US010642684B1

a2 United States Patent 10) Patent No.: US 10,642,684 B1

MacLaren et al. 45) Date of Patent: May 35, 2020
(54) MEMORY COMMAND INTERLEAVING (56) References Cited
U.S. PATENT DOCUMENTS
(71) Applicant: Cadence Design Systems, Inc., San
Jose, CA (US) 4,312,036 A 1/1982 Porter et al.
5,398,253 A * 3/1995 Gordon GO6F 11/1076
711/114
(72) Inventors: John M. MacLaren, Austin, TX (US); 10,474,527 B1 112019 Sun
Anne Hughes, Austin, TX (US); 2008/0195894 Al 8/2008 Schreck et al.
Thomas J. Shepherd:J Cedar Park:J 1TX 2014/0068319 Al1* 3/2014 D&ly **************** Gl1C 7/1?06
| . 714/6.2
(gg)’ (arl Nels Olson, Austin, TA 2014/0108889 Al 4/2014 Shaeffer
(US) 2014/0177362 Al 6/2014 O’connor et al.
2014/0337677 Al* 11/2014 Basso GO6F 9/544
: : - 714/724
(73) Assignee: g;:gel(‘:‘ﬁ %’Sﬁgn Systems, Inc., San 2019/0050316 Al 2/2019 Kim et al.
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 “U.S. Appl. No. 16/005,427, Non Final Oflice Action dated Jan. 15,
U.S.C. 154(b) by 0 days. 20207, 15 pgs.
* cited by examiner
(21) Appl. No.: 16/022,276 Primary Examiner — Fritz Alphonse
(74) Attorney, Agent, or Firm — Schwegman Lundberg &
(22) Filed: Jun. 28, 2018 Woessner, P.A.
(37) ABSTRACT
(51) Int. CL Various embodiments described herein provide for grouping
GO6F 11/10 (2006.01) read-modify-writes (RMWs) such that multiple RMW com-
GO6F 3/06 (2006.01) mand sequences can be executed (or rearranged in the
) US. Cl command queue) 1n an interleaved manner rather than being
(52) e | executed 1 order. In particular, various embodiments
CPC s, GO6F 11/1056 (2013.01); GOGF 3/0619 described herein split the read and write components (com-
(2013.01); GO6F 3/0659 (2013.01) mands) of multiple RMW command sequences, group the
(58) Field of Classification Search read components 1n the command queue to execute con-
CPC o GOGF 11/1076 secutively, and group the write components in the command
USPC oo 714/764, 766, 767, 770 queue to execute consecutively.

See application file for complete search history.

20 Claims, 6 Drawing Sheets

100
)

ELECTRONIC DEVICE

MEMORY

102—)

MEMORY DATAPATH

104—)

MEMORY CONTROLLER

COMMAND QUEUE
COMPONENT

110 -

BUFFERS

U.S. Patent May 5, 2020 Sheet 1 of 6 US 10,642,684 B1

100
ELECTRONIC DEVICE

MEMORY

102

MEMORY DATAPATH

104
MEMORY CONTROLLER

COMMAND QUEUE
COMPONENT

110

BUFFERS

112

106

FIG. T

US 10,642,684 B1

Sheet 2 of 6

May 35, 2020

U.S. Patent

AdOWIN

8

0

¢

AHd

90¢

¢ Il

10d1NOD V1VAd

Vic

10d1LNOD d0dd4
¢CG

QIV0]
| ONIAVITd3LNI

MING

0t¢, 04INOD

ONVININOD

0¢¢ Y3aT10HINOD

AdOWIIN
¥0c

51d0d

40V4dd1NI
<RI

¢0¢

00¢

US 10,642,684 B1

Sheet 3 of 6

May 35, 2020

U.S. Patent

cd-MINY

Ca-MINY

La-MINY

Od-MINY

 SIoHNa MY
90¢

FJ19VIIVAV

ey

¢dy

Td-MINY

1dy

0dy

LaM

OdM

Od-MWWHY

siajjng ejeQ
“ sunpvY) 10443

r0¢e IAX>

& Il

™I v ™ v o v e OO O O O 0O
O O O O O OO0 O« 0 00 0O 0O 0O
N
+

9UM

SUM

7M-MINY

9dd

qdy

rd-MWY

eM-MINY

CM-MINY

radM

cdM

CdM\

IM-MINY

OM-MINY

cd-MWY

¢d-MINd

rdd

NSEN'WM IND

- L

rorm

x>

anany
puewwo)

¢0t

U.S. Patent May 5, 2020 Sheet 4 of 6 US 10,642,684 B1

400

402
i EVALUATE PLACEMENT OF RMW |)
COMMAND SEQUENCE

404

YES

REACH/EXCEED
MAX NUMBER OF

NO

PLACE READ COMMAND OF RMW | 406
COMMAND SEQUENCE AS PART |
OF RMW GROUP OF
CONSECUTIVE READ COMMANDS

v

PLACE WRITE COMMAND OF RMW| 408
COMMAND SEQUENGE AS PART
OF RMW GROUP OF ",
CONSECUTIVE WRITE
COMMANDS
) 410

ALLOCATE A RMW BUFFER FOR | J
THE RMW COMMAND SEQUENCE

412
SET WATERMARK BITIN | J
COMMAND QUEUE
v
PLACE RMW COMMAND 416
SEQUENCE AFTER EXECUTION
OF RMW GROUP OF -,
CONSECUTIVE WRITE
COMMANDS

FIG. 4

U.S. Patent May 5, 2020 Sheet 5 of 6 US 10,642,684 B1

PROCESSOR
214

INSTRUCTIONS MEMORY_506
502

INSTRUCTIONS 502

'STORAGE UNIT 508

PROCESSOR

INSTRUCTIONS 502

/O COMPONENTS 510
INPUT 518 OUTPUT 520

|

|

| _

: ALPHANUMERIC VISUAL

| POINT BASED ACOUSTIC
|

|

TACTILE HAPTIC
AUDIO

COMMUNICATION 522

|
|
|
|
|
|
WIRED BLUETOOTH :
NEAR FIELD CELLULAR i
WIRELESS WI-FL_ :
1

|

L — —

530

DEVICES

226

079 NOILVDIIdIY3A 3DIAIA

A7)

1541 J0IAdd

US 10,642,684 B1

|
|
|
|
759 “
SISATVNY ANV ‘ONITIAOW A€ ‘NOILDVHLX3 |
e _
- _ =
= — |
,,w | 9%9 31vadn |
- | NDIS3Q _
@ e |
7 _ - _
| | _ — _
| =5 | “ T9 3DNVISNI T19 T09 SLNdNI |
| NOILVDIHgVY4 | |
— | _ _ |
gl
m | o _ _ |
P | C9 NOILYDIdEY4 IDIAIA | |
z - 4 9E53Lvadn | |
= " NDIS3a |
Gl MEENIIY T _ _ _]

.
|
|
|
|

|
|
|
J

€9 NOILVINWIS NDIS3d

0€9 NOILVIIdIddA NOISdd

U.S. Patent

009

US 10,642,684 Bl

1
MEMORY COMMAND INTERLEAVING

TECHNICAL FIELD

Embodiments described herein relate to memory and,
more particularly, to systems, methods, devices, and nstruc-
tions for interleaving memory commands of memory trans-
actions, such as a read-modify-write transaction.

BACKGROUND

Memory controllers are generally circuits dedicated to
controlling and managing the flow of data written to and
read from one or more memory devices. They may be
suitably formed as separate devices or imtegrated with a
central processing unit or other main controller, and serve
the memory storage and access needs of various software
application operations. Memory controllers implement the
logic to read from and write to various types ol memory
devices, examples of which include dynamic random access
memory (DRAM), as well as electrically programmable
types of non-volatile memory such as flash memory, and the
like.

To minimize the consequences of data corruption due to
random sources of error, various error checking measures
for detection and/or correction are employed 1n the art for
the storage and retrieval of data from memory devices. One
example of the various known measures 1s the use of an
Error Correcting Code (ECC) feature for detection or cor-
rection of error 1n data words read from one or more memory
devices. An ECC feature i1s usually used in memory con-
trollers for computing devices that are particularly vulner-
able to data corruption, or for computing devices involved 1n
high data rate or other applications where substantial immu-
nity to data corruption 1s particularly important. ECC fea-
tures generally involve adding redundant ECC bits to a
transmitted data segment (e.g., transmitted to a memory
device) according to a predetermined code (of a selected
ECC format). These ECC bits are of parity-type and permit
the data segment to be properly recovered at the receiving
end (by a recetving/recovery method suitably configured for
the given ECC format), even if certain correctable errors
were 1introduced 1n the transmission or storage of that data
segment. The degree to which the errors are correctable
would depend on the relevant properties of the particular
code being used.

