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FIG. 8
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DEEP CONVOLUTIONAL IMAGE
UP-SAMPLING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 15/479,675, filed Apr. 5, 2017, the content of which 1s

hereby incorporated herein in 1ts entirety by reference.

TECHNOLOGICAL FIELD

An example embodiment relates generally to 1image up-
sampling. In particular, an example embodiment generally
relates to up-sampling low resolution images to provide a
reconstructed 1mage having sharp features.

BACKGROUND

Consumer vehicles are capable of capturing high-resolu-
tion images. For example, consumer vehicles may capture a
high-resolution 1mage for use 1n 1mage-based localization
techniques, obstacle detection, and/or the like for assisted
and/or autonomous driving. Unfortunately, these images are
too large to transmit through most vehicles’ constrained
bandwidth. Thus, these high-resolution images are generally
down-sampled for transmission to other computing entities,
Cloud-based computing networks, and/or the like. The fea-
ture detection within the down-sampled 1images 1s dithcult
and can be unreliable. However, up-sampling of the images
generally leads to artifacts, causing relevant image details to
be lost. For example, a double yellow line may be blurred
into a single yellow line. The loss of relevant image detail
may lead to incorrect localization determinations when
using 1mage-based localization techniques.

BRIEF SUMMARY

Example embodiments, provide methods, apparatus,
computer programs products, and systems for generating a
higher resolution 1mage based on a down-sampled 1mage
and/or a temporal sequence of down-sampled 1images. In an
example embodiment, the higher resolution 1mage preserves
teatures of the down-sampled image and/or the original tull
resolution 1mage that was down-sampled to generate the
down-sampled 1mage. For example, the features in the
higher resolution 1image may be sharp enough to be accu-
rately detected by a feature detector. In an example embodi-
ment, the higher resolution 1mage may be of a pre-defined
and/or configurable resolution and/or size. At least some
example embodiments allow for an accurate, real time (or
near real time) localization of a vehicle from which the
original full resolution 1mage was captured. For example, an
example embodiment may provide for a Cloud-based deter-
mination of a vehicle wherein communication between the
vehicle apparatus onboard the vehicle and a Cloud-based
computing network and/or environment 1s bandwidth con-
strained. In an example embodiment, feature information/
data may be extracted from the higher resolution image to
generate, develop, and/or update a feature map. For
example, the feature map may be stored as a layer of a digital
map and/or a map tile thereof. For example, one or more
map tiles comprising a feature map layer may be provided
to one or more vehicle apparatuses for use in localization
determinations.

In an example embodiment, an 1mage and/or temporal
sequence of 1mages 1s recerved. The image and/or sequence
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2

of 1mages was captured by an image capturing device of a
vehicle apparatus onboard a vehicle and was down-sampled
thereby. A scale of the image(s) 1s determined. An up-
sampling network receives the image(s) and the scale. The
up-sampling network determines appropriate network
weilghts based on the scale. Based on the appropriate net-
work weights, the up-sampling network generates a higher
resolution 1mage having a pre-defined scale.

In an example embodiment, an apparatus that 1s part of
and/or 1 communication with a Cloud-based computing
environment may be provided. In an example embodiment,
the apparatus comprises a communications interface for
communicating with the Cloud-based computing environ-
ment; a graphical processing unit configured to operate an
up-sampling network; and a processing unit. The processing
umt 1s configured to receive an image. The image 1s (a)
captured by an 1mage capturing device of a vehicle appara-
tus onboard a vehicle and (b) down-sampled by the vehicle
apparatus. The processing umt may be further configured to
determine a scale of the image; cause the up-sampling
network to receive the image and the scale of the image;
cause the up-sampling network to determine appropriate
network weights based on the scale of the 1image; and cause
the up-sampling network to generate an higher resolution
image having a pre-defined scale based on the image and the
appropriate network weights. In an example embodiment,
the up-sampling network 1s a deep neural network.

In an example embodiment, training the up-sampling
network comprises receiving or accessing a full resolution
image; and generating an instance of training data. The
instance of training data comprises (a) a plurality of down-
sampled training 1mages, each of the down-sampled training
images being a down-sampled representation of the full
resolution 1mage at a particular scale and (b) the full
resolution 1mage. In an example embodiment, training the
up-sampling network further comprises receiving by a neu-
ral network the instance of training data; for a particular
down-sampled training image of the instance of traimning
data, generating an up-sampled training image; determining
a loss function based on the up-sampled training image and
the training 1mage; and modifying one or more network
weights based on the loss function. In an example embodi-
ment, the higher resolution 1image 1s of the same resolution
as the full resolution 1mage.

In an example embodiment, the higher resolution 1mage 1s
a composite higher resolution 1image. Recerving the image
comprises receiving a temporal sequence of 1mages com-
prising a plurality of down-sampled images captured by the
image capturing device. Generating the higher resolution
image comprises up-sampling each of the plurality of down-
sampled 1mages to generate a temporal sequence of higher
resolution 1mages and performing a convolution of the
temporal sequence of higher resolution 1images to generate
the higher resolution image. In an example embodiment,
training the up-sampling network comprises receiving or
accessing a temporal sequence of full resolution 1mages; and
generating an instance of traiming data. The instance of
training data comprises (a) a plurality of temporal sequences
of down-sampled 1images, each of the temporal sequences of
down-sampled images being a down-sampled representation
of the temporal sequence of full resolution images at a
particular scale and (b) the temporal sequence of full reso-
lution 1mages. In an example embodiment, training the
up-sampling network further comprises receiving by a neu-
ral network the instance of training data; for a particular
temporal sequence of the down-sampled 1images, generating
a temporal sequence of higher resolution 1mages; perform-
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ing a convolution of the temporal sequence of higher reso-
lution 1mages to generate a composite higher resolution
image; determining a loss function based on the composite
up-sampled training 1mage and at least one full resolution
image ol the temporal sequence of full resolution 1mages;
and moditying one or more network weights based on the
loss function. In an example embodiment, the higher reso-
lution 1mage 1s of the same resolution as the tull resolution
image.

In an example embodiment, the up-sampling network 1s
defined by a plurality of sets of network weights, wherein
cach set of network weights corresponds to a scale of a series
of scales. In an example embodiment, the series of scales
comprises a lirst scale and a second scale. The first scale
corresponds to a first set of network weights and the second
scale corresponds to a second set of network weights. The
scale of the image 1s between the first scale and the second
scale. The appropriate weights are determined based on the
first set of network weights and the second set of network
weilghts. In an example embodiment, determining the scale
of the image comprises at least one of analyzing the image,
analyzing meta data corresponding to the image.

In an example embodiment, the processing unit 1s further
configured to perform an 1mage-based localization tech-
nique based on the higher resolution image to determine
corrected pose information; and provide the corrected pose
information, wherein the corrected pose mformation 1is
received by the vehicle apparatus and the vehicle apparatus
determines at least one routing decision based on the cor-
rected pose mformation. In an example embodiment, the
processing unit 1s further configured to receive pose nfor-
mation corresponding to the image; extract feature informa-
tion from the higher resolution 1mage, the feature informa-
tion corresponding to at least one feature detected within the
higher resolution 1mage; and update a feature map based on
the pose information and the extracted feature information,
the feature map being a layer of a digital map.

In an example embodiment, a method 1s provided. The
method comprises receiving an image. The image 1s (a)
captured by an 1mage capturing device of a vehicle appara-
tus onboard a vehicle and (b) down-sampled by the vehicle
apparatus. The method may further comprise determining a
scale of the 1image; receiving, by an up-sampling network,
the 1image and the scale of the image; determining, by the
up-sampling network, appropriate network weights based on
the scale of the image; and generating, by the up-sampling,
network, an higher resolution image having a pre-defined
scale based on the image and the appropriate network
weights.

In an example embodiment, training the up-sampling
network comprises recerving or accessing a full resolution
image; and generating an instance of tramning data. The
instance of training data comprises (a) a plurality of down-
sampled training 1images, each of the down-sampled training
images being a down-sampled representation of the tull
resolution image at a particular scale and (b) the full
resolution 1mage. In an example embodiment, training the
up-sampling network further comprises receirving by a neu-
ral network the instance of traiming data; for a particular
down-sampled training image of the instance of training
data, generating an up-sampled training image; determining
a loss function based on the up-sampled training 1image and
the training i1mage; and modifying one or more network
welghts based on the loss function. In an example embodi-
ment, the higher resolution 1mage 1s of the same resolution
as the full resolution 1mage.
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In an example embodiment, the higher resolution 1mage 1s
a composite higher resolution 1image. Receiving the image
comprises receiving a temporal sequence of 1mages com-
prising a plurality of down-sampled images captured by the
image capturing device. Generating the higher resolution
image comprises up-sampling each of the plurality of down-
sampled 1mages to generate a temporal sequence of higher
resolution 1mages and performing a convolution of the
temporal sequence of higher resolution 1images to generate
the higher resolution image. In an example embodiment,
training the up-sampling network comprises receiving or
accessing a temporal sequence of full resolution 1mages; and
generating an instance of traiming data. The instance of
training data comprises (a) a plurality of temporal sequences
of down-sampled 1mages, each of the temporal sequences of
down-sampled 1images being a down-sampled representation
of the temporal sequence of full resolution 1mages at a
particular scale and (b) the temporal sequence of full reso-
lution 1mages. In an example embodiment, training the
up-sampling network further comprises receiving by a neu-
ral network the instance of training data; for a particular
temporal sequence of the down-sampled 1images, generating
a temporal sequence of higher resolution 1mages; perform-
ing a convolution of the temporal sequence of higher reso-
lution 1mages to generate a composite higher resolution
image; determining a loss function based on the composite
up-sampled training 1mage and at least one full resolution
image ol the temporal sequence of full resolution 1mages;
and modifying one or more network weights based on the
loss function. In an example embodiment, the higher reso-
lution 1mage 1s of the same resolution as the full resolution
image.

In an example embodiment, the up-sampling network 1s
defined by a plurality of sets of network weights, wherein
cach set of network weights corresponds to a scale of a series
of scales. In an example embodiment, the series of scales
comprises a lirst scale and a second scale. The first scale
corresponds to a first set of network weights and the second
scale corresponds to a second set of network weights. The
scale of the 1mage 1s between the first scale and the second
scale. The appropriate weights are determined based on the
first set of network weights and the second set of network
weights. In an example embodiment, determining the scale
of the image comprises at least one of analyzing the image,
analyzing meta data corresponding to the image.

In an example embodiment, the method further comprises
performing an 1mage-based localization technique based on
the higher resolution 1mage to determine corrected pose
information; and providing the corrected pose information,
wherein the corrected pose information 1s received by the
vehicle apparatus and the vehicle apparatus determines at
least one routing decision based on the corrected pose
information. In an example embodiment, the method further
comprises receiving pose mformation corresponding to the
image; extracting feature information from the higher reso-
lution 1mage, the feature imformation corresponding to at
least one feature detected within the higher resolution
image; and updating a feature map based on the pose
information and the extracted feature information, the fea-
ture map being a layer of a digital map.

In accordance with an example embodiment, an apparatus
1s provided that comprises at least one processor, at least one
memory storing computer program code, and a pose error
network, with the at least one memory and the computer
program code configured to, with the processor, cause the
apparatus to at least receive an image. The 1mage 1s (a)
captured by an 1image capturing device of a vehicle appara-
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tus onboard a vehicle and (b) down-sampled by the vehicle
apparatus. The at least one memory and the computer
program code are further configured to, with the processor,
cause the apparatus to at least determine a scale of the
image; receive, by an up-sampling network, the image and
the scale of the image; determine, by the up-sampling
network, appropriate network weights based on the scale of
the 1mage; and generate, by the up-sampling network, an
higher resolution 1image having a pre-defined scale based on
the 1mage and the appropriate network weights.

In an example embodiment, training the up-sampling
network comprises recerving or accessing a full resolution
image; and generating an instance of training data. The
instance of training data comprises (a) a plurality of down-
sampled training 1images, each of the down-sampled training
images being a down-sampled representation of the tull
resolution 1mage at a particular scale and (b) the full
resolution 1mage. In an example embodiment, training the
up-sampling network further comprises recerving by a neu-
ral network the instance of traiming data; for a particular
down-sampled training image of the instance of training
data, generating an up-sampled training image; determining
a loss function based on the up-sampled training 1image and
the training image; and modifying one or more network
welghts based on the loss function. In an example embodi-
ment, the higher resolution 1mage 1s of the same resolution
as the full resolution 1mage.

In an example embodiment, the higher resolution 1mage 1s
a composite higher resolution 1image. Receiving the image
comprises receiving a temporal sequence of 1mages com-
prising a plurality of down-sampled images captured by the
image capturing device. Generating the higher resolution
image comprises up-sampling each of the plurality of down-
sampled 1mages to generate a temporal sequence of higher
resolution 1mages and performing a convolution of the
temporal sequence of higher resolution 1images to generate
the higher resolution image. In an example embodiment,
training the up-sampling network comprises receiving or
accessing a temporal sequence of full resolution 1mages; and
generating an instance of training data. The instance of
training data comprises (a) a plurality of temporal sequences
of down-sampled 1mages, each of the temporal sequences of
down-sampled 1images being a down-sampled representation
of the temporal sequence of full resolution 1mages at a
particular scale and (b) the temporal sequence of full reso-
lution 1mages. In an example embodiment, training the
up-sampling network further comprises recerving by a neu-
ral network the instance of traiming data; for a particular
temporal sequence of the down-sampled 1images, generating,
a temporal sequence of higher resolution 1mages; performs-
ing a convolution of the temporal sequence of higher reso-
lution 1mages to generate a composite higher resolution
image; determining a loss function based on the composite
up-sampled training 1mage and at least one full resolution
image ol the temporal sequence of full resolution 1mages;
and modifying one or more network weights based on the
loss function. In an example embodiment, the higher reso-
lution 1mage 1s of the same resolution as the tull resolution
1mage.

In an example embodiment, the up-sampling network 1s
defined by a plurality of sets of network weights, wherein
cach set of network weights corresponds to a scale of a series
of scales. In an example embodiment, the series of scales
comprises a lirst scale and a second scale. The first scale
corresponds to a first set of network weights and the second
scale corresponds to a second set of network weights. The
scale of the image 1s between the first scale and the second
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scale. The appropriate weights are determined based on the
first set of network weights and the second set of network
weilghts. In an example embodiment, determining the scale
of the image comprises at least one of analyzing the image,
analyzing meta data corresponding to the image.

In an example embodiment, the at least one memory and
the computer program code are further configured to, with
the processor, cause the apparatus to at least perform an
image-based localization technique based on the higher
resolution 1image to determine corrected pose information;
and provide the corrected pose information, wherein the
corrected pose mnformation 1s received by the vehicle appa-
ratus and the vehicle apparatus determines at least one
routing decision based on the corrected pose information. In
an example embodiment, the at least one memory and the
computer program code are further configured to, with the
processor, cause the apparatus to at least receive pose
information corresponding to the image; extract feature
information from the higher resolution 1mage, the feature
information corresponding to at least one feature detected
within the higher resolution 1image; and update a feature map
based on the pose information and the extracted feature
information, the feature map being a layer of a digital map.

In accordance with an example embodiment, a computer
program product 1s provided that comprises at least one
non-transitory computer-readable storage medium having
computer-executable program code instructions stored
therein with the computer-executable program code 1nstruc-
tions comprising program code instructions configured to
receive an 1mage. The image 1s (a) captured by an image
capturing device of a vehicle apparatus onboard a vehicle
and (b) down-sampled by the vehicle apparatus. The com-
puter-executable program code 1nstructions further comprise
program code instructions configured to determine a scale of
the 1mage; receive, by an up-sampling network, the image
and the scale of the image; determine, by the up-sampling
network, appropriate network weights based on the scale of
the 1image; and generate, by the up-sampling network, an
higher resolution 1image having a pre-defined scale based on
the 1mage and the appropriate network weights.

In an example embodiment, training the up-sampling
network comprises receiving or accessing a full resolution
image; and generating an instance of training data. The
instance of training data comprises (a) a plurality of down-
sampled training 1mages, each of the down-sampled training
images being a down-sampled representation of the full
resolution 1mage at a particular scale and (b) the full
resolution 1mage. In an example embodiment, training the
up-sampling network further comprises receiving by a neu-
ral network the instance of training data; for a particular
down-sampled training image of the instance of training
data, generating an up-sampled training image; determining
a loss function based on the up-sampled training 1image and
the training 1mage; and modifying one or more network
weights based on the loss function. In an example embodi-
ment, the higher resolution 1image 1s of the same resolution
as the full resolution 1mage.

