__-_-_-__- » R

.__.-.q-.__...._.. R R R R | -.__.1.._.- e .q.q-...-........n...-.__.. n-.-.--n-..
) __.u_-n___.u.-_L.__-_ T T .._.L.._-_-_-_.-_L._._._-_.._._-_.._r_-__._-_.-_ H_-_L__.n_-_.-_._.-

L e e & S e e) ﬁ:

dp oy e il e e iy e e e e e

ll‘i.l.ii'li'll#l“l-iqiuil

T T I o e O e e e

R

T e T W W ke e A W W T il e i o o b W W i B W d b b i el e i W W b e W W i i b o e b i W W b i i e bl e O o e O b o e W i i e o O e e e e b W R o e W e b i R
S T T T T T T T T T T ..qq&#&&t&&+#kt}..._..._..a.._..._..._.4.........4....4.4.._..4.._.._......4...............4.._......_..4................4.........4.._......_..._....4.4....4........._..._......_..._..._..4....................-_.._......_..4.._..4.4.................4.4....4.._.............................._..._..._..4.4....._.........4.4.................._..._......_..._..._......4....4........._..._.....4.._.....4###&#k##&&#&###k#&###&#

....|. - ...-..._.n..l..-

F o o

- . . .
e v ks l'l-. .l.ll‘ []
o B N AN R AR o AR et
P EAC R o i Ol A
R N I N NN
._..__.'.-.1....... Iq.-.1:........l.-..__:.I.rqi
" ...-.l‘.lu __.III o 1.!.-.4..4. 4!.‘#}.. e
o LT T T .. : r ... LT - T T r T P
. B e L. = M m wom Mmoo m o,
L] et FRTR TR TR LICI ST SR IR SR a7 aTaTe IR IR JE Ot SN I O O A a7 aTe e e T +aT e e a T EIEIL IR0 L0 20 J0 IR0 6 00 26 ON BE
gt e T . #rar.q.. el e—tia.i.qr.qr " T TR r.__..-.___L-i.__..-.._..—....i.-rth-....-_-) JEN ISR N .4r.__.1.___+.-_i.-.¢.._... T 4
. -.....-.. ek ...-.._... T T xa e koA ",..-..r ' LRI S
. . !, . .

i U PUt P O ot - -
o W .-.‘.... LI .-.-.-...r_-..-.-1.—.1.7.1.7.1.7.1.1.1.

L}
i
.
L]
I
=

oaF] e e Lo

"
.
L
r
[
oo
[]
-
i
L]

s
™
L
I
-
n
»
r

-
[]
3

I . . -
P - s

T T T e .r”:“!”.r“n”m -.“.-Hllflut...n _..”-_._.hn
Fh Rk FEEE F]
r.._.1 + -.-.... et L -.-.... _.....

-
3

3
.

k|
i

-
[
3
'
-'h-
"

e
i
T
ma

"
-
-

Sy

Yt i
L
THTa T

e
.

e
.

RN

T

[} F]
" e .4.... N '.-... o
A g A N o B
LU |u..."_".._..

L]
F
[
[

r
Ll o RN]

L

n
=

i.I

NN

-
-
e
P
-k
= Tala

[

* -
e

L

NN

[

i

.._....__-_...t.r._...-.t”..r._.. ._._H.q”tu o .
rE -
L] ok o F . ' -

'
.
L
.

.I-. * i.l

[
.:

T R
R
A o it

b'l
=
.
R
-

L]

Tu

.
L
L]

.-.I__.q.l.._-.-.-.ql._.ll._.1 II.___l.lu. [
" 2T)
e OO IONHE T
CwTa e ..i_-rttufrrq.....n.._,._.ﬂ_ CaChp

a
=

r
r

L]

-

-l
I'l.bl.

PN
E]

o

-
3
n

*l‘
.
e i S g

.-
L
- -
.

EY

r

o
=

-
3
"
ax

L

-
l'l'##-llllllll.llllllqldrrri

[
-

- |.. (- ...r - =1
oy " -..... ' .-_-_ .-..-. .-_.... ' .r.w ¥ .-_“l i

] L b g T
Pl .r Mt

)
.
.

HE &
:
PR LS X

M
-
-

.

-

e
.
-
T
r

. l.- N
k1
-Iﬁi
o
4
L]
.
.
'
.
[et
P
u
B
- '
) LI]
TR e
| J
I‘rl"
h
I".‘
1
.
L]

‘FF AR ETEE S F FaEE
N
N

ax
r

[]
-

3
-

-
L]

o

-

L -
P

ok oa
I'I*I*
.
-
.

L]
-
L4

e
)
o

-
. -

.
*
¥
r-
A
&
.
. -
L]
-
q.

.
q.

3

'
[
R
1

'
.
-
-
LN

r
5
.

,..n..“ﬁ.“..“r AN
P .- .
- ok .

o
'
-
el
-
'-l
L |
l.“‘.
e
b“
B
b":r
a r
l b
bti. »
'
1
K

L]
[]
[
L]
r
l
[

"
.
'
n
PN
-
.
e
e
'
L

b

r

- R
- - -

- - .-.,-
) R

L t""‘r L

=T

r

- 1 L] tl*b*kl []
ax

CR - 0 r . -
e s o o m oy ey oy

.
S
L T T W T Y
L R R

-
3
r

T om oy -

Ly
1

»
=

r
L]

SR

1
1
¥
-
LA
-
.

-
Ll

-
|]
4k
1 r_
"
-
- A
N
-
S ™
e
.
T
.
r'y's

May 12, 2020

-

-
X

v’ ‘?‘-

L
a

"
1
T

-
L]
o W

. .:;-";.'...

X
N
.

1
-

-

q-l.
"

) 4
[B}
.

‘J
T

,
i
4
o

. '.-g-._.

I__..-u..l ql -.q_..ll.-.l ll.__.

XA .*_q_.._._-**

AL i e

[N T 1] -
|....l._._.r.-...I._._:...-_1.._.n
SRRl a3 Rl

o .
."....-_..__ .un.._.... 1..._._.--_.-_.-. -". 11.1 _-...

»

_ram _i_i'nr-?-‘-:*- ..

ik
.
-

-
T
r

.
[
-
L]

ST
L e g
PN B
-
T

- .
- L]
[Wt S Tk Sl il Sl S el)
P
-
A
-
- I..I-
1

L]
-

e
e
-

i

o
_,;;...
e
'*'b-:-.

PRI
PN
'I'.:;l_ :
. LT
C Tt
¥
::l‘:_ll't
. -
s
-

F

3
L.
-

L J
St

4 A
L

]
-

|9 0= _
%0=HOLIMS AL 28SC

e wra"h .

E
2
o

5
L)
Pt

.
e e
JERR

L

-

S o S
P

,.J.-;L-'---J-J-n
-
. .
T
LN
T

1
[}
-
- r
"

+ & & F AL EE

LT A
..-..r [Fin i

Pl
......._q.___.__..___h

o

Ll
"
"

[ia i
.
. .
L r

[l]
o

-
AL

L]
L

T N o

+ i i K

F
L]

I -l--#"lr
._ |.-_ - 0
I'!'l'll_#_-ll‘i--i--l-q a4 A
-
.
-

3
.

ot
'_.-:r.."‘..*::' :

i

)

e

- :,,

N N N N N N N N N N N N N N N N N O N N N N N N O N N N N N N N N N N N N N N N N N NN N

.
¥
-

L]

-
[il Nl T S
- om o o=
3

"

Ll

L
LN N N N Y

F
ETE R R
B

L
'-l‘
[l

L)

i
.' e r e

b Frr ke bk r rbr r rP bk ko hFrlrrlrrlrlr el el ik kFirFhl e Fhl b FrFSy il kbR Fl Rl SRR
-

:_.-l
»

r
.-.r
I

- F

-...
-.!..-.i.l.-_lq.-.!lm
r

a.
.__.....J...
LM N

i
L]
H

1141.__._:

i
-.I.

l-:r'-'

"sit » g

]
L]
.

r

L]
1

1
L]

1'
J-
=
i
Y
'rl
-F
. -
1
:..
1‘
l'
&
»
e
r
r

Y J=HILIMS JLUW

- * " .-.
l.la-l.l.-."tiflul.}l..‘i} ."-I...
. 'l..-.l'l..h -
. -

] . LT

»
¥
L]
L]
L]
-
Ll
T
I
»
.
'
4
L]
L]
[]
B

]
r
L]
]
L)
)
]
L
]
L]
L)
-
]
L]
]
L]
]

U.S. Patent

L
N
n
L 3
[}
r
-
L
L3
.
N
L]
L3
o
|]
v
"

......
:...-. ._...r- + .1..._. A _._.“...H .r“‘.ﬂ
L,

I T L]
EC N NN)
-. .-. ' ._...-_.-..-_1 _-..__..-..-..-..-_l _l....

w om

=l L WA %O0L = OIMO0TIE OuVYMEOL IHOLS
F=GIMOOTIE QY MNO S TIN0E (sanest) § IUILS

W
=

'
EkE
.

5
[
e

e
o

) ot
) E““
L ey O

Nﬂmm R VNP
! DL LT el

Xk e e e Rk kK R ek ke ke kK R ek

r
Ll

i

N N N N

b*b*lblbbbbl

-I
]
b
b
]
L]

-1
L]
L]
L]
L]
L]

-1
L]
L]
L]
L]
L]

..
L]
L]
L]
L]
L]

-1
L]
L]
L]
L]
L]

-1
L]
L]
L]
L]

L]

.
L3

L]
Y
b
N

r

L

'

-

‘. - .1- T . . -
i ...-.Ihlﬂl.rl.-? l.-.l...._.u_l I ._.
N L r-.T.-_.-..-..._..-.

US 10,649,688 Bl

Sheet 3 of 12

May 12, 2020

A4S
LU0

‘wetes feTe" Fofefs afea' Fafa™

U.S. Patent

- Bugipuey |

mcozamuxm.

- oF
ME: BBD 7

b

L Vit ~

_3Uf} suUoe) Bl Rt . DIF
218 RYdBIRId | Bun AoLusiy
Jun 911 Bl _

GOT {SUSISMY) UoHnDexX
e Swn || 2ot T
58000y Aoweyy | 1 (Shiun uoinoexy

m [L L SR % L o, o, e, (8 8 L] L 8 8 e 8N (L L K By X% w.‘. . vl i [L L LR % % . v, . ol v o i, ol [L8 L] - e

558 m
(Shiun 8ol JeisiDay [eoisAtd m
M % oy _
Etintalubhetetets e _ FGC (80d)

BGC (smundenpsyog 1 HUA JUBWBIRSY |

ey %ﬂ

. ZGE YU JOJR0Oy/RuiBuSy |

UM SW0UT HOIN0EXS

R R R R R R R R R L R R R S R R S R S S R R S R R R S R G R G R R S S R R S R S S R R S R G R R R R S S R S S S R S R R S S R R SR R R R R R R R S R R S S S R g

OCE

L0 UD18 4 UOHONASUL

g¢C UUN gL uononieu

HUA) pUT 1U0I4

cEE

Ve 401014

N

Lo Uy UOHRIDBIA YOURIY (0E 8400
PEE UM BUOED) LONOTNASU) 1085001
£08
He 21910 QU
rrr i i\\\\..._.;;} e _w. sl ; e i e
BLE e | s
_, — pIE - N PR | s
AU 918 7 ZIE IE ! BO% 5 713
N Ao - peay Alouiapy o 16 ;OB 1 Buppoosg | WP Lo
%mwc.mmg ofie1s synoexs ieoy sasiBoy OPeU Q E&mcmmw S0y mnoﬂ_wom fue | e /Kmm‘h,%u.ﬁ_ﬁUm