Memory controllers generally transmit, receive, and store
data words, and a data word format may be defined by a
multiple number of bytes. The multiple data bytes of each
data word may be stored in a memory device formed by a
plurality of integrated circuit chips, and each data byte may
be stored 1n a diflerent selectable chip of the memory device
at the same relative address within each selectable chip.

Some memory controllers are configured for storage of
such ECC-protected data according to a sideband ECC
storage scheme (or format). A sideband scheme for storing
ECC and data bits usually provides for an additional chip
(e.g., an ECC chip) 1in which the ECC byte associated with
a given data word’s data bytes 1s exclusively stored. The data
word’s ECC byte 1s then stored much like its data bytes—at
the same intra-chip address as those data bytes, but 1n its
dedicated sideband ECC chip. For example, in some ECC-
protected memory controller applications, a data word may
be defined by 72 total bits, segmented into eight 8-bit data
bytes and one 8-bit ECC byte (one ECC b1t for each of the
eight 8-bit data bytes). For such an example (a 72-bit data
word formed by 8 data bytes plus 1 ECC byte), the data word

10

15

20

25

30

35

40

45

50

55

60

65

2

1s stored across nine selectable chips—eight selectable chips
for the data bytes and one selectable chip for the associated

ECC byte. Under the sideband ECC storage scheme,

memory transactions for reading and writing data to and
from memory devices contemplate and support sideband
storage ol ECC bytes with their associated data bytes (e.g.,
data words).

Other memory controllers may use a non-sideband ECC
memory storage scheme, such as an ECC storage scheme (or
format) where ECC-protected bytes are stored inline (along)
with their ECC bytes 1n one or more of chips available on a
given memory device. For example, under an inline ECC
storage scheme, a portion of the memory storage locations
available on a chip of a memory device may be allocated for
primary data bytes and the remainder allocated for ECC
bytes so that the ECC bytes are stored inline with the
primary data bytes. Additionally, a memory controller
implementing an nline ECC storage scheme may adapt a
memory transaction for inline storage configurations, where
different portions of given data words are stored at difierent
intra-chip addresses. In this way, available memory device
chips may be shared for data and ECC bit storage according
to a wide range of memory space configurations depending
on such factors as data word size, the number and layout of
available storage cells, and the like. An inline ECC storage
scheme may be utilized when ECC protection for memory
transactions exists but a memory device 1s not adequately
equipped or configured to support sideband storage of ECC
bytes. For example, an mnline ECC storage scheme (or
teature) can provide ECC protection similar to a sideband
ECC memory storage scheme without the sideband ECC
memory storage scheme’s need to widen the memory data
path between a memory controller and a memory device to
communicate ECC on dedicated pins alongside memory
data (e.g., a 9-byte wide memory interface where 8 bytes of

the memory are data and 1 byte 1s the ECC for the 8 bytes
ol data).

BRIEF DESCRIPTION OF THE DRAWINGS

Various ones of the appended drawings merely 1llustrate
example embodiments of the present disclosure and should
not be considered as limiting 1ts scope.

FIG. 1 1s a block diagram 1illustrating an example elec-
tronic device that includes a memory controller, 1n accor-
dance with various embodiments.

FIG. 2 1s a schematic diagram illustrating an example
memory system that includes an example memory controller
with interleaving of read-modity-write (RMW) command
sequences, 1n accordance with some embodiments.

FIG. 3 1s a diagram 1illustrating an example memory
system that stores primary data inline with error checking
data and interleaves RMW command sequences, 1n accor-
dance with some embodiments.

FIG. 4 1s a flow diagram 1illustrating an example method
for interleaving RMW command sequences, 1n accordance
with various embodiments.

FIG. 5 1s a block diagram illustrating components of a
machine, according to some example embodiments, able to
read instructions from a machine-readable medium (e.g., a
machine-readable storage medium) and perform any one or
more of the methodologies discussed herein.

FIG. 6 1s a diagram 1illustrating one possible design
process tlow for generating a circuit, including embodiments
to implement a memory controller that supports interleaving
of RMW command sequences as described herein, and 1n

US 10,642,684 Bl

3

vartous embodiments, to integrate the memory controller
with a larger integrated circuit comprising different design

blocks.

DETAILED DESCRIPTION

Relative to a memory burst transaction, misaligned and
undersized writes are typically converted by a memory
controller to cause a read-modity-write command sequence
(herematiter, RMW), which can be a significant hindrance to
performance of a memory system. Generally, a RMW
requires a memory read from a memory, the read data 1s
stored, the write data 1s merged, and then the new merged
write data 1s written back to the memory. RMW can be
turther complicated when coupled with error checking data
(e.g., ECC data) since error checking data would be calcu-
lated on the merged data. Based on the performance factor
of turnaround between read operations to write operations,
tWTR (write to read turn-around) for conventional random
access memory (e.g., DRAM) can be very large for RMWs
(e.g., on the order of 15 ns), and 1n future memories, the
tWTR delay 1s projected to increase (e.g., by 3 times, also
referred to as 3xtWTR).

Furthermore, compared to memory that use a sideband
storage scheme for error checking data (e.g., ECC data),
memory operations for memory that store primary data
inline with error checking data may generate more RMW
trailic, particularly due to the additional memory operations
used for the inline-stored error checking data. For example,
for a memory that uses an inline storage scheme for error
checking data, a write command may necessitate either an
RMW for error checking data (e.g., RMW ECC transaction)
or a masked write command since the associated ECC may
not be an entire memory burst, while a RMW for primary
data will also result 1n an RMW for error checking data.

Various embodiments described herein can reduce or
avold the turnaround delay (e.g., tWTR) between read
operations to write operations for multiple RMWs, and can
increase memory bus utilization over traditional memory
systems.

According to some embodiments, RMWs are grouped
such that multiple RMWs can be executed (or rearranged 1n
the command queue) 1n an interleaved manner (e.g.,
RRRWW W) rather than being executed 1n order (e.g., order
in which they are generated and placed in a command
queue—RWRWRW). In particular, various embodiments
described herein split the read and write components (com-
mands) of multiple RMWs, group the read components in
the command queue to execute consecutively, and group the
write components 1n the command queue to execute con-
secutively. Doing so can allow several RMWs to be
executed as groups of read commands followed by groups of
write commands, which can minimize the bus turnaround
occurrences and eflectively reduce the inefliciency associ-
ated with tWR. This 1s unlike traditional memory systems
and controllers, which cause RMW transactions to be run in
order and do not permit interleaving of RMW transactions.

Since the read and write of a given RMW operates on the
same data, various embodiments store (and thus utilize
storage for) multiple commands worth of data. According to
some embodiments, a read-modity-write (RMW) buller
from a plurality of RMW buflers (e.g., 8 to 16 RMW bullers)
1s allocated for each RMW write command 1n the group of
write commands (or alternatively for each RMW read com-
mand 1n the group of read commands) 1n the command

queue.

10

15

20

25

30

35

40

45

50

55

60

65

4

Additionally, for a memory that uses an inline storage
scheme for error checking data (e.g., ECC data), an embodi-
ment may store (and thus utilize storage for) multiple
commands worth of error checking data (e.g., ECC data).
According to some embodiments, an error checking data
bufler from a plurality of error checking data butlers (e.g., 8
to 16 error checking data buflers) 1s allocated for each error
checking data (e.g., ECC) write command 1n the group of
write commands (or alternatively for each error checking
data (e.g., ECC) read command 1n the group of read com-
mands) 1n the command queue.

Furthermore, various embodiments described herein use a
watermarking technique or mechanism to track the number
of RMWs that are currently 1n a command queue, which can
permit an embodiment to maximize the interleaving while
also adhering to a limitation of the storage available to a
particular memory system (e.g., limited availability of
RMW butlers, error checking data builers, or both). For
instance, some embodiments allow N RMWs to be inter-
leaved, where N 1s the number of RMW bultlers available for
use. The N number of RMW bullers may be configured by
a user and may be adjusted to optimize the trade-ofl between
storage area and performance. For some embodiments, if N
1s exceeded, a watermark (also referred to as a RMW
watermark) 1s used to start a new group of interleaved
transactions, thereby ensuring that the RMW bullers are not
overtlowed and continue to perform optimally.

For a memory that uses an inline storage scheme for error
checking data (e.g., ECC data), some embodiments include
management of RMW buflers and error checking data
buflers to prevent over-allocation of resources for read-
modity-write interleaving (e.g., the maximum number of
interleaved RMWs exceeding the number of RMW bullers
available). For some embodiments, RMW bullers are dedi-
cated for storing primary data and error checking data
buflers are dedicated for storing error checking data for the
primary data.