In an example embodiment, the higher resolution 1mage 1s
a composite higher resolution 1image. Recerving the image
comprises receiving a temporal sequence of 1mages com-
prising a plurality of down-sampled images captured by the
image capturing device. Generating the higher resolution
image comprises up-sampling each of the plurality of down-
sampled 1mages to generate a temporal sequence of higher
resolution 1mages and performing a convolution of the
temporal sequence of higher resolution 1images to generate
the higher resolution image. In an example embodiment,
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training the up-sampling network comprises receiving or
accessing a temporal sequence of full resolution 1mages; and
generating an instance of training data. The instance of
training data comprises (a) a plurality of temporal sequences
of down-sampled 1mages, each of the temporal sequences of
down-sampled images being a down-sampled representation
of the temporal sequence of full resolution images at a
particular scale and (b) the temporal sequence of full reso-
lution 1mages. In an example embodiment, training the
up-sampling network further comprises recerving by a neu-
ral network the instance of traiming data; for a particular
temporal sequence of the down-sampled 1mages, generating,
a temporal sequence of higher resolution 1mages; performs-
ing a convolution of the temporal sequence of higher reso-
lution 1mages to generate a composite higher resolution
image; determining a loss function based on the composite
up-sampled tramning image and at least one full resolution
image ol the temporal sequence of full resolution 1images;
and modifying one or more network weights based on the
loss function. In an example embodiment, the higher reso-
lution 1mage 1s of the same resolution as the full resolution
1mage.

In an example embodiment, the up-sampling network 1s
defined by a plurality of sets of network weights, wherein
cach set of network weights corresponds to a scale of a series
of scales. In an example embodiment, the series of scales
comprises a first scale and a second scale. The first scale
corresponds to a first set of network weights and the second
scale corresponds to a second set of network weights. The
scale of the 1mage 1s between the first scale and the second
scale. The appropriate weights are determined based on the
first set of network weights and the second set of network
weilghts. In an example embodiment, determining the scale
of the image comprises at least one of analyzing the image,
analyzing meta data corresponding to the image.

In an example embodiment, the computer-executable pro-
gram code 1nstructions further comprise program code
instructions configured to perform an 1mage-based localiza-
tion technmique based on the higher resolution image to
determine corrected pose mnformation; and provide the cor-
rected pose information, wherein the corrected pose infor-
mation 1s received by the vehicle apparatus and the vehicle
apparatus determines at least one routing decision based on
the corrected pose information. In an example embodiment,
the computer-executable program code instructions further
comprise program code instructions configured to receive
pose information corresponding to the image; extract feature
information from the higher resolution 1mage, the feature
information corresponding to at least one feature detected
within the higher resolution 1mage; and update a feature map
based on the pose mformation and the extracted feature
information, the feature map being a layer of a digital map.

In accordance with yet another example embodiment of
the present invention, an apparatus 1s provided that com-
prises means for receiving an image. The image 1s (a)
captured by an 1mage capturing device of a vehicle appara-
tus onboard a vehicle and (b) down-sampled by the vehicle
apparatus. In certain embodiments, the apparatus comprises
means for determining a scale of the image. In certain
embodiments, the apparatus comprises means for receiving,
by an up-sampling network, the image and the scale of the
image. In certain embodiments, the apparatus comprises
means for determining, by the up-sampling network, appro-
priate network weights based on the scale of the image. In
certain embodiments, the apparatus comprises means for
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generating, by the up-sampling network, a higher resolution
image having a pre-defined scale based on the image and the
appropriate network weights.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described certain example embodiments 1n
general terms, reference will heremaiter be made to the
accompanying drawings, which are not necessarily drawn to
scale, and wherein:

FIG. 1 1s a block diagram showing an example architec-
ture of one embodiment of the present invention;

FIG. 2A 1s a block diagram of a remote apparatus that may
be specifically configured in accordance with an example
embodiment;

FIG. 2B 1s a block diagram of a vehicle apparatus that
may be specifically configured in accordance with an
example embodiment;

FIG. 3 1s a schematic illustration of using an up-sampling,
network to reconstruct a full resolution image, 1n accordance
with an example embodiment;

FIG. 4 1s a flowchart illustrating operations performed,
such as by the apparatus of FIG. 2A, to train the up-sampling,
network, 1 accordance with an example embodiment;

FIG. 5 1s a flowchart illustrating operations performed,
such as by the apparatus of FIG. 2A, to train the up-sampling
network, 1n accordance with an example embodiment;

FIG. 6 shows some example full resolution images,
images corresponding to full resolution images that have
been up-sampled using a traditional up-sampling technique,
and 1mages corresponding to the full resolution 1mages that
have been up-sampled using a technique of an example
embodiment of the present invention;

FIG. 7 1s a flowchart illustrating operations performed,
such as by the remote apparatus of FIG. 2A or the vehicle
apparatus of FIG. 2B, to generate and/or update a feature
map, in accordance with an example embodiment; and

FIG. 8 1s a flowchart illustrating operations performed,
such as by the remote apparatus of FIG. 2A or the vehicle
apparatus of FIG. 2B, to perform localization of a vehicle,
in accordance with an example embodiment.

DETAILED DESCRIPTION

Some embodiments will now be described more fully
hereinafter with reference to the accompanying drawings, in
which some, but not all, embodiments of the invention are
shown. Indeed, various embodiments of the invention may
be embodied 1n many different forms and should not be
construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclo-
sure will satisty applicable legal requirements. The term
“or” (also denoted */”’) 1s used herein 1n both the alternative
and conjunctive sense, unless otherwise indicated. The terms
“1lustrative” and “exemplary” are used to be examples with
no indication of quality level. Like reference numerals refer
to like elements throughout. As used herein, the terms
“data,” “content,” “information,” and similar terms may be
used interchangeably to refer to data capable of being
transmitted, received and/or stored in accordance with
embodiments of the present invention. Thus, use of any such
terms should not be taken to limit the spirit and scope of
embodiments of the present invention.

Additionally, as used herein, the term ‘circuitry’ refers to
(a) hardware-only circuit implementations (e.g., implemen-
tations 1n analog circuitry and/or digital circuitry); (b) com-
binations of circuits and computer program product(s) com-
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prising software and/or firmware instructions stored on one
or more computer readable memories that work together to
cause an apparatus to perform one or more functions
described herein; and (c) circuits, such as, for example, a
microprocessor(s) or a portion ol a microprocessor(s), that
require soltware or firmware for operation even 1f the
soltware or firmware 1s not physically present. This defini-
tion ol ‘circuitry’ applies to all uses of this term herein,
including 1n any claims. As a further example, as used
herein, the term ‘circuitry’ also 1includes an implementation
comprising one or more processors and/or portion(s) thereof
and accompanying soltware and/or firmware. As another
example, the term ‘circuitry’ as used herein also includes, for
example, a baseband integrated circuit or applications pro-
cessor integrated circuit for a mobile phone or a similar
integrated circuit 1n a server, a cellular network device, other
network device, and/or other computing device.

As defined herein, a “computer-readable storage
medium,” which refers to a non-transitory physical storage
medium (e.g., volatile or non-volatile memory device), can
be differentiated from a “computer-readable transmission
medium,” which refers to an electromagnetic signal.

I. General Overview

Methods, apparatus and computer program products are
provided 1n accordance with an example embodiment in
order to generate a higher resolution 1mage, for example,
having sharp features that may be used for feature detection.
In example embodiments, a vehicle apparatus onboard a
vehicle may capture a high-resolution, full-resolution, and/
or the like image. In various embodiments, due to bandwidth
constraints, the high-resolution, full-resolution, and/or the
like 1image may be down-sampled to generate a low resolu-
tion image. The low resolution 1image may then be provided
(e.g., transmitted) by the vehicle apparatus and received by
a remote apparatus (e.g., a Cloud-based computing network
apparatus, and/or the like). In an example embodiment, the
remote apparatus may then use an up-sampling network to
generate a reconstructed image having a higher resolution
than the low resolution image and having sharp enough
features such that the features may be detected within the
reconstructed 1mage.

The features detected 1n the reconstructed 1mage may be
used to perform 1mage-based localization corresponding to
the vehicle, generate and/or update a feature map comprising,
feature information/data that may be used in 1mage-based
localization, and/or the like. In an example embodiment, the
image-based localization performed based on the recon-
structed 1mage generated based on the received low resolu-
tion 1s performed 1n real and/or near real time so as to allow
for autonomous and/or assisted driving of a vehicle.

In an example embodiment, a temporal sequence of low
resolution 1mages are used to generate the reconstructed
image using the up-sampling network. For example, the
up-sampling network (or another network) may perform a
three-dimensional convolution of the temporal sequence of
low resolution 1mages (or a temporal sequence of recon-
structed 1mages generated based on the sequence of low
resolution 1mages) to further provide a reconstructed image
having sharp features and avoiding global image blurring.

In an example embodiment, the up-sampling network
may be a tramned deep net and/or neural network. In an
example embodiment, the up-sampling network may be
trained to generate a reconstructed image from a low reso-
lution 1mage and/or a temporal sequence of low resolution
images at a plurality of scales. For example, the up-sampling
network may be trained to receive a low resolution 1mage
generated by applying a first down-sampling factor s, and
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generate a reconstructed 1mage using a first set of one or
more network weights and/or parameters. The up-sampling
image network may also be trained to receive a low reso-
lution image generated by applying a second down-sampling
factor s, and generate a reconstructed 1mage using a second
set of one or more network weights and/or parameters. The
up-sampling 1mage network may also be trained to receive
a low resolution 1mage generated by applying an interme-
diary down-sampling factor s, that 1s between the first
down-sampling factor and the second down-sampling factor
(e.g., 5,<5,<s,) using a set of one or more network weights
and/or parameters that are determined using a (e.g., non-
linear) interpolation between the first and second set of one
or more network weights.

An example embodiment of the present invention pro-
vides a solution to the computer-related technological prob-
lem of transmitting 1mages over a network having band-
width constraints for analysis by a Cloud-based computing
network. An example embodiment of the present invention
provides a solution to the computer-related technological
problem of performing feature detection based on 1mage
with reduced resolution such that the image may be trans-
mitted over a network having bandwidth constraints. For
example, an example embodiment of the present invention
provides for mmproving computer-related technology by
providing a technique for feature detection based on 1images
having reduced resolution such that feature mmformation/data
for feature map generation and/or updates and localization
processes may be completed using Cloud-based computing
environments to decrease onboard processing requirements
for autonomous and/or assisted driving vehicles wherein
communication between the vehicle and the Cloud-based
computing environment 1s bandwidth constrained.

FIG. 1 provides an illustration of an example system that
can be used 1n conjunction with various embodiments of the
present mvention. As shown i FIG. 1, the system may
include one or more vehicle apparatuses 20, one or more
remote apparatuses 10, one or more networks 40, and/or the
like. In various embodiments, the vehicle apparatus 20 may
be an 1n vehicle navigation system, vehicle control system,
a mobile computing device, and/or the like. For example, a
vehicle apparatus 20 may be an in vehicle routing and
navigation system mounted within and/or be on-board a
vehicle 5 such as a motor vehicle, non-motor vehicle,
automobile, car, scooter, truck, van, bus, motorcycle,
bicycle, Segway, golf cart, and/or the like. In various
embodiments, the vehicle apparatus 20 may be a smart-
phone, tablet, personal digital assistant (PDA), and/or other
mobile computing device. In another example, the vehicle
apparatus 20 may be a vehicle control system configured to
autonomously drive a vehicle 5, assist in control of a vehicle
5, and/or the like.

In an example embodiment, a remote apparatus 10 may
comprise components similar to those shown 1n the example
remote apparatus 10 diagrammed 1n FIG. 2A. In an example
embodiment, the remote apparatus 10 may be configured to
train and/or utilize an up-sampling network. In an example
embodiment, the remote apparatus 10 1s configured to per-
form feature detection based on a low resolution image
provided by a vehicle apparatus 20, provide map updates
(e.g., one or more map tiles) to the vehicle apparatus 20,
provide one or more instances of localization information/
data (e.g., pose information/data) to the vehicle apparatus
20, and/or the like. In an example embodiment, a vehicle
apparatus 20 may comprise components similar to those
shown 1n the example vehicle apparatus 20 diagrammed 1n
FIG. 2B. In various embodiments, the remote apparatus 10
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may be located remotely from the vehicle apparatus 20. For
example, a remote apparatus 10 may be a remotely located
server, with respect to the vehicle apparatus 20, and/or an
apparatus that 1s part of a Cloud-based computing environ-
ment and/or network.

Each of the components of the system may be in elec-
tronic communication with, for example, one another over
the same or diflerent wireless or wired networks 40 1nclud-
ing, for example, a wired or wireless Personal Area Network

(PAN), Local Area Network (LAN), Metropolitan Area
Network (MAN), Wide Area Network (WAN), cellular
network, and/or the like. In some embodiments, a network
40 may comprise the automotive cloud, digital transporta-
tion infrastructure (DTI), radio data system (RDS)/high
definition (HD) radio or other digital radio system, and/or
the like. For example, a vehicle apparatus 20 may be in
communication with a remote apparatus 10 via the network
40. For example, the vehicle apparatus 20 may communicate
with the remote apparatus 10 via a network, such as the
Cloud. For example, the Cloud may be a computer network
that provides shared computer processing resources and data
to computers and other devices connected thereto. For
example, the vehicle apparatus 20 may be configured to
receive one or more map tiles of a digital map and/or
localization information/data from the remote apparatus 10.

In an example embodiment, as shown in FIG. 2B, the
vehicle apparatus 20 may comprise a processor 22, memory
24, a communications interface 26, a user interface 28, one
or more location sensors 30 (e.g., a location sensor such as
a GPS sensor; IMU sensors, and/or the like), one or more
image capturing devices (e.g., camera(s); two dimensional
(2D) and/or three dimensional (3D) light detection and
ranging (L1IDAR)(s); long, medium, and/or short range radio
detection and ranging (RADAR); ultrasonic sensors; elec-
tromagnetic sensors; (near-) inirared (IR) cameras, 3D cam-
eras, 360° cameras and/or the like) and/or other sensors that
enable the vehicle apparatus 20 to determine one or more
features of the corresponding vehicle’s 5 surroundings,
and/or other components configured to perform various
operations, procedures, functions or the like described
herein. In at least some example embodiments, the memory
24 1s non-transitory and may store information/data corre-
sponding to one or more parameters, features, and/or char-
acteristics of the image capturing device 32. The memory 24
may further store information/data that identifies the corre-
spondence between (a) the position of the vehicle 5 and the
position of the location sensor 30, (b) the position of the
location sensor 30 and the image capturing device 32, (¢) the
pose ol the vehicle 5 and the field of view of the image
capturing device 32, and/or the like.

Similarly, as shown 1n FIG. 2A, the remote apparatus 10
may comprise a processor 12, memory 14, a user interface
18, a communications interface 16, and/or other components
configured to perform various operations, procedures, func-
tions or the like described herein. In an example embodi-
ment, the up-sampling network may operate (at least 1n part)
on a central processing unit (CPU) or a graphics processing
unit (GPU) of the remote apparatus 10. Certain example
embodiments of the vehicle apparatus 20 and the remote
apparatus 10 are described 1n more detail below with respect
to FIGS. 2A and 2B.

II. Example Operation

In an example embodiment, an 1mage and/or temporal
sequence of 1mages 1s captured (e.g., by an 1image capturing
device 32 of a vehicle apparatus 20 onboard a vehicle 5).
Due to bandwidth constraints, the image and/or temporal
sequence of 1images 1s down-sampled and/or reduced 1n size
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to generate a low resolution image and/or temporal sequence
of low resolution 1mages before being provided (e.g., trans-
mitted). A remote apparatus 10 may receive the low reso-
lution 1image and/or the temporal sequence of low resolution
images. Belore the remote apparatus 10 may process the
image (e.g., detect features within the image), the image
may be up-sampled and/or converted to a higher-resolution
image. For example, the remote apparatus 10 may generate
an 1mage having a pre-defined and/or configurable resolu-
tion and/or size based on the low resolution 1mage and/or
may generate a temporal sequence of i1mages having a
pre-defined and/or configurable resolution and/or size based
on each of the low resolution images of the temporal
sequence ol low resolution 1mages. For example, the pre-
defined and/or configurable resolution and/or size may be
selected such that the generated 1image has suflicient reso-
lution for the processing of the image by one or more feature
detectors and/or the like for detecting features within the
generated 1mages. In an example embodiment, the pre-
defined and/or configurable resolution and/or size may be
the resolution and/or size of the image as 1t was originally
captured by the image capturing device 32. In an example
embodiment, the pre-defined and/or configurable resolution
and/or size may be 800x600 pixels, 1920x1080 pixels,
and/or the like. In an example embodiment, the pre-defined
and/or configurable resolution and/or size may be up to ten
times the resolution and/or size of the low resolution 1mage.

