12 United States Patent

US010642828B2

(10) Patent No.: US 10,642.828 B2

Tabak et al. 45) Date of Patent: May 35, 2020
(54) SEARCHABLE ENCRYPTION SCHEME (56) References Cited
WITH EXTERNAL TOKENIZER B
U.S. PATENT DOCUMENTS
(71) Applicant: SAP SE, Walldort (DE) 6,647,380 B1* 11/2003 Yotsukura GO6Q 10/087
8,813,243 B2* 82014 Parkinson GO6F 21/33
(72) Inventors: Ami Tabak, Rosh HaAyin (IL); 380/1
Roopang Chauhan, Bangalore (IN); 2003/0046572 Al* 3/2003 Newman GO6F 21/6227
Gangadhar Mavuru, Visakhapatnam 2003/0123671 Al* 7/2003 He HO4L7$?()%§§
(IN); Karan Sasan, Raisinghnagar (IN) 280/782
_ 2004/0255133 Al1* 12/2004 Ler ...oocoooeeeinnnnnn., GOO6F 21/6227
(73) Assignee: SAP SE, Walldort (DE) 713/193
2006/0053112 Al1* 3/2006 Chitkara GOO6F 21/6227
(*) Notice: Subject to any disclaimer, the term of this 2006/0074881 Al* 4/2006 Vembu ... GOG6F 16/25
patent 1s extended or adjusted under 335 2008/0077803 AL* 3/2008 Leach G06F7%§?(8)§
U.5.C. 154(b) by 240 days. 2009/0249082 Al* 10/2009 Mattsson GOGF 21/6218
713/193
(21) Appl. No.: 15/728,738 (Continued)
(22) Filed: Oct. 10, 2017 Primary Examiner — Thanh-Ha Dang
(74) Attorney, Agent, or Firm — Buckley, Mascholl &
(65) Prior Publication Data Talwalkar LLC
US 2019/0108255 A1 Apr. 11, 2019 (57) ABSTRACT
A server receives a first query to perform one or more
(51) Imt. Cl. operations on an encrypted database and intercepts the first
Goor 16/00 (2019.01) query. A set of data referenced by the first query 1s deter-
GO6F 16/2452 (2019.01) mined to include data that 1s to be encrypted. Based on
Gool’ 21/60 (2013.01) metadata, one or more data columns of the data that 1s to be
GO6l 21/62 (2013.01) encrypted are identified as well as an encryption scheme to
GO6F 16/9535 (2019.01) be applied to each of the data columns. Each of the identified
GOGF 16245 (2019.01) data columns 1s encrypted based on the identified encryption
(52) U.S. CL scheme to produce encrypted data. One or more of the
CPC GOG6F 16/2452 (2019.01); GO6F 16/245 operations of the first query 1s determined to be unsupported
(2019.01); GO6F 16/9535 (2019.01); GO6F on encrypted data. The one or more operatifms are executed
21/602 (2013.01); GO6F 21/6245 (2013.01) on a to}ien vault at a tokenizer to retrieve ‘Foken data
(58) Field of Classification Search referencing the encrypted data. The first query 1s replaced

CPC GO6F 16/2452; GO6F 16/9535; GO6F
21/602; GO6F 21/6245
USPC e 70°7/759

See application file for complete search history.

S5 T
r [CLIEMT 0le:)
H‘“-ﬂ ter Dpiery To Parmorm &
wmbaze Up
.,.,.,.,.,.,.,.,.,.,.,I
bk 1 S ity
. | APPLICATION SERVER:]
— .
fecsve Celabase Query
____________{ ___________
EH [FUERY INTERCZPTOR:,
'\\ § litars=pd Guelr-.f:
Cheen 255100 ana Fatet
st Koys From kb
____________+_ ___________
SADS IAETADATA BROVIDER:]
g raC ATy Pate Reguiring
Croryplion And Dorrazponding
varlian Sk]
____________ ;____________
Sajn [T
W JChaCAYFTER: |
o b, Pl et W hed)
7
..
5412 - "
"'\ -
,.Jf"* Ohgery H‘x_h
o Cardaing Onsiations H‘“--E
R T s Py TRy BT o T S P
e 5t -~
‘1"‘1«. AL _I__.-""
p -
x‘_f,-""
YIS
1
¥
ey TTOKERIZER:]
| Eavirbe Dinery
Toset Yau
Sonfeva Toke
............ Tk
¥
|
A1 5 PO ERY INTERCESTOR :
' Leplace Origiea! Ouany Wit |
R Quzny That Alaws F——————--
search For Ciphertawt Paticras; |
T, LS = I cianze)

with a modified query based on the retrieved token data. The
modified query 1s executed on the encrypted database to
retrieve an encrypted query result.

17 Claims, 6 Drawing Sheets

|
|
¥
““““““““““ 2415
IAEELICATICN LR J
Run Query; -
Heturn Resr,

¥

rl- " '..':r. -I'. = -y
_,ErJ-CF‘ #Tl!':'r-.‘] S0
WP Euary fove in Result,
Ocorynt Using MeTaclata | A
i Metadais P1oving
Grpn Custoimer §

|
. SN o
b-”i.i.i
{BPRLICATION SERYER:] __;'
Sendd Resint Fo Clieat

US 10,642,828 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2011/0270857 Al* 11/2011 Bommireddipalli HO4L 67/10
707/758
2011/0307710 Al1* 12/2011 McGuire GOO6F 21/6263
713/183
2013/0279748 Al* 10/2013 Hastings GO6K 9/46
382/103
2014/0090081 Al1* 3/2014 Mattsson GOO6F 21/6218
726/27
2015/0039901 A1* 2/2015 Freeman GOG6F 21/602
713/189

2016/0140179 Al*

>

2016/0292430
2016/0328462
2017/0060776
2017/0308576
2017/0308580
2017/0322977
2017/0344646

* % ¥ % % %

AN AN

* cited by examiner

5/2016 Yueneen....