For some embodiments, to support read-modify-write
interleaving (e.g., for both primary data and error checking
data commands), a memory controller limits the number of
concurrent RMWs within interleaved groups to prevent
over-allocation of the limited resources (e.g., bullers). Some
embodiments count the number of RMW-write commands
(or RMW-read commands) in the current RMW group and
set a watermark (e.g., watermark bit) when a limit 1s
reached. For some embodiments, the number of RMWs for
primary data that can be 1n progress at a given time 1s limited
by the number of RMW buflers. Additionally, where a
memory uses an inline configuration for storing error check-
ing data with primary data, the number of RMWs for error
checking data that can be 1n progress at a given time can be
limited by the number of error checking data (e.g., ECC)
buflers. For a memory that uses an iline configuration for
storing error checking data with primary data, each primary
data RMW may result in an error checking data RMW.

For RMW interleaving, primary data fetched by a RMW-
read command may be stored 1n one of the RMW buflers
until the associated RMW-write command 1s executed. Once
stored to a RMW bulfler, write data for the RMW may be
merged with the primary data stored 1n the RMW butler, and
the RMW-write command may be executed. The number of
error checking data (e.g., ECC) RMWs may be limited
programmatically to limit the number of error checking data
buflers that can be allocated to RMWs.

According to some embodiments, a counter 1s used to
track (e.g., sum) the total number of RMWs (e.g., specifi-
cally, RMW-write commands) to determine 1f a maximum

US 10,642,684 Bl

S

number of interleaved RMWs supported (e.g., by the num-
ber of RMW buflers) has been reached or exceeded. For a
memory that stores error checking data inline with primary
data, the counter may count error checking data (e.g., ECC)
RMW-write commands, which may be beneficial for
embodiments where an error checking data RMW-write
command may exist without a primary data RMW-write
command but not the other way around. For a memory that
uses non-nline configuration for storing error checking data
(e.g., sideband configuration), the counter may count pri-
mary data RMW-write commands.

For some embodiments, i a maximum number of inter-
leaved RMWs has been reached or exceeded, a RMW
watermark (e.g., watermark bit) 1s set for entries currently in
a command queue for RMW commands (e.g., for all RMW-
write command entries currently 1in the command queue).
For various embodiments, a watermark 1s set for all entries
in a command queue since the RMW commands may be
executed out-of-order.

According to some embodiments, a watermark 1s set (e.g.,
watermark bit 1s set with respect to an entry 1n a command
queue) when a new RMW command sequence 1s being
placed. In this way, the maximum condition can be resolved
prior to a next RMW command sequence being placed rather
than immediately setting the watermark when the next
RMW command sequence may not follow immediately.
Additionally, for some embodiments, the count 1s when an
RMW-read command of a given RMW 1s being placed,
grven that the RMW-read command precedes a RMW-write
command of the given RMW.

According to some embodiments, a watermark bit 1s
included by each entry in a command queue for use by
RMW interleaving operations as described herein. A water-
mark bit may be set for a given entry in the command queue
having an RMW-command (e.g., RMW-write command for
primary data or error checking data) when an embodiment
detects that a maximum number of mterleaved RMW (e.g.,
RMW-write commands) has been reached or exceeded. The
watermark bit of the given entry in the command queue may
be cleared when the associated command (e.g., RMW write
command for primary data or error checking data) 1s popped
for execution.

Though various embodiments are described herein with
respect to memory that store primary data inline with error
checking data (e.g., ECC data), other embodiments enable
interleaving of RMWs for memory that use a non-inline
configuration for error checking data (e.g., memory that use
sideband storage of error checking data).

As used herein, for a given RMW command sequence, a
RMW-read command refers to a read command of the given
RMW command sequence and a RMW-write command
refers to a write command of the given RMW command
sequence. A primary data RMW may refer to a RMW
command sequence that operates on primary data stored on
a memory, while an error checking data (e.g., ECC) RMW
may refer to a RMW command sequence that operates on
error checking data stored on a memory (e.g., error checking
data stored inline with primary data as described herein).
Accordingly, a primary data RMW-read command refers to
a read command 1n a RMW command sequence for primary
data, a primary data RMW-write command refers to a write
command in a RMW command sequence for primary data,
an error checking data (e.g., ECC) RMW-read command
refers to a read command 1n a RMW command sequence for
error checking data (e.g., ECC), and an error checking data

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., ECC) RMW-write command refers to a write com-
mand 1n a RMW command sequence for error checking data
(e.g., ECC).

As used herein, primary data may refer to data that 1s
stored or will be stored on a memory and that 1s intended to
be checked or protected by error checking data. Error
checking data for primary data can include ECC data.

As used herein, inline primary data addresses refer to
memory addresses of a memory that correspond to those
segments of the memory that store primary data on the
memory. Inline error checking data addresses refer to
memory addresses of a memory that correspond to those
segments of the memory that store error checking data on the
memory.

As used herein, an error checking data address range (e.g.,
ECC address range) may include all inline error checking
data addresses associated with (e.g., that map to) a primary
data memory transaction with respect to a range of inline
primary data addresses on a memory. For example, an ECC
address range with respect to a memory may include all
inline error checking data addresses that correspond to error
checking data, on the memory, associated with a plurality of
primary data memory burst transactions. For instance, with
a primary data-to-ECC ratio of 8 to 1, an ECC address range
may be associated with a single memory burst worth of ECC
data on a memory that covers 8 memory bursts worth of
primary data on the memory.

As used herein, an error checking data address range
boundary determines when one error checking data address
range ends and another error checking data address range
begins.

As used herein, an error checking data bufler (e.g., ECC
data buller) may comprise a single storage element that will
store a single memory burst reading of error checking data
(e.g., ECC data) stored on a memory. For example, the data
s1ze of an electronic checking data bufler would be 32 bytes
where a single memory burst reading of error checking data
results 1 32 bytes of electronic checking data being read
from the memory. Some embodiments use a plurality of
error checking data builers, where each error checking data
bufler may be managed independently.

As used herein, a memory burst command/operation (or
burst mode memory command/operation) may refer to a
command/operation that results 1n repetitious transmission
of data a predetermined number of times to result i a
memory data path width (DP) times burst length (BL) worth
of data, without need to transmit each piece of data in a
separate transaction (e.g., a single memory burst read com-
mand for a typical central processing unit (CPU) fetches a
cache line worth of data). For example, where a memory
burst command/operation has a burst length of 16 (BL=16)
and a 16-bit data path width (DP=16), a single burst com-
mand will result 1n transmission of 256-bits (32 bytes) of
data by a single memory transaction, rather than multiple
separate memory transactions (e.g., 16 separate 16-bit
memory transactions). Accordingly, a memory burst read
command/operation performed with respect to a memory
can result in the reading (e.g., fetching) of a predetermined
number of data words stored on the memory, and a memory
burst write command/operation performed with respect to a
memory can result in the writing of a predetermined number
of data words to the memory. A data word can include a
predetermined number of bytes (e.g., 8 bytes for a 64-bit
data word).

Retference will now be made in detail to embodiments of
the present disclosure, examples of which are illustrated in
the appended drawings. The present disclosure may, how-

US 10,642,684 Bl

7

ever, be embodied 1n many different forms and should not be
construed as being limited to the embodiments set forth
herein.

FIG. 1 1s a block diagram illustrating an example elec-
tronic device 100 that includes a memory controller 106 >
with error checking data caching, in accordance with various
embodiments. The electronic device 100 may comprise any
clectronic device that uses a memory and a processor, such
as a CPU or a graphics processing unit (GPU). For instance,
the electronic device 100 may comprise, without limitation,
a computer (e.g., a server computer, a client computer, a
personal computer (PC), a tablet computer, a laptop com-
puter, a netbook), a set-top box (STB), a personal digital
assistant (PDA), an entertainment media system, a cellular
telephone, a smart phone, a mobile device, a wearable
device (e.g., a smart watch), a smart home device (e.g., a
smart appliance), other smart devices, a web appliance, a
network router, a network switch, a network bridge, or any
clectronic device capable ol executing instructions with »g
respect to a memory.

As shown, the electronic device 100 includes a memory
102, a memory datapath 104, and the memory controller
106, which performs error checking data caching operations,
in accordance with various embodiments. Any one or more 25
of the components described may be implemented using
hardware (e.g., one or more circuits) alone or a combination
of hardware and software. Moreover, any two or more
components of the electronic device 100 may be combined
into a single component, and the functions described herein 30
for a single component may be subdivided among multiple
components.

