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APPARATUS AND METHOD FOR ACTIVITY
DETECTION AND CLASSIFICATION FROM
SENSOR DATA

STATEMENT OF GOVERNMENT INTEREST

The embodiments herein may be manufactured, used,
and/or licensed by or for the U.S. Government without the
payment of royalties thereon.

BACKGROUND OF THE INVENTION

Reliability of unattended ground sensors (UGS) to detect
and classity different activities (e.g., walking and digging) 1s
often limited by high false alarm rates, possibly due to the
lack of robustness of the underlying algorithms 1n different
environmental conditions (e.g., soil types and moisture
contents for seismic sensors), inability to model large varia-
tions 1n the signature of a single activity and limitations of
on-board computation. Tactical scenarios, pertinent to bor-
der control and surveillance, are richly equipped with multi-
modal sensing devices (e.g., acoustic, seismic, passive inira-
red, and magnetic), referred to as unattended ground sensors
(UGS). Such systems are deployed to detect and classity
different types of targets and activities in real time, which
requires a holistic situation awareness. Despite the high false
alarm rates, the UGS systems are preferred because they are
relatively inexpensive, easy to deploy and unobtrusive to the
surroundings. The high false alarm rates may be attributed to
inadequate on-board processing algorithms and the lack of
robustness of the detection algorithms 1n different environ-
mental conditions (e.g., so1l types and moisture contents for
seismic sensors). Furthermore, limited battery operating life
have made power consumption a critical concern for both
sensing and information communication.

Seismic sensors have performed with the highest reliabil-
ity compared to other components of UGS systems regard-
ing target detection and activity classification because they
are less sensitive to Doppler eflects and environment varia-
tions as compared to acoustic sensors. Present personnel
detection methods using seismic signals may be classified
into three categories, namely, time domain methods, fre-
quency domain methods, and time-frequency domain meth-
ods. More recently, feature extraction from (wavelet-trans-
formed) time series, based on symbolic dynamic filtering
(SDF), has been proposed by X. Jin, S. Sarkar, A. Ray, S.
Gupta, and T. Damarla, “Target detection and classification
using seismic and PIR sensors,” IEEE Sensors Journal, vol.
12, pp. 1709-1718, June 2012 (herein incorporated by ret-
erence) for target detection and classification 1n border
regions. The rationale for using wavelet-based methods 1s
denoising and time-frequency localization of the underlying
sensor time series. However, this method requires tedious
selection and tuning of several parameters (e.g., wavelet
basis function and scales) for signal pre-processing 1n addi-
tion to the size of the symbol alphabet that 1s needed for
SDF. In S. Bahrampour, A. Ray, S. Sarkar, T. Damarla, and
N. M. Nasrabadi, “Performance comparison of feature
extraction algorithms for target detection and classification,”
Pattern Recognition Letters, vol. 34, pp. 2126-2134, (De-
cember 2013) (herein incorporated by reference), a com-
parison shows consistently superior performance ol SDF-
based feature extraction over Cepstrum-based and PCA-
based feature extraction, in terms of successful detection,
talse alarm, and misclassification rates, using data collected
for border-crossing detection. The reliability of the perfor-
mance by SDF, i varied environmental conditions for
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personnel detection problem, was studied 1in N. Virani, S.
Marcks, S. Sarkar, K. Mukherjee, A. Ray, and S. Phoha,

“Dynamic data driven sensor array fusion for target detec-

tion and classification,” Procedia Computer Science, vol. 18,
pp. 2046-2055 (December 2013), herein incorporated by
reference.

There has been numerous research on human activity
recognition from data collected by wearable sensors (e.g.,
accelerometer), ubiquitous sensor net (e.g., passive infrared
(PIR) sensor net), imaging and video sensors (e.g., wireless
camera network). However, there has been relatively little
work done 1n activity recognition based on the data collected
by UGS, especially seismic sensor. The main challenge lies
in the inherent multi-timescale nature, low SNR and high
variability (different external conditions) of the seismic data
for same class of activity.

It appears that there has been relatively little work done 1n
activity recognition based on the data collected by UGS,
especially seismic sensors. The present invention 1s directed
to a system designed to detect and classity different human
activities from seismic signatures in real time. One of the
most sigmficant and dreaded threat scenarios in tactical
situations 1s comprised of the activities such as, a personnel
walking to a site and digging there to bury explosives and
walking away. It 1s challenging to detect and segment such
activities from only seismic signatures in real time because
of their inherent multi-timescale nature with low signal-to-
noise-ratio (SNR) 1n varied environmental conditions. Also,
the persistence level and type of digging activity have a
significant variability, which make the problem more com-
plex. In seismic signals, both of these activities may appear
as arrays ol near-identical impulses at a fast time scale. But,
it 1s the time evolution of those impulses 1n a slower time
scale, which capture the separability of those activities.