US 10,649,688 Bl

Sheet 4 of 12

May 12, 2020

U.S. Patent

rrrrrrrrrrrrrrrrrrrrrrrr

-

v old

HOW Hi8d] . e
bb é “ JCv \ MEE%EEEEEEE
viv w bospoooIsy Ko bk I
oG AouIoH R 7 7 Sl S G 9 - Fy
PR > s BUnoD ADUSIE e
-~ 4 w “\ : | |
= VA . : UCIONSL dOiS
T e AN
775 WasAsang Aowopy J/ m N m &
iiiiiiiiiiiiiiiiiii N N S, N :
| _ u 7 4 m x.\i { m b ,..,,... _________________
; | 7 b M w ﬁwm S,
w o e _ “ | ...*.u.. m mm. | m S S _ /.
w :mg | o A | j ?iiiib.iii
IR TR L B I B 7 w m | "
i I A M m m” ...,....f.
w) .“\ - “ \\. “ m u m m” WU.MWO?W wuﬂw.‘wﬁvﬁmow\m
| Qély 104G -7 dely g o vely 6O m m” AESIPEEREAN N
: P P S _m m m” HOREIRT 02 B
e R | \ j o M i m” w AR GCF Jepno)
b 3 P P—— e m m_ m m fousie usienas |
| uﬁw RIS 1 ghiy Jes mmm A1 Em_mmm w 3 b b
m smieys. g 1 m_g.ﬁm_m b smeig | Y o
N S T S A T T S Rl A -
: __ -] , | 4
S SRR B S, SN ;;w:4i;i;L m
con] SS3IPPY u
0178 o NS S— QYL ~~ DG unouyun i
pa— SN S— o m
_________ PUSET BYORD S g0 | | CRHSAQ SO |
.. V9LV ---.m-mm-w_mwmmwmﬂ_mmwm-& -
111 /;fr..{-; | !.Sm\!}a..l.itt.wll...\i..\\\..,\
——— e
0GP

U.S. Patent May 12, 2020 Sheet 5 of 12 US 10,649,688 B1

5?0""‘\
Randomiy saiect a load operalion (o monilor, |

515~

- In response to dispatch of load operation for |
- execution, starl incrementing instruction |
fatency counter associated with ROB B,

520~
Determine a re-order butfer identifier (ROB 1D},

Detect 5 write back 1o RCEH of the load
aparation from the memaory subsysiam.

Transmit the ROB D 1o mamory subsystem,

540 Store, in & status register by memory
N\ subuniifs), a plece of information related fo a
status of the ioad operation.

| Stop a counter value of the instruction latency
- counter in responise o the wrile back to RUB
| from memory subsysiem,

559"“\, Detect retiremant of the load operation.

161

Retrieve data access address of
icad operation.

Store, in response 1o detechon of the :
retirament, the piece of information from each |
status regisler, the daia access address, and (<

the courder valug into corresponding fields of a;

record of memory butler, :

50U

Scftware reads out series of memaory buiter

records as gerformance monitoring data.

US 10,649,688 Bl

Sheet 6 of 12

May 12, 2020

LT YT T YT Y] ..

A

 olg vomey || @%
mmm%m ! B4 bmwmmmmm A4 ||

NG 49
i ~H30IF I8XT

| 500 Jeinpaiog | | 209 [Jsnpews
Ny masmm _ | Bnpeyogised | | Alowepy

.................................... . —— A e B £NG
L shenD ~aitiug e IO 1D
| O Aowap

et T —— — .
~— J0S5R00id

”oe JEG
BNENY) &On SUYIETY IO |

09

NOY 520
APOOCINY | i8podag) uohonisyy

w

109 :
OUT JU0I | JBLD8jal LOnonASUl

U.S. Patent

19
L BIR(] DUy 8p0))
877 abeiols B

........ /o @ |

eol
| SSNOW/PIBOGASY

184
SBOIAS(] WILON

US 10,649,688 Bl

bel 517 §i7
O Gy 380IAS(] O} abiplig SNg
-
&
I~
— N
7 g¢/
sodeIs) Uyl |
- :
gl
—
gl
o
>
o~
>

iz
AIDLUBIN

U.S. Patent

U.S. Patent May 12, 2020 Sheet 8 of 12 US 10,649,688 B1

S
¥
v 815
e e e e - H,,f-f/ //
T T T T T T L
Prrj
M
HrOCRSSOr
810

External Graphics

- F Peripheral
Device E
550 870

US 10,649,688 Bl

Sheet 9 of 12

May 12, 2020

U.S. Patent

SIRD 1)

FEB
AJOUISIA

G516

Oyt Aoeban

OGE 10888004

bib
SBIAB(] (V]

(/6 10889304

CED

AJOUIBIA

~ (06

0L 9Did

et I i B e i e e e T |

— — — 0] s m
G2 M 7E0] m 3] | M 7207 _
wnfeidsia | N YING | wnWvs || R eIRo | 0858001 09PIA

US 10,649,688 Bl

L
.. m
T \ G201 M
B |
o _ N \ JOSSB0044 OIDMY i
s e S Y N 1)
g S
S— 4 _
m J+01 08500014 afeuy
3 (shuneeyouop snal A e N ,m
7, w M - ~ —
| 5001 m
N sondelsy pejesbaius m
~ S ;
~ N
N 0¢04
- (51108882044 BIDOIN
>
- 0107
MU JUeDY WRIsAR
- NeQ0E 810D Yoo0L 8i0)
;;;;;;;;;; Ii0T ok
JOSEB004 UCHeddy X/.. YD € UC wigisAs

U.S. Patent

US 10,649,688 Bl

Sheet 11 of 12

May 12, 2020

U.S. Patent

G8Li
M B U8

GiiL
WBPON D¢

S TAR

FINe o

FRHORUDT) UYSB)

02000 03pIA |

DLt
BOUI8NY

WALH il

a0t

m GGL1
mo‘mgemhmga

i 1
BIORUCD WYHAS || WOY 1008

Yy
J0QULICOISIU

SUIETY 7] U =0BUBIU] SN

-~

A

GO IOHURT YIE) O

iy
5107

U.S. Patent May 12, 2020

Static Memory

Network interface
Llavice

1218

Graphics Processing Unit

1222 |

Video Processing Unil

1228 |

Audio Procassing Unit

1232 |

Sheet 12 of 12

US 10,649,688 Bl

ispiay Device

Alphanumernc input
Levice

Cursor Contro!
Llevice

Liata Siorage Device

_ Computar-Readable

Signat Generation
Levice

US 10,649,688 Bl

1

PRECISE LONGITUDINAL MONITORING
OF MEMORY OPERATIONS

TECHNICAL FIELD

Embodiments of the disclosure relate generally to perfor-
mance monitoring, and more specifically, but without limi-
tation, to precise longitudinal monitoring ol memory opera-
tions.

BACKGROUND

Performance analysis 1s the foundation for characterizing,
debugging, and tuning a microarchitectural design, finding
and fixing performance bottlenecks 1n hardware and sofit-
ware, as well as locating avoidable performance 1ssues. As
the computer industry progresses, the ability to analyze the
performance of a microarchitecture and make changes to the
microarchitecture based on that analysis becomes more
complex and important.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompany-
ing drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclo-
sure to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 1s a block diagram of system microarchitecture
according to various embodiments.

FI1G. 2 1s a graph that illustrates a problem of locating load
blocks and determining penalties.

FIG. 3A 1s a block diagram illustrating microarchitecture
for a processor according to an embodiment.

FIG. 3B 1s a block diagram 1llustrating an in-order pipe-
line and a register renaming stage, out-of-order 1ssue/execu-
tion pipeline according to an embodiment.

FIG. 4 1s a block diagram 1illustrating system microarchi-
tecture and functionality of longitudinal profiling of a load
operation selected for monitoring according to an embodi-
ment.

FIG. 5 15 a flow chart of a method for precise longitudinal
monitoring of memory load operations according to various
embodiments.

FIG. 6 1s a block diagram illustrating microarchitecture
for a processor 1n accordance with one embodiment.

FIG. 7 1s a block diagram illustrating a system 1n which
an embodiment of the disclosure may be used.

FIG. 8 1s a block diagram illustrating a system in which
an embodiment of the disclosure may operate.

FIG. 9 1s a block diagram illustrating a system in which
an embodiment of the disclosure may operate.

FIG. 10 1s a block diagram illustrating a System-on-a-
Chip (SoC) according to an embodiment.

FIG. 11 1s a block diagram illustrating a SoC design
according to an embodiment.

FI1G. 12 illustrates a block diagram 1llustrating a computer
system according to an embodiment.

DETAILED DESCRIPTION

The embodiments described herein are directed to per-
formance monitoring (PertMon), also referred to as profil-
ing, ol micro-architectural design to characterize, debug,
and tune the design, find and {ix performance bottlenecks 1n
hardware and software, as well as locate avoidable pertor-

10

15

20

25

30

35

40

45

50

55

60

65

2

mance 1ssues. Performance monitoring generally seeks to
count some event (€.g., cache access) and tag that informa-
tion to particular instructions to which software can relate,
¢.g., particular memory operations performed 1n association
these 1nstructions.

In one embodiment, Precise Event Based Sampling
(PEBS) 15 a feature available to a subset of events that allows
the hardware to collect additional information very close to
the exact time the configured event overtlowed. Monitoring
based on PEBS takes an arbitrary point 1n time access and
tries to see what 1nstructions are being executed at that time
that may be contributing to a particular event. This 1s known
as vertical profiling. The present disclosure relates to hori-
zontal profiling, e.g., randomly selecting an instruction from
an instruction stream, and saving information about what
that instruction does and how other related or dependent
istructions may impact the instruction as time passes.

The disclosed microarchitecture and methods may pro-
vide performance monitoring information including stall
reasons and penalties of memory accesses, with respect to
loads 1n particular, 1n high-performance out-of-order (000)
cores. Such information can map oflending memory
accesses to the precise mstructions triggering the offending
memory accesses. This information can aid performance
engineers to optimize and tune performance of demanding
workloads on multi-core platforms. Optimization eflorts
have increased as more speedup 1s dertved from microarchi-
tecture design and software tuning.

For example, there are a number of challenges with
identifying and fixing load blocks from being forwarded
from an earlier store 1n performance monitoring technology.
It 1s dithcult to identify the exact load that i1s blocked
because the load block events tend to skid few cycles away
from the problematic load, as illustrated in FIG. 2. For
example, 1n a skid of eight cycles there can be up to 40 load
operations 1n a five-wide processor core. FIG. 2 illustrates
that the load which 1s blocked occurs three to eight nstruc-
tions before the event that i1dentifies (e.g., tags) the store
torward blocked due to skid. Skid in PEBS refers to delay
in time between stopping the processor and recording the
state information from the processor. There may be many
other load operations within the three-to-eight-instruction
window that may incur the store forward blocked penalty. It
1s therefore diflicult to 1dentify the store operation 1involved
in the load blocked case.

In order to fix the load block case, 1t may be necessary to
understand not only the location of the load that 1s blocked
but also the store that i1s responsible for the load being
blocked. It 1s dithcult to determine the cost of load block
cases such as due to a store forward, as the penalty may be
partially reliant on the latency of the store. For example, a
store that misses 1n the last level cache can push out the
blocked load until the cache line containing the store i1s
fetched from memory. There 1s a high hardware cost 1n an
implementation that aims to make all of the various load
block cases precise using traditional precise mechanisms
such as PEBS. Furthermore, non-precise performance moni-
toring and static software analysis are also msuilicient.

More specifically, non-precise events may lead to error in
detecting the correct load operation due to skid as well as
speculative accesses. The event may not be tagged to the
right instructions in such cases. Finding store forward blocks
statically 1n code 1dentifies only a subset of the cases that are
impacting performance. Software-based solutions may also
fa1l whenever a microarchitecture condition 1s 1nvolved 1n
blocking load operations, e.g., 1f some store address was not
yet resolved by the time the load operation 1s executed.

US 10,649,688 Bl

3

Turning the current load block from non-precise events into
precise events would have some added disadvantages in that
doing so may fail to account for the latency or cost of the
load block.