To avoid obscuring 1llustrated embodiments with unnec-
essary detail, various functional components that are not
germane to conveying an understanding of the illustrated 35
embodiments have been omitted from FIG. 1. Various addi-
tional functional components may be supported by the
clectronic device 100 to facilitate additional functionality
that 1s not specifically described herein.

The memory 102 comprises one or more memory cells or 40
memory devices, each of which may comprise some form of
random access memory (RAM), such as Dynamic Random-
Access Memory (DRAM) or Static Random-Access
Memory (SRAM). The memory 102 may be packaged as a
single in-line memory module (SIMM) or a dual in-line 45
memory module (DIMM) that can be plugged into an
clectronic device including an appropnate socket. For some
embodiments, the memory 102 comprises Double Data Rate

(DDR) Synchronous Dynamic Random-Access Memory

(SDRAM), such as Double Data Rate 3 (DDR3), Double 50
Data Rate 4 (DDR4), Low Power Double Data Rate 3
(LPDDR3), or Low Power Double Data Rate 4 (LPDDRA4).
The memory datapath 104 comprises one or more elec-
tronic signal paths coupling together the memory 102 and
the memory controller 106 (e.g., individual lines between 55
pins of the memory 102 and the memory controller 106)
such that data, address, command, control, clock, and other
information can be carried between the memory 102 and the
memory controller 106. For example, the memory datapath
104 may comprise an interconnect, such as a link or a bus. 60
Accordingly, the memory datapath 104 may carry one or
more electronic signals between the memory 102 and the
memory controller 106. Among the electronic signals car-
ried, the memory datapath 104 may carry one or more data
signals for data to be written to, or read from, the memory 65
102 (e.g., a memory device of the memory 102). Addition-
ally, the memory datapath 104 may carry one or more

10

15

8

control signals, which can facilitate writing data to, or
reading data from, the memory 102 (e.g., a memory device
of the memory 102).

The memory controller 106 manages exchange of data to
and from the memory 102 via the memory datapath 104. To
facilitate this, the memory controller 106 may exchange
data, address, command, control, clock, and other informa-
tion with the memory 102 over the memory datapath 104.

As shown, the memory controller 106 includes a com-
mand queue component 110 and buflers 112. The command
queue component 110 may store a plurality of memory
commands (generated by the memory controller 106) for
timely execution by the memory controller 106. Each of the
buflers 112 may comprise a register or SRAM. Each of the
buflers 112 may have a bufler identifier (ID), and may be
managed 1independently of each other.

According to some embodiments, the buflers 112 include
a plurality of RMW buflers, which are used for RMW
interleaving operations as described herein. In particular, for
some embodiments, the RMW buflers of the bufers 112 are
used to mterleave RMW command sequences operating on
primary data stored on the memory 102.

According to some embodiments, where primary data 1s
stored 1n line with error checking data on the memory 102,
the buflers 112 include a plurality of error checking data
(e.g., ECC) buflers, which are used for interleaving RMW
command sequences operating on error checking data stored
on the memory 102. To implement inline storage of primary
data with error checking data on the memory 102, the
memory controller 106 may use split addressing to generate
memory commands for memory transactions with respect to
the memory 102, and thereby cause primary data to be stored
inline with error checking data generated for the primary
data on the memory 102. With the inline storage configu-
ration, the primary data may be stored on the memory 102
at a range ol mline data addresses, and the error checking
data may be stored on the memory 102 at a range of inline
error checking data addresses, where the range of inline
primary data addresses does not overlap with (1s disjointed
with respect to) the range of inline error checking data
addresses.

According to various embodiments, the memory control-
ler 106 facilitates interleaving of RMWs by placing com-
mands in the command queue maintained by the command
queue component 110 and by managing RMW bultlers of the
buflers 112. For instance, when a new RMW command
sequence (for primary data or error checking data) 1s ready
for placement by the memory controller 106 on the com-
mand queue, the memory controller 106 can analyze the
command queue for RMW command sequences. Based on
the analysis of the command queue, the memory controller
106 may place, in the command queue, a read command of
the new RMW command sequence as part of a read-modify-
write (RMW) group of consecutive read commands, and
place, 1n the command queue, a write command of the new
RMW command sequence as part of a RMW group of
consecutive write commands. With respect to placement, the
RMW group consecutive read commands may be placed 1n
the command queue to execute prior to the RMW group of
consecutive write commands.

In particular, analyzing the command queue (maintained
by the command queue component 110) for read-modify-
write command sequences can comprise the memory con-
troller 106 determining whether a predetermined maximum
number of read-modify-writes has been reached or
exceeded. Accordingly, the memory controller 106 may
place the read command of the new RMW command

US 10,642,684 Bl

9

sequence as part of the read-modify-write group of consecu-
tive read commands and place the write command of the
new RMW command sequence as part of the read-modify-
write group ol consecutive write commands, 1n response to

determining that the predetermined maximum number of °

read-modify-writes has been reached or exceeded. Addition-

ally, the memory controller 106 may allocate a RMW bufler,
from the buflers 112, for the read command of the new

RMW command sequence in response to determining that

the predetermined maximum number of read-modily-writes
has been reached or exceeded, which the read command may

then utilize during 1ts subsequent execution. According to

some embodiments, the memory controller 106 may allocate
a RMW bufler, from the buffers 112, for each read command

in the read-modify-write group of consecutive read com-
mands.

For some embodiments, where primary data 1s stored
inline with error checking data on the memory 102, a
primary data RMW command sequence 1s accompanied by
an error checking data RMW command sequence. Accord-
ingly, the memory controller 106 may allocate an error
checking data bufler, from the buflers 112, for the error
checking data RMW command sequence (e.g., a read com-
mand of error checking data RMW command sequence) in
response to determining that the predetermined maximum
number of read-modify-writes has been reached or
exceeded.

In response to determining that the predetermined maxi-
mum number of read-modify-writes has been reached or
exceeded, the memory controller 106 may set a watermark
bit 1 the command queue maintained by the command
queue component 110. In particular, the memory controller
106 may set a watermark bit with respect to an entry 1n the
command queue associated with at least a last write com-
mand (e.g., all last write commands) 1n the read-modify-
write group of consecutive write commands. For embodi-
ments where primary data 1s stored inline with error
checking data on the memory 102, and a primary data RMW
command sequence 1s accompanied by an error checking
data RMW command sequence, the watermark may be set
with respect to both primary data RMW-write commands
and error checking data RMW-write commands.

The memory controller 106 may determine whether the
predetermined maximum number of read-modify-writes has
been reached or exceeded based on a counter that the
memory controller 106 maintains for tracking a number of
write commands 1n the read-modify-write group of consecu-
tive write commands. For embodiments where primary data
1s stored 1nline with error checking data on the memory 102,
and a primary data RMW command sequence 1s accompa-
nied by an error checking data RMW command sequence,
the counter maintained by the memory controller 106 may
track primary data RMW-write commands (rather than error
checking data RMW-write commands) in the read-modity-
write group of consecutive write commands.

In response to determining that the predetermined maxi-
mum number of read-modify-writes has been reached or
exceeded, the memory controller 106 may place a subse-
quent RMW command sequence in the command queue
maintained by the command queue component 110 such that
the subsequent RMW command sequence executes after
execution of the read-modify-write group of consecutive
write commands. For some embodiments, the memory con-
troller 106 does this by placing the subsequent RMW
command sequence in the command queue behind a last
entry 1 the command queue having a set watermark bit.

10

15

20

25

30

35

40

45

50

55

60

65

10

For new RMW command sequences that occur while the
predetermined maximum number of read-modify-writes
remains reached or exceeded, the new RMW command
sequences may be split into their read and write components
and grouped mnto a new RMW group of consecutive read
commands and a new RMW group of consecutive write
commands that are placed behind a last entry 1n the com-
mand queue having a set watermark bit. Accordingly, in
response to determiming that the predetermined maximum
number ol read-modily-writes has been reached or
exceeded, the memory controller 106 may: place, 1n the
command queue, a read command of a new RMW command
sequence as part of a second group of consecutive read
commands that 1s behind a last entry in the command queue
having a set watermark bit; and place, in the command
queue, a write command of the new RMW command
sequence as part ol a second group of consecutive write
commands that 1s also behind the last entry in the command
queue having the set watermark bit.

FIG. 2 1s a schematic diagram illustrating an example
memory system 200 that includes an example memory
controller 204 with interleaving of RMW command
sequences, 1 accordance with some embodiments. As
shown, the memory controller 204 can serve to provide
control of a memory 208 (formed by one or more memory
devices of any suitable type and configuration known 1n the
art), which can support processing of a master control
operation by a master controller (not shown). The memory
controller 204 may communicate with a master controller
through one or more user interface ports 202, and with the
memory device(s) of the memory 208 through a physical
interface (PHY) 206, which may be configured with a
suitable interface standard known 1n the art for the memory
208.