There are several techniques proposed 1n the literature to
determine gait of a person and classily whether the observed
signature belongs to a human or an anmimal. In K. Houston
and D. McGatligan, “Spectrum analysis techniques for per-
sonnel detection using seismic sensors,” in Unattended
Ground Sensor Technologies & Applications V, vol. 5090,
pp. 162-173, SPIE (2003), the seismic signatures are ana-
lyzed in Fourier domain to look for the fundamental and
harmonics of gait frequency. Since the gait of a person
walking 1s different from that of a quadruped, the funda-
mental and harmonics frequencies for a person walking are
different from those of a quadruped and thereby distinguish-
ing a person or a quadruped walking. In H. Park, et al.,
“Cadence analysis of temporal gait patterns for seismic
discrimination between human and quadruped footsteps,” 1n
IEEE Conference on Acoustics, Speech and Signal Process-
ing, pp. 1749-1732, (2009), the cadence analysis 1s done to
extract temporal gait pattern which provides information on
temporal distribution of the gait beats. However, these
techniques result 1n a high number of false alarms or miss
classification resulting in wasting human resources for
investigation. Moreover, these techniques may or may not
work 1n different soil conditions as the propagation proper-
ties of various soils are different, rendering the spectral
based analysis prone to misdiagnosis. The reliability of the
detection performance by SDEF, 1n significantly varied envi-
ronmental conditions for personnel detection problem, was
studied 1n N. Virani, S. Marcks, S. Sarkar, K. Mukherjee, A.
Ray, and S. Phoha, “Dynamic data driven sensor array
fusion for target detection and classification,” Procedia

Computer Science, vol. 18, pp. 2046-20355 (December
2013).
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In U.S. Published Application No. 2008/0309482 (482),
Honeywell Corp. implemented a tunnel activity detection. In

the 482 patent application, several seismic sensors are
deployed in the area of interest. If there 1s an underground
activity, the sensors record the changes in the voltages and
transmit them to a “tower” (paragraph [0036]), where it
appears that a person determines 1f there 1s some activity 1n
the ground by observing the changes 1n the voltage levels.

U.S. Pat. No. 7,656,288 to Joslin uses multiple sensors of
different modalities to detect and classify an event. The
event could be a person walking, vehicle traveling, efc.

In U.S. Published Application No. 2008/0109091 to Jos-
lin, discloses a method for improved data communication
with a remote sensor and communicating the data when a
rule 1s satisfied. U.S. Pat. No. 7,714,714 to Volgewede, et al.,
discloses a system for improved signal processing using a
remote sensor comprising a detection component and a
classification component. The classification of an event is
based at least 1n part on a situation. U.S. Pat. No. 7,710,265
to Volgewede, et al., discloses multiple sensors of diflerent
modalities to detect and classily an event such as a pedes-
trian walking, vehicle moving, etc., based on a set of rules
and the rules are selected based at least 1n part on a situation.

SUMMARY OF THE INVENTION

A preferred embodiment system for detection of at least
one of human activity and vehicle activity comprises:
at least one sensor adapted to generate a data signal in
response to detecting human or vehicular activity;
at least one processor operatively connected to the sensor,
the at least one processor operating to perform an
analysis of the signal without human intervention in
order to recognize and classily the type of activity
detected by the sensor;
the at least one processor being configured to denoise the
data signal from the sensor; generate an autocorrelation of
the data signal; partition the data signal into a predetermined
number of overlapping segments to form a time series of
data; generate symbols for the overlapping segments; com-
pare the pattern of generated symbols with known patterns
of symbols representing human or vehicular activity; deter-
mine whether a threshold probability 1s exceeded which
attributes the data signal to human or vehicular activity;
analyze the patterns presented in the data signal by trans-
forming the patterns of symbols into states and determining
the transitions between states; and classity the activity based
upon the transitions between states
A preferred method for detection and classification of
human or vehicular activity using a sensor and at least one
processor comprises the following steps not necessarily in
the following order:
sensing activity using a seismic sensor; the sensor being
operatively connected to at least one processor and provid-
ing a seismic data signal extending for a predetermined time
frame;
denoising the data signal from the sensor and removal of
the mean from the data signal;
generating an autocorrelation of the data signal;’
partitioning data signal into a predetermined number of
overlapping segments to form a time series of data;
generating symbols for the overlapping segments;
comparing the pattern of generated symbols with known
predetermined patterns of symbols representing human or
vehicular activity;
determining the probability of whether or not the seismic
data signal 1s attributable to human activity;
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4

determiming whether or not the probability determination
meets or exceeds a predetermined threshold;

recognizing the data signal as being possibly attributable
to an activity when the threshold 1s met or exceeded;

accumulating additional time frames of data signals
repeating the steps of denoising, autocorrelation, partition-
ing the data signal into a predetermined number of overlap-
ping segments and generating symbols for overlapping
segments;

transforming the generated symbols representing the ini-
tial and additional time frames 1nto states and determiming
the transitions between states;

based upon the transitions, determining whether or not a
human or vehicular activity has occurred and classifying the
activity based upon the transitions between states.