10/2016 Antonopoulos

11/2016 Dinker
3/2017 Shimonek

10/2017 Brodsky

10/2017 Naganuma

11/2017 Naganuma

11/2017 Antonopoulos

ttttttttttttt

tttttttttttttt

tttttttttt

iiiiiiii

GOO6F 16/2455

707/769

GO6F 16/951
GOo6F 16/214
HO4L 9/0816
GOO6F 16/2455
HO4L 9/008
GO6F 16/9024
HO4L 9/008

U.S. Patent May 5, 2020 Sheet 1 of 6 US 10,642,828 B2

100 \ﬂ
.-a-"'-i ** -L-v..,\
I/ ™,
P
144
Applications i} |
. rere—————————— i
\. EL _______________________________ r
160
B KIS -~
; Server ‘
=0y
Services W
I |
e e 0BG YR
120
110 e

Data Store

e i ml a h

Encrypted OB

FIG. 1

U.S. Patent May 5, 2020 Sheet 2 of 6 US 10,642,828 B2

240
[Firewatt]
-- B o o T]] YL]
SSLUIDEC
DataiAacs encrypied

L)

LINUX host |

HTTPS () R
v

SSLIDBC $SLIDEC
Latal AES enciypted Datalsns encrypled
KD 4 ' KMAE

Data Store

\ 235

Agpplication Server
-~ 212
| Metadata |

| Provider | ;L

: : LINUX host
f 214 220

b e

216 i ; H'f'{i-}i*; E
Query - REE ;

1 I \ . :

SSL DAL SS4 DB
23talAES encrynted DatalAES encrypted

¥

Application DB

; 215

-

G, 2

U.S. Patent May 5, 2020 Sheet 3 of 6 US 10,642,828 B2

300

/ 210 /--'- 326

:&«ﬁﬁhﬁatigris&ﬂfﬁf j;g}b Server

s s« = s & = s x x = x = = x x = x x = x = = x x = x = = x = = x w = x = = x x = x = = a = = a w = a = s a = s a = s a m s a a s a m s aaa P PR l e e e e e e P i e ol e i ulle ple e ale ple alie alie sl e ale sl sle sl sl sl ale sl sl sl sl ale sl sl sl sl sl sl

...

LT g T T T T T g T T g

£ N . T T e T et P ol ST S W Sl wt S T (I - e ifiyrayr i i

.;55;_;.::EEE.EEE.EEE.EEE.E E){Ecutar

Encryption | Reconciliation

IR AR INENEE MU TN MRS TN IUUDS TRDYE TSN TR I SRR S I S MU WD U IR WD MU TR I IUNgs I MU WU S

-]
i " - .i.

'5§335'Eﬂ:€:i"1: :F}:tﬁ?-'-*: --------- E e S

Ei}ﬁti"ﬁéfgfﬁj? RIS S e Neryntl o KMS Clhient E E QUE‘{ ?"
PN - Analyzer lob

{ Implementstion § 00

“““““““““““““““““““““““

{1 DLL Generator/ | Query
{ | Exacutor | Capturer

e o ol e ol el ol e o ol ol ol ol ol ol e ol e e

215

Query Store

e e e e e e e e e e e e e e e U L L UL

' Backend = izfz-z55-555-555-555-555-555-555-555-555-55;-55;-;5;-;5;-;5;-5E
?WMQWOF'}’ Caches |4 P

KM AP

.

KM Client

S Vool Parsistence

E:-:f:-:f:f E:-:f:-:f:-:f:f E Efmp[ﬁmeﬁtﬂtaf}}} SEIEIE i:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:;:-:E

B o Manager 2 R foon

U.S. Patent

400

Ty

44 i FCLIENT/APE:
\\ Enter Query To Perform A
' Database Operation

| [APPLICATION SERVER:)
Receive Database Query

L
L
L
L]

S406 | [QUERY INTERCEPTOR:]
\\‘ intercept Query,
’ Oper Session and Feich
Customer Keys From KMS

L
L
L
L
L
L
L
n
L
L

5408 | [METADATA PROVIDER!]
_‘ identify Data Requiring
. Encryption And Corresponding
' Encryption Scheme(s)

May 35, 2020

S410 |
] ENCRYPTER!
i Encrypt Pisintext Valuels)

.,

412 -
)// Guery \

S

-~ Contains Operations _
< e N

~nsupported On Encrypted

atay //""

YES
5414 [TOKENIZER:]
] Execute Guery On

Token Vault;

Retriove Token Data

""""""""""""""""""" %

S416 [QUERY INTERCEPTOR:]
heplace Oi’igiﬂai Query With

Sheet 4 of 6

. Moditiad Query That Allows |
Search For Ciphertext Patterns; |
{e.p, LIKE =2 IN clause)

e e e e e e e e e e e i e e b b

US 10,642,828 B2

¥

IAPPLICATION D&
Run uery;
Return Resuit

:

ENCRYPTERL:
For Every Row In Resuit,
Decrypt Using Vietadata
From Metadata Provider
And Customer Key

PAPPLICATION SERVER!
Send Result To Client

--

FIG. 4

5418

5420

S&22

US 10,642,828 B2

Sheet 5 of 6

May 35, 2020

U.S. Patent

atabase

“NS527

¥
Decrypt Lising

Customer Key

e T R R R R M M M R M R R R M R D R R S D W R S R R D R R R S R S g arin R R R R R R D M R D D R R B R R B M R R g R B R R R R D R R S S i
iy ' Frighigr bk b ek ek w '

¥
Add To

5
okens Ta Be
_Handled Cache 4

T e N/ b

S S | .
4 A % £ @2 | | w i}
S o YR | m “ i
im? g i - | : : i
S TS o 00 g T m m : |
S T B> YL m 228 By u " : i
> IS 85 3. Ew m m m !
- O m a Lo 3 &l T m | : 1
S " TN H " ‘ i
S o m pe? ._ s m m m i
_ m B e ™ !
§ m » m o i
3 " (5 7 " K, 1
2 ol | v 9. " G
¥ e 0 . F . [. 1
[gy _ LRI VR <. : -4 i)

1. 'l | Y

53 lJ g " = ¢

pm Rech :

- “_

& ;

interceptor

With Tokens in

Ca

x {pen Session

s502-/

E

- Replace Plain Text

~
\
s518~/

U.S. Patent May 5, 2020 Sheet 6 of 6 US 10,642,828 B2

7 N - ~
input Device{s) Communication Device Cutput Devicel{s)
' 20
9 620 JERY 650 _‘
i :
¥
\E
ProCessor h@-—“—-——-——-——-—-—-—-—m—
S
4 T ——
- Memory
boll
¥

**

US 10,642,328 B2

1

SEARCHABLE ENCRYPTION SCHEME
WITH EXTERNAL TOKENIZER

BACKGROUND

Nearly every organization acquires, processes, and stores
highly sensitive records. Among these records 1s personally
identifiable information (PII) about its customers, employ-
ces, patients, students, and other individuals. Organizations
are expected to closely guard this private data secure and
manage access appropriately. Other concerns include data
leakage, either by accident or by malicious intent, and by
privileged insiders or by malicious outsiders, which can lead
to loss of sensitive data, identity theft, and financial loss. For
example, one challenge facing organizations 1s how to
protect against deliberate internal attacks on the organiza-
tion’s data systems by trusted internal users (e.g., highly
privileged administrators such as database administrators
(“DBASs™)), while still allowing those users to perform their
10bs.