The memory system 200 illustrated 1n FIG. 2 may be
implemented 1n any known form, depending on the particu-
lar requirements of an intended application. For instance, the
memory system 200 may be realized by discretely intercon-
nected subsystems, or sufliciently itegrated in the form of
a system-on-chip (SOC) or the like, depending on the
particular requirements of the intended application. As the
user interface ports 202, the PHY 206, and the memory 208
may be of any suitable type and configuration known in the
art, subject to the particular requirements of a given appli-
cation, no further description 1s needed for description of
features relating to the memory system 200.

In FIG. 2, the memory system 200 includes a command
control portion 220, an error control portion 222, and a data
control portion 224. In some embodiments, the data control
portion 224 includes one or more digital circuits that imple-
ment functional logic to carry out a plurality of primary data
access operations/commands on the memory 208. Such
primary data access operations/commands may include,
without limitation, read, write, masked write, and RMW
operations/commands conducted on selectively addressed
storage locations defined in the memory 208. The primary
data access operations may include control of additional
functions for proper interface with the particular type of
memory device(s) employed in the memory 208.

For some embodiments, the error control portion 222
includes one or more digital circuits that implement func-
tional logic for detecting and correcting errors in data
segments as stored in memory 208. The error control portion
222 can include execution of error checking data processing,
such as ECC processing of predetermined code format (e.g.,
a format of SECDED type), to detect errors in a corrupted
primary data segment read from the memory 208. The error

US 10,642,684 Bl

11

control portion 222 1s configured to correct the primary data
segment read from the memory 208 having an error that 1s
correctable with the given error checking data (e.g., ECC),
and report (e.g., for the master control operation) those
primary data segment errors which are detected but are not
correctable with the given error checking data. The error
control portion 222 can also provide intermediate storage of
error checking data (e.g., ECC) bytes generated or read 1n
association with primary data bytes during the execution of
various primary data access operations, for cooperative
transmission with their primary data bytes either to the PHY
206 (for writing operations) or error-checking of retrieved
primary data for return to the user interface ports 202 (for
reading operations).

The command control portion 220 may be coupled to both
the error control and data control portions 222, 224. For
some embodiments, the command control portion 220
includes one or more digital circuits that implement func-
tional logic for generating commands to actuate various
primary data access operations of the data control portion
224. The command control portion 220 may include one or
more suitable units for carrying out memory access opera-
tions responsive to memory transactions of user applications
involving error checking data-protected data words. For
example, where inline storage of error checking data is
implemented, the command control portion 220 may include
address translation and command translation functions
involved 1n adaptively splitting the memory addressing of
error checking data (e.g., ECC data) and primary data, which
facilitates inline storage of primary data with associated
error checking data.

As shown, the command control portion 220 includes a
RMW interleaving logic 230 that implements RMW 1nter-
leaving operations described herein. In particular, during
placement of RMW command sequences by the command
control portion 220 1n a command queue (not shown), the
RMW interleaving logic 230 can cause the command control
portion 220 to split the read and write components of a
RMW command sequences, group the read components 1n
the command queue to execute consecutively, and group the
write components in the command queue to execute con-
secutively.

FIG. 3 1s a diagram illustrating an example command
queue 302, example error checking data butiers 304, and
example RMW butlers 306 of a memory system that stores
primary data inline with error checking data and that inter-
leaves RMW command sequences, 1n accordance with some
embodiments. As shown, with respect to the command
queue 302, the memory system maintains a count (CNT) 310
of RMW-write commands 1n a current RMW group in the
command queue 302, a watermark (WM) bit 312 for each
entry of the command queue 302, and a mask bit (MASK)
314 for each entry of the command queue 302. As also
shown, the command queue 302 has a depth of 16 com-
mands and the error checking data buflers 304 includes 8
butlers.

The contents of the command queue 302 and the error
checking data buflers 304 retlect operation of the memory
system, using RMW iterleaving of an embodiment
described herein, based on a maximum RMW limit of 4 and

the following imcoming command order: RDO (read #0),
RD1, WRO (wnte #0), WR1, RMWO (read-modify-write
#0), RMWI1, RD2, RD3, RD4, WR2, WR3, WR4, RMW?2,
RMW3, RMW4, RD5, RD6, WR3, and WR6. In summary,
during operation of the memory system, commands RDO
and RD1 pass through the command queue 302, are selected

for execution, and cause allocation of error checking data

10

15

20

25

30

35

40

45

50

55

60

65

12

buflers from error checking data buflers 304. Commands
WRO and WRI1 pass through the command queue 302, are

selected for execution, and cause allocation of error check-
ing data buflers from error checking data buflers 304.
Command sequences RMWO0O and RMWI1 are split and
their read and write commands grouped in the command
queue 302 (first RMW group of consecutive read commands
and first RMW group of consecutive write commands);

RMW buflers from the RMW butlers 306 are allocated for
each of RMW-R0O and RMW-R1; and RMW-R0 and RMW-
R1 are placed ahead of the first RMW group of consecutive
write commands (1.e., RMW-W0 and RMW-W1) in the
command queue 302. Eventually, commands RMW-RO0 and
RMW-R1 pass through the command queue 302 and are

selected for execution, which causes allocation of error

checking data buflers from error checking data butlers 304.
Commands RD2, RD3, and RD4 are placed in the com-

mand queue 302 behind RMW-R0O and RMW-R1. Eventu-

ally, commands RD2 and RD3 pass through the command
queue 302, are selected for execution, and allocated error
checking data buflers from error checking data butlers 304,
thereby leaving RD4 currently at the top of the command
queue 302.

Commands WR2, WR3, and WR4 are placed i the
command queue 302 behind RMW-WI1 due to read/write
ordering rules to minimize bus turn-arounds.

Command sequences RMW2 and RMW3 are split and
their read and write commands grouped in the command
queue 302 (first RMW group of consecutive read commands
and first RMW group of consecutive write commands) and
the watermark bit associated with RMW-W3 1s set based on
the maximum number of interleaved RMW being reached
(1.e., CNT=0 since the group of RMW-R2 and RMW-R3
reserve the last two error checking data RMW bullers).
Commands RMW-R2 and RMW-R3 are placed in the com-
mand queue 302 behind R4 due to read/write ordering rules
to minimize bus turn-arounds, and RMW-W2 and RMW-
W3 are placed behind W4 for the same reason.

Command sequence RM W4 1s split and 1ts read and write
commands grouped in the command queue 302 (second
MW group of consecutive read commands and second
MW group of consecutive write commands). Command
MW-R4 cannot be placed behind RMW-R3 because the
MW buflers 306 have been fully allocated. According“.y,
RMW-R4 1s placed behind RMW-W3 since it cannot be
placed 1n the first RMW group of consecutive reads, 1t 1s
placed behind the group of writes.

Commands RD35 and RD6 are be placed in the command
queue 302 as part of the second RMW group of consecutive
read commands, and commands WRS5 and WR6 are be
placed 1 the command queue 302 as part of the second
RMW group of consecutive write commands.

FIG. 4 1s a flow diagram 1illustrating an example method
400 for interleaving RMW command sequences, 1n accor-
dance with various embodiments. For some embodiments,
the method 400 1s performed by a memory controller of a
memory system, such as the memory controller 106
described above with respect to FIG. 1. Though the steps of
method 400 may be depicted and described 1n a certain
order, the order 1n which the steps are performed may vary
between embodiments. For example, a step may be per-
formed before, after, or concurrently with another step.
Additionally, the components described below with respect
to the method 400 are merely examples of components that
may be used with the method 400, and other components
may also be used in some embodiments.

R
R
R
R

US 10,642,684 Bl

13

As shown 1n FIG. 4, the method 400 begins at operation
402, with the memory controller 106 evaluating placement
of a RMW command sequence in a command queue main-
tained by the command queue component 110, where evalu-
ating placement of the RMW command sequence comprises
determining whether a predetermined maximum number of
read-modify-writes has been reached or exceeded. In par-
ticular, for some embodiments, determiming whether the
predetermined maximum number of read-modify-writes has
not been reached or exceeded (at operation 402) comprises
determining whether the predetermined maximum number
of read-modify-writes has not been reached or exceeded
beyond any entry in the command queue that has a water-
mark bit set. The memory controller 106 may determine
whether the predetermined maximum number of read-
modify-writes has been reached or exceeded 1s based on a
counter that tracks a number of write commands in the
read-modify-write group of consecutive write commands. In
particular, where a memory stores primary data inline with
error checking data, the counter may track the number of
primary data RMW-write commands 1n the read-modify-
write group ol consecutive write commands.