Although the invention 1s not limited to a specific algo-
rithm, the mvention may be practiced utilizing, inter ala, a
fast and robust multi-scale symbolic time series analysis
(MSTSA) framework for activity recognition from seismic
signature. A building block of the proposed framework 1s
built upon the concept of applying the short-length symbolic
time-series online classifier (SSTOC) via Dirichlet-Com-
pound-Multinomial model (DCM) construction. It 1s oper-
ated on symbol sequences generated from seismic time-
series and intermediate event class time-series at different
time-scales. The development of SSTOC was 1mitiated by
the authors 1n S. Sarkar, K. Mukherjee, S. Sarkar, and A.
Ray, “Symbolic dynamic analysis of transient time series for
fault detection in gas turbine engines,” ASME Journal of
Dynamic Systems, Measurement and Control, vol. 135, pp.
14506-1 to 14506-6, January 2013, and Y. Wen, K. Mukher-
jee, and A. Ray, “Adaptive pattern classification for sym-
bolic dynamic systems,” Signal Processing, vol. 93, pp.
252-260, (January 2013) both of which are herein 1incorpo-
rated by reference) to analyze short length transient data in
SDF architecture. These building blocks, with different
window sizes, are cascaded in multiple layers for activity
detection and classification. The algorithm operates on sym-
bol sequences that are generated from seismic time-series
and intermediate event class time-series at different time
scales. These building blocks, with diflerent window sizes,
are cascaded in multiple layers for event detection and
activity classification. A variety of experiments have been
conducted 1n the field, which include realistic scenarios of
different types of walking/digging. The results of experi-
ments show that an accuracy of more than 90% and a false
alarm of around 5% can be achieved 1n real time for activity
detection and recognition.

These and other aspects of the embodiments herein will
be better appreciated and understood when considered in
conjunction with the following description and the accom-
panying drawings. It should be understood, however, that
the following descriptions, while indicating preferred
embodiments and numerous specific details thereof, are
given by way of illustration and not of limitation. Many
changes and modifications may be made within the scope of
the embodiments hereimn without departing from the spirt

thereof, and the embodiments herein include all such modi-
fications.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein will be better understood from
the following detailed description with reference to the
drawings, in which:
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FIG. 1A 1s an 1illustration of a preferred embodiment
comprising a sensor and blocks representing the data acqui-
sition subsystem and data analysis subsystem that may be
deployed to detect activity.

FIG. 1B 1s a schematic 1llustration describing an alternate
embodiment for data collection. Shown are two 3-axis
geophones deployed as seismic sensors at distances of 4 m
and 8 m from the site of digging. A typical run of the data
collection 1s 90 s long and 1t comprises the activities such as
walking to the site of digging, digging at the site, walking
away from the site in order. It also has certain segments,
before and after the activities, where there 1s no activity
happening around the sensor.

FIG. 2A 1s an 1illustration showing the seismic signal
generated as a voltage versus time graph. FIG. 2A 1s an
example of a typical seismic time-series collected at the
z-ax1s by a 3-axis geophone in the experiment; ground truth:
no activity at 0 s<t=13 s, two persons walking to digging site
at 15 s<t=27.5 s, digging at 27.5 s<t=63 s, walking away at
63 s<t<76.5 s and no activity at 76.5 s<t=90 s.

FIG. 2B 1s a flow chart of an activity detector (AD) of a
preferred embodiment of the imvention. Activity Detection
uses bi-layer classification by Multi-scale Symbolic Time
Series Algorithm (MSTSA).

FIG. 3 1s an illustration showing a comparison between
digging (top charts) and walking (bottom charts) showing
(left) seismic signal versus time, (middle) Hilbert transtform
of the signal and (right) autocorrelation of the signal. The
data preprocessing steps for walking and digging are 1llus-
trated over 10 s window (sampling rate=1 kHz).

FI1G. 4 1s a flow chart for the illustration of a section of the
Multi-scale Symbolic Time Series Algorithm.