There are also hardware implementation costs for making
additional PEBS events. For example, various block and
latency states would have to be tracked 1n critical structures,
like 1n the re-order bufler, for micro-operations (Lops).

Simultaneous collections of several events may present
additional challenges. For example, much information may
be needed to properly analyze a performance 1ssue, such as
a load address, a data-source (e.g., L2 hit, L3 hit, and the
like), a block condition (store forward, unknown data,
unknown address) and other information (such as existence
of a lock, split, translation lookaside bufler information, and
the like). Due to shortages 1n the number of general counters,
cvent-based solutions (precise or not), mandate soltware
tools do multiple runs of the workload or counter multiplex-
ing, compromising the fidelity of the profiling data.

To resolve these challenges, the disclosed microarchitec-
ture may employ processor units that record various data for
a monitored transaction, €.g., precise longitudinal monitor-
ing of memory loads. A single transaction may be randomly
selected for monitoring. An out-of-order unit may track
istruction latency in cycles, an address generation unit
record a data load address (DL A) into a register, a data cache
unit (DCU) may track cache latency, a memory ordering
bufler (MOB) may track block conditions, and other
memory subunits may track additional information. A pro-
filing tool (e.g., a software tool) may sample and attribute
the information to particular instructions. For example, a
store-unknown-address-block bit may inform whether a load
operation at a given instruction pointer (e.g., EventingIP or
Instruction Pointer in PEBS) cannot forward from an earlier
store operation. The DLA of the load operation may help to
identify the particular offending store operation. The difler-
ence ol instruction latency and the cache latency may
determine the penalty of that block. This allows perfor-
mance-critical contentions to be identified and fixed in
soltware (e.g., by prioritizing the load operation above the
store operation). Additional sources of information and data
will be discussed.

In one embodiment, a processor may include a memory
subsystem with multiple memory subunits, each which
includes a status register. An execution engine unit may be
coupled to the memory subsystem and be adapted to:
randomly select a load operation to monitor; determine a
re-order buller 1dentifier of the load operation; and transmit
the re-order bufler identifier to the memory subsystem.
Responsive to receipt of the re-order bufler identifier, each
memory subunit of the memory subsystem may store a piece
of information, related to a status of the load operation, in 1ts
status register. Such pieces of information were just dis-
cussed by way of example. The processor may further, 1n
response to detection of the retirement of the load operation,
retrieve the pieces of information from the various status
registers and store each piece of information from corre-
sponding status registers into a particular field of a record of
a memory bufler. In one embodiment, the processor also
checks that the load operation has undergone threshold
latency 1n execution before retrieving and storing the pieces
of information into the fields of the record of the memory
butler. The particular field may be associated with a corre-
sponding memory subunit or a particular type of information
obtained from the corresponding memory subunit. Addi-
tional information may also be written into the record such
as a counter value for an instruction latency counter and a

10

15

20

25

30

35

40

45

50

55

60

65

4

data access address of the load operation. See Table 1 for a
more complete list of information that may be stored 1n a
record of the memory buller.

In various embodiments, the disclosed microarchitecture
and methods for longitudinal monitoring of memory opera-
tions may provide the exact instruction pointer (without skid
of the load operation) that 1s blocked due to the precise
nature of a load latency event. A prior1 random selection of
the load operation may help to avoid skid (or bias) from
counter overtlow until retirement 1s stopped or if multiple
uops retire 1n a given cycle.

Furthermore, the disclosed microarchitecture and meth-
ods may collect much different information for one trans-
action. In PEBS, a programmer may choose the event to
focus on and collect just this information for many instruc-
tions. If a first load operation experienced an event, results
of the PEBS monitoring may not be able to tell if another
load operation experienced that same event, or determine the
latency of the first load operation.

The disclosed microarchitecture and methods may also
identify a particular address for the instruction, so the
microarchitecture may determine what other instruction last
wrote to this address. With this information, the microarchi-
tecture may then see dependencies between instructions. For
example, the microarchitecture may include means to deter-
mine the store operation which generated the load block
situation through 1investigating the DLLA as well as addresses
of the registers that are included 1n the record of the memory
bufler.

The latencies of the load may be determined by being
integrated 1nto a load-latency {facility, where instruction
latency measures overall time including 1nstruction depen-
dencies and memory ordering checks. In one embodiment,
the load-latency facility 1s hardware that records latency of
a load and that may, as a result, estimate from where the load
1s arriving, €.g., a particular level of cache or from memory,
or the like, associated with a particular latency. Cache
latency may measure only the memory subsystem time for
serving that request. The difference between the nstruction
(e.g., load) latency and the cache latency may be useful 1n
determining memory operation blocks for which no cache
misses are involved.

Furthermore, the disclosed microarchitecture and meth-
ods may incur lower hardware implementation costs by
employment of longitudinal (as opposed to event-based)
profiling. The microarchitecture and methods may enable
tracking a single transaction at a time with distributed
recording of monitoring information. Hence, there 1s no
requirement for a per-entry state in critical processor struc-
tures, for at-retirement tagging, and/or for expensive mecha-
nisms to avoid skid.

Additionally, the disclosed microarchitecture and meth-
ods may enjoy atomicity and fidelity of the profiling data as
the information 1s coherent and relates to a particular trans-
action as an istruction 1s executed. In contrast, event-based
sampling may collect information across diflerent runs or
stitch information from different transactions due to counter
multiplexing.

FIG. 1 1s a block diagram of system microarchitecture 100
that 1s capable of precise longitudinal monitoring of memory
operations according to various embodiments. In an embodi-
ment, the system microarchitecture 100 1s a processor, a
system-on-a-chip (SoC), or other processing device, which
may be implemented on a single die (a same substrate) and
within a single semiconductor package. The system micro-
architecture 100 may be 1nstantiated as a central processing
unmt (CPU), a graphics processing umt (GPU), or the like.

US 10,649,688 Bl

S

Referring to FIG. 1, the system microarchitecture 100
may 1nclude multiple cores, of which a processor core 102
1s represented by way of explanation, and memory 110. The
processor core 102 may contribute to out-of-order (000)
processing clusters of the system microarchitecture 100. In
vartous embodiments, the processor core 102 includes a
memory bufler 114, which includes multiple performance
monitoring records 116 (e.g., memory buller records con-
taining performance monitoring data), and optional micro-
code 120 executable by the processor core 102 (or other
logic) to populate the memory bufler 114 and interface with
software. The memory bufler 114 may be computer storage
expected to be present on the processor core 102, whether
volatile or non-volatile, persistent or non-persistent, random
access memory (RAM), flash memory, or the like. In an
alternative embodiment, at least a part of the memory builer
114 15 stored 1n the ofl-chip memory 110. The processor core
102 may further include a front end unit 130 for branch
prediction, instruction cache, mstruction fetch, and that may
include a decode unit to decode fetched instructions, as will
be discussed 1n more detail with reference to FIG. 3.

With continued reference to FIG. 1, the system micro-
architecture 100 may further include an execution engine
unit 150 and a memory subsystem 170. The execution
engine unit 150 may include a number of components that
will be discussed 1n more detail with reference to FIG. 3, and
may include a unified scheduler 151, also known as a
reservation station (RS), and a retirement unit, also known
as a reorder bufler (ROB) 154. The umfied scheduler 151
may be a decentralized feature of the microarchitecture of a
CPU that allows for register renaming, and may be used by
the Tomasulo algorithm for dynamic instruction scheduling.
The ROB 154 may reorder instructions that retire into
program order, so that despite some 1nstructions being
executed out of order, data that result from their execution
1s reordered properly. Additional or diflerent execution sub-
units may also make up the execution engine unit 150.

In various embodiments, the memory subsystem 170
includes multiple memory subunits 172, including a first
memory subunit 172A, a second memory subumt 172B, a
third memory subumit 172C, and so forth until an Nth
memory subunit 172N. Each memory subunit may include
a status register (e.g., a temporal register, a scratch control
register (SCR), or the like), respectively a first status register
174A, a second status register 174B, a third status register
174C, and so forth until an Nth status register 174N. What
these memory subunits may represent will be discussed in
more detail with reference to FIGS. 2, 3A-3B, and 4. One
will appreciate that there may be more or fewer than the
number of memory subunits depicted 1n FIG. 1, as these are
illustrated merely by way of example and for purpose of
explanation.

In one embodiment, the execution engine unit 150 may be
coupled to the memory subsystem 170 and be adapted to:
randomly select a load operation to monitor; determine a
re-order buliler identifier of the load operation; and transmit
the re-order builer identifier to the memory subsystem 170.
Responsive to receipt of the re-order builer 1dentifier, each
memory subunit 172A, 1728, 172C, . . . 172N may store a
piece of mformation, related to a status of the load operation,
in 1ts status register 174A, 1748, 174C, . . . 174N, respec-
tively. The processor core 102 may further execute the
microcode 120 (or other logic) to: detect retirement of the
load operation; and, in response to detection of the retire-
ment of the load operation, store each piece of information
from corresponding status registers 174 A, 1748, 174C, . . .
174N 1nto a particular field of a record of the memory butler

10

15

20

25

30

35

40

45

50

55

60

65

6

114, ¢.g., one of the performance monitoring records 116. In
an alternative embodiment no microcode 1s executed and so
the respective memory subunits may detect retirement of the
load operation and directly store each piece of information
from corresponding status registers into the particular field
of the record of the memory builer 114.

In embodiments, the particular field of the performance
monitoring record 116 may be associated with a correspond-

ing memory subunit or a particular type of information
obtained from the corresponding memory subunit, as will be
discussed with more detaill with reference to FIGS. 4-5.
Additional information may also be written into the perfor-
mance monitoring record 116 such as a counter value for an
instruction latency counter and a data access address of the
load operation. Table 1 contains a more complete list of
information that may be stored 1n a performance monitoring
record 116 of the memory bufler 114, although additional or
different information or data may be stored in alternative
embodiments.

TABLE 1

Example Performance Monitoring Record

Group
Offset name Field name Bits Details
Ox0 Basic Record Format [7:0]
Record Size [63:48]

Ox8 Instruction Pointer EventinglP

Ox10 TSC

Ox18 Applicable Counters

0x20 Memory Access Address (DLA) DLA

0Ox28 Auxiliary Info (AUX) [3:0] DATA SRC
5][4] Lock, DTLB-miss
6] STORE_FWD_BLK
7] STORE_ADDR_BLK

Ox30 Access Latency 15:0] Imstruction Latency

0Ox34 47:32] Cache Latency

0x38 TSX Info TSX Information

The mformation or data stored within the exemplary
record of Table 1, which may be stored 1n the memory bufler
114, includes basic data and memory-related data. The basic
data may include record format and record size, the istruc-
tion pointer of the instruction (e.g. memory operation), a
time stamp counter (1SC) value, and additional applicable
counters. The memory-related fields may include an access
address (e.g., a data load address, or DLA), auxiliary infor-
mation, access latency, and other transaction information
related to Transaction Synchronization Extensions (TSX)
architecture. The auxiliary information may include data
stored 1 a scratch control register (SRC), lock data or
indications of translation lookaside bufler (DTLB) misses/
hits, whether there has been a store forward block of a load
operation (STORE_FWD_BLK), and whether there has
been an unknown store address block of a load operation
(STORE_ADDR_BLK), both of which will be discussed 1n
more detail. For example, the piece of information may be
whether the load operation i1s blocked due to an address
collision with an earlier store operation. The access latency
information, stored in access latency fields, may include a
value for imstruction latency (e.g., an istruction latency
value) and a value for cache latency (e.g., a cache latency
value). The difference between the instruction latency and
the cache latency may account for delay due to a block
event.