At decision operation 404, in response to determining that
the predetermined maximum number of read-modify-writes
has not been reached or exceeded (at operation 402), the
method 400 continues to operation 406. As noted above with
respect to operation 402, determining whether the predeter-
mined maximum number ol read-modify-writes has not
been reached or exceeded may comprise determining
whether the predetermined maximum number of read-
modity-writes has not been reached or exceeded beyond any
entry 1 the command queue that has a watermark bit set.

At operation 406, the method 400 continues with the
memory controller 106 placing, in the command queue, a
first read command of the RMW command sequence as part
of a read-modify-write group of consecutive read commands
in the command queue. According to various embodiments,
at operation 406, the read-modify-write group of consecu-
tive read commands 1n the command queue 1s placed behind
all entries 1n the command queue that have a watermark bits
set.

At operation 408, the method 400 continues with the
memory controller 106 placing, in the command queue, a
first write command of the RMW command sequence as part
of a read-modify-write group of consecutive write com-
mands. According to various embodiments, at operation
408, the read-modify-write group of consecutive write com-
mands 1s placed 1n the command queue behind the read-
modity-write group of consecutive read commands in the
command queue.

For some embodiments, the memory controller 106
causes primary data to be stored inline with error checking
data (generated for the primary data) on the memory com-
ponent 102 using split addressing for memory transactions,
where the primary data 1s stored on the memory at a range
of inline primary data addresses and the error checking data
1s stored on the memory at a range of 1nline error checking
data addresses. Based on a requested memory transaction,
the memory controller 106 generates a first RMW command
sequence for particular primary data and a second RMW
command sequence for particular error checking data, where
the particular error checking data 1s generated for the par-
ticular primary data. Accordingly, at operation 406, the
memory controller 106 may place, 1n the command queue,
a first read command of the first RMW command sequence
and a second read command of the second RMW command
sequence as part ol a read-modify-write group ol consecu-

10

15

20

25

30

35

40

45

50

55

60

65

14

tive read commands 1n the command queue. Additionally, at
operation 408, the memory controller 106 may place, 1n the
command queue, a first write command of the first RMW
command sequence and a second write command of the
second RMW command sequence as part of a read-modify-
write group ol consecutive write commands.

At operation 410, the method 400 continues with the
memory controller 106 allocating a read-modity-write bui-
ter for the RMW command sequence.

At decision operation 404, 1n response to determining that
the predetermined maximum number of read-modily-writes
has been reached or exceeded (at operation 402), the method
400 continues to operation 412. At operation 412, the
method 400 continues with the memory controller 106
setting a watermark bit 1n the command queue. The memory
controller 106 may set the watermark bit with respect to an
entry 1 the command queue associated with at least a last
write command in the read-modify-write group of consecu-
tive write commands. According to various embodiments,
the command queue can comprise two or more watermark
bits that are set and, accordingly, setting a watermark bit in
the command queue at operation 412 may represent a new
watermark bit being set in the command queue.

At operation 416, the method 400 continues with the
memory controller 106 placing the RMW command
sequence 1n the command queue such that the RMW com-
mand sequence executes atter execution of the read-modify-
write group ol consecutive write commands In particular,
the memory controller 106 may place the RMW command
sequence 1n the command queue behind at least a last entry
in the command queue having a watermark bit that 1s set.
According to some embodiments, performing operation 416
comprises performing operations similar to one or more of
operations 406 through 408.

FIG. 5 1s a block diagram illustrating components of a
machine 500, according to some example embodiments,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein. Spe-
cifically, FIG. S shows a diagrammatic representation of the
machine 500 1n the example form of a system, within which
instructions 502 (e.g., software, a program, an application,
an applet, an app, a driver, or other executable code) for
causing the machine 500 to perform any one or more of the
methodologies discussed herein may be executed. For
example, the instructions 502 include executable code that
causes the machine 500 to execute the method 400. In this
way, these instructions 502 transform the general, non-
programmed machine 500 1nto a particular machine pro-
grammed to carry out the described and illustrated method
400 1n the manner described herein. The machine 500 may
operate as a standalone device or may be coupled (e.g.,
networked) to other machines.

By way of non-limiting example, the machine 500 may
comprise or correspond to a computer (e.g., a server coms-
puter, a client computer, a personal computer (PC), a tablet
computer, a laptop computer, or a netbook), a mobile device,
or any machine capable of executing the instructions 502,
sequentially or otherwise, that specity actions to be taken by
the machine 500. Further, while only a single machine 500
1s 1illustrated, the term “machine” shall also be taken to
include a collection of machines 300 that individually or
jointly execute the mnstructions 302 to perform any one or
more of the methodologies discussed herein.

The machine 500 may include processors 504, memory
506, a storage unit 308, and I/O components 510, which may
be configured to communicate with each other such as via a

US 10,642,684 Bl

15

bus 512. In an example embodiment, the processors 504
(e.g., a central processing unit (CPU), a reduced 1nstruction
set computing (RISC) processor, a complex instruction set
computing (CISC) processor, a graphics processing unit
(GPU), a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a radio-frequency inte-
grated circuit (RFIC), another processor, or any suitable
combination thereol) may include, for example, a processor
514 and a processor 316 that may execute the instructions
502. The term “processor’” 1s intended to include multi-core
processors 304 that may comprise two or more independent
processors (sometimes referred to as “cores™) that may
execute nstructions contemporaneously. Although FIG. §
shows multiple processors, the machine 500 may include a
single processor with a single core, a single processor with
multiple cores (e.g., a multi-core processor), multiple pro-
cessors with a single core, multiple processors with multiple
cores, or any combination thereof.

The memory 506 (e.g., a main memory or other memory
storage) and the storage unit 508 are both accessible to the
processors 504 such as via the bus 512. The memory 506 and
the storage unit 508 store the imstructions 502 embodying
any one or more of the methodologies or functions described
herein. The instructions 502 may also reside, completely or
partially, within the memory 506, within the storage unit
508, within at least one of the processors 504 (e.g., within
the processor’s cache memory), or any suitable combination
thereotf, during execution thereof by the machine 500.
Accordingly, the memory 506, the storage unit 508, and the
memory of the processors 504 are examples of machme-
readable media.

As used herein, “machine-readable medium” means a
device able to store instructions and data temporarily or
permanently and may include, but 1s not limited to, random-
access memory (RAM), read-only memory (ROM), buller
memory, flash memory, optical media, magnetic media,
cache memory, other types of storage (e.g., erasable pro-
grammable read-only memory (EEPROM)), and/or any suit-
able combination thereof. The term “machine-readable
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) able to store the instructions
502. The term “machine-readable medium” shall also be
taken to include any medium, or combination of multiple
media, that 1s capable of storing instructions (e.g., mstruc-
tions 502) for execution by a machine (e.g., machine 500),
such that the instructions, when executed by one or more
processors of the machine (e.g., processors 504), cause the
machine to perform any one or more of the methodologies
described herein (e.g., method 400). Accordingly, a
“machine-readable medium” refers to a single storage appa-
ratus or device, as well as “cloud-based” storage systems or
storage networks that include multiple storage apparatus or
devices. The term “machine-readable medium” excludes
signals per se.

Furthermore, the ‘“machine-readable medium” 1s non-
transitory in that 1t does not embody a propagating signal.
However, labeling the tangible machine-readable medium as
“non-transitory” should not be construed to mean that the
medium 1s icapable of movement—the medium should be
considered as being transportable from one real-world loca-
tion to another. Additionally, since the machine-readable
medium 1s tangible, the medium may be considered to be a
machine-readable device.

The I/O components 510 may include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture

10

15

20

25

30

35

40

45

50

55

60

65

16

measurements, and so on. The specific I/O components 510
that are included 1n a particular machine 500 will depend on
the type of the machine 500. For example, portable
machines such as mobile phones will likely include a touch
iput device or other such mput mechanisms, while a
headless server machine will likely not include such a touch
input device. It will be appreciated that the I/O components
510 may include many other components that are not
specifically shown 1n FIG. 5. The I/O components 510 are
grouped according to functionality merely for simplifying
the following discussion and the grouping 1s 1 no way
limiting. In various example embodiments, the I/O compo-
nents 510 may include mput components 518 and output
components 520. The input components 518 may include
alphanumeric input components (e.g., a keyboard, a touch
screen configured to receive alphanumeric mput, a photo-
optical keyboard, or other alphanumeric input components),
point based input components (e.g., a mouse, a touchpad, a
trackball, a joystick, a motion sensor, or another pointing
instrument), tactile mput components (e.g., a physical but-
ton, a touch screen that provides location and/or force of
touches or touch gestures, or other tactile mput compo-
nents), audio mput components, and the like. The output
components 520 may include visual components (e.g., a
display such as a plasma display panel (PDP), a light
emitting diode (LED) display, a liquid crystal display
(LCD), a projector, or a cathode ray tube (CRT)), acoustic
components (e.g., speakers), haptic components (e.g., a
vibratory motor, resistance mechanisms), other signal gen-
erators, and so forth.