There 1s a legal and consumer-wide requirement to
encrypt sensitive data (e.g., PII data) that 1s stored, for
example, 1n relational databases. However, encryption tends
to break applicative logic (e.g., application/user functions
such as search, sort, etc.), resulting 1n functionality loss. One

[1

such functionality loss 1s 1n pattern searches such as LIKE
% xx %, CONTAINS, and REGEX searches. In addition,
current encryption schemes do not support order preserving
and/or pattern matching.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the example embodiments,
and the manner 1n which the same are accomplished, will
become more readily apparent with reference to the follow-
ing detailed description taken 1n conjunction with the
accompanying drawings.

FIG. 1 1s a block diagram of an overall system architec-
ture according to some embodiments.

FIG. 2 1s a block diagram of a data center architecture
according to some embodiments;

FIG. 3 1s a more detailed block diagram of the system of

FIG. 2 in which illustrative subcomponents of the system
and their relationships to each other are shown;

FI1G. 4 1s a flow diagram 1llustrating an exemplary process
according to some embodiments.

FIG. 5 15 a sequence diagram of a use case according to
some embodiments.

FIG. 6 1s a block diagram of an apparatus according to
some embodiments.

Throughout the drawings and the detailed description,
unless otherwise described, the same drawing reference
numerals will be understood to refer to the same elements,

features, and structures. The relative size and depiction of

these elements may be exaggerated or adjusted for clarity,
illustration, and/or convenience.

DETAILED DESCRIPTION

In the following description, specific details are set forth
in order to provide a thorough understanding of the various
example embodiments. It should be appreciated that various
modifications to the embodiments will be readily apparent to
those skilled 1n the art, and the generic principles defined
herein may be applied to other embodiments and applica-
tions without departing from the spirit and scope of the
disclosure. Moreover, 1 the following description, numer-

10

15

20

25

30

35

40

45

50

55

60

65

2

ous details are set forth for the purpose of explanation.
However, one of ordinary skill in the art should understand
that embodiments may be practiced without the use of these
specific details. In other instances, well-known structures
and processes are not shown or described in order not to
obscure the description with unnecessary detail. Thus, the
present disclosure 1s not intended to be limited to the
embodiments shown, but 1s to be accorded the widest scope
consistent with the principles and features disclosed herein.

The disclosed embodiments relate to secure handling of
personally identifying information (PII) (or more generally,
any user sensitive information), and more specifically, to a
searchable encryption scheme with an external tokenizer.
The searchable encryption scheme facilitates searching on
encrypted data in a cloud-based storage environment or
other storage environment. The searchable encryption
scheme provides for the ability to preserve application/user
functions such as search, sort, etc. in queries made against
a relational database 1n a manner that maintains data security
(c.g., data stored “at rest” remains encrypted).

For the purposes of this disclosure, PII data 1s information
that can be used to uniquely identify an individual. In some
embodiments, an imndividual may be a person, an organiza-
tion, a group, and/or business entity. In some 1implementa-
tions, an individual can be a collection of individuals. PII
data may also encompass mformation that can be used to
contact or locate the individual or information that can be
used with other sources to identily, contact, or locate the
individual. Various laws and regulations to address PII data
security exist and vary across geo-political boundaries.
Examples of PII data could include name, address, telephone
number, birthdate, birthplace, biometric data, email address,
Social Security number, passport number, driver’s license
number, session initiation protocol umiform resource iden-
tifier (SIP URI), credit card number, bank account number,
a username, an account name, and/or other suitable data that
can be used to 1dentily, contact, and/or locate the individual.

The disclosed embodiments relate to an encryption
scheme that does not require code changes 1n the application
(e.g., supports legacy software) and supports interdependen-
cies among the system. Processes according to the disclosed
embodiments are implemented at a Java Database Connec-
tivity (“JDBC”) layer. A database client API, for example, a
JDBC API, provides a mechanism to establish a connection
to a database and interact with the connected database using
SQL statements. The JDBC layer 1s the endpoint before
reaching out to the database. Advantageously, the JDBC
layer 1s not part of application logic. Thus, the application
logic 1s not changed, obviating the need for modification of
the application code.

For the purposes of this disclosure, the DBAs, as database
administrators, DBAs have access to an application data-
base, but do not have access to application servers. This
separation of roles ensures that the DBA will not will not
have access to PII data (or more generally, any user sensitive
information) in plaintext form and can see only protected
data 1n encrypted form. Plaintext refers to the original,
unencrypted data.

FIG. 1 1s a block diagram of an overall system architec-
ture 100 according to some embodiments. Embodiments are
not limited to architecture 100.

Architecture 100 includes data store 110, database man-
agement system (DBMS) 120, server 130, services 135,
clients 140, applications 145, tokenizer 150, and key man-
agement store (KMS) 160. Generally, services 135 execut-
ing within server 130 receive requests (e.g., queries) from

US 10,642,328 B2

3

applications 145 executing on clients 140 and provides
results to applications 145 based on data stored within data
store 110.

More specifically, server 130 may execute and provide
services 135 to applications 145, Services 135 may comprise
server-side executable program code (e.g., compiled code,
scripts, etc.) which provide functionality to applications 145
by providing user interfaces (e.g., 1n eXtended Markup
Language (XML), HyperText Markup Language (HTML)
and/or JavaScript) to clients 140, receiving requests from
applications 145, retrieving data from data store 110 based
on the requests, processing the data received from data store
110, and providing the processed data to applications 145.
Services 135 may be made available for execution by server
130 via registration and/or other procedures which are
known 1n the art.