Accordingly, engineers may inspect latencies for different
instructions, and make comparisons between these latencies.
If engineers see higher-than-expected latencies, and corre-

e

US 10,649,688 Bl

7

late the block (BLK) bits of the auxiliary information in the
record of Table 1, then one may determine the kind of block
or instructions that may be causing the latency. Certain types
of block events may explain corresponding cases of higher
latencies, as discussed herein.

FIG. 3A 1s a block diagram illustrating microarchitecture
for a processor core 300 that implements the processing
device including heterogeneous cores 1 accordance with
one embodiment. Specifically, the processor core 300
depicts an in-order architecture core and a register renaming
logic, out-of-order 1ssue/execution logic to be included 1n a
processor according to at least one embodiment of the
disclosure. In one embodiment, the processor core 300 1s an
extension or more-detailed version of the processor core 102

of FIG. 1.

In various embodiment, the processor core 300 includes a
front end unmit 330 coupled to an execution engine unit 350,
and both are coupled to a memory unit 370. The processor
core 300 may include a reduced mstruction set computing
(RISC) core, a complex instruction set computing (CISC)
core, a very long mstruction word (VLIW) core, or a hybnid
or alternative core type. As yet another option, the processor
core 300 may include a special-purpose core, such as, for
example, a network or communication core, compression
engine, graphics core, or the like. In one embodiment, the
processor core 300 may be a multi-core processor or may be
part of a multi-processor system.

In embodiments, the front end unit 330 includes a branch
prediction unit 332 coupled to an instruction cache unit 334,
which 1s coupled to an instruction translation lookaside
bufler (TLB) 336, which 1s coupled to an instruction fetch
unit 338, which 1s coupled to a decode unit 340. The decode
unit 340 (also known as a decoder) may decode instructions,
and generate as an output one or more micro-operations,
micro-code entry points, microinstructions, other instruc-
tions, or other control signals, which are decoded from, or
which otherwise retlect, or are derived from, the original
instructions. The decoder 340 may be implemented using
various different mechanisms. Examples of suitable mecha-
nisms include, but are not limited to, look-up tables, hard-
ware 1implementations, programmable logic arrays (PLAs),
microcode read only memories (ROMSs), and the like. The
instruction cache unit 334 1s further coupled to the memory
unit 370. The decode umit 340 1s coupled to a rename/
allocator unit 352 1n the execution engine unit 350.

In embodiments, the execution engine unit 350 includes
the rename/allocator unit 352 coupled to a retirement unit
354, also known as a re-order butler (ROB), and a set of one
or more scheduler unit(s) 356. The scheduler unit(s) 356
represents any number of different schedulers, including
reservations stations (RS), central instruction window, and
the like. In one embodiment, the rename/allocator unit 352
and the scheduler unit(s) 356 may together perform the
function of the unified scheduler 151 of FIG. 1. The sched-
uler unit(s) 356 may be coupled to the physical register
file(s) unit(s) 358. Each of the physical register file(s) units
358 may represent one or more physical register files,
different ones of which store one or more different data
types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector tloating
point, etc., status (e.g., an instruction pointer that 1s the
address of the next instruction to be executed), etc. The
physical register file(s) umit(s) 358 may be overlapped by the
retirement unit 354 to 1illustrate various ways 1n which
register renaming and out-of-order execution may be imple-
mented (e.g., using a re-order buller and a retirement register

10

15

20

25

30

35

40

45

50

55

60

65

8

file(s), using a future file(s), a history bufler(s), and a
retirement register file(s); using a register maps and a pool
of registers; and the like.).

Generally, the architectural registers are visible from the
outside of a processor or from a programmer’s perspective.
The registers are not limited to any known particular type of
circuit. Various different types of registers are suitable as
long as they are capable of storing and providing data as
described herein. Examples of suitable registers include, but
are not limited to, dedicated physical registers, dynamically
allocated physical registers using register renaming, combi-
nations of dedicated and dynamically allocated physical
registers, and the like. The retirement unit 354 and the
physical register file(s) unit(s) 358 are coupled to the execu-
tion cluster(s) 360. The execution cluster(s) 360 may include
a set of one or more execution units 362 and a set of one or
more memory access units 364. The execution umts 362
may perform various operations (e.g., shiits, addition, sub-
traction, multiplication) and operate on various types of data
(e.g., scalar floating point, packed integer, packed floating
point, vector integer, vector tloating point).

While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scheduler unit(s) 356, physical register file(s)
unit(s) 358, and execution cluster(s) 360 are shown as being
possibly plural because certain embodiments create separate
pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and 1n the case of a separate memory
access pipeline, certain embodiments are implemented 1n
which only the execution cluster of this pipeline has the
memory access unit(s) 364). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
may be in-order.

The set of memory access units 364 may be coupled to the
memory unit 370, which may include a data prefetcher 380,
a data TLB umt 372 (e.g., DTLB), a data cache unit (DCU)
374, and a level 2 (L2) cache unit 376, to name a few
examples. In some embodiments the DCU 374 1s also known
as a first level data cache (L1 cache). The DCU 374 may
handle multiple outstanding cache misses and continue to
service mncoming stores and loads. It may also support
maintaining cache coherency. The data TLB unit 372 may be
a cache used to improve virtual address translation speed by
mapping virtual and physical address spaces. In one exem-
plary embodiment, the memory access units 364 may
include a load unait, a store address unit, and a store data unait,
cach of which 1s coupled to the data TLB unit 372 1n the
memory unit 370. The L2 cache unit 376 may be coupled to
one or more other levels of cache and eventually to a main
memory, €.g., the memory 110 of FIG. 1.

In one embodiment, the data prefetcher 380 speculatively
loads/prefetches data to the DCU 374 by automatically
predicting which data a program 1s about to consume.
Prefeteching may refer to transferring data stored in one
memory location of a memory hierarchy (e.g., lower level
caches or memory) to a higher-level memory location that 1s
closer (e.g., yields lower access latency) to the processor
betore the data 1s actually demanded by the processor. More
specifically, prefetching may refer to the early retrieval of
data from one of the lower level caches/memory to a data

US 10,649,688 Bl

9

cache and/or prefetch butler before the processor issues a
demand for the specific data being returned.

The processor core 300 may support one or more mnstruc-
tions sets (e.g., the x86 mstruction set (with some extensions
that have been added with newer versions); the MIPS

instruction set of M. 11t.;

PS Technologies of Sunnyvale, Ca
the ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so 1n a variety of ways including
time sliced multithreading, simultaneous multithreading,
(where a single physical core provides a logical core for each
of the threads that physical core 1s simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as 1n the Intel® Hyperthreading technology).

While register renaming 1s described in the context of
out-of-order execution, 1t should be understood that register
renaming may be used 1n an in-order architecture as well.
While the 1llustrated embodiment of the processor core 300
also includes a separate 1nstruction and data cache units and
a shared L2 cache unit, alternative embodiments may have
a single 1ternal cache for both instructions and data, such
as, for example, a Level 1 (1) mnternal cache, or multiple
levels of internal cache. In some embodiments, the system
may include a combination of an internal cache and an
external cache that 1s external to the core and/or the pro-
cessor. Alternatively, all of the cache may be external to the
core and/or the processor.

FIG. 3B 1s a block diagram 1llustrating an in-order pipe-
line and a register renaming stage, out-of-order 1ssue/execu-
tion pipeline implemented by processor core 300 of FIG. 3A
according to some embodiments. The solid lined boxes 1n
FIG. 3B illustrate an in-order pipeline, while the dashed
lined boxes illustrates a register renaming, out-of-order
1ssue/execution pipeline. In FIG. 3B, a processor core 300 as
a pipeline includes a fetch stage 302, a length decode stage
304, a decode stage 306, an allocation stage 308, a renaming
stage 310, a scheduling (also known as a dispatch or 1ssue)
stage 312, a register read/memory read stage 314, an execute
stage 316, a write back/memory write stage 318, an excep-
tion handling stage 322, and a commit stage 324. In some
embodiments, the ordering of stages 302-324 may be dii-
ferent than illustrated and are not limited to the specific
ordering shown in FIG. 3B.

FIG. 4 15 a block diagram illustrating system microarchi-
tecture 400 and functionality of longitudinal profiling of a
load operation selected for monitoring according to an
embodiment. Components of the system microarchitecture
400 of FIG. 4 may carry corresponding numbering to those
of the system microarchitecture 100 of FIG. 1, and thus the
processor core 102 may be understood to include the system
microarchitecture 400 1n some embodiments. The system
microarchitecture 400 may include an execution engine unit
450 that 1s to mterface with and monitor memory operations
passing through a memory subsystem 472.

In one embodiment, the execution engine unit 450 may
include a re-order builer (ROB) 154 and a unified scheduler

451. The ROB 454 may include a linear feedback shiit
register (LSFR) 428 (or other random number generator)
that may generate a random number. If the random number
matches the current cycle number, which 1s the current stage
in the hardware pipeline, then the ROB 454 may select the
load operation that occurs within the mstruction 1n that cycle
(432). This selection may occur once per thread that the
processor core 102 1s executing (or more often in other

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiments). The unified scheduler 451 has scheduled the
load operation, which may dispatch the load operation by
function of an AND gate 452 within the unified scheduler
451. The execution engine unit 450 may also determine a
re-order bufler identifier (ROB ID) of the load operation,
and transmit the ROB ID to the memory subsystem 472. It
1s by reference to the ROB ID that the execution engine unit
450 can monitor progress and completion of the load opera-
tion. The ROB 454 may further include an struction
latency counter 436, which may be started when the load
operation 1s dispatched, and thus has begun to be processed.

The memory subsystem 472 may include a number of
memory subunits, as 1n the system microarchitecture 100 of
FIG. 1. By way of example, and for purposes of explanation,
the memory subsystem 472 may include a memory ordering
buffer 472A, a data TLB (DTLB) 472B, and a DCU 472C,
which may 1n turn include a first status register 474A, a
second status register 4748, and a third status register 474C,
respectively. Additional and/ or diflerent memory subunits
are envisioned.

In various embodiments, the memory subunits may

receive or detect certain pieces of information (which may
include certain events) that provide a status of the load
operation during execution. These pieces of information are
identified as first data 476A, second data 476B, and third
data 476C, corresponding respectively to the MOB 472A,
the DTLB 472B, and the DCU 472C. For example, the first
data 476A for the MOB 472A may include detection of an
incomplete overlap between the load operation and a store
operation on which the load operation 1s dependent, or
detection of an unknown store address. Furthermore, the
second data 476B of the DTLB 472B may include one of
presence or absence of a DTLB miss or a DILB hat.
Additionally, the third data 476C of the DCU 472C may
include cache latency. The DCU 472C may include one or
more {ill buller(s) that may be monitored 1n certain ways (to
be discussed below) that impact the cache latency. These
pieces ol information, including the first data 476A, the
second data 4768, and the third data 476C may be recog-
nized among the data stored to the performance monitoring
record such as illustrated in Table 1.
In one embodiment, responsive to receipt of the re-order
bufler identifier (ROB 1ID), the MOB 472A may store the
first data 476B, related to a status of the load operation, 1n
the first status register 474 A; the DTLB 472B may store the
second data 476B 1n the second status reglster 474B; and the
DCU 472C may store the third data 476C 1n the tthd status
register 476C. In this way, the pieces of information asso-
ciated with the status of the load operation for each of the
multiple memory subunits are temporarily stored as perfor-
mance monitoring data 1n respective status registers.

With continued reference to FIG. 4, the ROB ID of the
load operation may be returned from the unified scheduler
451 upon being randomly selected for monitoring, which 1s
also retained within the ROB 4354 awaiting retirement, e.g.,
in advance of detection of the write back of the load
operation (438). When the write back to the ROB 454 of the
load operation occurs, idicating completion of the load
operation (437), the ROB 454 may determine whether the
ROB ID of the write back 1s a match for the monitored load
and for which the instruction latency counter 436 was
initiated (440). If so, the ROB 454 may stop the instruction
latency counter (442). The counter value of the instruction
latency counter 436 may now reflect the instruction latency
for the monitored load operation.