Common up-sampling techniques used to up-sample a
low resolution 1 image to a thher resolution tend to provide
an 1mage that 1s blocky (e.g., “pixelated”) and/or suflers
from global blurring. Thus, these common up-sampling
techniques provide a higher resolution 1image having blurred
and/or distorted features. For example, 1f the low resolution
image comprises a portion of a road way with a double
yellow line, the up-sampling of the image may cause the
double yellow line to be blurred into a single yellow line 1n
the resulting higher resolution 1mage. If the resulting 1image
1s then provided to a feature detector that identifies lane lines
within an 1mage, the feature detector would only detect a
single yellow line. I1 the detected features are used to update
a Teature map, the feature map may then be updated to not
reflect the ground truth features of the location where the
image was captured. If the detected features are used to
perform a localization of the vehicle (e.g., to determine pose
information/data for the vehicle), mcorrect pose mforma-
tion/data may be determined due to the detected features not
reflecting the features actually present at the location of the
vehicle. In an example embodiment, pose information/data
comprises a location (e.g., a geo-location indicating the
physical location of the vehicle; a latitude and longitude)
and/or a heading for the vehicle (e.g., a direction the vehicle
1s facing; an angle describing the direction the vehicle 1s
facing with respect to a reference angle or location (e.g.,
North)).

Example embodiments of the present invention provide
for generating a higher resolution image based on a low
resolution 1image, wherein the features of the low resolution
(and the originally captured image) are preserved and sharp
in the generated higher resolution image. For example,
embodiments of the present invention provide for generatmg
a higher resolution 1image based on a low resolution 1image
wherein the features of the low resolution (and the originally
captured 1mage) may be detected by analyzing the higher
resolution 1mage using a feature detector and/or the like. In
an example embodiment, a deep neural network may be
trained to generate a higher resolution image based on a low
resolution 1mage such that the features of the higher reso-
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lution 1mage are sharp and accurately retlect the features
present in the low resolution 1mage. In an example embodi-
ment, a deep neural network may be trained to generate a
higher resolution image based on a temporal sequence of
low resolution images such that the features of the higher
resolution image are sharp and accurately retlect the features
present 1 at least one of the images of the temporal
sequence of low resolution 1images. In particular, the features
present 1n the higher resolution 1mages may be features that
are present in two or more of the images of the temporal
sequence of lower resolution 1mages. For example, the deep
neural network may be trained to perform a 3D convolution
ol the temporal sequence of low resolution 1mages (and/or a
temporal sequence of higher resolution 1mages generated
from the temporal sequence of low resolution 1mages) to
generate the higher resolution 1mage having sharp and/or
detectable features therein.

In an example embodiment, a deep neural network may be
trained to act as an up-sampling network. For example, the
up-sampling network may be trained to receive low resolu-
tion 1mages (and/or temporal sequences of low resolution
images) having a variety of resolutions, at various scales,
and/or the like and generate higher resolution 1images based
thereon. In an example embodiment, the scale of a low
resolution 1mage may refer to the up-sampling factor
required to generate a higher resolution 1mage of the pre-
defined and/or configurable resolution and/or size based on
the low resolution image. For example, the up-sampling
network may be trained to generate higher resolution images
of a pre-defined and/or configurable resolution and/or size
independent of the starting resolution and/or size of the low
resolution 1mage. For example, the up-sampling network
may be trained to receive a first low resolution 1mage at a
first scale and use a first set of network weights and/or
parameters to generate a first higher resolution image of the
pre-defined and/or configurable resolution and/or size and to
receive a second low resolution 1mage at a second scale and
use a second set of network weights and/or parameters to
generate a second higher resolution image of the pre-defined
and/or configurable resolution and/or size. The up-sampling
network may be trained to receive a third low resolution
image at a third scale that 1s between the first scale and the
second scale and to generate a third higher resolution 1mage
ol the pre-defined and/or configurable resolution and/or size
using the a third set of network weights and/or parameters
that 1s determined by (e.g., non-linearly) interpolating
between the first and second set of network weights and/or
parameters. An interpolation function and the corresponding,
weights and/or parameters may be determined and/or
learned based on the loss function and/or error-weight
relationship at the different scales.

FIG. 3 illustrates schematic of how a higher resolution
image ol the pre-defined and/or configurable resolution
and/or size may be generated based on various low resolu-
tion mput 1images. For example, a low resolution 1image of
scale s, may be received. The up-sampling network may use
the first set of network weights and/or parameters to gener-
ate an 1mage of the pre-defined and/or configurable resolu-
tion and/or size based a low resolution 1image described by
scale s, with respect to the pre-defined and/or configurable
resolution and/or size. Similarly, the up-sampling network
may use the second set of network weights and/or param-
cters to generate an 1mage of the pre-defined and/or con-
figurable resolution and/or size based a low resolution image
described by scale s, with respect to the pre-defined and/or
configurable resolution and/or size, and so on. In an example
embodiment, the up-sampling network may be configured to
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generate an 1mage of the pre-defined and/or configurable
resolution and/or size directly based on the low resolution
image. In an example embodiment, the up-sampling network
may be configured to generate an 1image of the next higher
resolution based on the low resolution 1mage and to boot-
strap and/or iterate through the series of scales {s} until the
image ol the pre-defined and/or configurable resolution
and/or size 1s generated.

Once the higher resolution 1image has been generated, the
higher resolution 1mage may be provided to one or more
feature detectors and/or otherwise be processed, analyzed,
and/or the like to detected one or more features within the
image and/or extract feature information/data from the
image. The detected one or more features and/or extracted
feature immformation/data may be used to update a feature
map that 1s stored as part of a digital map (e.g., as a layer of
one or more tiles of digital map) and/or to perform an 1image
based localization process (e.g., determine pose information/
data for the vehicle 5). In an example embodiment, the
remote apparatus 10 may be a computing entity and/or
device that 1s part of a Cloud-based computing network
and/or environment such that at least a portion of the
computer processing resources required for performing
localization of the vehicle § (e.g., determining pose infor-
mation/data for the vehicle 5) may be provided via the
Cloud-based computing network and/or environment.

An Exemplary Technique of Traiming the Up-Sampling
Network

In an example embodiment, the remote apparatus may
train a deep and/or neural network to act as an up-sampling
network. In an example embodiment, the deep and/or neural
network may be an encoder-decoder representation. In an
example embodiment, the up-sampling network may be
trained to receirve a low resolution 1mage and generate a
higher resolution 1mage of a pre-defined and/or configurable
resolution and/or size based on the low resolution 1image. In
an example embodiment, multiple sets of one or more
network weights and/or parameters may be learned, wherein
cach set of network weights and/or parameters corresponds
to a particular scale. In an example embodiment, the remote
apparatus 10 may train a deep and/or neural network such
that the one or more sets of network weights and/or param-
cters may be learned. In an example embodiment, the remote
apparatus 10 may generate one or more instances of training
information/data that may be used to train a deep and/or
neural network to act as an up-sampling network. In an
example embodiment, an instance of training information/
data may comprise a sequence of training images. In an
example embodiment, training the up-sampling network
comprises determining one or more sets of network weights
and/or parameters through an iterative network training
Process.

In an example embodiment, an 1nstance of training infor-
mation/data comprises a sequence of training images {1}
comprising a plurality of images. One of the plurality of
images may be a full resolution image, high definition
resolution 1mage, and/or the like and 1s referred to as a full
resolution 1mage I, herein. In an example embodiment, the
full resolution 1image I, may be an 1image of the pre-defined
and/or configurable resolution and/or size. The remainder of
the plurality of 1images of the sequence of training 1mages
{1} may be images that are generated by down-sampling the
full resolution image. For example, a series of scales {s}
comprising one or more scales or factors may be pre-
defined. In an example embodiment, an image may be
generated for each scale s, of the series of scales {s}. For
example, a reduced resolution 1mage 1, may be generated by




US 10,621,696 B2

15

down-sampling the full resolution 1image by a factor corre-
sponding to the scale s, to generate a sequence ot reduced
resolution images {I'}. In an example embodiment, the set of
one or more scales may comprise the scale s,=1. The
sequence of reduced resolution images {I'} may therefore
comprise the plurality of reduced resolution images I, and
the full resolution 1mage I, (corresponding to the scale s, =1
resulting in no down-sampling of the image) and the
sequence of reduced resolution 1mages may be equal to the
sequence of training images (e.g., {I'}={I}). In another
embodiment, the sequence of reduced resolution images {1'}
may be generated and the full resolution 1mage I, may be
appended thereto (e.g., {I'}+] ={I}). Thus, in an example
embodiment, the sequence of training 1mages may comprise
a series ol 1mages that are ordered based on the scale of the
image (e.g., {1}={1, (lowest resolution image), I, (low reso-
lution 1mage with a resolution higher than I,), . . . , I

y -1

(image with a resolution higher than I _, but lower than 1),
I (full resolution image)} ).

In an example embodiment, the sequence of tramning
images {1} is received by the deep and/or neural network.
The deep and/or neural network may then use local inter-
polation and/or up-sampling to generate an image of the
pre-defined and/or configurable resolution and/or size based
on reduced resolution 1image I, (1=k=n-1). For example, In
an example embodiment, the local interpolation and/or
up-sampling may use a nearest neighbor algorithm, an
algorithm that defines a local neighborhood about a pixel
that extends beyond nearest neighbors, and/or the like. The
generated 1mage may then be analyzed based on the full
resolution 1image I to determine a loss function. The net-
work weights and/or parameters corresponding to the scale
s, may then be updated, modified, and/or the like based on
the determined loss function. Thus, a set of network weights
and/or parameters may be learned for each scale of the series
of scales {s}.

FIG. 4 provides flowchart illustrating operations per-
tformed, such as by the remote apparatus 10, to train the
up-sampling network, in accordance with an example
embodiment. Starting at block 102, one or more full reso-
lution 1mages are accessed and/or received. For example, the
remote apparatus 10 may access and/or receive one or more
tull resolution 1mages. For example, the remote apparatus 10
may comprise means, such as the processor 12, memory 14,
communications interface 16, user interface 18, and/or the
like, for accessing and/or receiving one or more full reso-
lution 1mages. In an example embodiment, full resolution
images are 1mages of the pre-defined and/or configurable
resolution and/or size. In an example embodiment, the one
or more full resolution 1mages may be captured by one or
more 1mage capturing devices 32 of one or more vehicle
apparatuses 20.

At block 104, an instance of training information/data
may be generated. For example, sequence of training images
{1} may be generated. In an example embodiment, a
sequence of training images {1} comprises the full resolution
image I and a series of reduced resolution images {I'}
generated by down-sampling the full resolution image. Fach
reduced resolution 1image I, of the series of reduced resolu-
tion images {I'} is generated by down-sampling the full
resolution 1image by the scale s, of the pre-defined series of
scales {s}. Various techniques may be used to down-sample
the full resolution 1mage to generate the reduced resolution
images. In an example embodiment, the technique used to
down-sample the full resolution image to generate the
reduced resolution images 1s the technique that 1t 1s expected
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one or more vehicle apparatuses 20 will use to down-sample
captured 1mages to generate low resolution 1mages.

At block 106, the deep and/or neural network may receive
one or more instances of tramning information/data. For
example, the deep and/or neural network may receive one or
more sequences of training images {1}. For example, the
remote apparatus 10 may provide the one or more sequences
of training images {1} to the deep and/or neural network. For
example, the remote apparatus 10 may cause the deep and/or
neural network to receive the one or more sequences of
training images {I1}. For example, the remote apparatus 10
may comprise means, such as the processor 12, communi-
cations interface 16, and/or the like, for causing the deep
and/or neural network to receive the one or more sequences
of training images {I}. For example, in an example embodi-
ment, the deep and/or neural network may operate (at least
in part) on CPU and/or GPU of the remote apparatus 10.

At block 108, for each image I, of the sequence of training
images (wherein 1=k=n-1 and the full resolution 1mage is
I ), a higher resolution 1mage 1s generated by interpolating
and/or up-sampling the image I, from the scale s, to the
pre-defined and/or configurable resolution and/or size s, .
For example, the deep and/or neural network operating (at
least 1 part) on the remote apparatus 10 may generate a
higher resolution by interpolating and/or up-sampling the
image I, from the scale s, to the pre-defined and/or configu-
rable resolution and/or size s, for 1=k=n-1. For example, the
remote apparatus 10 may comprise means, such as processor
12 and/or the like, for generating a higher resolution by
interpolating and/or up-sampling the image I, from the scale
s, to the pre-defined and/or configurable resolution and/or
size s, for l=k=n-1. As should be understood, various
techniques may be used to interpolate and/or up-sample the
reduced resolution 1mage I, from the scale s, to the pre-
defined and/or configurable resolution and/or size s, within
various layers of the deep and/or neural network.

Continuing with FIG. 4, at block 110, for each scale s; of
the series of scales {s}, the higher resolution image gener-
ated based on the reduced resolution image I, may be
analyzed 1n light of the full resolution 1image I, and a loss
function may be determined, computed, generated, and/or
the like based on the analysis. For example, the remote
apparatus 10 may analyze the higher resolution image
generated based on the reduced resolution 1mage I, 1n light
of and/or based on the full resolution 1mage I, and deter-
mine, compute, generate and/or the like a loss function
based on the analysis, for each scale s, of the series of scales
Is}. For example, the remote apparatus 10 may comprise
means, such as the processor 12 and/or the like, for analyz-
ing the higher resolution 1mage generated based on the
reduced resolution 1mage I, 1n light of and/or based on the
tull resolution 1mage I, and determining, computing, gen-
erating and/or the like a loss function based on the analysis,
for each scale s, of the series of scales {s}. In an example
embodiment, a loss function may be determined, computed,
generated, and/or the like based on and/or to quantity the
analysis of the alignment of one or more features present 1n
the higher resolution 1image generated based on the reduced
resolution 1mage I, and the full resolution image I . For
example, a function quantifying the alignment of one or
more features present 1n the full resolution 1image generated
based on the reduced resolution 1mage I, with the corre-
sponding feature in the full resolution image I, may be
evaluated, calculated, and/or the like based on the analysis
of the higher resolution image generated based on the
reduced resolution 1mage I, and the full resolution 1mage I
to provide a loss function. In an example embodiment, a
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cross-entropy based loss function 1s determined, calculated,
and/or generated. In an example embodiment, the loss
function may be determined, computed, generated, and/or
the like by comparing patches of the full resolution image I,
in which a feature detector has detected one or more features
with corresponding patches of the higher resolution 1mage.
In an example embodiment, the loss function may be deter-
mined computed, generated, and/or the like by determiming,
il features detected in the full resolution 1image are detected
in the higher resolution image and the accuracy of the
positioning of the detected features in the higher resolution
image based on the full resolution 1mage.

At block 112, one or more network weights and/or param-
cters are updated. For example, one or more network
weights and/or parameters of one or more of the sets of
network weights and/or parameters are updated, modified,
and/or the like based on the loss function(s) determined,
computed, generated, and/or the like for the corresponding
scale s,. For example, the k” set of network weights and/or
parameters may be updated based on the loss function
determined, computed, generated, and/or the like based on
analyzing the higher resolution image generated based on
the reduced resolution image I, and the full resolution image
I . For example, the remote apparatus 10 may update,
modity, and/or the like one or more network weights and/or
parameters based on one or more loss functions. For
example, the remote apparatus 10 may comprise means,
such as the processor 12, memory 14, and/or the like, for
updating, modifying, and/or the like one or more network
weights and/or parameters based on one or more loss
functions. For example, the one or more network weights
and/or parameters may be updated to minimize one or more
loss functions and/or the like. In an example embodiment,
the one or more network weights and/or parameters may be
updated using a stochastic gradient descent technique. In an
example embodiment, the one or more network weights
and/or parameters may be updated using a stochastic gradi-
ent descent technique using momentum, 1n which previous
iterations of the network weights and/or parameters are
remembered and the updates, modifications, and/or the like
to the network weights and/or parameters are determined
based at least 1n part on at least one previous iteration of the
network weights and/or parameters. It should be understood
that various techniques to update, modity, and/or the like the
network weights and/or parameters to, for example, mini-
mize the loss function may be utilized. In an example
embodiment, two or more sequences of training images {1}
may be analyzed belore the network weights and/or param-
eters are updated and/or modified. For example, the k™ set
of network weights and/or parameters may be updated based
on a set of loss functions corresponding to an analyses of a
higher resolution 1mages generated based on reduced reso-
lution 1mages I, for two or more sequences of traimning
images {1}.