In one specific example, a client 140 executes an appli-
cation 145 to present a user interface to a user on a display
of the client 140. The user operates the user interface to
request certain data, and the application 145 passes a query
based on the request to one of services 135. An SQL script
1s generated based on the query and forwarded to DBMS
120. DBMS 120 executes the SQL script to return a result set
based on data of data store 110, and the application 145
generates and displays a report/visualization based on the
result set.

The above operation may leverage a set of objects defined
by metadata stored within data store 110 and/or a separate
metadata repository (not shown). The metadata 1s used to
execute the query with respect to the corresponding physical
entities (e.g., a physical database table, associated columns
ol one or more database tables, etc.) of data store 110.

Server 130 provides any suitable protocol interfaces
through which applications 145 executing on clients 140
may communicate with services 135 executing on applica-
tion server 130. For example, server 130 may include a
HyperText Transfer Protocol (HTTP) interface supporting a
transient request/response protocol over Transmission Con-
trol Protocol (TCP), and/or a WebSocket 1nterface support-
ing non-transient full-duplex communications between
server 130 and any clients 140 which implement the Web-
Socket protocol over a single TCP connection.

One or more services 135 executing on server 130 may
communicate with DBMS 120 using database management
interfaces such as, but not limited to, Open Database Con-
nectivity (ODBC) and Java Database Connectivity (JDBC)
interfaces. These types of services 135 may use Structured
Query Language (SQL) to manage and query data stored 1n
data store 110.

DBMS 120 serves requests to query, retrieve, create,
modily (update), and/or delete data of data store 110, and
also performs administrative and management functions.
Such functions may include snapshot and backup manage-
ment, indexing, optimization, garbage collection, and/or any
other database functions that are or become known. DBMS
120 may also provide application logic, such as database
procedures and/or calculations, according to some embodi-
ments. This application logic may comprise scripts, func-
tional libraries and/or compiled program code.

Data store 110 may comprise any query-responsive data
source or sources that are or become known, including but
not limited to a structured-query language (SQL) relational
database management system. Data store 110 may comprise
a number of databases, one or more of which may be an
encrypted database 115. Data store 110 may comprise a
relational database, a multi-dimensional database, an
eXtendable Markup Language (XML) document, or any

10

15

20

25

30

35

40

45

50

55

60

65

4

other data storage system storing structured and/or unstruc-
tured data. The data of data store 110 may be distributed
among several relational databases, dimensional databases,
and/or other data sources. Embodiments are not limited to
any number or types ol data sources.

In some embodiments, the data of data store 110 may
comprise one or more of conventional tabular data, row-
based data, column-based data, and object-based data.
Moreover, the data may be indexed and/or selectively rep-
licated 1n an index to allow fast searching and retrieval
thereof. Data store 110 may support multi-tenancy to sepa-
rately support multiple unrelated clients by providing mul-
tiple logical database systems which are programmatically
isolated from one another.

Data store 110 may implement an in-memory database, 1n
which a full database 1s stored 1n volatile (e.g., non-disk-
based) memory (e.g., Random Access Memory). The full
database may be persisted 1n and/or backed up to fixed disks
(not shown). Embodiments are not limited to an in-memory
implementation. For example, data may be stored 1n Ran-
dom Access Memory (e.g., cache memory for storing
recently-used data) and one or more fixed disks (e.g.,
persistent memory for storing their respective portions of the
tull database).

Each of clients 140 may comprise one or more devices
executing program code of an application 145 for presenting
user interfaces to allow interaction with application server
130. The user mterfaces of applications 145 may comprise
user interfaces suited for reporting, data analysis, and/or any
other functions based on the data of data store 110.

Presentation of a user interface may comprise any degree
or type of rendering, depending on the type of user interface
code generated by application server 130. For example, a
client may execute a Web browser to request and receive a
Web page (e.g., in HI'ML format) from application server
210 via HTTP, HT'TPS, and/or WebSocket, and may render
and present the Web page according to known protocols.
One or more of clients may also or alternatively present user
interfaces by executing a standalone executable file (e.g., an
exe file) or code (e.g., a JAVA applet) within a virtual
machine.

Tokenizer 150 maps plaintext strings to encrypted values
and stores the mapping in an mm-memory database (e.g.,
token vault), in which a full database i1s stored 1n volatile
(e.g., non-disk-based) memory (e.g., Random Access
Memory).

In some embodiments, for example, tokenmizer 150
receives PII data from server 130, generates a token, and
encrypts the PII data. A token vault of tokenizer 150 stores
the PII data 1n encrypted form, together with the correspond-
ing token. A token 1s a reference (e.g., identifier) that maps
back to encrypted data and/or original plaintext data through
the tokenizer. There 1s no mathematical relationship between
a token and original plaintext data. Therefore, tokens may be
sately used throughout architecture 100.

In some embodiments, tokenizer 150 consists of one
in-memory database schema per customer, for example, a
schema having a single table with the following columns:
TableName, ColumnName, PlainText, and EncryptedValue.
Queries are executed on the mm-memory database. Alterna-
tively, tokenizer 150 supports multi-tenant customers where
the customer ID 1s the primary entity governing data parti-
tioning.

Tokenizer 150 supports SQL “LIKE” quernies and other
SQL operations (e.g., range queries, aggregation queries,
etc.), which may be executed on plaintext values 1n the token
vault. The encrypted values are retrieved using the plaintext

US 10,642,328 B2

S

to encrypted value mapping 1n the token vault. The retrieved
encrypted values may be looked up (e.g., using an or “IN”
or equals operator) in encrypted DB 115 to retrieve the rows.

KMS 160 securely manages customer-specific encryption
keys for encryption and decryption. KMS 160 exposes
application programming interfaces (APIs) to perform key
management operations such as getKey, generateKey, and
expireKey, etc.

In some embodiments, customer keys are maintained
separate from the encryption engine and data. Key opera-
tions are performed outside the database 110 1n an external
(e.g., third party) KMS 160. Additionally or alternatively,
the keys may be on the same cloud platform, locally within
the data center, or on a different cloud. In this way, key
management 1s external and independent of the database,
and thus removed from DBA control (e.g., preventing data
from being decrypted by DBAs).