In embodiments, the processor core 102 may execute
microcode 420 (or other logic) to detect retirement of the

US 10,649,688 Bl

11

load operation (449). The processor core 102 may further
execute the microcode 420 (or other logic) to, 1n response to
detection of the retirement of the load operation, store the
piece of information (or data) from each of the first status
register 474 A, second status register 4748, and third status
register 474C, as well as the counter value from the mnstruc-
tion latency counter 436, into corresponding fields of a
performance monitoring record 416 of a memory builer 414
(see Table 1). Each field may correspond to a type of data
stored 1n each respective status register, for example. A
performance monitoring tool that the processor core
executes as soltware may then retrieve the data from the
performance monitoring record 416. In an alternative
embodiment, no microcode 1s executed as the memory
subunits and the ROB 454 (and possibly other hardware that
buflers such pieces of information) may be configured to
directly detect the retirement of the load operation and store
the pieces of information into respective fields of the per-
formance monitoring record 416.

In various embodiments, there may be two sample precise
block events that are of particular focus. Upon detection that
the load operation 1s blocked by a preceding store forward
operation with an overlapping linear address (e.g., when a
LD _BLOCKS.STORE_FORWARD event fires), the MOB
472A may set a bit of the first status register 474A. In this
scenario, the overlapping linear address may prevent the
store operation to forward the data required by the load
operation. In a second precise block event, upon detection

that the load operation 1s blocked by an unknown linear store
address (e.g., when a SB_BLOCKS.STORE_ADDR_BLK

cvent fires, where “SB” stands for store bufler), the MOB
472A may set a different bit (e.g., bit 23 that may be called
STORE_ADDR_BLK) 1n the first status register 474A. This
second scenario may also arise if memory disambiguation
has been disabled, during memory disambiguation training,
or when hardware watchdog 1s activated. A hardware watch-
dog 1s a feature included on many computers, whose purpose
1s to reboot the computer automatically 1n case the system
hangs. Once the watchdog 1s activated, 1t 1s to receive a ping
at regular intervals from the system, and, if the hardware
watchdog does not, the hardware watchdog will cause a
hardware reset.

The system microarchitecture 400 may further include a
cache latency implementation, e.g., specific load-to-use
embodiments. A 16-bit (or other value) saturating counter
may be present in core clocks for load operations monitored
by the present micro-architecture. The duration of a cache-
miss mterval may be defined, per each of: (1) from fill bufler
allocation by monitored load; (11) from monitored load hit
(squashed) into a fill bufler allocated by some earlier
request, e.g., of an earlier dispatched instruction; and (111)
from a homeless prefetch 1ssued as a result of monitored
load when the fill bufler has no room. The term squashed 1s
to say that the load operation merges into an existing {ill
builer.

In the above-described cache latency embodiments, the
cache miss latency counter may stop on monitored load
writeback 1n the above-listed cases. The default latency, e.g.,
with no cache miss, may be five (*57) clock cycles, the L1
cache hit latency of the processor core 102. If the monitored
load completes without allocating/merging into a fill bufler,
the counter should reset to a value of five clock cycles.
Further, the cache latency on “hit” of the cache may be five
clock cycles and the cache latency on a miss of the cache
may be some value greater than five clock cycles. On
JEClear, e.g., branch mispredict, the 16-bit saturating coun-
ter may be reset 1f the JEclear 1s older than the monitored

10

15

20

25

30

35

40

45

50

55

60

65

12

load. For memory renaming, a load check may update the
counter value to zero, which may indicate an even shorter
latency to software.

FIG. § 1s a flow chart of a method 300 for precise
longitudinal monitoring of memory load operations accord-
ing to various embodiments. The method 500 may be
performed by processing logic that may include hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as mstructions run on a process-
ing device, a computer system, or a dedicated machine),
firmware, or a combination thereof. In one embodiment, the
method 500 may be performed, 1n part, by the processor core
102 described above with respect to FIG. 1.

For simplicity of explanation, the method 500 1s depicted
and described as a series of acts. However, acts 1n accor-
dance with this disclosure can occur 1n various orders and/or
concurrently and with other acts not presented and described
herein. Furthermore, not all illustrated acts may be per-
formed to implement the method 300 1n accordance with the
disclosed subject matter. In addition, those skilled 1n the art
will understand and appreciate that the method 300 could
alternatively be represented as a series of interrelated states
via a state diagram or events.

Referring to FIG. 35, the method 500 may begin with the
processing logic randomly selecting a load operation to
monitor (510). The method 500 may continue with the
processing logic determining a re-order builer identifier of
the load operatlon (520). The method 500 may continue with
the processing logic transmitting the re-order bufler identi-
fier to the memory subsystem (530).

In some embodiments, the method 500 may continue with
the processing logic, in response to dispatch of the load
operation for execution, starting to increment an instruction
latency counter associated with the re-order bufler 1identifier
(515). The method 500 may continue with the processing
logic detecting a write back to the re-order butler of the load
operation from the memory subsystem, designating comple-
tion of the load operation (525). The method may continue
with the processing logic stopping a counter value of the
instruction latency counter 1n response to the write back to
the re-order builer from the memory subsystem (535).

With continued reference to FIG. 5, the method 500 may
continue with the processing logic storing 1n a status register,
by respective memory subunit(s) of the memory subsystem
responsive to receipt of the re-order bufler identifier, a piece
of information related to a status of the load operation (540).
The method 500 may continue with the processing logic
detecting retirement of the load operation (350). The method
500 may continue with the processing logic retrieving a data
access address (e.g., DLA) of the load operation (553). The
method 500 may continue with the processing logic storing,
in response to detecting the retirement of the load operation,
cach piece of information from respective status registers,
the data access address, and the counter value into corre-
sponding fields of a record of a memory butler (560). Each
field may be associated with a different memory subunit, as
per exemplary record in Table 1. The method 500 may
continue with software reading out a series of memory butler
records, to include the record referenced at block 560, as
performance monitoring data (570).

FIG. 6 illustrates a block diagram of the microarchitecture
for a processor 600 (e.g., processing device 60) that includes
hybrid cores in accordance with one embodiment of the
disclosure. In some embodiments, an instruction 1n accor-
dance with one embodiment can be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and

US 10,649,688 Bl

13

double precision integer and floating point datatypes. In one
embodiment the in-order front end 601 1s the part of the
processor 600 that fetches instructions to be executed and
prepares them to be used later in the processor pipeline.

The front end 601 may include several units. In one
embodiment, the mstruction prefetcher 626 fetches mstruc-
tions from memory and feeds them to an instruction decoder
628 which in turn decodes or interprets them. For example,
in one embodiment, the decoder decodes a received instruc-
tion into one or more operations called “micro-instructions™
or “micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the microarchitecture to
perform operations 1n accordance with one embodiment. In
one embodiment, the trace cache 630 takes decoded pops
and assembles them into program ordered sequences or
traces 1n the vop queue 634 for execution. When the trace
cache 630 encounters a complex 1nstruction, the microcode
ROM 632 provides the uops needed to complete the opera-
tion.

Some 1nstructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, 1f more than four micro-ops
are needed to complete an instruction, the decoder 628
accesses the microcode ROM 632 to do the mstruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction
decoder 628. In another embodiment, an instruction can be
stored within the microcode ROM 632 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 630 refers to an entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for

reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from the
micro-code ROM 632. After the microcode ROM 632
finishes sequencing micro-ops for an instruction, the front
end 601 of the machine resumes fetching micro-ops from the
trace cache 630.

The out-of-order execution engine 603 1s where the
instructions are prepared for execution. The out-of-order
execution logic has a number of builers to smooth out and
re-order the flow of mstructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buflers and
resources that each pop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
cach vop 1n one of the two pop queues, one for memory
operations and one for non-memory operations, in iront of
the 1nstruction schedulers: memory scheduler, fast scheduler
602, slow/general floating point scheduler 604, and simple
floating point scheduler 606. The uop schedulers 602, 604,
606, determine when a uop 1s ready to execute based on the
readiness of their dependent imput register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 602 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule pops for execution.

Register files 608, 610, sit between the schedulers 602,
604, 606, and the execution units 612, 614, 616, 618, 620,
622, 624 1n the execution block 611. There 1s a separate
register file 608, 610, for integer and tloating point opera-
tions, respectively. Each register file 608, 610, of one
embodiment also includes a bypass network that can bypass

10

15

20

25

30

35

40

45

50

55

60

65

14

or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 608 and the floating point register file
610 are also capable of communicating data with the other.
For one embodiment, the integer register file 608 1s split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 610 of one
embodiment has 128 bit wide entries because tloating point
istructions typically have operands from 64 to 128 bits 1n

width.

The execution block 611 contains the execution units 612,
614, 616, 618, 620, 622, 624, where the instructions are
actually executed. This section includes the register files
608, 610, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 600 of one embodiment 1s comprised of a
number of execution units: address generation unit (AGU)
612, AGU 614, fast ALLU 616, fast ALU 618, slow ALU 620,
floating point ALU 622, floating point move unit 624. For

one embodiment, the floating point execution blocks 622,
624, execute tloating point, MMX, SIMD, and SSE, or other
operations. The floating point ALU 622 of one embodiment
includes a 64 bit by 64 bit tloating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions involving a
floating point value may be handled with the tfloating point
hardware.

In one embodiment, the ALU operations go to the high-
speed ALU execution units 616, 618. The fast ALUs 616,
618, of one embodiment can execute fast operations with an
cllective latency of half a clock cycle. For one embodiment,
most complex integer operations go to the slow ALU 620 as
the slow ALU 620 includes integer execution hardware for
long latency type of operations, such as a multiplier, shiits,

flag logic, and branch processing. Memory load/store opera-
tions are executed by the AGUs 612, 614. For one embodi-
ment, the mteger ALUs 616, 618, 620, are described in the
context ol performing integer operations on 64 bit data
operands. In alternative embodiments, the ALUs 616, 618,
620, can be implemented to support a variety of data bits
including 16, 32, 128, 256, etc. Similarly, the floating point
unmts 622, 624, can be implemented to support a range of
operands having bits of various widths. For one embodi-
ment, the tloating point units 622, 624, can operate on 128
bits wide packed data operands in conjunction with SIMD
and multimedia instructions.

In one embodiment, the pops schedulers 602, 604, 606,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed 1n processor 600, the processor 600 also includes
logic to handle memory misses. If a data load misses 1n the
data cache, there can be dependent operations 1n flight 1n the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent
operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor are also designed to catch
istruction sequences for text string comparison operations.
The processor 600 also includes logic to implement store
address prediction for memory disambiguation according to
embodiments of the disclosure. In one embodiment, the
execution block 611 of processor 600 may include a store
address predictor (not shown) for implementing store

address prediction for memory disambiguation.

US 10,649,688 Bl

15

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identily operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited 1n meaning to a particular
type of circuit. Rather, a register of an embodiment 1s
capable of storing and providing data, and performing the
functions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data.

For the discussions below, the registers are understood to
be data registers designed to hold packed data, such as 64
bits wide MMX™ registers (also referred to as ‘mm’ reg-
1sters 1n some instances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available 1n both integer and
tfloating point forms, can operate with packed data elements
that accompany SIMD and SSE instructions. Similarly, 128
bits wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
cither contained 1n the same register file or diflerent register
files. Furthermore, 1n one embodiment, floating point and
integer data may be stored 1n diflerent registers or the same
registers.

Referring now to FIG. 7, shown 1s a block diagram
illustrating a system 700 1n which an embodiment of the
disclosure may be used. As shown 1n FIG. 7, multiprocessor
system 700 1s a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. While shown
with only two processors 770, 780, 1t 1s to be understood that
the scope of embodiments of the disclosure 1s not so limited.
In other embodiments, one or more additional processors
may be present 1n a given processor. In one embodiment, the
multiprocessor system 700 may implement hybrid cores as
described herein.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces-
sor 770 also includes as part of 1ts bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) intertace 750 using P-P interface circuits 778,
788. As shown m FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chupset 790 via individual P-P interfaces 752, 754 using
point to point mterface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor-
mance graphics circuit 738 via a high-performance graphics
interface 739.