In one example embodiment, assuming that the features
present in the higher resolution image generated based on
the reduced resolution 1mage I, and the corresponding fea-
tures 1n the full resolution 1mage 1 are indexed by some
common parameter 1, one example loss function 1s loss=2.d,
(f, '), where 1, refers to the features from the higher
resolution image, {' refers to the features from the full
resolution 1mage 1 , and dg 1s a function that quantifies the
alignment of the corresponding features. In an example
embodiment, the alignment between corresponding features
may comprise a distance between the position of the features
in the higher resolution image and the full resolution 1image,
and/or an angular alignment of the features in the higher
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resolution 1mage and the full resolution image. In an
example embodiment, the loss function 1s reduced and/or
minimized as the alignment between the features in the
higher resolution 1mage and the full resolution 1mage 1s
improved and/or as the detectability and/or sharpness of the
features within the higher resolution 1mage are increased.
Thus, the loss function may be used to encourage the
up-sampling network to provide a more accurate and sharper
higher resolution image based on the up-sampling of a
reduced resolution 1mage. For example, the loss function
may be used to encourage the up-sampling network to
generate a higher resolution 1image that has sharp enough
features that the features therein may be accurately detected
in the higher resolution image.

At block 114, 1t may be determined 11 the one or more sets
ol network weights and/or parameters have converged sui-
ficiently to satisiy a convergence threshold requirement. In
an example, 11 an update, modification, and/or the like to the
one or more network weights and/or parameters 1s suili-
ciently small for one or more 1terations, the convergence of
the network weights and/or parameters may have converged
sufliciently to satisly a convergence threshold requirement.
For example, the remote apparatus 10 may determine if the
convergence of the one or more sets of network weights
and/or parameters 1s suflicient to satisfy a convergence
threshold requirement. For example, the remote apparatus
10 may comprise means, such as the processor 12 and/or the
like, for determining 1f the convergence of the one or more
sets of network weights and/or parameters 1s suflicient to
satisly a convergence threshold requirement.

If, at block 114, it 1s determined that the convergence of
the one or more sets of network weights and/or parameters
1s not sullicient to satisiy the convergence threshold require-
ment, the process may return to blocks 102 and/or 106 to
receive and/or access one or more additional full resolution
images I and/or to provide one or more istances of training
information/data (e.g., sequences of training images {1}) to
the deep and/or neural network to further train the up-
sampling network (e.g., to further refine, determine, modity,
and/or update one or more network weights and/or param-
cters of the one or more sets of network weights and/or
parameters).

If, at block 114, 1t 1s determined that the convergence of
the one or more sets of network weights and/or parameters
1s suilicient to satisly the convergence threshold require-
ment, the process may continue to block 116. At block 116,
the up-sampling network may be locked (e.g., the network
weights and/or parameters may be fixed at their current
values and not updated and/or modified further). The trained
up-sampling network may then be used to generate higher
resolution 1mages based on received low resolution 1mages.
In an example embodiment, the up-sampling network may
continue to train and/or learn one or more network weights
and/or parameters after the convergence of the one or more
sets of network weights and/or parameters 1s suflicient to
satisty the convergence threshold requirement.

As described above, the up-sampling network may inter-
polate and/or up-sample an 1mage from a resolution
described by scale s, with respect to the pre-defined and/or
configurable resolution and/or size to the pre-defined and/or
configurable resolution and/or size directly. In another
example embodiment, the up-sampling network may be
trained to interpolate and/or up-sample an image from a
resolution described by scale s, with respect to the pre-
defined and/or configurable resolution and/or size to a
resolution described by scale s, , with respect to the pre-
defined and/or configurable resolution and/or size. This
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process may be iterated until the higher resolution image
generated 1s of the pre-defined and/or configurable resolu-
tion and/or size. For example, the up-sampling network may
be configured to generate a higher resolution image by
boot-strapping through a sequence of scales. In such an
embodiment, the up-sampling network may learn the k™ set
of network weights and/or parameters by generating an
image of scale s, , based on the image I, of scale s, and
determining a loss function based on an analysis of the
image of scale s, , generated based on the image I, of scale
s, and the reduced resolution 1image I, , of the sequence of
training images {1}.

In an example embodiment, the one or more sequences of
training images {1} may be generated before the training of
the deep and/or neural network. In an example embodiment,
one or more sequences of traiming 1images may be generated
alter the tramming of the deep and/or neural network has
begun. In an example embodiment, the one or more
sequences ol training 1images may be bundled into sets of
sequences of training images. The deep and/or neural net-
work may process the each sequence of training 1images in
the set of sequences traiming images, update the sets of
network weights and/or parameters, and then process the
same and/or a different set of sequences of training 1images.
Thus, the training of the deep and/or neural network may not
require the processing of each of the sequences of training
images for each iteration of updating the sets of network
weights and/or parameters. Moreover, multiple rounds of
training over different sets of sequences of training 1mages
may provide for a more robust traiming of the up-sampling
network. In one example embodiment, each of sequences of
training 1mages of the one or more sets ol sequences of
training 1mages may be processed during each iteration of
updating the sets network weights and/or parameters.
Another Exemplary Techmque of Training the Up-Sampling,
Network

In an example embodiment, the remote apparatus may
train a deep and/or neural network to act as an up-sampling,
network. In an example embodiment, the deep and/or neural
network may be a convolution representation and an
encoder-decoder representation (e.g., a combination thereof,
a convolution network connected to an encoder-decoder
representation, a convolution network sandwiched between
two encoder-decoder networks, a convolution network
embedded within an encoder-decoder network, and/or the
like). In an example embodiment, the up-sampling network
may be trammed to receive a temporal sequence of low
resolution 1images and generate a higher resolution 1mage of
a pre-defined and/or configurable resolution and/or size
based on the temporal sequence of low resolution 1images. In
an example embodiment, multiple sets of one or more
network weights and/or parameters may be learned, wherein
cach set of network weights and/or parameters corresponds
to a particular scale. In an example embodiment, the remote
apparatus 10 may train a deep and/or neural network such
that the one or more sets of network weights and/or param-
cters may be learned. In an example embodiment, the remote
apparatus 10 may generate a series of temporal sequences of
training i1mages that may be used to train a deep and/or
neural network to act as an up-sampling network. For
example, a temporal sequence of images {I(t)} may be used
to generate an instance of tramning information/data. For
example, each 1mage 1n the temporal sequence of 1images
{1(t)} may be a full resolution image 1 . For each image in
the temporal sequence of full resolution images {I(t)} , a
sequence of reduced resolution 1mages may be generated. In
other words, 1 an example embodiment, a temporal
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sequence of reduced resolution images {1(t)}, may be gen-
erated for each scale in the pre-defined series of scales {s}.
Thus, an instance of training information/data {{I(t)} .} may
comprise a sequence of temporal sequences ol reduced
resolution 1mages, wherein each of the temporal sequences
has been down-sampled from the full resolution temporal
sequence of 1mages by a particular scale s. In an example
embodiment, training the up-sampling network comprises
determining one or more sets of network weights and/or
parameters through an iterative network training process.

In an example embodiment, the up-sampling network
may be trammed to perform a convolution (e.g., a three
dimensional convolution) of the temporal sequence of train-
ing 1mages. For example, the up-sampling network may be
configured to perform a convolution of a temporal sequence
of reduced resolution images {I(t)} . The convolution may
be used to 1dentily one or more features that are present in
two or more of the reduced resolution 1mages of the tem-
poral sequence of reduced resolution images {I(t)} . and/or
patches of two or more of the reduced resolution 1images of
the temporal sequence of reduced resolution images {I(t)}.
that are similar. A composite reduced resolution 1mage may
be generated based on the identified features, similar patches
and/or the like. The composite reduced resolution image
may then be interpolated and/or up-sampled to generate a
higher resolution image that may then be analyzed in light
of at least one of the full resolution 1mages of the temporal
sequence of images {I(t)} to determine a loss function.

In another example embodiment, each of the reduced
resolution 1mages ol the temporal sequence of reduced
resolution images {I(t)} . may be interpolated and/or up-
sampled to generate a temporal sequence of higher resolu-
tion images {I1(t)},. A convolution may then be performed on
the 1mages of the temporal sequence of higher resolution
images {I(t)} to generate a composite higher resolution
image corresponding to a particular scale s. The composite
higher resolution 1mage may then be analyzed in light of at
least one of the full resolution images of the temporal
sequence of images {I(t)}, to determine a loss function.
Thus, 1n example embodiments, a convolution of a temporal
sequence of reduced resolution or higher resolution 1mages
may be used to provide a higher resolution 1mage having
sharp and/or detectable features and/or features that are
accurately preserved from the full resolution 1image.

In an example embodiment, as indicated above, an
instance of training information/data {{I(t)} .} comprises a
plurality of images. For example, a temporal sequence of
full resolution images {I(t)}, comprises an image I(m)
corresponding to time t_. To build the instance of training
information/data {{I(t)}.} corresponding to the temporal
sequence of full resolution images {I(t)}, the full resolution
image I (m) 1s down-sampled a plurality of times to generate
a reduced resolution image I,(m) for each scale s, for
1=k=n-1, for a series of n scales including a scale of 1
corresponding to the predefined and/or configurable resolu-
tion and/or size. Thus, for each I (m), a sequence {I(m)} _ is
generated, wherein the sequence {I(m)}. comprises I (m)
and the plurality of reduced resolution 1mages corresponding
to I (m). Thus, 1n an example embodiment, the sequence of
images corresponding to full resolution image I (m) com-
prises a series of 1images that are ordered based on the scale
of the image (e.g., {I(m)} ={I(m), (lowest resolution
image), I(m), (low resolution 1mage with a resolution higher
than I(m),), . . ., I{m),_, (1mage with a resolution higher
than I(m), _, but lower than I(m),), I{m) (full resolution
image corresponding to t )}). The instance of training
information/data { {I(t)}.} is the temporally ordered union of
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the sequences {I(m)}, for -N=m=N, wherein the temporal
sequence of full resolution images {I(t)}, comprises 2N+1
images each associated with a time.

It should be understood that the time range t_,=t=t, 1s
used 1n an illustrative manner, and various time ranges may
be used. In an example embodiment, the time window of the
time range t_,=<t<t,, may be one second, three seconds, five
seconds, and/or the like. Throughout the time window, a
frame rate of 1 to 90 Hz may be used, in an example
embodiment. For example, in one example embodiment, the
time window may be 3 seconds and the frame rate may be
2 Hz. Thus, the temporal sequence of 1mages may comprise
6 or 7 1mages based on the exact definition of the time
window.

In an example embodiment, the instance of training
information/data 1s received by the deep and/or neural
network. For example, in one embodiment, the deep and/or
neural network may then perform a convolution of a tem-
poral sequence of reduced resolution 1images to generate a
composite reduced resolution image and then use local
interpolation and/or up-sampling to generate an image of the
pre-defined and/or configurable resolution and/or size based
on the temporal sequence of reduced resolution images
(1)}, (1=k=n-1). In an example embodiment, the local
interpolation and/or up-sampling may use a nearest neighbor
algorithm, an algorithm that defines a local neighborhood
about a pixel that extends beyond nearest neighbors, and/or
the like. For example, 1n one embodiment, the deep and/or
neural network may generate a temporal sequence of higher
resolution 1mages based on a temporal sequence of reduced
resolution 1mages and then perform a convolution of the
temporal sequence of higher resolution 1mages to generate a
composite higher resolution image of the pre-defined and/or
configurable resolution and/or size based on the temporal
sequence of reduced resolution images {I(t)}, (1=sk=n-1).
The generated 1mage may then be analyzed based on at least
one ol the full resolution 1image I, to determine a loss
function. The network weights and/or parameters corre-
sponding to the scale s, may then be updated, modified,
and/or the like based on the determined loss function. Thus,
a set of network weights and/or parameters may be learned
for each scale of the series of scales {s}.

FIG. 5 provides flowchart illustrating operations per-
formed, such as by the remote apparatus 10, to train the
up-sampling network, 1 accordance with an example
embodiment. Starting at block 202, one or more temporal
sequences of full resolution 1mages are accessed and/or
received. For example, the remote apparatus 10 may access
and/or recetve one or more temporal sequences full resolu-
tion 1mages. For example, the remote apparatus 10 may
comprise means, such as the processor 12, memory 14,
communications interface 16, user interface 18, and/or the
like, for accessing and/or receiving one or more temporal
sequences of full resolution 1mages. In an example embodi-
ment, full resolution 1mages are 1images of the pre-defined
and/or configurable resolution and/or size. In an example
embodiment, a temporal sequence of full resolution 1mages
{1(t)}, comprises a plurality of full resolution image cap-
tured by one or more 1mage capturing devices 32 (e.g.,
onboard a vehicle 5) over a time window 1n which the field
of view captured in the one or more images substantially
overlaps across all of the images 1n the temporal sequence of
tull resolution 1mages. For example, two images may be
considered to substantially overlap 1f at least one detectable
and/or 1dentifiable feature 1s present and/or i1dentifiable 1n
both 1mages. In an example embodiment the images of the
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temporal sequence of full resolution 1images are captured by
an 1mage capturing device 32 over a time window of 1 to 5
seconds, and/or the like.

At block 204, an 1nstance of training imnformation/data 1s
generated for at least one of the temporal sequences of tull
resolution 1mages that were accessed and/or received. In an
example embodiment, an instance of training information/
data {{I()}.} comprises (a) the temporal sequence of full
resolution 1mages and (b) a plurality of temporal sequences
of reduced resolution 1mages. For example, the instance of
training 1nformation/data may comprise a temporal
sequence of reduced resolution images {1(t)}, for each scale
of the series of scales {s}. In an example embodiment, a
temporal sequence of reduced resolution images {1(t)},
corresponding to scale s; 1s generated by down-sampling
two or more images oif the temporal sequence of full
resolution images {1(t)} by a factor corresponding to the
scale s, of training images {1} may be generated. In an
example embodiment, the technique used to down-sample
the each 1mage of the temporal sequence of full resolution
images {I(t)} to generate the one or more temporal
sequences of reduced resolution images {I(t)}, is the tech-
nique that 1t 1s expected one or more vehicle apparatuses 20
will use to down-sample captured images to generate low
resolution 1mages. In an example embodiment, the remote
apparatus 10 may generate an instance of training informa-
tion/data corresponding to at least one of the temporal
sequences of full resolution images {I(t)} that were
received and/or accessed. For example, the remote apparatus
10 may comprise means, such as the processor 12, memory
14, and/or the like, for generating an instance of training
information/data based on at least one of the temporal
sequences of full resolution images {I(t)} that were
received and/or accessed.

At block 206, the deep and/or neural network may receive
one or more instances of training information/data {{I(t)}.}.
For example, the remote apparatus 10 may provide the one
or more instances of training information/data {{I(t)}.} to
the deep and/or neural network. For example, the remote
apparatus 10 may cause the deep and/or neural network to
receive the one or more instances of training information/
data {{I(t)}.}. For example, the remote apparatus 10 may
comprise means, such as the processor 12, communications
interface 16, and/or the like, for causing the deep and/or
neural network to receive the one or more instances of
training information/data {{I(t)}.}. For example, in an
example embodiment, the deep and/or neural network may
operate (at least 1n part) on CPU and/or GPU of the remote
apparatus 10.

At block 208, for each image I(m), of the instances of
training information/data {{I(t)}.} (wherein (a) k is an
integer such that 1=<k=n-1, (b) m 1s an integer such that
—-N=m=N, and (c) the full resolution 1image 1s I _(m) and
corresponds to and/or was captured at time t ), a higher
resolution 1mage 1s generated by interpolating and/or up-
sampling the image I(m), from the scale s, to the pre-defined
and/or configurable resolution and/or size s,. For example,
the deep and/or neural network operating (at least in part) on
the remote apparatus 10 may generate a higher resolution by
interpolating and/or up-sampling the image I(m), from the
scale s, to the pre-defined and/or configurable resolution
and/or size s, for 1=k=n-1. For example, the remote appa-
ratus 10 may comprise means, such as processor 12 and/or
the like, for generating a higher resolution 1mage by inter-
polating and/or up-sampling the image I(m), from the scale
s, to the pre-defined and/or configurable resolution and/or
size s, for l=k=n-1. As should be understood, various
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techniques may be used to interpolate and/or up-sample the
reduced resolution image I(m), from the scale s, to the
pre-defined and/or configurable resolution and/or size s,
within various layers of the deep and/or neural network.
Thus, a temporal sequence of higher resolution 1images may
be generated for each scale s, based on the corresponding
temporal sequence of reduced resolution images {I(t)},.

Continuing with FIG. 5, at block 210, for each scale s, of
the series of scales {s}, a convolution (e.g., a 3D convolu-
tion) 1s performed for the corresponding temporal sequence
of higher resolution 1mages. For example, a convolution
may be performed on the temporal sequence of higher
resolution images that was generated from the temporal
sequence of reduced resolution images {I(t)}, of scale s,.
For example, the convolution may identify patches of the
higher resolution 1mages in the temporal sequence of higher
resolution 1mages corresponding to the scale s, that are
similar. In an example embodiment, a composite higher
resolution 1image C, corresponding to the scale s, may be
generated based on the convolution of the temporal
sequence of higher resolution 1mages corresponding to the
scale s,. The patches of the higher resolution images that are
similar 1n two or more of the higher resolution images of the
temporal sequence of higher resolution 1mages may be used
to generate a composite higher resolution image. In an
example embodiment, the composite higher resolution
image may correspond to time t, and/or another time t_ for
—~N=m=N of the temporal sequence of 1mages.