FIGS. 2 and 3 will be discussed together. FI1G. 2 1s a block

diagram of a data center architecture 200 according to some
embodiments. Architecture 200 includes an application
server 210, tokenizer 220, and key management store
(KMS) 230, each running on a host device (e.g., Linux host),
which correspond, respectively, to server 130, tokenmizer 150,
and KMS 160 1n FIG. 1 and are generally as described above
with respect to FIG. 1. Furthermore, application server 210
includes a metadata provider 212 coupled to an interceptor
214 having an encrypter 216. A firewall 240 1s disposed
between the client-side and the server-side (e.g., data cen-
ter). Secure Socket Layer (SSL) protocol 1s used for internal
data center communication to provide encrypted communi-
cations and 1s based on internal certificates.

FIG. 3 1s a more detailed block diagram of the system of
FIG. 2 in which illustrative subcomponents of the system
and their relationships to each other are shown. Architecture
300 1includes an application server 210 (along with metadata
provider 212, interceptor 214, encrypter 216, and applica-
tion database 215), tokenizer 220 (along with tokenizer DB
225), and key management store (KMS) 230, as 1n FIG. 2.
Architecture 300 also includes job server 320.

In the application server 210, metadata provider 212
provides metadata (data that describes other data) that may
be used by query mterceptor 214 to 1dentily which data (e.g.,
columns) in a database are to be encrypted and what the
encryption scheme should be for each data (e.g., column).
Metadata provider 212 provides the capability to pinpoint,
for each column 1n a database, how to encrypt it and what
functionality will be used on 1it.

Encrypter 216 1s responsible for encryption/decryption of
data using different encryption schemes. Encryption algo-
rithms provided as encryption libraries by any vendor may
be used by the encrypter 216. In some embodiments, encryp-
tion 1s done using customer controlled encryption keys.
Encrypter 216 takes plamtext, encrypts it in one or more
ways, and stores those values of plamntext and ciphertext in
tokenizer 220.

Columns are encrypted using the appropriate encryption
scheme required to support the operations performed on 1it.
If a column supports only equality/inequality comparisons,
for example, then a deterministic encryption scheme may be
used to encrypt the column. Deterministic encryption 1s a
type ol encryption which always produces the same cipher-
text for a given plamntext and key, even over separate
executions of the encryption algorithm. On the other hand,
i a column supports order by, or range comparison, for
example, then an order preserving encryption (OPE) scheme
may be used to encrypt the column.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Metadata 1s generated by capturing and parsing the que-
ries executed by the application. The metadata may include
information about columns that need to be encrypted (e.g.,
columns having PII data), the operations (e.g., SQL opera-
tions) being performed on those columns (e.g., Equals, Like,
Lower, OrderBy), and the corresponding encryption
schemes to be used to support those operations. In some
embodiments, columns which are not PII data may be left
as-1s, avoiding additional overhead.

In some embodiments, a metadata controller 311 may be
used (e.g., over a storage area network) for managing file
locking, space allocation, and data access authorization to
keep data private.

Data Definition Language (DDL) generator/executor 313
generates and executes DDL statements for increasing col-
umn size. DDLs for the addition of new columns may be
generated and executed on enablement of encryption. The
new columns are added to existing tables for storing
encrypted values. In some embodiments, the DDL generator/
executor 313 computes, based on metadata, how many new
columns need to be added and executes those DDL state-
ments on the database to add those columns. The query
interceptor 214 can then isert encrypted values into those
columns using the different algorithms as described by the
metadata.

In some embodiments, there may be multiple encrypted
columns for a single original column that support difierent
SQL operations. For example, different encryption schemes
may be needed to support different operations such as
ORDER BY, SUM, etc., being performed on a single col-
umn, thus requiring one column per encryption scheme.

In some embodiments, for every encrypted column (not
encrypted using AES256), a column 1s added to store the
AES encrypted value. In this way, decryption can occur on
this column since AES decryption 1s faster compared to
other (e.g., OPE) decryption.

In some embodiments, a key ID (e.g., of the key used for
encryption) 1s added for every encrypted value. The keyID
1s used by a reencryption process during key rotation to
identify the values to be reencrypted.

Query 1nterceptor 214, coupled to metadata provider 212,
1s executable 1n application server 210 and intercepts queries
(e.g., SQL queries) fired from the application server 210. In
some embodiments, query interceptor 214 reads metadata
provided by metadata provider 212, takes a query coming
from the application server 210, on 1ts way down to the
application database 215, and intercepts (e.g., holds) the
process at connection wrapper 312 (e.g., at the JDBC layer).

In some embodiments, application database 215 (also
herein referred to as “application DB” or “encrypted DB™)
1s embodied as non-volatile (e.g., disk-based) memory 1n
which encrypted values are stored.

Query interceptor 214 calls metadata provider 212 to
determine which columns require encryption/decryption.
Query interceptor 214 retrieves encryption keys from KMS
230. Query 1nterceptor 214 calls encrypter 216 for encrypt-
ing/decrypting data, passing the key. Once the query inter-
ceptor 214 obtains the keys from KMS 230, those keys may
be used at the tokenizer 220.

In some embodiments, when requested by engineering,
select/update queries are executed for analyzing/fixing cus-
tomer 1ssues directly on the DB. Ops Query Executor 310
routes such queries via the Query Interceptor/Manipulator
214.

Tokenizer 220 runs on 1ts own host (e.g., Linux host).
Internal users of an organization do not have access to this
host. Internal users would not be able to access or open 1it.

US 10,642,328 B2

7

Tokenizer API 321 facilitates operations between applica-
tion server 210 and tokenizer 220.

Tokenizer 220 at backend 322 includes backend in-
memory caches 323 which caches tokens to be handled (e.g.,
ColumnName, Set <token>). The mappings (e.g., of plain-
text strings to encrypted values) in tokenizer 220 are stored
in an 1n-memory database (e.g., HyperSQL Database
(“HSQLDB”)) 324 on which queries are executed. In this
way, plaintext 1s maintained 1n the tokemzer 220, preserving,
the ability to search over the data. Persistence manager 326
controls the data trailic to data store 223.