Communication may be implemented using a wide vari-
ety of technologies. The I/O components 510 may include
communication components 522 operable to couple the
machine 500 to a network 524 or devices 526 via a coupling
528 and a coupling 530 respectively. For example, the
communication components 522 may include a network
interface component or another suitable device to interface
with the network 524. In further examples, the communi-
cation components 322 may include wired communication
components, wireless communication components, cellular
communication components, near field communication
(NFC) components, Bluetooth® components (e.g., Blu-
ctooth® Low Energy), Wi-Fi® components, and other com-
munication components to provide communication via other
modalities. The devices 526 may be another machine or any
of a wide variety of peripheral devices.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
s1on signal) or hardware modules. A hardware module 1s a
tangible unit capable of performing certain operations and
may be configured or arranged in a certain manner. In
example embodiments, one or more computer systems (e.g.,
a standalone, client, or server computer system) or one or
more hardware modules of a computer system (e.g., a
processor or a group ol processors) may be configured by
soltware (e.g., an application or application portion) as a
hardware module that operates to perform certain operations
as described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that 1s permanently configured (e.g., as a special-purpose
processor, such as a field-programmable gate array (FPGA)
or an ASIC) to perform certain operations. A hardware

US 10,642,684 Bl

17

module may also comprise programmable logic or circuitry
(e.g., as encompassed within a general-purpose processor or
other programmable processor) that 1s temporarily config-
ured by software to perform certain operations. It will be
appreciated that the decision to implement a hardware
module mechanically, 1n dedicated and permanently config-
ured circuitry, or in temporarily configured circuitry (e.g.,
configured by software) may be driven by cost and time
considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that 1s physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate 1n a certain manner and/or to perform certain opera-
tions described herein. Considering embodiments in which
hardware modules are temporarily configured (e.g., pro-
grammed), each ol the hardware modules need not be
configured or mnstantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor configured using software, the general-
purpose processor may be configured as respective diflerent
hardware modules at different times. Software may accord-
ingly configure a processor, for example, to constitute a
particular hardware module at one instance of time and to
constitute a diflerent hardware module at a diflerent instance
of time.

Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple of such
hardware modules exist contemporaneously, communica-
tions may be achieved through signal transmission (e.g.,
over appropriate circuits and buses that connect the hard-
ware modules). In embodiments in which multiple hardware
modules are configured or instantiated at different times,
communications between such hardware modules may be
achieved, for example, through the storage and retrieval of
information 1 memory structures to which the multiple
hardware modules have access. For example, one hardware
module may perform an operation and store the output of
that operation 1n a memory device to which 1t 1s communi-
catively coupled. A further hardware module may then, at a
later time, access the memory device to retrieve and process
the stored output. Hardware modules may also initiate
communications with imput or output devices, and can
operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within
a single machine, but deployed across a number of
machines. In some example embodiments, the processor or
processors may be located 1n a single location (e.g., within
a home environment, an oflice environment, or a server

10

15

20

25

30

35

40

45

50

55

60

65

18

farm), while in other embodiments the processors may be
distributed across a number of locations.

The one or more processors may also operate to support
performance of the relevant operations 1n a “cloud comput-
ing”” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed
by a group of computers (as examples of machines including
processors), with these operations being accessible via a
network 524 (e.g., the Internet) and via one or more appro-
priate interfaces (e.g., APIs).

Electronic Apparatus and System

Example embodiments may be mmplemented in digital
clectronic circuitry, in computer hardware, firmware, or
software, or 1n combinations of them. Example embodi-
ments may be implemented using a computer program
product, for example, a computer program tangibly embod-
ied 1n an information carrier, for example, 1n a machine-
readable medium for execution by, or to control the opera-
tion of, data processing apparatus, lor example, a
programmable processor, a computer, or multiple comput-
ers.

A computer program can be written 1 any form of
programming language, including compiled or interpreted
languages, and 1t can be deployed in any form, including as
a standalone program or as a module, subroutine, or other
umt suitable for use 1 a computing environment. A com-
puter program can be deployed to be executed on one
computer or on multiple computers at one site, or distributed
across multiple sites and interconnected by a communication
network.

In example embodiments, operations may be performed
by one or more programmable processors executing a com-
puter program to perform functions by operating on input
data and generating output. Method operations can also be
performed by, and apparatus of example embodiments may
be implemented as, special purpose logic circuitry (e.g., an
FPGA or an ASIC).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, it will be
appreciated that both hardware and software architectures
merit consideration. Specifically, it will be appreciated that
the choice of whether to implement certain functionality in
permanently configured hardware (e.g., an ASIC), 1n tem-
porarily configured hardware (e.g., a combination of soft-
ware and a programmable processor), or in a combination of
permanently and temporarily configured hardware may be a
design choice.

FIG. 6 1s a diagram illustrating one possible design
process flow for generating a circuit, including embodiments
to implement a memory controller that supports interleaving
of RMW command sequences as described herein, and 1n
various embodiments, to integrate the memory controller
with a larger integrated circuit comprising ditferent design
blocks. As illustrated, the overall design flow 600 includes
a design phase 610, a device fabrication phase 620, a design
verification phase 630, and a device verification phase 640.
The design phase 610 involves an initial design 1nput
operation 601 where the basic elements and functionality of
a device are determined, as well as revisions based on
various analyses and optimization of a circuit design. This
design mput operation 601 1s where instances of an EDA
circuit design file are used 1n the design and any additional

US 10,642,684 Bl

19

circuitry 1s selected. The 1nitial strategy, tactics, and context
for the device to be created are also generated 1n the design
input operation 601, depending on the particular design
algorithm to be used.

In some embodiments, following an initial selection of
design values in the design input operation 601, timing
analysis and optimization according to various embodiments
occurs in an optimization operation 611, along with any
other automated design processes. One such process may be
the automated design of a partitioned root search for error
locator polynomial functions in RS FEC decoding. As
described below, design constraints for blocks of a circuit
design generated with design inputs in the design input
operation 601 may be analyzed using hierarchical timing
analysis, according to various embodiments. While the
design tlow 600 shows such optimization occurring prior to
a layout mnstance 612, such hierarchical timing analysis and
optimization may be performed at any time to verily opera-
tion of a circuit design. For example, 1n various embodi-
ments, constraints for blocks 1 a circuit design may be
generated prior to routing of connections in the circuit
design, after routing, during register transfer level (RTL)
operations, or as part of a final signofl optimization or
verification prior to a device fabrication operation 622.

After design mnputs are used in the design input operation
601 to generate a circuit layout, and any optimization
operations 611 are performed, a layout 1s generated 1n the
layout instance 612. The layout describes the physical layout
dimensions of the device that match the design mputs. This
layout may then be used 1n the device fabrication operation
622 to generate a device, or additional testing and design
updates may be performed using designer inputs or auto-
mated updates based on design simulation 632 operations or
extraction, 3D modeling and analysis 644 operations. Once
the device 1s generated, the device can be tested as part of
device test 642 operations, and layout modifications gener-
ated based on actual device performance.

As described 1n more detail below, design updates 636
from the design simulation 632, design updates 646 from the
device test 642 or the 3D modeling and analysis 644
operations, or the design input operation 601 may occur after
an 1mfial layout instance 612 1s generated. In various
embodiments, whenever design inputs are used to update or
change an aspect of a circuit design, a timing analysis and
optimization operation 611 may be performed.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed 1n the order illustrated. Structures and
functionality presented as separate components 1n example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

Although an overview of the inventive subject matter has
been described with reference to specific example embodi-
ments, various modifications and changes may be made to
these embodiments without departing from the broader
scope of embodiments of the present disclosure.

The embodiments illustrated herein are described 1n sui-
ficient detail to enable those skilled 1n the art to practice the
teachings disclosed. Other embodiments may be used and

5

10

15

20

25

30

35

40

45

50

55

60

65

20

derived therefrom, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The detailed description, therefore,
1s not to be taken 1n a limiting sense, and the scope of various
embodiments 1s defined only by the appended claims, along
with the full range of equivalents to which such claims are
entitled.