In an example embodiment, a structure through motion
technique may be used when 1dentifying patches of higher
resolution 1mages of a temporal sequence of higher resolu-
tion 1mages that are similar. In an example embodiment, the
movement, change in position and/or heading, a sequence of
poses and/or the like corresponding to the time window over
which the temporal sequence of full resolution 1images was
captured may be received and/or accessed along with the
temporal sequence of full resolution 1images and provided to
the deep and/or neural network as part of the instance of
training information/data. Thus, 1n an example embodiment,
a convolution may be performed to 1dentify features com-
mon to multiple (e.g., two or more) higher resolution images
of the temporal sequence of higher resolution 1mages cor-
responding to scale s, and, based on the 1dentified common
features, a composite higher resolution 1mage C, 1s gener-
ated. In an example embodiment, the composite higher
resolution 1mage C, may have sharper features than the
individual higher resolution images over which the convo-
lution was performed. For example, the deep and/or neural
network operating (at least 1n part) on the remote apparatus
10 may perform a convolution of the images of the temporal
sequence of higher resolution images generated based on the
temporal sequence of reduced resolution images {I(t)},
corresponding to scale s, to generate a composite 1image C,
for each scale s, of the series of scales. For example, the
remote apparatus 10 may comprise means, such as processor
12 and/or the like, for performing a convolution of the
images of the temporal sequence of higher resolution 1mages
generated based on the temporal sequence of reduced reso-
lution images {I(t)}, corresponding to scale s, to generate a
composite 1mage C, for each scale s, of the series of scales.

At block 212, the composite image C,, corresponding to
scale s,, 1s analyzed 1n light of at least one full resolution
image I _(m), for each scale s, in the series of scales {s}. For
example, the composite image C, may correspond to a time
to, (e.g., to as to maximize the overlap of the images of the
temporal sequence of full resolution 1images, reduced reso-
lution 1mages, and/or higher resolution i1mages). In an

10

15

20

25

30

35

40

45

50

55

60

65

24

example embodiment, the composite image C, 1s analyzed 1n
light of the full resolution I (0) corresponding to time t,
and/or the middle image of the temporal sequence of full
resolution 1mages. For example, the deep net and/or neural
network operating (at least 1n part) on the remote apparatus
10 may analyze the composite image C, 1n light of at least
one full resolution 1image I (m), for each scale s, 1n the series
of scales {s}. For example, the remote apparatus 10 may
comprise means, such as the processor 12 and/or the like for
analyzing the composite image C, 1n light of at least one full
resolution 1mage I (m), for each scale s, in the series of
scales {s}. For example, it may be determined if features
present, detectable, and/or 1dentifiable 1n the full resolution
image I (m) are present, detectable, and/or 1dentifiable 1n the
composite 1mage C,.

At block 214, a loss function may be determined, gener-
ated, computed, and/or the like, for each scale s, of the series
of scales {s}, based on the analysis of the composite higher
resolution image C, 1n light of at least one the full resolution
image I (m). For example, the remote apparatus 10 may
determine, generate, compute and/or the like a loss function
based on the analysis of the composite image C, based on at
least one of the tull resolution 1mages I (m) of the temporal
sequence of full resolution images {1(t)} , for each scale s,
of the series of scales {s}. For example, the remote apparatus
10 may comprise means, such as the processor 12 and/or the
like, for determining, generating, computing and/or the like
a loss tunction based on the analysis of the composite image
C, based on at least one of the full resolution 1mages I (m)
of the temporal sequence of full resolution images {I(t)} .
for each scale s, of the series of scales {s}. For example, the
composite image C, may be generated to correspond to time
t and the loss function may be determined based on the
analysis of the composite image C, in light of the full
resolution 1mage I (m) corresponding to time t_ . For
example, a loss function for the scale s, may be determined,
generated, computed, and/or the like based on analyzing the
composite image C, in light of the full resolution 1image I (0)
captured at t,. In an example embodiment, a loss function
may be determined, computed, generated, and/or the like
based on and/or to quantify the analysis of the alignment of
one or more features present 1n the composite image C, and
the corresponding features 1n the full resolution 1image 1. (m),
or vice versa. For example, a function quantifying the
alignment of one or more features present 1n the full reso-
lution 1mage I (m) and the corresponding features in the
composite image C, may be evaluated, calculated, and/or the
like based on the analysis of the composite higher resolution
image C, corresponding to the scale s, and the full resolution
image I (m) to provide a loss function. In an example
embodiment, a cross-entropy based loss function 1s deter-
mined, calculated, and/or generated. In an example embodi-
ment, the loss function may be determined, computed,
generated, and/or the like by comparing patches of the tull
resolution 1mage I (m) mm which a feature detector has
detected one or more features with corresponding patches of
the composite image C,. In an example embodiment, the
loss function may be determined computed, generated, and/
or the like by determining 1f features detected in the full
resolution 1mage I _(m) are detected in the composite image
C, and the accuracy of the positioming of the detected
features 1n the composite 1mage C, based on the full reso-
lution 1mage I (m).

At block 216, one or more network weights and/or
parameters are updated. For example, one or more network
welghts and/or parameters of one or more of the sets of
network weights and/or parameters are updated, modified,
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and/or the like based on the loss function(s) determined,
computed, generated, and/or the like for the corresponding
scale s,. For example, the k™ set of network weights and/or
parameters may be updated based on the loss function
determined, computed, generated, and/or the like based on
analyzing the higher resolution image generated based on
the reduced resolution 1image I, and the full resolution image
I . For example, the remote apparatus 10 may update,
modity, and/or the like one or more network weights and/or
parameters based on one or more loss functions. For
example, the remote apparatus 10 may comprise means,
such as the processor 12, memory 14, and/or the like, for
updating, modifying, and/or the like one or more network
weights and/or parameters based on one or more loss
functions. For example, the one or more network weights
and/or parameters may be updated to minimize one or more
loss functions and/or the like. In an example embodiment,
the one or more network weights and/or parameters may be
updated using a stochastic gradient descent technique. In an
example embodiment, the one or more network weights
and/or parameters may be updated using a stochastic gradi-
ent descent technique using momentum, 1n which previous
iterations of the network weights and/or parameters are
remembered and the updates, modifications, and/or the like
to the network weights and/or parameters are determined
based at least 1n part on at least one previous iteration of the
network weights and/or parameters. It should be understood
that various techniques to update, modity, and/or the like the
network weights and/or parameters to, for example, mini-
mize the loss function may be utilized. In an example
embodiment, two or more 1stances of training information/
data {{I(t)} .} may be analyzed before the network weights
and/or parameters are updated and/or modified. For
example, the k” set of network weights and/or parameters
may be updated based on a set of loss Tunctions correspond-
ing to an analysis of a composite image C, 1n light of a full
resolution 1mage 1 _(m) for two or more temporal sequences
of reduced resolution 1mages corresponding to scale s,.

In one example embodiment, assuming that the features
present in the composite image C, and the corresponding
features 1n the full resolution 1image I (m) are imndexed by
some common parameter 1, one example loss function 1s
loss=2.dg(1,, 1.'), where 1, refers to the features from the
composite 1mage, 1 refers to the features from the full
resolution 1mage I (m), and dg 1s a function that quantifies
the alignment of the corresponding features. In an example
embodiment, the alignment between corresponding features
may comprise a distance between the position of the features
in the composite image and the full resolution 1mage, and/or
an angular alignment of the features 1n the composite image
and the full resolution 1mage. In an example embodiment,
the loss function 1s reduced and/or minimized as the align-
ment between the features 1n the composite image and the
tull resolution 1mage 1s improved and/or as the detectability
and/or sharpness of the features within the composite image
are increased. Thus, the loss function may be used to
encourage the up-sampling network to provide a more
accurate and sharper composite 1mage based on the up-
sampling of a temporal sequence of reduced resolution
images. For example, the loss function may be used to
encourage the up-sampling network to generate a composite
image that has sharp enough features that the features
therein may be accurately detected in the higher resolution
image.

At block 218, 1t may be determined 1f the one or more sets
ol network weights and/or parameters have converged sul-
ficiently to satisly a convergence threshold requirement. In
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an example, 11 an update, modification, and/or the like to the
one or more network weights and/or parameters 1s suili-
ciently small for one or more 1terations, the convergence of
the network weights and/or parameters may have converged
sufliciently to satisly a convergence threshold requirement.
For example, the remote apparatus 10 may determine if the
convergence of the one or more sets of network weights
and/or parameters 1s suilicient to satisty a convergence
threshold requirement. For example, the remote apparatus
10 may comprise means, such as the processor 12 and/or the
like, for determining if the convergence of the one or more
sets ol network weights and/or parameters 1s suihlicient to
satisty a convergence threshold requirement.

If, at block 218, it 1s determined that the convergence of
the one or more sets of network weights and/or parameters
1s not suflicient to satisty the convergence threshold require-
ment, the process may return to blocks 202 and/or 206 to
receive and/or access one or more additional temporal
sequences of full resolution images {1(t)}  and/or to provide
one or more instances of training information/data {{I(t)}.}
to the deep and/or neural network to further train the
up-sampling network (e.g., to further refine, determine,
modity, and/or update one or more network weights and/or
parameters ol the one or more sets of network weights
and/or parameters).

If, at block 218, it 1s determined that the convergence of
the one or more sets of network weights and/or parameters
1s suilicient to satisiy the convergence threshold require-
ment, the process may continue to block 220. At block 220,
the up-sampling network may be locked (e.g., the network
weights and/or parameters may be fixed at their current
values and not updated and/or modified further). The traimned
up-sampling network may then be used to generate com-
posite higher resolution 1mages of the pre-defined and/or
configurable resolution and/or size based on recerved low
resolution 1mages. In an example embodiment, the up-
sampling network may continue to train and/or learn one or
more network weights and/or parameters after the conver-
gence of the one or more sets of network weights and/or
parameters 1s suilicient to satisiy the convergence threshold
requirement.

As described above, the up-sampling network may inter-
polate and/or up-sample an 1mage from a resolution
described by scale s, with respect to the pre-defined and/or
configurable resolution and/or size to the pre-defined and/or
configurable resolution and/or size directly. In another
example embodiment, the up-sampling network may be
trained to interpolate and/or up-sample an image from a
resolution described by scale s, with respect to the pre-
defined and/or configurable resolution and/or size to a
resolution described by scale s, , with respect to the pre-
defined and/or configurable resolution and/or size. This
process may be iterated until the higher resolution image
generated 1s of the pre-defined and/or configurable resolu-
tion and/or size. For example, the up-sampling network may
be configured to generate a higher resolution image by
boot-strapping the through a sequence of scales. In such an
embodiment, the up-sampling network may learn the k™ set
of network weights and/or parameters by generating an
image of scale s, , based on the image I, of scale s, and
determining a loss function based on an analysis of the
image of scale s, , generated based on the image I, of scale
s, and the reduced resolution 1mage I, , of the sequence of
training images {1}.

In an example embodiment, the one or more sequences of
training images {1} may be generated before the training of
the deep and/or neural network. In an example embodiment,
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one or more sequences of traiming 1images may be generated
aifter the training of the deep and/or neural network has
begun. In an example embodiment, the one or more
sequences of traming images may be bundled into sets of
sequences of training images. The deep and/or neural net-
work may process the each sequence of training 1images in
the set of sequences traiming images, update the sets of
network weights and/or parameters, and then process the
same and/or a different set of sequences of training 1images.
Thus, the training of the deep and/or neural network may not
require the processing of each of the sequences of training,
images for each iteration of updating the sets of network
weights and/or parameters. Moreover, multiple rounds of
training over different sets of sequences of training 1mages
may provide for a more robust training of the up-sampling
network. In one example embodiment, each of sequences of
training 1mages of the one or more sets of sequences of
training 1mages may be processed during each iteration of
updating the sets network weights and/or parameters. As
described above, 1n an example embodiment, the convolu-
tion may be performed on the low resolution 1images and the
composite low resolution image may be up-sampled to
generate a composite higher resolution image. As discussed
above, 1 an example embodiment, an 1mage may be up-
sampled directly from a scale s, to the pre-defined and/or
configurable resolution and/or size. In an example embodi-
ment, an 1image may be up-sampled from a scale s, to a scale
s.., 10 an iterattve manner until an image of the pre-defined
and/or configurable resolution and/or size 1s generated.
FIG. 6 1illustrates four full resolution 1images 60A, 60B,
60C, and 60D. The four images 62A, 62B, 62C, and 62D
were generated by down-sampling each of the full resolution
images 60A, 608, 60C, and 60D by a factor of 10, and then
up-sampling the down-sampled images using a traditional
up-sampling technique. As can be seen in 1mages 62A, 62B,
62C, and 62D, the double yellow line has been blurred nto
a single yellow line and the features of the image are blocky
and blurred, rather than sharp. The images 64A, 648, 64C,
and 64D are generated by down-sampling each of the full
resolution images 60A, 60B, 60C, and 60D by a factor of 10,
and then up-sampling the down-sampled 1images using an
embodiment of the up-sampling network traimned using a
technique similar to that described above. Thus, 1mages
64 A, 64B, 64C, and 64D illustrate the result of up-sampling
a down-sampled 1image according to an example embodi-
ment of the present invention. As can be seen 1n 1images 64 A,
64B, 64C, and 64D, the double yellow line i1s preserved as
a double yellow line, and the features within the image are
sharper than those in corresponding 1images 62A, 628, 62C,
and 62D.
Building a Feature Map Using the Up-Sampling Network
FI1G. 7 1s a flowchart illustrating processes and procedures
that may be completed by the remote apparatus 10 (and/or
vehicle apparatus 20) to bwld, generate, create, and/or
update a feature map based on received low resolution
images using the up-sampling network to provide an 1image
ol the pre-defined and/or configurable resolution and/or size
having features that may be detectable and/or 1dentifiable by
a feature detector. In an example embodiment, a feature map
may be library, database, repository, and/or the like of
feature 1nformation/data extracted from higher resolution
(and/or composite higher resolution) images generated by an
up-sampling network, by a feature detector. In an example
embodiment, a feature map and/or a portion thereof may be
stored 1n association and/or as a part of (e.g., as a layer of)
a digital map and/or digital map tile. Starting at block 302,
an 1mage and/or temporal sequence of 1mages is/are cap-
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tured and the corresponding pose information/data 1s deter-
mined. For example, a vehicle apparatus 20 may capture an
image and/or temporal sequence of 1images and determine
the corresponding pose information/data. For example the
vehicle apparatus 20 may comprise means, such as the
image capturing device 32, processor 22, memory 24, and/or
the like for capturing an 1image and/or temporal sequence of
images. The vehicle apparatus 20 may further comprise
means, such as the location sensor 30 and/or the like, for
determining pose information/data corresponding to the
image and/or temporal sequence of images. For example, the
vehicle apparatus 20 may comprise a real time clock and
may cause the image capturing device 32 to capture an
image (and/or temporal sequence of images) and the loca-
tion sensor(s) 30 to determine pose information/data in
parallel, sequentially, and/or approximately simultaneously
such that the image 1s captured and the pose information/
data 1s determined 1n real or near real time with respect to
one another. In another example, the vehicle apparatus 20
may use the processor cycles to cause the 1mage capturing
device 32 to capture an 1image (and/or temporal sequence of
images) and the location sensor(s) 30 to determine pose
information/data in parallel, sequentially, and/or approxi-
mately simultaneously such that the image (and/or temporal
sequence of 1mages) 1s captured and the pose iformation/
data 1s determined 1n real or near real time with respect to
one another. In an example embodiment, pose information/
data comprises a location (e.g., latitude and longitude)
and/or a heading. For example, the pose information/data
may comprise a location described by geospatial coordinates
(e.g., latitude and longitude, and/or the like) that represent
the current physical location of the vehicle 5 and/or the
vehicle apparatus 20 on board the vehicle 5 at approximately
the moment the captured image i1s captured. In an example
embodiment, the pose information/data may comprise a
heading describing the direction the vehicle 5 1s currently
facing and/or heading with respect to a reference direction at
approximately the moment the captured 1mage 1s captured.
For example, the pose information/data may comprise the
angle between a reference direction (e.g., North and/or the
like) and the direction 1n which the front of the vehicle 5 1s
directed at approximately the moment when the correspond-
ing 1mage 1s captured. In an example embodiment, one
instance of pose information/data 1s captured for each image
of a temporal sequence of 1mages.