Additionally or alternatively, 1n a case where the tokenizer
has been stopped, the mappings between plaintext and
ciphertext in the tokenizer 1s written 1nto a store 1n such an
encrypted manner that no one can read the information
written on 1t. For example, 1n a case where the system 200
1s taken down for maintenance, data 1n tokemizer 220 may be
encrypted using Advanced Encryption Standard (AES)
encryption (e.g., AES 256) or the like, and a customer
encryption key, and then written to data store 225 (e.g.,
tokenizer persistent DB, database file, disk, etc.). Tokenizer
220 reads, decrypts, and loads the persisted data in-memory
when the token server 1s started. In this way, security of the
data may be maintained by limiting the exposure of the data
in unencrypted form (e.g., n-memory 1n the tokenizer when
the tokenizer 1s up and running). Also, the tokenizer may be
restarted without loss of the mappings.

Additionally or alternatively, data store 225 for tokenizer
220 may reside outside data center 200 at a customer’s
premise (e.g., customer-side persistent store, another cloud
system, etc.), on the other side of firewall 240. This 1s
because some organizations (e.g., banks) may prefer this
data, even 1t encrypted, to be stored in their own data
centers. In this case, when a tokenizer process 1s started,
tokenmizer 220 reads data from the database 225 before
accepting client calls. Communication to the customer-side
persistent stores may be based on customer provided authen-
tication details.

KMS 230 provides customer keys via a network using a
secure protocol such as Key Management Interoperability
Protocol (KMIP). KMS 230 supports key rotation without
any downtime. KMS API 314 facilitates operations between
application server 210 and KMS 230 and between tokenizer
220 and KMS 230.

Additionally or alternatively, KMS 230 along with its data
store 235 may reside outside data center 200 at a customer’s
premise (e.g., customer-side persistent store, another cloud
system, etc.), on the other side of firewall 240.

Query capturer 3135 captures the queries being executed
by the application server 210 and stores them in query store
316, from where the queries can later be analyzed. At job
server 320, query analyzer job 317 analyzes the captured
queries from query store 324 to construct metadata about
which query operations (e.g., SQL operations) are being
applied to the encrypted columns. This metadata 1s used by
the DDL generator/executor 313 and encrypter 216.

Data encryption job 318 1s responsible for performing the
encryption when encryption 1s enabled for a customer. In
some embodiments, the data encryption job 318 will be
scheduled to execute for a certain duration at a certain
frequency until all existing data has been encrypted. In some
embodiments, the progress of data encryption job 318 is
saved for every execution so that it can start where 1t left off
the next time 1t 1s executed.

Query 1nterceptor 214 references the encryption status
logged by the data encryption job 318 to modify the query
appropriately. For example, i initial encryption 1s 1n prog-

10

15

20

25

30

35

40

45

50

55

60

65

8

ress for a table which 1s being queried, then interceptor will
modily the query to include both plaintext and encrypted
columns.

With time, the number of entries 1n token DB 225 which
do not exist in encrypted DB 215 will increase. For example,
when the value 1 an encrypted column 1s updated, then the
new value will get stored 1n token DB 2235 but the old value
will not be deleted. Token database reconciliation job 319
cleans up such data from the token DB 225. Token database
reconciliation job 319 will execute for a specific duration at
a specific frequency so that 1t does not hold up resources for
a long time.

FIG. 4 1s a flow diagram 1llustrating an exemplary process
400 according to some embodiments.

Initially, at S402, a user logs onto an application (e.g.,
using a Web browser at a client) and enters a query to
perform one or more operations on an encrypted database
that triggers communication with an application server. The
client may include any type of computing device such as a
laptop, a tablet, a mobile phone, an appliance, a desktop
computer, and the like.

Trathic flows to the application server which, at 5404,
receives the database query via HTTP, HTTPS, and/or
WebSocket. The query may include a query for PII data
(e.g., data that 1s to be encrypted).

A connection wrapper receives the query, which 1s inter-
cepted at S406, by the query interceptor. The interceptor
creates a new session for the query and fetches customer-
specific key(s) from the KMS server.

The metadata provider, at S408, determines that a set of
data referenced by the query includes data (e.g., PII data)
that 1s to be encrypted and 1dentifies, based on metadata, one
or more data columns of the data that 1s to be encrypted as

well as an encryption scheme to be applied to each data
columns.

At S410, plaintext value(s) 1n each of the i1dentified data
columns are encrypted based on the i1dentified encryption
scheme to produce encrypted data.

Not all searches will need to make use of the tokemizer. A
determination 1s made, at S412, as to whether the query
contains one or more operations that are unsupported on
encrypted data (e.g., cannot be executed on encrypted data).
In a case where a determination 1s made, at S412, that the
query contains one or more operations that are unsupported
on encrypted data (e.g., a LIKE operation), the one or more
operations of the query are executed on plaintext values 1n
a token vault, which provides mappings of plaintext to
ciphertext. The tokenizer outputs an encrypted response
containing the token, which references the encrypted data.

In a case where a determination 1s made, at S412, that the
query contains one or more operations that are supported on
encrypted data (e.g., an equality search), the one or more
operations of the query are executed directly on an
encrypted database (e.g., application DB).

In some embodiments, for data columns that are not
searchable, those columns will be encrypted/decrypted using
AES256 with the customer key with no additional logic
involved.

Then, at S416, the query 1s replaced with a modified query
at the query interceptor that allows search for ciphertext
patterns (e.g., LIKE—IN clause) 1n an encrypted database.

This query 1s executed on the encrypted database (e.g.,
application DB), at S418, and a result is returned including
information on the queried columns in the database. For
every row 1n the result, at S420, the query interceptor
decrypts the encrypted values into plaintext values using the
metadata from the metadata provider and the customer key.

US 10,642,328 B2

9

The database search results are then passed up to the
application server, at S422, and returned to the client side
(e.g., presented to the user).

Among other things, logic 1s implemented that intercepts
queries (e.g., SQL queries) as they are transmitted from
client applications, changes the queries 1n order to facilitate
searching over, sorting over, etc., as desired.

The query (e.g., SQL) 1s modified at runtime by the
interceptor to read/write data from/to encrypted columns
instead of plaintext columns. The interceptor encrypts the
values before nserting/updating them and decrypts the
values after retrieving (e.g., SELECT query) them from the

database.