A shared cache (not shown) may be included 1n either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both

10

15

20

25

30

35

40

45

50

55

60

65

16

processors’ local cache information may be stored in the
shared cache 1f a processor 1s placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O
interconnect bus, although the scope of the present disclo-
sure 1s not so limited.

As 1llustrated i FIG. 7, various I/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi-
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ-
ing, for example, a keyboard and/or mouse 722, communi-
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 730, in one embodiment. Further, an
audio 1/0 724 may be coupled to second bus 720. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 7, a system may imple-
ment a multi-drop bus or other such architecture.

Referring now to FIG. 8, shown 1s a block diagram of a
system 800 1n which one embodiment of the disclosure may
operate. The system 800 may include one or more proces-
sors 810, 815, which are coupled to graphics memory
controller hub (GMCH) 820. The optional nature of addi-
tional processors 813 1s denoted 1n FIG. 8 with broken lines.
In one embodiment, processors 810, 815 implement hybrid
cores according to embodiments of the disclosure.

Each processor 810, 815 may be some version of the
circuit, 1tegrated circuit, processor, and/or silicon inte-
grated circuit as described above. However, 1t should be
noted that 1t 1s unlikely that integrated graphics logic and
integrated memory control units would exist 1n the proces-
sors 810, 815. FIG. 8 1llustrates that the GMCH 820 may be
coupled to a memory 840 that may be, for example, a
dynamic random access memory (DRAM). The DRAM
may, for at least one embodiment, be associated with a
non-volatile cache.

The GMCH 820 may be a chipset, or a portion of a
chipset. The GMCH 820 may communicate with the pro-
cessor(s) 810, 815 and control interaction between the
processor(s) 810, 815 and memory 840. The GMCH 820
may also act as an accelerated bus interface between the
processor(s) 810, 815 and other elements of the system 800.
For at least one embodiment, the GMCH 820 communicates
with the processor(s) 810, 815 via a multi-drop bus, such as
a Irontside bus (FSB) 895.

Furthermore, GMCH 820 1s coupled to a display 845
(such as a flat panel or touchscreen display). GMCH 820
may include an integrated graphics accelerator. GMCH 820
1s further coupled to an input/output (I/O) controller hub
(ICH) 850, which may be used to couple various peripheral
devices to system 800. Shown for example 1n the embodi-
ment of FIG. 8 1s an external graphics device 860, which
may be a discrete graphics device, coupled to ICH 850,
along with another peripheral device 870.

Alternatively, additional or different processors may also
be present 1 the system 800. For example, additional
processor(s) 815 may include additional processors(s) that
are the same as processor 810, additional processor(s) that
are heterogeneous or asymmetric to processor 810, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of diflerences
between the processor(s) 810, 815 1n terms of a spectrum of
metrics of merit including architectural, micro-architectural,

US 10,649,688 Bl

17

thermal, power consumption characteristics, and the like.
These diflerences may eflectively mamifest themselves as
asymmetry and heterogeneity amongst the processors 810,
815. For at least one embodiment, the various processors
810, 815 may reside 1n the same die package.

Referring now to FIG. 9, shown 1s a block diagram of a
system 900 1n which an embodiment of the disclosure may
operate. FIG. 9 illustrates processors 970, 980. In one
embodiment, processors 970, 980 may implement hybrid
cores as described above. Processors 970, 980 may include
integrated memory and I/O control logic (“CL”) 972 and
982, respectively and intercommunicate with each other via
point-to-point interconnect 950 between point-to-point (P-P)
interfaces 978 and 988 respectively. Processors 970, 980
cach communicate with chipset 990 via point-to-point inter-
connects 952 and 954 through the respective P-P interfaces
976 to 994 and 986 to 998 as shown. For at least one
embodiment, the CL 972, 982 may include integrated
memory controller units. CLs 972, 982 may include 1/O
control logic. As depicted, memories 932, 934 coupled to
CLs 972, 982 and I/O devices 914 are also coupled to the
control logic 972, 982. Legacy 1/O devices 915 are coupled
to the chipset 990 via interface 996.

Embodiments may be implemented in many diflerent
system types. FIG. 10 1s a block diagram of a SoC 1000 1n
accordance with an embodiment of the present disclosure.
Dashed lined boxes are optional features on more advanced
S0Cs. In FIG. 10, an interconnect unit(s) 1012 1s coupled to:
an application processor 1020 which includes a set of one or
more cores 1002A-N and shared cache unit(s) 1006; a
system agent unit 1010; a bus controller unit(s) 1016; an
integrated memory controller unit(s) 1014; a set or one or
more media processors 1018 which may include integrated
graphics logic 1008, an image processor 1024 for providing
still and/or video camera functionality, an audio processor
1026 for providing hardware audio acceleration, and a video
processor 1028 for providing video encode/decode accel-
eration; an static random access memory (SRAM) unit 1030;
a direct memory access (DMA) unit 1032; and a display unit
1040 for coupling to one or more external displays. In one
embodiment, a memory module may be included in the
integrated memory controller unit(s) 1014. In another
embodiment, the memory module may be included 1n one or
more other components of the SoC 1000 that may be used
to access and/or control a memory. The application proces-
sor 1020 may include a store address predictor for imple-
menting hybrid cores as described in embodiments herein.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 1006, and external memory (not shown) coupled to the
set of integrated memory controller units 1014. The set of
shared cache units 1006 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof.

In some embodiments, one or more of the cores 1002A-N
are capable of multi-threading. The system agent 1010
includes those components coordinating and operating cores
1002A-N. The system agent unit 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit 1s for
driving one or more externally connected displays.

The cores 1002A-N may be homogenous or heteroge-
neous in terms ol architecture and/or instruction set. For
example, some of the cores 1002A-N may be 1n order while

10

15

20

25

30

35

40

45

50

55

60

65

18

others are out-of-order. As another example, two or more of
the cores 1002A-N may be capable of execution the same
istruction set, while others may be capable of executing
only a subset of that instruction set or a different instruction
set.

The application processor 1020 may be a general-purpose
processor, such as a Core™ 13, 15, 17, 2 Duo and Quad,
Xeon™, Ttammum™, Atom™ or Quark™ processor, which
are available from Intel™ Corporation, of Santa Clara, Calif.
Alternatively, the application processor 1020 may be from
another company, such as ARM Holdings™, Ltd, MIPS™,
c¢tc. The application processor 1020 may be a special-
purpose processor, such as, for example, a network or
communication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
The application processor 1020 may be implemented on one
or more chips. The application processor 1020 may be a part
of and/or may be implemented on one or more substrates
using any ol a number of process technologies, such as, for
example, BICMOS, CMOS, or NMOS.

FIG. 11 1s a block diagram of an embodiment of a system
on-chip (So0C) design in accordance with the present disclo-
sure. As a specific 1llustrative example, SoC 1100 1s included
in user equipment (UE). In one embodiment, UE refers to
any device to be used by an end-user to communicate, such
as a hand-held phone, smartphone, tablet, ultra-thin note-
book, notebook with broadband adapter, or any other similar
communication device. Often a UE connects to a base
station or node, which potentially corresponds 1n nature to a
mobile station (MS) in a GSM network.

Here, SOC 1100 includes 2 cores—1106 and 1107. Cores
1106 and 1107 may conform to an Instruction Set Architec-
ture, such as an Intel® Architecture Core™-based processor,
an Advanced Micro Devices, Inc. (AMD) processor, a
MIPS-based processor, an ARM-based processor design, or
a customer thereof, as well as their licensees or adopters.
Cores 1106 and 1107 are coupled to cache control 1108 that
1s associated with bus interface umit 1109 and L2 cache 1110
to communicate with other parts of system 1100. Intercon-
nect 1111 includes an on-chip interconnect, such as an IOSF,
AMBA, or other imnterconnect discussed above, which poten-
tially implements one or more aspects ol the described
disclosure. In one embodiment, cores 1106, 1107 may
implement hybrid cores as described 1n embodiments herein.

Interconnect 1111 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot ROM 1135
to hold boot code for execution by cores 1106 and 1107 to
initialize and boot SoC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
controller 1145 to interface with non-volatile memory (e.g.
Flash 1165), a peripheral control 1150 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1120
and Video imtertace 1125 to display and receive mput (e.g.
touch enabled 1nput), GPU 1115 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the disclosure described herein. In addition, the

system 1100 illustrates peripherals for communication, such
as a Bluetooth module 1170, 3G modem 1175, GPS 1180,

and Wi-F1 1185.

FIG. 12 illustrates a diagrammatic representation of a
machine 1n the example form of a computer system 1200
within which a set of mstructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.

US 10,649,688 Bl

19

The machine may operate in the capacity of a server or a
client device 1n a client-server network environment, or as a
peer machine 1n a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specily actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The computer system 1200 1ncludes a processing device
1202, a mamm memory 1204 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or
DRAM (RDRAM), etc.), a static memory 1206 (e.g., flash
memory, static random access memory (SRAM), etc.), and
a data storage device 1216, which communicate with each
other via a bus 1230.

Processing device 1202 represents one or more general-
purpose processing devices such as a miCroprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device may be complex mstruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
istruction sets, or processors implementing a combination
of mstruction sets. Processing device 1202 may also be one
or more special-purpose processing devices such as an
application specific itegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one embodiment,
processing device 1202 may include one or more processing,
cores. The processing device 1202 1s configured to execute
the processing logic 1226 for performing the operations and
steps discussed herein. For example, processing logic 1226
may perform operations as described in FIGS. 4-5.

The computer system 1200 may further include a network
interface device 1208 communicably coupled to a network
1220. The computer system 1200 also may include a video
display unit 1210 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 1212
(c.g., a keyboard), a cursor control device 1214 (e.g., a
mouse), and a signal generation device 1220 (e.g., a
speaker). Furthermore, computer system 1200 may include
a graphics processing unit 1222, a video processing unit
1228, and an audio processing umt 1232.

The data storage device 1216 may include a machine-
accessible storage medium 1224 on which 1s stored software
1226 implementing any one or more of the methodologies of
functions described herein, such as implementing store
address prediction for memory disambiguation as described
above. The software 1226 may also reside, completely or at
least partially, within the main memory 1204 as instructions
1226 and/or within the processing device 1202 as processing
logic 1226 during execution thereof by the computer system
1200; the main memory 1204 and the processing device
1202 also constituting machine-accessible storage media.

The machine-readable storage medium 1224 may also be
used to store instructions 1226 implementing store address
prediction for hybrid cores such as described according to
embodiments of the disclosure. While the machine-acces-
sible storage medium 1224 1s shown 1n an example embodi-
ment to be a single medium, the term “machine-accessible

10

15

20

25

30

35

40

45

50

55

60

65

20

storage medium™ should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of mstructions. The term “machine-acces-
sible storage medium”™ shall also be taken to include any
medium that 1s capable of storing, encoding or carrying a set
of 1nstruction for execution by the machine and that cause
the machine to perform any one or more of the methodolo-
gies of the present disclosure. The term “machine-accessible
storage medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and
magnetic media.

The following examples pertain to further embodiments.

Example 1 1s a processing device comprising: 1) a
memory subsystem comprising a first memory subunit that
includes a status register; 2) an execution engine unit
coupled to the memory subsystem, the execution engine unit
to: a) randomly select a load operation to monitor; b)
determine a re-order buller identifier of the load operation;
and c¢) transmit the re-order bufller 1dentifier to the memory
subsystem; and wherein, d) responsive to receipt of the
re-order builer identifier, the first memory subunit 1s to store
a piece of information, related to a status of the load
operation, in the status register, and e) responsive to detec-
tion of retirement of the load operation, store the piece of
information from the status register into a particular field of
a record ol a memory bufler, wherein the particular field 1s
associated with the first memory subunit.