As used herein, the term “or” may be construed 1n either

an inclusive or exclusive sense. The terms “‘a” or “an’ should

be read as meaning “at least one,” “one or more,” or the like.
The use of words and phrases such as “one or more,” “at
least,” “but not limited to,” or other like phrases shall not be
read to mean that the narrower case 1s mtended or required
in mstances where such broadening phrases may be absent.

Boundaries between various resources, operations, com-
ponents, engines, and data stores are somewhat arbitrary,
and particular operations are illustrated 1n a context of
specific 1illustrative configurations. Other allocations of
functionality are envisioned and may fall within a scope of
various embodiments of the present disclosure. In general,
structures and functionality presented as separate resources
in the example configurations may be implemented as a
combined structure or resource. Similarly, structures and
functionality presented as a single resource may be 1mple-
mented as separate resources. These and other vanations,
modifications, additions, and improvements fall within a
scope of embodiments of the present disclosure as repre-
sented by the appended claims. The specification and draw-
ings are, accordingly, to be regarded 1n an 1llustrative rather
than a restrictive sense.

The description above includes systems, methods,
devices, instructions, and computer media (e.g., computing
machine program products) that embody illustrative
embodiments of the disclosure. In the description, for the
purposes of explanation, numerous specific details are set
forth in order to provide an understanding of various
embodiments of the inventive subject matter. It will be
evident, however, to those skilled in the art, that embodi-
ments of the inventive subject matter may be practiced
without these specific details. In general, well-known
instruction instances, protocols, structures, and techniques
are not necessarily shown 1n detail.

What 1s claimed 1s:
1. A memory controller comprising:
a command queue component configured to provide a
command queue storing a plurality of memory com-
mands for timely execution by the memory controller;
and
a read-modify-write component configured to perform
operations comprising;
analyzing the command queue for read-modify-write
command sequences;
based on the analyzing the command queue:
placing, in the command queue, read commands of a
plurality of read-modify-write command sequences
as a read-modify-write group of consecutive read
commands; and

placing; in the command queue, write commands of the
plurality of read-modify-write command sequences
as a read-modify-write group of consecutive write
commands.

2. The memory controller of claim 1, wherein the read-
modily-write group consecutive reads commands 1s placed
in the command queue to execute prior to the read-modity-
write group ol consecutive write commands.

US 10,642,684 Bl

21

3. The memory controller of claim 1, wherein the read-
modity-write component 1s further configured to perform
operations comprising;:

based on the analyzing the command queue:

allocating a read-modity-write bufler for each read
command in the read-modity-write group of con-
secutive read commands.

4. The memory controller of claim 1, wherein the memory
controller uses split addressing to generate memory com-
mands for memory transactions with respect to a memory,
the memory controller causes the memory to store primary
data inline with error checking data generated for the pri-
mary data, and wherein the read-modify-write command
sequences comprises at least one read-modity-write com-
mand sequence for particular primary data and at least one
read-modify-write command sequence for particular error
checking data that i1s associated with the particular primary
data.

5. The memory controller of claim 4, wherein the read-
modify-write component 1s further configured to perform
operations comprising;:

based on the analyzing the command queue:

allocating a read-modify-write bufler for each read
command for primary data in the read-modify-write
group ol consecutive read commands; and

allocating an error checking data bufler for each read
command for error checking data 1n the read-modify-
write group ol consecutive read commands.

6. The memory controller of claim 5, wherein the error
checking data comprises error correcting code (ECC).

7. The memory controller of claim 1, wherein the read-
modity-write component further configured to perform
operations comprising;:

based on the analyzing the command queue:

determining whether a predetermined maximum num-
ber of read-modify-writes has been reached or
exceeded; and

in response to determining that the predetermined
maximum number of read-modify-writes has been
reached or exceeded, setting a watermark bit 1n the
command queue.

8. The memory controller of claim 7, wherein the water-
mark bit 1s set with respect to an entry, in the command
queue, associated with at least a last write command 1n the
read-modify-write group of consecutive write commands.

9. The memory controller of claim 7, wherein the deter-
mimng whether the predetermined maximum number of
read-modify-writes has been reached or exceeded 1s based
on a counter that tracks a number of write commands in the
read-modily-write group of consecutive write commands.

10. The memory controller of claim 7, wherein the
read-modify-write component 1s further configured to per-
form operations comprising:

in response to determining that the predetermined maxi-

mum number of read-modify-writes has been reached
or exceeded, placing a subsequent read-modify-write
command sequence in the command queue such that
the subsequent read-modity-write command sequence
executes after execution of the read-modify-write
group ol consecutive write commands.

11. The memory controller of claim 10, wherein the
placing the subsequent read-modify-write command
sequence 1n the command queue such that the subsequent
read-modily-write command sequence executes after execu-
tion of the read-modify-write group of consecutive write
commands comprises placing the subsequent read-modity-

10

15

20

25

30

35

40

45

50

55

60

65

22

write command sequence in the command queue behind at
least a last entry in the command queue having a set
watermark bit.

12. A method comprising:

evaluating, by a memory controller, placement of a read-

modity-write command sequence 1n a command queue,
the evaluating comprising determining whether a pre-
determined maximum number of read-modify-writes
has been reached; and

in response to determining that the predetermined maxi-

mum number of read-modify-writes has not been

reached or exceeded:

placing, by the memory controller, a first read com-
mand of the read-modify-write command sequence
in the command queue as part of a read-modify-write
group ol consecutive read commands 1n the com-
mand queue; and

placing, by the memory controller, a first write com-
mand of the read-modify-write command sequence
in the command queue as part of a read-modify-write
group ol consecutive write commands.

13. The method of claim 12, further comprising:

in response to determining that the predetermined maxi-

mum number of read-modify-writes has not been

reached or exceeded:

allocating, by the memory-controller, a read-modity-
write bufler for the read-modify-write command
sequence.

14. The method of claim 12; further comprising;

in response to determining that the predetermined maxi-

mum number of read-modify-writes has been reached
or exceeded, setting, by the memory controller, a
watermark bit in the command queue.

15. The method of claim 14, wherein the watermark bit 1s
set with respect to an entry, in the command queue, asso-
ciated with at least a last write command 1n the read-modity-
write group ol consecutive write commands.

16. The method of claim 12, further comprising:

in response to determining that the predetermined maxi-

mum number of read-modify-writes has been reached
or exceeded, placing, by the memory controller, the
read-modity-write command sequence in the command
queue such that the read-modify-write command
sequence executes after execution of the read-modify-
write group ol consecutive write commands.

17. The method of claam 16, wherein the placing the
read-modify-write command sequence in the command
queue such that the read-modify-write command sequence
executes alter execution of the read-modify-write group of
consecutive write commands comprises placing the read-
modity-write command sequence in the command queue
behind at least a last entry 1n the command queue having a
set watermark bait.

18. The method of claim 12, wherein the determining
whether the predetermined maximum number of read-
modify-writes has been reached or exceeded 1s based on a
counter that tracks a number of write commands in the
read-modify-write group of consecutive write commands.

19. A method comprising:

storing, on a memory, primary data inline with error

checking data generated for the primary data using split
addressing for memory transactions, the primary data
being stored on the memory at a range of inline primary
data addresses and the error checking data being stored
on the memory at a range of 1nline error checking data

US 10,642,684 Bl

23

addresses, the range of inline primary data addresses
not overlapping with the range of inline error checking
data addresses:;

generating, by a memory controller and based on a

requested memory transaction, a first read-modify-
write command sequence for particular primary data
and a second read-modify-write command sequence for
particular error checking data, the particular error

checking data being generated for the particular pri-
mary data;

cvaluating, by the memory controller, placement of the

first and second read-modify-write command
sequences 1n a command queue, the evaluating place-
ment comprising determining whether a predetermined
maximum number of read-modify-writes has been
reached;

in response to determining that the predetermined maxi-

mum number of read-modily-writes has not been

reached or exceeded:

placing, by the memory controller, both a first read
command of the first read-modify-write command
sequence and a second read command of the second

10

15

20

24

read-modity-write command sequence in the com-
mand queue as part of a read-modity-write group of
consecutive read commands 1n the command queue;
and

placing, by the memory controller, both a first write
command of the first read-modify-write command
sequence and a second write command of the second
read-modify-write command sequence 1 the com-
mand queue as part of a read-modify-write group of
consecutive write commands.

20. The method of claim 19, further comprising;
in response to determining that the predetermined maxi-

mum number of read-modify-writes has been reached
or exceeded, placing, by the memory controller, both
the first read-modify-write command sequence and the
second read-modity-write command sequence in the
command queue such that both the first read-modity-
write command sequence and the second read-modify-
write command sequence execute after execution of the

read-modify-write group of consecutive write com-
mands.

	Front Page
	Drawings
	Specification
	Claims