In an example embodiment, the up-sampling network
and/or feature detector operate on the remote apparatus 10
and/or another apparatus, for example, 1n a Cloud computing
architecture. Moreover, the communication bandwidth
between the remote apparatus 10 and the vehicle apparatus
20 may be constrained. Thus, at block 304, the image and/or
temporal sequence of 1mages may be down-sampled. For
example, the vehicle apparatus 20 may down-sample the
image and/or one or more 1mages of the temporal sequence
of 1mages belfore providing them for processing by the
remote apparatus 10, up-sampling network, and/or feature
detector. For example, the vehicle apparatus 20 may com-
prise means, such as the processor 22 and/or the like, for
down-sampling the 1mage and/or a temporal sequence of
images, before providing them for processing by the remote
apparatus 10, up-sampling network, and/or feature detector.
For example, the vehicle apparatus 20 may down-sample the
image and/or temporal sequence of 1images to a scale s, with
respect to the pre-defined and/or configurable resolution
and/or size. Thus, the image and/or temporal sequence of
images may be down-sampled to a low resolution image
and/or a temporal sequence of low resolution 1mages.
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At block 306, the low resolution 1image and/or the tem-
poral sequence of low resolution 1images and corresponding
pose 1nformation/data are provided. For example, the
vehicle apparatus 20 may provide (e.g., transmit) the low
resolution 1mage and/or temporal sequence of low resolution
images and corresponding pose information/data. For
example, the vehicle apparatus 20 may comprise means,
such as the processor 22, the communications interface 26,
and/or the like, for providing the low resolution image
and/or the temporal sequence of low resolution 1images and
corresponding pose information/data. For example, the
remote apparatus 10 may receive the low resolution 1image
and/or the temporal sequence of low resolution 1mages and
corresponding pose information/data. For example, the
remote apparatus 10 may comprise means, such as the
processor 12, communications interface 16, and/or the like,
for receiving the low resolution 1mage and/or the temporal
sequence ol low resolution 1mages and corresponding pose
information/data.

At block 308, the scale of the low resolution image and/or
the 1mages of the temporal sequence of low resolution
images 1s determined. For example, the factor between the
resolution and/or size of the low resolution image and the
pre-defined and/or configurable resolution and/or size may
be determined and based thereon, a scale s, may be deter-
mined. For example, the scale s, of the low resolution 1image
and/or the 1mages of the temporal sequence of low resolu-
tion 1mages with respect to the pre-defined and/or configu-
rable resolution and/or size 1s determined. For example, the
remote apparatus 10 may determine the scale s, of the low
resolution 1mage and/or the images of the temporal sequence
of low resolution 1mages with respect to the pre-defined
and/or configurable resolution and/or size. For example, the
remote apparatus 10 may comprise means, such as the
processor 12 and/or the like for determining the scale s, of
the low resolution image and/or the 1mages of the temporal
sequence of low resolution images with respect to the
pre-defined and/or configurable resolution and/or size. For
example, the factor by which the low resolution image
and/or an 1mage of the temporal sequence of low resolution
images needs to be up-sampled to generate an 1mage of the
pre-defined and/or configurable resolution and/or size
maybe be determined and a scale s, may be determined based
on the determined factor. In an example embodiment, the
scale of the low resolution 1image(s) may be determined by
analyzing at least one low resolution 1image and determining
the resolution and/or size thereol and determining the scale
and/or factor by which the at least one low resolution image
would need to be up-sampled to provide an higher resolution
image ol the pre-defined and/or configurable resolution
and/or size. In an example embodiment, a low resolution
image may have meta data associated therewith. For
example, the meta data may comprise pose mformation/data
related to the pose of the vehicle 5 and/or the vehicle
apparatus 20 when the full resolution 1mage corresponding
to the low resolution 1image was captured, a time stamp
corresponding to the time at which the full resolution 1mage
corresponding to the low resolution 1image was captured, a
resolution and/or size of the down-sampled 1mage, a factor
and/or scale by which the original full resolution 1image was
down-sampled to generate the low resolution 1image, and/or
the like. In an example embodiment, the vehicle apparatus
20 may provide the meta data corresponding to a low
resolution 1mage with the low resolution image and the
remote apparatus 10 may receive the meta data correspond-
ing to a low resolution 1mage with the low resolution image.
In an example embodiment, the meta data corresponding to

10

15

20

25

30

35

40

45

50

55

60

65

30

a low resolution 1mage may be analyzed to determine the
scale and/or factor by which the low resolution image would
need to be up-sampled to provide a higher resolution 1mage
ol the pre-defined and/or configurable resolution and/or size.
At block 310, the appropriate network weights and/or
parameters for generating a higher resolution and/or com-
posite higher resolution 1image based on the low resolution
image and/or temporal sequence of low resolution 1images
are determined. For example, the remote apparatus 10 may
determine the appropriate network weights and/or param-
cters for generating higher resolution and/or composite
higher resolution 1mage based on the low resolution 1image
and/or temporal sequence of low resolution images. For
example, the remote apparatus 10 may comprise means,
such as the processor 12 and/or the like for determining the
appropriate network weights and/or parameters for generat-
ing higher resolution and/or composite higher resolution
image based on the low resolution 1image and/or temporal
sequence of low resolution 1mages. For example, the deter-
mined scale s, may be equivalent to a scale s, of the series
of scales {s}. Thus, the k” set of network weights and/or
parameters may be identified the appropriate network
weilghts and/or parameters. In another example embodiment,
the determined scale s, may be between two scales s, and
s,,, of the series of scales {s} (e.g., 5,<5,<s,,,). In such an
example embodiment, the appropriate network weights and/
or parameters may be a (non-linear) interpolation of the k™
set of network weights and/or parameters and the k+17 set
of network weights and/or parameters. For example, an
interpolation function for interpolating between the k” and
k+17” set of network weights and/or parameters may be
determined and/or learned based on the loss Tunction and/or
error-weight relationship at the s, and/or s, _, scales.

At block 312, the up-sampling network generates a higher
resolution 1mage and/or composite higher resolution 1image
based on the low resolution image and/or temporal sequence
of low resolution 1mages and the appropriate network
welghts and/or parameters. For example, the up-sampling
network operating (at least 1n part) on the remote apparatus
10 may generate a higher resolution image and/or composite
higher resolution 1mage based on the low resolution 1mage
and/or temporal sequence of low resolution 1mages and the
appropriate network weights and/or parameters. For
example, the remote apparatus 10 may comprise means,
such as the processor 10 and/or the like, for generating a
higher resolution 1image and/or composite higher resolution
image based on the low resolution 1image and/or temporal
sequence ol low resolution images and the appropriate
network weights and/or parameters. For example, the up-
sampling network may up-sample and/or perform a convo-
lution (e.g., a 3D convolution) to generate a higher resolu-
tion 1image and/or composite higher resolution image based
on the low resolution image and the appropriate network
weights and/or parameters.

At block 314, a {feature detector analyzes the higher
resolution 1image and/or composite higher resolution 1mage
to 1dentily one or more features in the image. For example,
feature detector operating (at least in part) on the remote
apparatus 10, may be analyze the higher resolution image
and/or the composite higher resolution 1image to 1dentify one
or more Ieatures in the image. For example, the remote
apparatus 10 may comprise means, such as processor 12,
and/or the like, for operating the feature detector to 1dentily
one or more features in the higher resolution 1mage and/or
the composite higher resolution image. In an example
embodiment, the features identified by the feature detector
may be stable, invariant, or static features that are expected
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to not change significantly over a time period (e.g., days,
weeks, months, a year, a few years, and/or the like). For
example, a feature may not change significantly with a
change of seasons. In an example embodiment, the feature
detector may extract feature information/data corresponding
to the feature(s) identified 1n the higher resolution 1mage
and/or the composite higher resolution 1mage. For example,
the feature detector may extract feature information/data
from the higher resolution image and/or the composite
higher resolution 1mage.

The 1dentified features are then geo-tagged based on the
pose information/data corresponding to the analyzed (com-
posite) higher resolution image and/or the corresponding
low resolution 1image and/or temporal sequence of low
resolution 1mages. For example, the feature detector oper-
ating (at least 1n part) on the remote apparatus 10 may
geo-tag the identified features. For example, the remote
apparatus 10 may comprise means, such as processor 12
and/or the like, for geo-tagging the 1dentified features. In an
example embodiment, geo-tagging a feature comprises ana-
lyzing the pose mformation/data corresponding to the cor-
responding low resolution i1mage and/or the temporal
sequence of low resolution 1mages and the position of the
feature 1n the (composite) higher resolution 1image to deter-
mine feature pose information/data. For example, the feature
pose information/data may comprise a position (e.g., a
geo-location, latitude and longitude, and/or the like) corre-
sponding to the physical location of the feature. In an
example embodiment, the feature pose information/data
may comprise mformation/data mdicating an orientation of
the feature. The feature pose information/data may then be
appended to, added to, and/or stored as part of the feature
information/data. For example, the feature information/data
may be stored 1n an array, XML, and/or other form of data
architecture. Thus, the feature may be geo-tagged by asso-
ciating and/or storing feature pose information/data for the
teature with the corresponding feature information/data.

At block 316, the feature information/data may be used to
develop, generate, and/or update a nighttime feature map. In
an example embodiment, the feature map 1s stored 1n asso-
ciation with, linked to, stored as a layer of, and/or the like
a map tile. For example, the remote apparatus 10 may link
feature information/data corresponding to a feature located
within Map Tile A and along Road Segment B with Map Tile
A and/or with Road Segment B 1n the feature map. For
example, the feature map may be stored as a layer of the
digital map tile. For example, the remote apparatus 10 may
develop, generate, and/or update a feature map. For
example, the remote apparatus 10 may comprise means,
such as processor 12, memory 14, and/or the like, for
developing, generating, and/or updating a feature map. For
example the feature map may be developed, generated,
and/or updated by linking feature information/data corre-
sponding to a feature to a map tile and/or road segment
corresponding to the location of the corresponding feature
within a feature map that 1s a layer of a digital map. For
example, Map Tile A may be packaged to include the feature
map as a layer of the map tile, the feature map comprising
the feature mnformation/data corresponding to one or more
features that are located within Map Tile A.

At block 318, the feature map i1s provided. For example,
the remote apparatus 10 provide (e.g., transmit) the feature
map. For example, the remote apparatus 10 may comprise
means, such as the processor 12, communications interface
16, and/or the like for providing the feature map. For
example, one or more vehicle apparatuses 20 may receive
the feature map. For example, one or more vehicle appara-
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tuses 20 may comprise means, such as processor 22,
memory 24, communications interface 26, and/or the like for
receiving and storing a feature map. In an example embodi-
ment, a map tile comprising the feature information/data, for
example within a layer of the map tile, may be provided
through communications network 40 to one or more vehicle
apparatus 20. The vehicle apparatuses 20 may then use at
least a portion of the feature information/data to perform
localization and/or pose determination using optical and/or
image-based techmiques. In an example embodiment, a
vehicle apparatus 20 may use at least a portion of the feature
information/data embedded within a layer of a map tile to
perform localization and/or pose determination to enable
autonomous and/or assisted driving of a vehicle 5 that the
vehicle apparatus 20 1s onboard.
Performing Image-Based Localization Using the Up-Sam-
pling Network

FIG. 8 1s a flowchart illustrating processes and procedures
that may be completed by the remote apparatus 10 to
perform localization of a vehicle 5 using a Cloud-based
computing network and/or environment, in one example
embodiment. While the example described below relates to
performing localization of a vehicle 5 using a Cloud-based
computing network and/or environment, 1t should be under-
stood that in one example embodiment the up-sampling
network (e.g., network weights and/or parameters) may be
provided to one or more vehicle apparatuses 20 and operated
on a vehicle apparatus to perform localization of the vehicle
5 and/or another process. Starting at block 402, an image
and/or temporal sequence of 1mages 1s/are captured and the
corresponding observed pose information/data 1s deter-
mined. For example, a vehicle apparatus 20 may capture an
image and/or temporal sequence of 1images and determine
the corresponding observed pose information/data. For
example the vehicle apparatus 20 may comprise means, such
as the 1mage capturing device 32, processor 22, memory 24,
and/or the like for capturing an image and/or temporal
sequence of 1mages. The vehicle apparatus 20 may further
comprise means, such as the location sensor 30 and/or the
like, for determining observed pose information/data corre-
sponding to the image and/or temporal sequence of 1mages.
For example, the vehicle apparatus 20 may comprise a real
time clock and may cause the 1image capturing device 32 to
capture an 1mage (and/or temporal sequence of 1mages) and
the location sensor(s) 30 to determine observed pose nfor-
mation/data in parallel, sequentially, and/or approximately
simultaneously such that the image i1s captured and the
observed pose information/data 1s determined 1n real or near
real time with respect to one another. In another example, the
vehicle apparatus 20 may use the processor cycles to cause
the 1mage capturing device 32 to capture an 1image (and/or
temporal sequence of 1images) and the location sensor(s) 30
to determine observed pose information/data in parallel,
sequentially, and/or approximately simultaneously such that
the 1image (and/or temporal sequence of 1mages) 1s captured
and the observed pose information/data 1s determined 1n real
or near real time with respect to one another. In an example
embodiment, observed pose information/data comprises a
location (e.g., latitude and longitude) and/or a heading. For
example, the observed pose information/data may comprise
a location described by geospatial coordinates (e.g., latitude
and longitude, and/or the like) that represents the observed
and/or expected current physical location of the vehicle 5
and/or the vehicle apparatus 20 on board the vehicle 3 at
approximately the moment the captured 1mage 1s captured.
In an example embodiment, the observed pose information/
data may comprise a heading describing the direction the
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vehicle 5 1s observed and/or expected to currently be facing
and/or heading with respect to a reference direction at
approximately the moment the captured image 1s captured.
For example, the observed pose information/data may com-
prise the observed and/or expected angle between a refer-
ence direction (e.g., North and/or the like) and the direction
in which the front of the vehicle 5 1s directed at approxi-
mately the moment when the corresponding 1image 1s cap-
tured. In an example embodiment, one instance of observed
pose information/data 1s captured for each image of a
temporal sequence of 1mages.

In an example embodiment, the up-sampling network
and/or feature detector operate on the remote apparatus 10,
for example, mn a Cloud computing architecture. Moreover,
the commumnication bandwidth between the remote appara-
tus 10 and the vehicle apparatus 20 may be constrained.
Thus, at block 404, the 1mage and/or temporal sequence of
images may be down-sampled. For example, the vehicle
apparatus 20 may down-sample the image and/or one or
more 1mages of the temporal sequence of images before
providing them for processing by the remote apparatus 10,
up-sampling network, and/or feature detector. For example,
the vehicle apparatus 20 may comprise means, such as the
processor 22 and/or the like, for down-sampling the image
and/or a temporal sequence of 1mages, before providing
them for processing by the remote apparatus 10, up-sam-
pling network, and/or feature detector. For example, the
vehicle apparatus 20 may down-sample the 1mage and/or
temporal sequence of 1mages to a scale s, with respect to the
pre-defined and/or configurable resolution and/or size. Thus,
the 1mage and/or temporal sequence of images may be
down-sampled to generate a low resolution 1mage and/or a
temporal sequence of low resolution 1mages.

At block 406, the low resolution 1image and/or the tem-
poral sequence of low resolution 1mages and the correspond-
ing observed pose information/data are provided. For
example, the vehicle apparatus 20 may provide (e.g., trans-
mit) the low resolution 1mage and/or temporal sequence of
low resolution 1mages and the corresponding observed pose
information/data. For example, the vehicle apparatus 20 may
comprise means, such as the processor 22, the communica-
tions interface 26, and/or the like, for providing the low
resolution 1image and/or the temporal sequence of low reso-
lution 1mages and the corresponding observed pose infor-
mation/data. For example, the remote apparatus 10 may
receive the low resolution image and/or the temporal
sequence ol low resolution 1mages and the corresponding
observed pose information/data. For example, the remote
apparatus 10 may comprise means, such as the processor 12,
communications interface 16, and/or the like, for receiving
the low resolution 1mage and/or the temporal sequence of
low resolution 1mages and the corresponding observed pose
information/data.

At block 408, the scale of the low resolution 1mage and/or
the 1mages of the temporal sequence of low resolution
images 1s determined. For example, the factor between the
resolution and/or size of the low resolution 1image and the
pre-defined and/or configurable resolution and/or size may
be determined and based thereon, a scale s, may be deter-
mined. For example, the scale s, of the low resolution image
and/or the 1images of the temporal sequence of low resolu-
tion 1mages with respect to the pre-defined and/or configu-
rable resolution and/or size 1s determined. For example, the
remote apparatus 10 may determine the scale s, of the low
resolution image and/or the images of the temporal sequence
of low resolution 1mages with respect to the pre-defined
and/or configurable resolution and/or size. For example, the
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remote apparatus 10 may comprise means, such as the
processor 12 and/or the like for determining the scale s, of
the low resolution 1image and/or the 1images of the temporal
sequence of low resolution 1mages with respect to the
pre-defined and/or configurable resolution and/or size. For
example, the factor by which the low resolution image
and/or an 1mage of the temporal sequence of low resolution
images needs to be up-sampled to generate an 1image of the
pre-defined and/or configurable resolution and/or size
maybe be determined and a scale s, may be determined based
on the determined factor.