In Example 2, the processing device of Example 1,
wherein the execution engine unit comprises 1) a re-order
bufler that generates the re-order bufler i1dentifier, the re-
order buller comprising: 2) a linear feedback shift register to
generate a random number that 1s to select the load opera-
tion; and 3) an mstruction latency counter to: a) start
incrementing a counter value responsive to a dispatch of the
load operation; and b) stop the counter value responsive to
a write back of the load operation, from the memory
subsystem, to the re-order bufler; and wherein, ¢) 1n
response to detection of the retirement of the load operation,
the first memory subunit 1s further to store the counter value
in an access latency field of the record, which 1s accessible
by software.

In Example 3, the processor of Example 2, wherein the
execution engine unit further comprises 1) a unified sched-
uler to: a) dispatch the load operation for execution in
response to the random selection of the load operation; and
2) forward the re-order bufler identifier to the re-order buller
in advance of detection of the write back, to signal to the
re-order builer that the load operation 1s being monitored.

In Example 4, the processor of Example 1, wherein the
first memory subunit 1s a memory ordering bufler and the
piece of mformation 1s an unknown store address.

In Example 35, the processor of Example 1, wherein the
first memory subunit 1s further to write a data access address
of the load operation 1nto the record of the memory bufler,
wherein the first memory subumt 1s a memory ordering
bufler and the piece of information 1s whether the load
operation 1s blocked due to an address collision with an
carlier store operation.

In Example 6, the processor of Example 1, wherein the
first memory subunit 1s a data translation lookaside buller
and the piece of information i1s one of presence or absence
of a miss of the data translation lookaside buifler.

In Example 7, the processor of Example 1, wherein the
first memory subunit 1s a data cache unit and the piece of
information 1s a cache latency value of clock cycles for
cache access.

US 10,649,688 Bl

21

In Example 8, the processor of Example 1, wherein the
first memory subunit 1s further to write a value for an
instruction pointer associated with the load operation into

il

the record of the memory butler.
Various implementations may have different combina-
tions of the structural features described above. For instance,

all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics in the examples may be used
anywhere 1n one or more implementations.

Example 9 1s a system comprising: 1) a memory from
which to retrieve data to complete load operations; 2) a core
to execute microcode and software, the core comprising: 3)
a memory subsystem coupled to the memory, wherein the
memory subsystem comprises a plurality of memory sub-
units, each containing a status register; and 4) an execution
engine unit coupled to the memory subsystem and to the
core, the execution engine unit to: a) randomly select a load
operation to monitor from the load operations, the load
operation associated with a thread currently executed by the
core; b) determine a re-order bufler 1dentifier of the load
operation; and ¢) transmit the re-order butler identifier to the
memory subsystem; wherein, d) responsive to receipt of the
re-order bufler identifier, each of the plurality of memory
subunits 1s to store a piece of information, related to a status
of the load operation, 1n the status register corresponding to
respective memory subunit; and) wherein the core 1s to: 1)
detect retirement of the load operation; and g) in response to
detection of the retirement of the load operation, store the
piece of information from each status register into a corre-
sponding field of a record of a memory builer, wherein the
record 1s accessible by the software as performance moni-
toring data.

In Example 10, the system of Example 9, wherein the
execution engine unit comprises 1) a re-order builer that
generates the re-order bufler identifier, the re-order buller
comprising: 2) a linear feedback shift register to generate a
random number that 1s to select the load operation; and 3) an
instruction latency counter to: a) start incrementing a coun-
ter value responsive to a dispatch of the load operation; and
b) stop the counter value responsive to a write back of the
load operation, from the memory subsystem, to the re-order
bufler; and wherein, ¢) 1n response to detection of the
retirement of the load operation, the core 1s further to store
the counter value 1 an access latency field of the record,
which 1s accessible by the software.

In Example 11, the system of Example 10, wherein the
execution engine unit further comprises 1) a unified sched-
uler to: a) dispatch the load operation 1n response to the
random selection of the load operation; and b) forward the
re-order buller identifier to the re-order butler 1n advance of
detection of the write back, to signal to the re-order buller
that the write back 1s for the load operation that 1s being
monitored by the instruction latency counter.

In Example 12, the system of Example 9, wherein the
plurality of memory subunits comprises a memory ordering,
bufler, and 1n response to detecting the load operation 1s
blocked by a preceding store forward operation with an
overlapping linear address, the memory ordering bufler 1s to
set a bit of the status register of the memory ordering bufiler.

In Example 13, the system of Example 9, wherein the
plurality of memory subunits comprises a memory ordering,
bufler, and 1n response to detecting the load operation 1s
blocked by an unknown linear store address, the memory
ordering bufler 1s to set a bit of the status register of the
memory ordering builer.

10

15

20

25

30

35

40

45

50

55

60

65

22

In Example 14, the system of Example 9, wherein the
plurality of memory subunits comprises a data translation
lookaside bufler for which the piece of information 1s one of
a hit or a miss of the data translation lookaside builer.

In Example 15, the system of Example 9, wherein the
plurality of memory subunits comprises a data cache unit for
which the piece of information i1s a cache latency value of
clock cycles for cache access.

Various implementations may have different combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics 1n the examples may be used
anywhere 1n one or more implementations.

Example 16 1s an method comprising: a) randomly select-
ing, by an execution engine unit coupled to a memory
subsystem, a load operation to monitor; b) determining, by
the execution engine unit, a re-order bufler 1dentifier of the
load operation; ¢) transmitting, by the execution engine unit,
the re-order buill

er 1dentifier to the memory subsystem; d)
storing 1n a status register, by a first memory subunit of the
memory subsystem responsive to receipt of the re-order
bufler 1dentifier, a piece of information related to a status of
the load operation; e) detecting, by a processor that includes
the execution engine unit, retirement of the load operation;
and 1) storing, by the processor in response to detecting the
retirement of the load operation, the piece ol information
from the status register mto a particular field of a record of
a memory buller, wherein the particular field 1s associated
with the first memory subunit.

In Example 17, the method of Example 23, further
comprising: a) starting, by the execution engine unit, to
increment a counter value of an instruction latency counter
responsive to a dispatch of the load operation; b) stopping,
by the execution engine unit, the counter value responsive to
a write back of the load operation, from the memory
subsystem, to the re-order builer; and c) storing, by the
processor in response to the detecting the retirement of the
load operation, the counter value 1n an access latency field
of the record, which 1s accessible by software.

In Example 18, the method of Example 17, further
comprising: a) dispatching, by a unified scheduler of the
execution engine unit, the load operation 1n response to the
random selection of the load operation; and b) forwarding,
by the unified scheduler, the re-order bufler 1dentifier to the
re-order buller 1n advance of detection of the write back, to
signal to the re-order buller that the write back 1s for the load
operation that 1s being monitored by the instruction latency
counter.

In Example 19, the method of Example 16, further
comprising writing, by the processor, a value for an struc-
tion pointer associated with the load operation into the
record of the memory builer.

In Example 20, the method of Example 16, wherein the
first memory subunit 1s a memory ordering buller and the
piece of information 1s whether the load operation 1s blocked
due to an address collision with an earlier store operation,
the method further comprising writing, by the processor, a
data access address of the load operation into the record of
the memory builer.

In Example 21, the method of Example 16, wherein the
first memory subumt comprises a memory ordermg builer,
and 1n response to detecting the load operation 1s blocked by
a preceding store forward operation with an overlapping
linear address, setting, by the memory ordering bufler, a bat
of the status register of the memory ordering builer.

US 10,649,688 Bl

23

In Example 22, the method of Example 16, wherein the
first memory subumt comprises a memory ordermg bulifer,
and 1n response to detecting the load operation 1s blocked by
an unknown linear store address, setting, by the memory
ordering bufler, a bit of the status register of the memory
ordering builer.

Various implementations may have different combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics in the examples may be used
anywhere 1n one or more implementations.

Example 23 1s a non-transitory computer-readable storage
medium storing instructions that, when executed by a pro-
cessing device, cause the instructions to perform a plurality
of operations comprising: a) randomly selecting, by an
execution engine unit coupled to a memory subsystem, a
load operation to monitor; b) determining, by the execution
engine unit, a re-order buller identifier of the load operation;
¢) transmitting, by the execution engine unit, the re-order
bufler 1dentifier to the memory subsystem; d) storing 1n a
status register, by a first memory subunit of the memory

subsystem responsive to receipt of the re-order buil

er 1den-
tifier, a piece of information related to a status of the load
operation; ¢) detecting, by a processor that includes the
execution engine unit, retirement of the load operation; and
) storing, by the processor i1n response to detecting the
retirement of the load operation, the piece ol mnformation
from the status register ito a particular field of a record of
a memory buller, wherein the particular field 1s associated
with the first memory subunit.

In Example 24, the non-transitory computer-readable
storage medium of Example 23, the operations further
comprising: a) starting, by the execution engine unit, to
increment a counter value of an instruction latency counter
responsive to a dispatch of the load operation; b) stopping,
by the execution engine unit, the counter value responsive to
a write back of the load operation, from the memory
subsystem, to the re-order bufler; and ¢) storing, by the
processor 1n response to the detecting the retirement of the
load operation, the counter value 1n an access latency field
of the record, which 1s accessible by software.

In Example 25, the non-transitory computer-readable
storage medium of Example 24, the operations further
comprising: a) dispatching, by a unified scheduler of the
execution engine unit, the load operation in response to the
random selection of the load operation; and b) forwarding,
by the unified scheduler, the re-order builer 1dentifier to the
re-order buller 1n advance of detection of the write back, to
signal to the re-order buller that the write back 1s for the load
operation that 1s being monitored by the instruction latency
counter.

In Example 26, the non-transitory computer-readable
storage medium of Example 23, the operations further
comprising writing, by the processor, a value for an instruc-
tion pointer associated with the load operation into the
record of the memory builer.

In Example 27, the non-transitory computer-readable
storage medium of Example 23, wherein the first memory
subunit 1s a memory ordering buil

er and the piece of
information 1s whether the load operation 1s blocked due to
an address collision with an earlier store operation, the
operations further comprising writing, by the processor, a
data access address of the load operation into the record of
the memory builer.

In Example 28, the non-transitory computer-readable
storage medium of Example 23, wherein the first memory

10

15

20

25

30

35

40

45

50

55

60

65

24

subunit comprises a memory ordering buller, and 1n
response to detecting the load operation 1s blocked by a
preceding store forward operation with an overlapping linear
address, the operations further comprising setting, by the
memory ordering builer, a bit of the status register of the
memory ordering builer.

In Example 29, the non-transitory computer-readable
storage medium ol Example 23, wherein the first memory
subunit comprises a memory ordering bufler, and 1n
response to detecting the load operation 1s blocked by an
unknown linear store address, the operations further com-
prising setting, by the memory ordering bufler, a bit of the
status register of the memory ordering bufler.

Various implementations may have different combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics 1n the examples may be used
anywhere 1n one or more implementations.

Example 30 1s a system comprising: a) means for ran-
domly selecting a load operation to monitor; b) means for
determining a re-order bufller identifier of the load operation;
¢) means for transmitting the re-order bufller 1dentifier to a
memory subsystem; d) means for storing, by a first memory
subunit of the memory subsystem responsive to receipt of
the re-order bufler identifier, a piece of information related
to a status of the load operation; €) means for detecting
retirement of the load operation; and 1) means for storing, in
response to detecting the retirement of the load operation,
the piece of information into a particular field of a record of
a memory buller, wherein the particular field 1s associated
with the first memory subunit.