FIG. 5§ 1s a sequence diagram of a use case according to
some embodiments.

For purposes of illustration, consider the example query

in SQL which seeks to:

SELECT user__name FROM users_ sys_ info WHERE

(users__syst_ firstname LIKE
%<search term>% AND users_ sys__lastname = <search term2>)

In this example, a LIKE operator 1s used in a WHERE clause
to search for a specified pattern in a column 1s operated on
one column (e.g., “firstname” column). In addition, an equal
(=) operator 1s used 1 the WHERE clause to search for a
specified pattern 1n another column 1s operated on a second
column (e.g., “lastname” column). Both columns contain PII
data.

A query 1s received, which 1s intercepted at S502, by the
query interceptor (e.g., at the JDBC layer). The interceptor
creates a new session for the query and fetches customer-
specific key(s) from the KMS server at S504. Additionally
or alternatively, this key may be cached in the session, at
S506, so that 1f 1n the same session more encryption or
decryption operations are required, the key need not be
fetched from the KMS every time because 1t has been
cached.

The metadata provider, at S508, identifies which data
(e.g., columns) are to be encrypted (e.g., PII data columns)
and what the encryption scheme should be for each data
(e.g., column). For each value in the WHERE clause, the
identified columns are encrypted at S510.

At S512, interceptor creates a tokenizer query for the
LIKE operation. Not all searches will need to make use of
the tokenizer. For example, for the equality (=) operation on
the “lastname” column, the tokenizer 1s not required because
equality searches can be fired directly on encrypted data 1n
the encrypted database, given that the column 1s using
deterministic encryption.

The LIKE operation 1s executed on plaintext values 1n the
token vault. Using the plaintext values, the encrypted values
corresponding to the plaintext value may be searched 1n the
token vault, and acquired at S514. An example 1s the query:

SELECT encryptedValue FROM TokenVault WHERE tableName =
users_ sys__info

AND columnName = users__firsthame AND plaintext LIKE
%<search term 1>%.

Suppose, for example, the search returns four encrypted
values: Tokenl, Token2, Token3, and Token 4.

It there are additional columns to be handled, each token
may be added to an mm-memory cache in the tokenizer at

S516, as described above.

10

15

20

25

30

35

40

45

50

55

60

65

10

The retrieved encrypted values are looked up (e.g., using
an “IN” or equals operator) in the encrypted database to
retrieve the rows.

At S518, for incoming queries, the query interceptor
replaces the original query with an equivalent query making
use of the tokenized data. For example, a LIKE ‘%%’ clause
used 1n the original SQL 1s replaced with an IN (Token 1,
Token2, Token 3 . . .) SQL clause. An example 1s the

tollowing modified query:

SELECT user name from users_ sysinfo WHERE

(users__sys_ firstname_ enc IN

(Token 1, Token 2, Token 3, Token 4) AND users_ sys_ lastname enc =
<encryptedValue>

At §520, after the tokenizer processes the LIKE operator
on the “first name” column and has returned the matching
encrypted values, the modified query 1s fired on the data-
base.

For fetched results sets, the encrypter, using the custom-
er’s key, at S522, replaces each row’s encrypted values with
the corresponding plaintext string. For example, 11 a column
value returns Tokenl, 1t replaces the value in the result set
with decrypt(Tokenl).

FIG. 6 1s a block diagram of apparatus 600 according to
some embodiments. Apparatus 600 may comprise a general-
or special-purpose computing apparatus and may execute
program code to perform any of the functions described
herein. Apparatus 600 may comprise an implementation of
one or more elements of architectures 100, 200, and 300.
Apparatus 600 may 1nclude other unshown elements accord-
ing to some embodiments.

Apparatus 600 1includes processor 610 operatively
coupled to communication device 620, data storage device
530, one or more input devices 640, one or more output
devices 650, and memory 660. Communication device 620
may facilitate communication with external devices, such as
an application server 632. Input device(s) 640 may com-
prise, for example, a keyboard, a keypad, a mouse or other
pointing device, a microphone, knob or a switch, an inira-
red (IR) port, a docking station, and/or a touch screen. Input
device(s) 640 may be used, for example, to manipulate
graphical user interfaces and to input mmformation into
apparatus 600. Output device(s) 650 may comprise, for
example, a display (e.g., a display screen) a speaker, and/or
a printer.

Data storage device 530 may comprise any appropriate
persistent storage device, including combinations of mag-
netic storage devices (e.g., magnetic tape, hard disk drives
and flash memory), optical storage devices, Read Only
Memory (ROM) devices, etc., while memory 660 may
comprise Random Access Memory (RAM).

Application server 632 may comprise program code
executed by processor 610 to cause apparatus 600 to per-
form any one or more of the processes described herein.
Embodiments are not limited to execution of these processes
by a single apparatus.

Metadata 634 and data 636 (either cached or a full
database) may be stored in volatile memory such as memory
660. Data storage device 330 may also store data and other
program code for providing additional functionality and/or
which are necessary for operation of apparatus 600, such as
device drivers, operating system files, etc.

The foregoing diagrams represent logical architectures for
describing processes according to some embodiments, and
actual implementations may include more or different com-

US 10,642,328 B2

11

ponents arranged 1n other manners. Other topologies may be
used 1n conjunction with other embodiments. Moreover,
cach component or device described herein may be imple-
mented by any number of devices in communication via any
number ol other public and/or private networks. Two or
more of such computing devices may be located remote
from one another and may communicate with one another
via any known manner of network(s) and/or a dedicated
connection. Fach component or device may comprise any
number of hardware and/or software elements suitable to
provide the functions described herein as well as any other
functions. For example, any computing device used in an
implementation of a system according to some embodiments
may include a processor to execute program code such that
the computing device operates as described herein.

All systems and processes discussed herein may be
embodied 1n program code stored on one or more non-
transitory computer-readable media. Such media may
include, for example, a tloppy disk, a CD-ROM, a DVD-
ROM, a Flash drive, magnetic tape, and solid state Random
Access Memory (RAM) or Read Only Memory (ROM)
storage units. Embodiments are therefore not limited to any
specific combination of hardware and software.

Embodiments described herein are solely for the purpose
of 1llustration. Those 1n the art will recognize other embodi-
ments may be practiced with modifications and alterations to
that described above.