At block 410, the appropriate network weights and/or
parameters for generating a higher resolution and/or com-
posite higher resolution 1mage based on the low resolution
image and/or temporal sequence of low resolution 1mages
are determined. For example, the remote apparatus 10 may
determine the appropriate network weights and/or param-
cters for generating higher resolution and/or composite
higher resolution 1mage based on the low resolution 1image
and/or temporal sequence of low resolution images. For
example, the remote apparatus 10 may comprise means,
such as the processor 12 and/or the like for determining the
appropriate network weights and/or parameters for generat-
ing higher resolution and/or composite higher resolution
image based on the low resolution 1image and/or temporal
sequence ol low resolution 1mages. For example, the deter-
mined scale s, may be equivalent to a scale s; of the series
of scales {s}. Thus, the k" set of network weights and/or
parameters may be 1dentified the appropriate network
weights and/or parameters. In another example embodiment,
the determined scale s, may be between two scales s, and
s,,, of the series of scales {s} (e.g., s,<5,<s,,,). In such an
example embodiment, the appropriate network weights and/
or parameters may be a (non-linear) interpolation of the k™
set of network weights and/or parameters and the k+1? set
of network weights and/or parameters. For example, an
interpolation function for interpolating between the k™ and
k+1” set of network weights and/or parameters may be
determined and/or learned based on the loss function and/or
error-weight relationship at the s, and/or s, _, scales.

At block 412, the up-sampling network generates a higher
resolution 1image and/or composite higher resolution 1mage
based on the low resolution image and/or temporal sequence
of low resolution i1mages and the appropriate network
welghts and/or parameters. For example, the up-sampling
network operating (at least 1n part) on the remote apparatus
10 may generate a higher resolution image and/or composite
higher resolution 1mage based on the low resolution 1image
and/or temporal sequence of low resolution 1images and the
appropriate network weights and/or parameters. For
example, the remote apparatus 10 may comprise means,
such as the processor 10 and/or the like, for generating a
higher resolution 1image and/or composite higher resolution
image based on the low resolution 1image and/or temporal
sequence of low resolution images and the appropnate
network weights and/or parameters. For example, the up-
sampling network may up-sample and/or perform a convo-
lution (e.g., a 3D convolution) to generate a higher resolu-
tion 1mage and/or composite higher resolution image based
on the low resolution 1image and the appropriate network
weilghts and/or parameters.

At block 414, an 1image-based localization of the vehicle
5 may be performed based on the higher resolution image
and/or the composite higher resolution images and the
corresponding pose information/data. For example, the
remote apparatus 10 may perform an image-based localiza-
tion of the vehicle 5 based on the (composite) higher
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resolution 1mage and the corresponding pose information/
data. For example, the remote apparatus 10 may comprise
means, such as processor 12 and/or the like, for performing
an 1mage-based localization of the vehicle 5 based on the
(composite) higher resolution 1mage and the corresponding
pose mformation/data. For example, the (composite) higher
resolution 1mage may be analyzed to identily one or more
image leatures within the image, for example, using a
teature detector. One or more features that are expected to be
present 1 the (composite) higher resolution image are
identified based on the feature map and the observed pose
information/data. For example, a map projection comprising
the one or more features expected to be present in the
(composite) higher resolution 1mage based on the feature
map and the observed pose information/data may be gener-
ated. Corrected pose information/data may then be deter-
mined, 1n an example embodiment. For example, the cor-
rected pose information/data may describe the pose for the
vehicle 5 within a desired accuracy level. For example, the
corrected pose mnformation/data may describe the pose of the
vehicle 5 within a 10 cm accuracy. For example, the map
projection comprising one or more features expected to be
present 1n the (composite) higher resolution 1mage may be
compared to an encoded representation of the (composite)
higher resolution 1mage (e.g., generated by the {feature
detector) to determine the corrected pose information/data.
For example, 1n an example embodiment, the map projection
and the encoded representation of the (composite) higher
resolution 1mage may be provided to a trained deep net
and/or neural network configured to determine corrected
pose miormation/data based on analyzing and/or comparing
the map projection and the encoded representation of the
(composite) higher resolution 1mage. For example, a miss-
registration and/or relative pose diflerence between the map
projection and the encoded representation of the (composite)
higher resolution image may be analyzed and used to
determine corrected pose information/data. In an example
embodiment, the correction 1s determined based on the
result of the comparison and/or alignment of the map
projection and the encoded representation of (composite)
higher resolution the 1mage. For example, a pose correction
applied to the observed pose information/data to determine
the corrected pose information/data may be equal 1n mag-
nitude to the missregistration and/or relative pose difference
between one or more features in the map projection and one
or more corresponding 1mage features 1n the encoded rep-
resentation of the (composite) higher resolution 1image. For
example, the corrected pose information/data may be deter-
mined 1n a manner similar to that described 1n co-pending,
U.S. patent application Ser. No. 15/375,513, filed Dec. 12,
2016, the contents of which are incorporated herein by
reference.

Once the corrected pose mformation/data 1s determined,
the remote apparatus 10 may provide (e.g., transmit) the
corrected pose information/data. For example, the remote
apparatus 10 may comprise means, such as the processor 12,
communications interface 16, and/or the like for providing
the corrected pose mformation/data. For example, the
vehicle apparatus 20 may receive the corrected pose nfor-
mation/data. For example, the vehicle apparatus 20 may
comprise means, such as the processor 22, communications
interface 26, and/or the like for receiving the corrected pose
information/data. After recerving the corrected pose infor-
mation/data (e.g., responsive to receiving and/or processing,
the corrected pose information/data) the corrected pose
information/data may then be provided through an output
device of the vehicle apparatus 20 (e.g., a display of the user
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interface 28, and/or the like), communicated to another
computing entity (e.g., another remote apparatus 10), and/or
used as imput to one or more processes executed by the
vehicle apparatus 20 that require an accurate determination
of the vehicle 5 and/or vehicle apparatus’s 20 pose (e.g.,
location and/or heading). For example, the corrected pose
information/data may be used as imput to one or more
processes used to autonomously drive the vehicle 5 and/or
assist 1n driving the vehicle 5 (e.g., route planning and/or the
like). For example, the vehicle apparatus 20 may make one
or more route planming decisions and/or operate the vehicle
5 1n accordance therewith based on the corrected pose
information/data. Thus, the result of a localization determi-
nation may be the corrected pose information/data which
may then be used by the vehicle apparatus 20 to perform
route planning decisions and/or to operate the vehicle 5 1n
accordance therewith.

Thus, an accurate, real time (or near real time) determi-
nation ol the pose (e.g., location and/or heading) of the
vehicle 5 and/or vehicle apparatus 20 may be determined. In
an example embodiment, the location of the vehicle 5 and/or
vehicle apparatus 20 on board the vehicle 5 may be deter-
mined to within a predefined positional accuracy, such as an
accuracy of 10 cm, under low 1llumination level conditions.
Thus, 1n an example embodiment, the location and/or pose
of the vehicle S and/or vehicle apparatus 20 may be deter-
mined with an accuracy that enables and/or {facilitates
autonomous operation of the vehicle 5 using a Cloud-based
computing environment and/or network to perform and/or
assist with localization.

III. Example Apparatus

The vehicle apparatus 20 and/or remote apparatus 10 of
an example embodiment may be embodied by or associated
with a variety of computing devices including, for example,
a routing and navigation system including an in-vehicle
navigation system, a vehicle control system, a personal
navigation device (PND) or a portable navigation device, an
advanced driver assistance system (ADAS), a global posi-
tioning system (GPS), a cellular telephone, a mobile phone,
a personal digital assistant (PDA), a watch, a camera, a
computer, and/or other device that can perform navigation-
related functions, such as digital routing and map display.
Additionally or alternatively, the vehicle apparatus 20 and/or
remote apparatus 10 may be embodied in other types of
computing devices, such as a server, a personal computer, a
computer workstation, a laptop computer, a plurality of
networked computing devices or the like, that are configured
to update one or more map tiles, analyze probe points for
route planning or other purposes, process 1mages, perform
localization determinations, and/or the like. For example, 1n
an example embodiment, the vehicle apparatus 20 i1s an 1n
vehicle routing and navigation system on board a vehicle 5
and the remote apparatus 10 1s a server that 1s remotely
located with respect to the vehicle apparatus 20 and/or that
1s part of a Cloud-based computing environment and/or
network.

In this regard, F1G. 2A depicts a remote apparatus 10 and
FIG. 2B depicts a vehicle apparatus 20 of an example
embodiment that may be embodied by various computing
devices including those identified above. As shown, the
remote apparatus 10 of an example embodiment may
include, may be associated with or may otherwise be 1n
communication with a processor 12 and a memory device 14
and optionally a communication interface 16 and/or a user
interface 18. In an example embodiment, the up-sampling
network may operate (at least 1n part) on a CPU or a GPU
of the remote apparatus 10. Similarly, a vehicle apparatus 20
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ol an example embodiment may include, may be associated
with, or may otherwise be 1n communication with a proces-
sor 22, and a memory device 24, and optionally a commu-
nication interface 26, a user interface 28, one or more
location sensors 30 (e.g., a location sensor such as a GPS 5
sensor; IMU sensors, and/or the like), one or more 1image
capturing devices (e.g., camera(s); 2D and/or 3D LiDAR(s);
long, medium, and/or short range RADAR; ultrasonic sen-
sors; electromagnetic sensors; (near-)IR cameras, 3D cam-
eras, 360° cameras and/or the like) and/or other sensors that 10
ecnable the vehicle apparatus to determine one or more
teatures of the corresponding vehicle’s surroundings, and/or
other components configured to perform various operations,
procedures, functions or the like described herein.

In some embodiments, the processor 12, 22 (and/or co- 15
processors or any other processing circuitry assisting or
otherwise associated with the processor) may be in commu-
nication with the memory device 14, 24 via a bus for passing
information among components ol the apparatus. The
memory device may be non-transitory and may include, for 20
example, one or more volatile and/or non-volatile memories.

In other words, for example, the memory device may be an
clectronic storage device (e.g., a computer readable storage
medium) comprising gates configured to store data (e.g.,
bits) that may be retrievable by a machine (e.g., a computing 25
device like the processor). The memory device may be
configured to store information, data, content, applications,
instructions, or the like for enabling the apparatus to carry
out various functions 1n accordance with an example
embodiment of the present invention. For example, the 30
memory device could be configured to bufler input data for
processing by the processor. Additionally or alternatively,
the memory device could be configured to store mnstructions
for execution by the processor.

As described above, the remote apparatus 10 and/or 35
vehicle apparatus 20 may each be embodied by a computing,
device. However, in some embodiments, the apparatus may
be embodied as a chip or chip set. In other words, the
apparatus may comprise one or more physical packages
(¢.g., chips) including materials, components and/or wires 40
on a structural assembly (e.g., a baseboard). The structural
assembly may provide physical strength, conservation of
s1ze, and/or limitation of electrical interaction for compo-
nent circuitry included thereon. The apparatus may there-
fore, 1n some cases, be configured to implement an embodi- 45
ment of the present invention on a single chip or as a single
“system on a chip.” As such, 1n some cases, a chip or chipset
may constitute means for performing one or more operations
for providing the functionalities described herein.

The processor 12, 22 may be embodied 1n a number of 50
different ways. For example, the processor may be embodied
as one or more of various hardware processing means such
as a coprocessor, a microprocessor, a controller, a digital
signal processor (DSP), a processing element with or with-
out an accompanying DSP, or various other processing 55
circuitry including integrated circuits such as, for example,
an ASIC (application specific integrated circuit), an FPGA
(field programmable gate array), a microcontroller unit
(MCU), a hardware accelerator, a special-purpose computer
chip, or the like. As such, in some embodiments, the 60
processor may include one or more processing cores Con-
figured to perform independently. A multi-core processor
may enable multiprocessing within a single physical pack-
age. Additionally or alternatively, the processor may include
one or more processors configured 1n tandem via the bus to 65
enable independent execution of instructions, pipelining
and/or multithreading.
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In an example embodiment, the processor 12, 22 may be
configured to execute instructions stored in the memory
device 14, 24 or otherwise accessible to the processor. For
example, the processor 22 may be configured to execute
computer-executed 1instructions embedded within a link
record of a map tile. Alternatively or additionally, the
processor may be configured to execute hard coded func-
tionality. As such, whether configured by hardware or soft-
ware methods, or by a combination thereof, the processor
may represent an enfity (e.g., physically embodied in cir-
cuitry) capable of performing operations according to an
embodiment of the present invention while configured

accordingly. Thus, for example, when the processor 1is
embodied as an ASIC, FPGA or the like, the processor may
be specifically configured hardware for conducting the
operations described herein. Alternatively, as another
example, when the processor 1s embodied as an executor of
soltware instructions, the 1structions may specifically con-
figure the processor to perform the algorithms and/or opera-
tions described herein when the instructions are executed.
However, in some cases, the processor may be a processor
of a specific device (e.g., a pass-through display or a mobile
terminal) configured to employ an embodiment of the pres-
ent imnvention by further configuration of the processor by
instructions for performing the algorithms and/or operations
described herein. The processor may include, among other
things, a clock, an arithmetic logic unit (ALU) and logic
gates configured to support operation of the processor.

In some embodiments, the remote apparatus 10 and/or
vehicle apparatus 20 may include a user interface 18, 28 that
may, in turn, be in communication with the processor 12, 22
to provide output to the user, such as a proposed route, and,
in some embodiments, to receive an indication of a user
input. As such, the user interface may include a display and,
in some embodiments, may also include a keyboard, a
mouse, a joystick, a touch screen, touch areas, soft keys, a
microphone, a speaker, or other input/output mechanisms.
Alternatively or additionally, the processor may comprise
user interface circuitry configured to control at least some
functions of one or more user iterface elements such as a
display and, 1n some embodiments, a speaker, ringer, micro-
phone and/or the like. The processor and/or user intertace
circuitry comprising the processor may be configured to
control one or more functions of one or more user interface
clements through computer program instructions (e.g., soit-
ware and/or firmware) stored on a memory accessible to the
processor (e.g., memory device 14, 24, and/or the like).

The remote apparatus 10 and/or the vehicle apparatus 20
may optionally include a communication interface 16, 26.
The communication interface may be any means such as a
device or circuitry embodied 1n either hardware or a com-
bination of hardware and software that 1s configured to
receive and/or transmit data from/to a network and/or any
other device or module 1n communication with the appara-
tus. In this regard, the communication interface may include,
for example, an antenna (or multiple antennas) and support-
ing hardware and/or software for enabling communications
with a wireless communication network. Additionally or
alternatively, the communication interface may include the
circuitry for interacting with the antenna(s) to cause trans-
mission of signals via the antenna(s) or to handle receipt of
signals recerved via the antenna(s). In some environments,
the communication interface may alternatively or also sup-
port wired communication. As such, for example, the com-
munication interface may include a communication modem
and/or other hardware/software for supporting communica-
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tion via cable, digital subscriber line (DSL), universal serial
bus (USB) or other mechanisms.

In addition to embodying the remote apparatus 10 and/or
vehicle apparatus 20 of an example embodiment, a routing
and navigation system may also include or have access to a
geographic database that includes a varniety of data (e.g., map
information/data) utilized 1n constructing a route or naviga-
tion path and determining the time to traverse the route or
navigation path. For example, a geographic database may
include node data records (e.g., including anchor node data
records comprising junction identifiers), road segment or
link data records, point of interest (POI) data records and
other data records. More, fewer or different data records can
be provided. In one embodiment, the other data records
include cartographic (“carto”) data records, routing data, and
maneuver data. One or more portions, components, areas,
layers, features, text, and/or symbols of the POI or event
data can be stored 1n, linked to, and/or associated with one
or more of these data records. For example, one or more
portions of the POI, event data, or recorded route informa-
tion can be matched with respective map or geographic
records via position or GPS data associations (such as using,
known or future map matching or geo-coding techniques),
for example. In an example embodiment, the data records
(e.g., node data records, link data records, POI data records,
and/or other data records) may comprise computer-execut-
able instructions, a reference to a function repository that
comprises computer-executable instructions, one or more
coellicients and/or parameters to be used in accordance with
an algorithm for performing the analysis, one or more
response criteria for providing a response indicating a result
of the analysis, and/or the like. In at least some example
embodiments, the vehicle apparatus 20 may be configured to
execute computer-executable nstructions provided by and/
or referred to by a data record. In an example embodiment,
the remote apparatus 10 may be configured to modity,
update, and/or the like one or more data records of the
geographic database.