In Example 31, the system of Example 30, further com-
prising: a) means for starting to increment a counter value of
an 1nstruction latency counter responsive to a dispatch of the
load operation' b) means for stopping the counter value
responsive to a write back of the load operation, from the
memory subsystem, to the re-order buller; and ¢) means for
storing, 1n response to the detecting the retirement of the
load operation, the counter value 1n an access latency field
of the record, which 1s accessible by software.

In Example 32, the system of Example 31, turther com-
prising: a) means for dispatching the load operation in
response to the random selection of the load operation; and
b) means for forwarding the re-order bufler identifier to the
re-order bufler in advance of detection of the write back, to
signal to the re-order buller that the write back 1s for the load
operation that 1s being monitored by the instruction latency
counter.

In Example 33, the system of Example 30, further com-
prising means for writing a value for an instruction pointer
associated with the load operation into the record of the
memory builer.

In Example 34, the system of Example 30, wherein the
first memory subunit 1s a memory ordering buller and the
piece of information 1s whether the load operation 1s blocked
due to an address collision with an earlier store operation,
the method further comprising means for writing a data
access address of the load operation 1nto the record of the
memory builer.

In Example 35, the system of Example 30, wherein the
first memory subunit comprises a memory orderlng builer,
and 1n response to detecting the load operation 1s blocked by
a preceding store forward operation with an overlapping
linear address, means for setting, by the memory ordering
bufler, a bit of the status register of the memory ordering

butter.

US 10,649,688 Bl

25

In Example 36, the system of Example 30, wherein the
first memory subunit comprises a memory ordering bufler,
and 1n response to detecting the load operation 1s blocked by
an unknown linear store address, means for setting, by the
memory ordering bufler, a bit of the status register of the
memory ordering builer.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design 1n a number of manners. First, as 1s
useiul 1n simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices 1n the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specilying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored 1n any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design 1s transmitted, to the extent that
copying, builering, or re-transmission of the electrical signal
1s performed, a new copy 1s made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarly, an article,
such as information encoded 1nto a carrier wave, embodying
techniques of embodiments of the present disclosure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Theretfore, reference to
a module, 1n one embodiment, refers to the hardware, which
1s specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, 1n
another embodiment, use of a module refers to the non-
transitory medium including the code, which 1s specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereotf that 1s not
operating 1s still ‘configured to” perform a designated task 1f
it 1s designed, coupled, and/or interconnected to perform
said designated task. As a purely illustrative example, a logic
gate may provide a 0 or a 1 during operation. But a logic gate
‘configured to” provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or O.

10

15

20

25

30

35

40

45

50

55

60

65

26

Instead, the logic gate 1s one coupled 1n some manner that
during operation the 1 or 0 output 1s to enable the clock.
Note once again that use of the term ‘configured to” does not
require operation, but mstead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element 1s designed to
perform a particular task when the apparatus, hardware,
and/or element 1s operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,’
and/or ‘operable to,” 1n one embodiment, refers to some
apparatus, logic, hardware, and/or element designed 1n such
a way to enable use of the apparatus, logic, hardware, and/or
clement 1n a specified manner. Note as above that use of ‘to,’
‘capable of/to,” and/or ‘operable to,” 1n one embodiment,
refers to the latent state of an apparatus, logic, hardware,
and/or element, where the apparatus, logic, hardware, and/or
clement 1s not operating but 1s designed 1n such a manner to
enable use of an apparatus 1n a specified manner.

A value, as used herein, includes any known representa-
tion ol a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values 1s also referred to as 1’s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values 1n
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of 910
and a hexadecimal letter A. Therefore, a value includes any
representation of information capable of being held 1n a
computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or mitial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, 1n one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, 1.e. reset, while an updated value potentially includes
a low logical value, 1.e. set. Note that any combination of
values may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (1.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes random-ac-
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; tlash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
inirared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive information there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the mnstructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism

US 10,649,688 Bl

27

for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-

cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, tflash memory, or a
tangible, machine-readable storage used in the transmission

of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information 1n a form readable
by a machine (e.g., a computer).

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment™ 1n various places

throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner 1n one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing,
from the broader spirit and scope of the disclosure as set
torth in the appended claims. The specification and drawings
are, accordingly, to be regarded 1n an i1llustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
embodiment and other exemplanly language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.

The 1nvention claimed 1s:

1. A processor comprising:

a memory subsystem comprising a first memory subunit

that includes a status register;

an execution engine unit coupled to the memory subsys-

tem, the execution engine unit to:

randomly select a load operation to monitor;

determine a re-order buller 1dentifier of the load opera-
tion; and

transmit the re-order bufler i1dentifier to the memory
subsystem; and

wherein, responsive to receipt of the re-order bufler

identifier, the first memory subunit 1s to store a piece of
information, related to a status of the load operation, 1n
the status register, and responsive to detection of retire-
ment of the load operation, store the piece of informa-
tion from the status register into a particular field of a
record of a memory bufler, wherein the particular field
1s associated with the first memory subunit.

2. The processor of claim 1, wherein the execution engine
unit comprises a re-order builer that generates the re-order
bufler identifier, the re-order builer comprising:

a linear feedback shift register to generate a random

number that 1s to select the load operation; and

an 1nstruction latency counter to:

start incrementing a counter value responsive to a
dispatch of the load operation; and

5

10

15

20

25

30

35

40

45

50

55

60

65

28

stop the counter value responsive to a write back of the
load operation, from the memory subsystem, to the
re-order bufler; and

wherein, 1n response to detection of the retirement of the

load operation, the first memory subunit 1s further to

store the counter value in an access latency field of the
record, which 1s accessible by software.

3. The processor of claim 2, wherein the execution engine
unmit further comprises a unified scheduler to:

dispatch the load operation for execution in response to

the random selection of the load operation; and

torward the re-order bufler identifier to the re-order builer
in advance of detection of the write back, to signal to
the re-order bufler that the load operation 1s being
monitored.

4. The processor of claim 1, wherein the first memory
subunit 1s a memory ordering bufler and the piece of
information 1s an unknown store address.

5. The processor of claam 1, wherein the first memory
subunit 1s further to write a data access address of the load
operation 1nto the record of the memory bufler, wherein the
first memory subunit 1s a memory ordering bufler and the
piece of information 1s whether the load operation 1s blocked
due to an address collision with an earlier store operation.

6. The processor of claiam 1, whereimn the first memory
subunit 1s a data translation lookaside bufler and the piece of
information 1s one of presence or absence of a miss of the
data translation lookaside butler.

7. The processor of claim 1, wherein the first memory
subunit 1s a data cache unit and the piece of information 1s
a cache latency value of clock cycles for cache access.

8. The processor of claim 1, wherein the first memory
subunit 1s further to write a value for an nstruction pointer
associated with the load operation into the record of the
memory builer.

9. A system comprising:

a memory from which to retrieve data to complete load

operations;

a core comprising:

a memory subsystem coupled to the memory, wherein
the memory subsystem comprises a plurality of
memory subunits, each containing a status register;
and

an execution engine unit coupled to the memory sub-
system and to the core, the execution engine unit to:
randomly select a load operation to monitor from the

load operations, the load operation associated with
a thread currently executed by the core;
determine a re-order bufler i1dentifier of the load
operation; and
transmit the re-order bufler identifier to the memory
subsystem;

wherein, responsive to receipt of the re-order buller
1dentifier, each of the plurality of memory subunits 1s
to store a piece of information, related to a status of
the load operation, 1n the status register correspond-
ing to respective memory subunit; and wherein the
core 1s to:
detect retirement of the load operation; and
in response to detection of the retirement of the load

operation, store the piece of information from
cach status register into a corresponding field of a
record of a memory buller, wherein the record 1s
accessible by core-executed software as perior-
mance monitoring data.

US 10,649,688 Bl

29

10. The system of claim 9, wherein the execution engine
unit comprises a re-order bufler that generates the re-order
bufler identifier, the re-order bufler comprising:

a linear feedback shiit register to generate a random

number that 1s to select the load operation; and

an 1nstruction latency counter to:

start incrementing a counter value responsive to a
dispatch of the load operation; and

stop the counter value responsive to a write back of the
load operation, from the memory subsystem, to the
re-order bufler; and

wherein, 1n response to detection of the retirement of the

load operation, the core 1s further to store the counter
value 1 an access latency field of the record, which 1s
accessible by the core-executed soltware.

11. The system of claim 10, wherein the execution engine
unit further comprises a unified scheduler to:

dispatch the load operation 1n response to the random

selection of the load operation; and

torward the re-order builer identifier to the re-order butler

in advance of detection of the write back, to signal to
the re-order builer that the write back 1s for the load
operation that 1s being monitored by the instruction
latency counter.

12. The system of claim 9, wherein the plurality of
memory subunits comprises a memory ordering bufler, and
in response to detecting the load operation 1s blocked by a
preceding store forward operation with an overlapping linear
address, the memory ordering builer 1s to set a bit of the
status register of the memory ordering builer.

13. The system of claim 9, wherein the plurality of
memory subunits comprises a memory ordering bufler, and
in response to detecting the load operation 1s blocked by an
unknown linear store address, the memory ordering buil

er 1S
to set a bit of the status register of the memory ordering,
builer.

14. The system of claim 9, wherein the plurality of
memory subunits comprises a data translation lookaside
butler for which the piece of information i1s one of a hit or
a miss of the data translation lookaside builer.

15. The system of claim 9, wherein the plurality of
memory subunits comprises a data cache unit for which the
piece ol information 1s a cache latency value of clock cycles
for cache access.

16. A method comprising:

randomly selecting, by an execution engine unit coupled

to a memory subsystem, a load operation to monitor;
determining, by the execution engine unit, a re-order
bufler identifier of the load operation;

transmitting, by the execution engine unit, the re-order

bufler identifier to the memory subsystem;

storing 1n a status register, by a first memory subunit of

the memory subsystem responsive to receipt of the

10

15

20

25

30

35

40

45

50

30

re-order buller identifier, a piece of information related
to a status of the load operation;

detecting, by a processor that includes the execution
engine unit, retirement of the load operation; and

storing, by the processor in response to detecting the
retirement of the load operation, the piece of informa-
tion ifrom the status register into a particular field of a
record of a memory buller, wherein the particular field
1s associated with the first memory subunit.

17. The method of claim 16, further comprising:

starting, by the execution engine unit, to increment a
counter value of an 1nstruction latency counter respon-
sive to a dispatch of the load operation;

stopping, by the execution engine unit, the counter value
responsive to a write back of the load operation, from
the memory subsystem, to the re-order bufler; and

storing, by the processor in response to the detecting the
retirement of the load operation, the counter value 1n an
access latency field of the record, which 1s accessible
by software.

18. The method of claim 17, further comprising:

dispatching, by a unified scheduler of the execution
engine unit, the load operation in response to the
random selection of the load operation; and

tforwarding, by the unified scheduler, the re-order builer
identifier to the re-order bufler 1n advance of detection
of the write back, to signal to the re-order buil

er that the
write back 1s for the load operation that i1s being
monitored by the mstruction latency counter.

19. The method of claim 16, further comprising writing,
by the processor, a value for an 1nstruction pointer associated
with the load operation into the record of the memory butiler.

20. The method of claim 16, wherein the first memory
subunit 1s a memory ordering bufler and the piece of
information 1s whether the load operation 1s blocked due to
an address collision with an earlier store operation, the
method further comprising writing, by the processor, a data
access address of the load operation 1nto the record of the
memory builer.

21. The method of claim 16, wherein the {first memory
subunit comprises a memory ordering bufler, and 1n
response to detecting the load operation 1s blocked by a
preceding store forward operation with an overlapping linear
address, setting, by the memory ordering buifer, a bit of the
status register of the memory ordering bufler.

22. The method of claam 16, wherein the first memory
subunit comprises a memory ordering bufler, and 1n
response to detecting the load operation 1s blocked by an
unknown linear store address, setting, by the memory order-

ing buller, a bit of the status register of the memory ordering
bufler.

	Front Page
	Drawings
	Specification
	Claims