What 1s claimed 1s:

1. A computer-implemented method comprising;:

receiving, at an application server, a {irst query to perform

one or more operations on a database;

intercepting the first query;

parsing the first query to determine metadata;

determining, based on the metadata, whether a set of data

of the database referenced by the first query includes
data that 1s to be encrypted;

in response to determining that the set of data does not

include data that 1s to be encrypted, executing the first
query on the database to retrieve a query result; and
in response to determining that the set of data includes
data that 1s to be encrypted:
identifying, based on the metadata, one or more data
columns of the data that 1s to be encrypted and, for
cach of the one or more data columns, determining,
an encryption scheme to be applied to the corre-
sponding data column based on one or more opera-
tions determined to be supported by the correspond-
ing data column;
encrypting each of the identified data columns based on
the 1denftified encryption scheme to produce
encrypted data after the first query has been inter-
cepted;
determining that one or more of the operations of the
first query 1s supported or unsupported on encrypted
data, and,
in response to determining that the one or more
operations of the first query are supported on the
encrypted data, executing the first query on the
encrypted database; and
in response to determining that the one or more
operations of the first query are unsupported on
the encrypted data:
executing the one or more operations on a token
vault to retrieve token data referencing the
encrypted data;
replacing the first query with a modified query
based on the retrieved token data; and

10

15

20

25

30

35

40

45

50

55

60

65

12

executing the modified query on the encrypted
database to retrieve an encrypted query result.
2. The method of claim 1, wherein the set of data
referenced by the first query includes personally 1dentifiable
information (PII) data.
3. The method of claam 1, wheremn the first query 1s
intercepted at a Java Database Connectivity (JDBC) layer.
4. The method of claim 1, wherein the modified query 1s
a Structured Query Language (SQL) query.
5. The method of claim 1, wherein the first query includes
a LIKE condition filter.
6. The method of claim 1, further comprising,
adding a new column, for each identified encryption
scheme, to the set of data referenced by the first query;
and
storing the encrypted data for each encryption scheme for
the encrypted database in the new column.
7. The method of claim 1, further comprising decrypting
the encrypted query result based on the metadata.
8. A system for {facilitating a searchable encryption
scheme, the system comprising:
a client device having a browser for accessing the server
over a network:;
a tokenizer; and
a server having a processor and a volatile memory,
wherein, when executed, the server performs the opera-
tions of:
receiving a first query to perform one or more operations
on a database;
intercepting the first query;
parsing the first query to determine metadata;
determining, based on the metadata, whether a set of data
of the database referenced by the first query includes
data that 1s to be encrypted;
in response to determining that the set of data does not
include data that 1s to be encrypted, executing the first
query on the database to retrieve a query result; and
in response to determining that the set of data includes
data that 1s to be encrypted:
identifying, based on the metadata, one or more data
columns of the data that 1s to be encrypted and, for
cach of the one or more data columns, determining
an encryption scheme to be applied to the corre-
sponding data column based on one or more opera-
tions determined to be supported by the correspond-
ing data column;
encrypting each of the identified data columns based on
the 1denftified encryption scheme to produce
encrypted data after the first query has been inter-
cepted;
determining that one or more of the operations of the
first query 1s supported or unsupported on encrypted
data, and,
in response to determining that the one or more
operations of the first query are supported on the
encrypted data, executing the first query on the
encrypted database; and
in response to determining that the one or more
operations of the first query are unsupported on
the encrypted data:
executing the one or more operations on a token
vault to retrieve token data referencing the
encrypted data;
replacing the first query with a modified query
based on the retrieved token data; and
executing the modified query on the encrypted
database to retrieve an encrypted query result.

US 10,642,328 B2

13

9. The system of claim 8, wherein the set of data refer-
enced by the first query includes personally identifiable
information (PII) data.

10. The system of claim 8, wherein the first query 1s
intercepted at a Java Database Connectivity (JDBC) layer.

11. The system of claim 8, wherein the modified query 1s
a Structured Query Language (SQL) query.

12. The system of claim 8, wherein the first query includes
a LIKE condition filter.

13. The system of claim 8, wherein the server further
performs the operations of,

adding a new column, for each identified encryption

scheme, to the set of data referenced by the first query;
and

storing the encrypted data for each encryption scheme for

the encrypted database in the new column.

14. The system of claim 8, wherein the server further
performs the operation of decrypting the encrypted query
result based on the metadata.

15. A non-transitory computer readable medium having
stored therein instructions that when executed cause a com-
puter to perform a method comprising:

receiving, at an application server, a {irst query to perform

one or more operations on a database;

intercepting the first query;

parsing the first query to determine metadata;

determining, based on the metadata, whether a set of data

of the database referenced by the first query includes
data that 1s to be encrypted;

in response to determining that the set of data does not

include data that 1s to be encrypted, executing the first
query on the database to retrieve a query result; and
in response to determining that the set of data includes
data that 1s to be encrypted:
identifying, based on the metadata, one or more data
columns of the data that 1s to be encrypted and an
encryption scheme to be applied to the correspond-

10

15

20

25

30

35

14

ing data column based on one or more operations
determined to be supported by the corresponding
data column;
encrypting each of the identified data columns based on
the 1denftified encryption scheme to produce
encrypted data after the first query has been inter-
cepted;
determining that one or more of the operations of the
first query 1s supported or unsupported on encrypted
data, and,
in response to determining that the one or more
operations of the first query are supported on the
encrypted data, executing the first query on the
encrypted database; and
in response to determining that the one or more
operations of the first query are unsupported on
the encrypted data:
executing the one or more operations on a token
vault to retrieve token data referencing the
encrypted data;
replacing the first query with a modified query
based on the retrieved token data:; and
executing the modified query on the encrypted
database to retrieve an encrypted query result.
16. The non-transitory computer-readable medium of
claim 15, wherein the first query i1s intercepted at a Java
Database Connectivity (JDBC) layer; and the set of data
referenced by the first query includes personally 1dentifiable
information (PII) data.
17. The non-transitory computer-readable medium of
claim 15, further comprising,
adding a new column, for each identified encryption
scheme, to the set of data referenced by the first query;
and
storing the encrypted data for each encryption scheme for
the encrypted database 1n the new column.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