In an example embodiment, the road segment data records
are links or segments, €.g., maneuvers of a maneuver graph,
representing roads, streets, or paths, as can be used in the
calculated route or recorded route information for determi-
nation of one or more personalized routes. The node data
records are end points corresponding to the respective links
or segments of the road segment data records. The road link
data records and the node data records represent a road
network, such as used by vehicles, cars, and/or other entities.
Alternatively, the geographic database can contain path
segment and node data records or other data that represent
pedestrian paths or areas 1n addition to or instead of the
vehicle road record data, for example.

The road/link segments and nodes can be associated with
attributes, such as geographic coordinates, street names,
address ranges, speed limits, turn restrictions at intersec-
tions, and other navigation related attributes, as well as
POls, such as gasoline stations, hotels, restaurants, muse-
ums, stadiums, oflices, automobile dealerships, auto repair
shops, buildings, stores, parks, etc. The geographic database
can 1nclude data about the POIs and their respective loca-
tions 1n the POI data records. The geographic database can
also include data about places, such as cities, towns, or other
communities, and other geographic features, such as bodies
of water, mountain ranges, etc. Such place or feature data
can be part of the POI data or can be associated with POlIs
or POI data records (such as a data point used for displaying
or representing a position of a city). In addition, the geo-
graphic database can include and/or be associated with event
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data (e.g., traflic incidents, constructions, scheduled events,
unscheduled events, etc.) associated with the POI data
records or other records of the geographic database.

The geographic database can be maintained by the content
provider (e.g., a map developer) 1n association with the
services platform. By way of example, the map developer
can collect geographic data to generate and enhance the
geographic database. There can be different ways used by
the map developer to collect data. These ways can include
obtaining data from other sources, such as municipalities or
respective geographic authorities. In addition, the map
developer can employ field personnel to travel by vehicle
along roads throughout the geographic region to observe
features and/or record information about them, for example.
Also, remote sensing, such as aerial or satellite photography,
can be used. In an example embodiment, the geographic
database may be updated based on information/data pro-
vided by one or more vehicle apparatuses. For example, the
remote apparatus 10 may update the geographic database
based on a most preferred version map tile as determined
from a plurality of responses received from a plurality of
vehicle apparatuses 20, as described elsewhere herein.

The geographic database can be a master geographic
database stored in a format that facilitates updating, main-
tenance, and development. For example, the master geo-
graphic database or data in the master geographic database
can be 1n an Oracle spatial format or other spatial format,
such as for development or production purposes. The Oracle
spatial format or development/production database can be
compiled into a delivery format, such as a geographic data
files (GDF) format. The data in the production and/or
delivery formats can be compiled or further compiled to
form geographic database products or databases, which can
be used 1n end user navigation devices or systems.

For example, geographic data 1s compiled (such as into a
plattorm specification format (PSF) format) to organize
and/or configure the data for performing navigation-related
functions and/or services, such as route calculation, route
guidance, map display, speed calculation, distance and travel
time functions, and other tunctions. The navigation-related
functions can correspond to vehicle navigation or other
types of navigation. The compilation to produce the end user
databases can be performed by a party or entity separate
from the map developer. For example, a customer of the map
developer, such as a navigation device developer or other
end user device developer, can perform compilation on a
received geographic database 1n a delivery format to pro-
duce one or more compiled navigation databases. Regard-
less of the manner 1n which the databases are compiled and
maintained, a routing and navigation system that embodies
a vehicle apparatus 20 1n accordance with an example
embodiment may determine the time to traverse a route that
includes one or more turns at respective intersections more
accurately.

IV. Apparatus, Methods, and Computer Program Products

As described above, FIGS. 3, 5, 6, and 7 1illustrate
flowcharts of apparatuses 10, 20, method, and computer
program product according to an example embodiment of
the invention. It will be understood that each block of the
flowcharts, and combinations of blocks in the flowcharts,
may be implemented by various means, such as hardware,
firmware, processor, circuitry, and/or other devices associ-
ated with execution of soiftware including one or more
computer program 1nstructions. For example, one or more of
the procedures described above may be embodied by com-
puter program instructions. In this regard, the computer
program 1nstructions which embody the procedures
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described above may be stored by the memory device 14, 24
of an apparatus employing an embodiment of the present
invention and executed by the processor 12, 22 of the
apparatus. As will be appreciated, any such computer pro-
gram 1nstructions may be loaded onto a computer or other
programmable apparatus (e.g., hardware) to produce a
machine, such that the resulting computer or other program-
mable apparatus implements the functions specified i the
flowchart blocks. These computer program 1nstructions may
also be stored in a computer-readable memory that may
direct a computer or other programmable apparatus to
function 1n a particular manner, such that the instructions
stored in the computer-readable memory produce an article
of manufacture the execution of which implements the
function specified in the tflowchart blocks. The computer
program 1nstructions may also be loaded onto a computer or
other programmable apparatus to cause a series ol opera-
tions to be performed on the computer or other program-
mable apparatus to produce a computer-implemented pro-
cess such that the instructions which execute on the
computer or other programmable apparatus provide opera-
tions for implementing the functions specified in the tlow-
chart blocks.

Accordingly, blocks of the flowcharts support combina-
tions of means for performing the specified functions and
combinations of operations for performing the specified
functions for performing the specified functions. It will also
be understood that one or more blocks of the flowcharts, and
combinations of blocks in the flowcharts, can be 1mple-
mented by special purpose hardware-based computer sys-
tems which perform the specified functions, or combinations
of special purpose hardware and computer instructions.

In some embodiments, certain ones of the operations
above may be modified or further amplified. Furthermore, 1n
some embodiments, additional optional operations may be
included. Modifications, additions, or amplifications to the
operations above may be performed 1n any order and 1n any
combination.

Many modifications and other embodiments of the inven-
tions set forth herein will come to mind to one skilled 1n the
art to which these inventions pertain having the benefit of the
teachings presented 1n the foregoing descriptions and the
associated drawings. Theretfore, it 1s to be understood that
the inventions are not to be limited to the specific embodi-
ments disclosed and that modifications and other embodi-
ments are mtended to be mcluded within the scope of the
appended claims. Moreover, although the foregoing descrip-
tions and the associated drawings describe example embodi-
ments 1n the context of certain example combinations of
clements and/or functions, 1t should be appreciated that
different combinations of elements and/or functions may be
provided by alternative embodiments without departing
from the scope of the appended claims. In this regard, for
example, different combinations of elements and/or func-
tions than those explicitly described above are also contem-
plated as may be set forth 1n some of the appended claims.
Although specific terms are employed herein, they are used
in a generic and descriptive sense only and not for purposes
of limitation.

That which 1s claimed:

1. An apparatus in commumcation with a Cloud-based
computing environment, the apparatus comprising:

a communications interface for commumcating with the

Cloud-based computing environment;

a graphical processing unit configured to operate an

up-sampling network; and

a processing unit configured to:
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receive a temporal sequence ol 1mages comprising a
plurality of down-sampled images (a) captured by an
image capturing device ol an apparatus and (b)
down-sampled by the apparatus;

determine a scale of the plurality of down-sampled
1mages;

cause the up-sampling network to receive the plurality
of down-sampled 1mages and the scale of the plu-
rality of down-sampled images;

cause the up-sampling network to determine appropri-
ate network weights based on the scale of the plu-
rality of down-sampled images; and

cause the up-sampling network to generate a higher
resolution image having a pre-defined scale based on
the plurality of down-sampled images and the appro-
priate network weights, wherein (a) the higher reso-
lution 1mage 1s a composite higher resolution 1image
and (b) generating the higher resolution 1mage com-
prises up-sampling the plurality of down-sampled
images to generate a temporal sequence of higher
resolution 1mages and performing a convolution of
the temporal sequence of higher resolution 1mages to
generate the composite higher resolution 1image.

2. A method comprising;

recerving a temporal sequence of 1images comprising a
plurality of down-sampled images (a) captured by an
image capturing device of an apparatus and (b) down-
sampled by the apparatus;

determining a scale of the plurality of down-sampled
1mages;

receiving, by an up-sampling network, the plurality of
down-sampled images and the scale of the plurality of
down-sampled 1mages;

determiming, by the up-sampling network, approprate
network weights based on the scale of the plurality of
down-sampled 1images; and

generating, by the up-sampling network, a higher resolu-
tion 1mage having a pre-defined scale based on the
plurality of down-sampled images and the appropnate
network weights, wherein (a) the higher resolution

image 1s a composite higher resolution 1image and (b)

generating the higher resolution 1mage comprises up-

sampling the plurality of down-sampled images to
generate a temporal sequence of higher resolution
images and performing a convolution of the temporal
sequence of higher resolution images to generate the
composite higher resolution 1mage.

3. A method according to claim 2, wherein training the

up-sampling network comprises:

recerving or accessing a full resolution 1image;

generating an 1nstance of tramning data, wherein the
instance of training data comprises (a) a plurality of
down-sampled training i1mages, the down-sampled
training 1mages being down-sampled representations of
the full resolution 1image at a particular scale and (b) the

full resolution 1mage;

recerving by a neural network the instance of training
data;

for a particular down-sampled training image of the
instance of training data, generating an up-sampled
training 1mage;

determining a loss function based on the up-sampled
training 1mage and the full resolution 1mage; and

moditying one or more network weights based on the loss
function.
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4. A method according to claim 3, wherein the higher
resolution image 1s of the same resolution as the full
resolution 1mage.

5. A method according to claim 2, wherein at least one
image ol the temporal sequence of 1mages 1s associated with
pose 1nformation.

6. A method according to claim 2, whereimn training the
up-sampling network comprises:

receiving or accessing a temporal sequence of full reso-

lution 1mages;

generating an instance of training data, wherein the train-

ing data comprises (a) a plurality of temporal sequences
of down-sampled i1mages, the temporal sequences of
down-sampled 1mages being down-sampled represen-
tations of the temporal sequence of full resolution
images at a particular scale and (b) the temporal
sequence of full resolution 1mages;

receiving by a neural network the instance of training

data;

for a particular temporal sequence of the down-sampled

images, generating a temporal sequence of higher reso-
lution 1mages;

performing a convolution of the temporal sequence of

higher resolution 1mages to generate a training com-
posite higher resolution 1mage;

determining a loss function based on the training com-

posite higher resolution 1mage and at least one full
resolution 1mage of the temporal sequence of tull
resolution 1mages; and

modilying one or more network weights based on the loss

function.

7. A method according to claim 2, wherein the up-
sampling network 1s defined by a plurality of sets of network
weights, wherein each set of network weights corresponds to
a scale of a series of scales.

8. A method according to claim 7, wherein:

the series of scales comprises a first scale and a second

scale,

the first scale corresponds to a first set of network weights

and the second scale corresponds to a second set of
network weights,

the scale of the 1image 1s between the first scale and the

second scale, and

the appropriate network weights are determined based on

the first set of network weights and the second set of
network weights.

9. A method according to claim 2, wherein determining,
the scale of the 1mage comprises at least one of analyzing the
image, or analyzing meta data corresponding to the image.

10. A method according to claim 2, further comprising:

performing an 1mage-based localization technique based

on the higher resolution 1mage to determine corrected
pose mformation; and

associating the corrected pose information with the appa-

ratus.

11. A method according to claim 2, further comprising:

receiving pose information corresponding to the image;

extracting feature information from the higher resolution
image, the feature information corresponding to at least
one feature detected within the higher resolution 1image;
and

updating a feature map based on the pose information and

the extracted feature information, the feature map being
a layer of a digital map.

12. An apparatus comprising at least one processor, at
least one memory storing computer program code, and an
up-sampling network, the at least one memory and the
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computer program code configured to, with the processor,
cause the apparatus to at least:
recetve a temporal sequence ol 1mages comprising a
plurality of down-sampled 1mages (a) captured by an
image capturing device and (b) down-sampled;

determine a scale of the plurality of down-sampled
1mages;

receive, by the up-sampling network, the plurality of

down-sampled images and the scale of the plurality of
down-sampled 1mages;

determine, by the up-sampling network, appropriate net-

work weights based on the scale of the plurality of
down-sampled 1mages; and

generate, by the up-sampling network, a higher resolution

image having a pre-defined scale based on the plurality
of down-sampled 1mages and the approprnate network
weights, whereimn (a) the higher resolution 1mage 1s a
composite higher resolution 1image and (b) generating
the higher resolution 1mage comprises up-sampling the
plurality of down-sampled 1mages to generate a tem-
poral sequence ol higher resolution 1mages and per-
forming a convolution of the temporal sequence of
higher resolution images to generate the composite
higher resolution 1mage.

13. An apparatus according to claim 12, wherein traiming
the up-sampling network comprises:

receiving or accessing a full resolution image;

generating an instance of training data, wherein the

instance of training data comprises (a) a plurality of
down-sampled training images, each of the down-
sampled traiming 1mages being a down-sampled repre-
sentation of the full resolution 1mage at a particular
scale and (b) the full resolution 1mage;

recerving by a neural network the instance of training

data;

for a particular down-sampled training i1mage of the

instance of training data, generating an up-sampled
training 1mage;

determining a loss function based on the up-sampled

training 1mage and the full resolution 1mage; and
modifying one or more network weights based on the loss
function.

14. An apparatus according to claim 13, wherein the
higher resolution 1mage 1s of the same resolution as the full
resolution 1mage.

15. An apparatus according to claim 12, wherein at least
one 1mage of the temporal sequence of 1mages 1s associated
with pose information.

16. An apparatus according to claim 12, wherein training
the up-sampling network comprises:

recerving or accessing a temporal sequence of full reso-

lution 1mages;

generating an instance of training data, wherein the train-

ing data comprises (a) a plurality of temporal sequences
of down-sampled i1mages, the temporal sequences of
down-sampled 1mages being down-sampled represen-
tations of the temporal sequence of full resolution
images at a particular scale and (b) the temporal
sequence ol full resolution 1images;

recerving by a neural network the instance of training

data;

for a particular temporal sequence of the down-sampled

images, generating a temporal sequence ol higher reso-
lution 1mages;

performing a convolution of the temporal sequence of

higher resolution 1mages to generate a training com-
posite higher resolution 1mage;
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determining a loss function based on the training com-
posite higher resolution image and at least one full
resolution 1mage of the temporal sequence of full
resolution 1mages; and

modilying one or more network weights based on the loss

function.

17. An apparatus according to claim 12, wherein:

the up-sampling network 1s defined by a plurality of sets

ol network weights, wherein a respective set ol net-
work weights corresponds to a scale of a series of
scales,

the series of scales comprises a first scale and a second

scale,

the first scale corresponds to a first set of network weights

and the second scale corresponds to a second set of
network weights,

the scale of the image 1s between the first scale and the

second scale, and

the appropriate network weights are determined based on

the first set of network weights and the second set of
network weights.

18. An apparatus according to claim 12, wherein deter-
mimng the scale of the image comprises at least one of
analyzing the image, or analyzing meta data corresponding
to the 1image.

19. An apparatus according to claim 12, wherein the at
least one memory and the computer program code are
turther configured to, with the processor, cause the apparatus
to at least:

perform an 1mage-based localization technique based on

the higher resolution image to determine corrected pose
information; and

associate the corrected pose information with an appara-

tus comprising the image capturing device.

20. An apparatus according to claim 12, wherein the at
least one memory and the computer program code are
turther configured to, with the processor, cause the apparatus
to at least:
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recetve pose mformation corresponding to the image;

extract feature information from the higher resolution

image, the feature information corresponding to at least
one feature detected within the higher resolution image;
and

update a feature map based on the pose information and

the extracted feature information, the feature map being
a layer of a digital map.

21. A computer program product comprising at least one
non-transitory computer-readable storage medium having
computer-executable program code instructions stored
therein, the computer-executable program code instructions
comprising program code instructions configured to:

receive a temporal sequence of i1mages comprising a

plurality of down-sampled 1mages (a) captured by an
image capturing device of an apparatus and (b) down-
sampled by the apparatus;

determine a scale of the plurality of down-sampled

1mages;

cause an up-sampling network to receive the plurality of

down-sampled images and the scale of the plurality of
down-sampled 1images;

cause the up-sampling network to determine appropriate

network weights based on the scale of the plurality of
down-sampled images; and

cause the up-sampling network to generate a higher

resolution 1mage having a pre-defined scale based on
the plurality of down-sampled 1mages and the appro-
priate network weights, wherein (a) the higher resolu-
tion 1mage 1s a composite higher resolution image and
(b) generating the higher resolution 1mage comprises
up-sampling the plurality of down-sampled 1mages to
generate a temporal sequence of higher resolution
images and performing a convolution of the temporal
sequence of higher resolution images to generate the
composite higher resolution 1mage.
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