FI1G. § 1s a flow chart for the 1llustration of another section
of the Multi-scale Symbolic Time Series Algorithm for
partial classification of activity as walking or digging

FIG. 6 1s a diagrammatic 1llustration of the schematics of
the MSTSA framework.

FIG. 7 1s a diagrammatic illustration of the development

ol probabailistic finite state automaton.

FIG. 8 1s an illustration of a flow chart for the Short-
Length Symbolic Time-Series Online Classifier (SSTOC)
used 1n a preferred embodiment of the present invention.

FIG. 9 1s an 1llustration showing the generation of symbol
stream S1 for each activity/class, ‘1.

FIG. 10 1s a flow chart of a classification sequence
showing blocks 19 and 20 of FIG. 2B for classification of
activity as walking or digging using Gait information.

FIG. 11 1illustrates an activity detection from a 90 s
seismic signal via Multi-scale Symbolic Time Series Algo-
rithm (MSTSA). The second plot from top of the figure
shows the posterior probability of intermediate events hap-
pening around the sensor at fast time scale, which has false
alarms 1n the ‘no activity’ zone (posterior threshold for
activity decision=0.5). The third ploy from the top of the
figure shows the probability of events after short time
smoothing.

FIG. 12 1llustrates major steps for activity detection from
a 90 s seismic signal via Multi-scale Symbolic Time Series
Algorithm (MSTSA). Starting from the top, FIG. 12 shows
a typical seismic signal spanning 90 s, the final probability
of activity posterior for detection and decision vector regard-
ing activity classification with corresponding ground truth.

A more complete appreciation of the invention will be
readily obtained by reference to the following Description of
the Preferred Embodiments and the accompanying drawings
in which like numerals 1n different figures represent the same

structures or elements. The representations in each of the
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figures are diagrammatic and no attempt 1s made to indicate
actual scales or precise ratios. Proportional relationships are
shown as approximates.

(L]
Y

ERRED

DETAILED DESCRIPTION OF PR
EMBODIMENTS

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which embodiments of the invention are shown. However,
this mvention should not be construed as limited to the
embodiments set forth herein. Rather, these embodiments
are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the mvention

to those skilled in the art. In the drawings, the thickness of
layers and regions may be exaggerated for clarity. Like
numbers refer to like elements throughout. As used herein

the term “and/or” imncludes any and all combinations of one
or more of the associated listed 1tems.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to limat
the full scope of the mnvention. As used herein, the singular

forms “a”, “an” and “the” are itended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises”
and/or “comprising,” when used 1n this specification, specity
the presence of stated features, integers, steps, operations,
clements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, 1ntegers,
steps, operations, elements, components, and/or groups
thereof.

It will also be understood that when an element 1s referred
to as being “connected” or “coupled” to another element, or
“operatively connected” i1t can be directly connected or
coupled to the other element or intervening elements may be
present; or 1t may be connected, inter alia, by a wireless
connection. In contrast, when an element is referred to as
being “directly connected” or “directly coupled” to another
clement, there are no intervening elements present.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements,
components, regions, layers and/or sections, these elements,
components, regions, layers and/or sections should not be
limited by these terms. These terms are only used to distin-
guish one element, component, region, layer or section from
another region, layer or section. Thus, a first element,
component, region, layer or section discussed below could
be termed a second element, component, region, layer or
section without departing from the teachings of the present
invention.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill 1n the art to
which this invention belongs. It will be further understood
that terms, such as those defined 1n commonly used diction-
aries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant
art and will not be interpreted 1n an idealized or overly
formal sense unless expressly so defined herein.

It will also be appreciated by those of skill 1n the art that
references to a structure or feature that 1s disposed “adja-
cent” another feature may have portions that overlap or
underlie the adjacent feature.

Unattended ground station (UGS) systems are relatively
iexpensive, easy to deploy and unobtrusive to the surround-

ings. US Army routinely deploys UGS systems to detect
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nefarious activity near a culvert where miscreants may dig
a hole to place an improvised explosive device (IED).
Overview

A central concept of the present invention 1s to represent
the data recorded by a sensor in a form understood by a
computer so that the data may be interpreted without human
intervention. The data from the sensor(s) 1s broken into
many, many segments or time intervals and then the changes
in states (intensity levels) are analyzed. The invention
detects no activity, walking or digging and could be
extended to tunneling, motor vehicle detection, tank detec-
tion, animal detection, etc. A preferred embodiment of the
present invention detects the seismic ground movement
using a seismic sensor, an example of which 1s a magnet
positioned within a coil which generates a voltage correlat-
ing to the movement of the magnet. The seismic signal
generates a voltage versus time graph. A Multi-scale Sym-
bolic Time Series Algorithm (MSTSA) performs two func-
tions (1) detection of activity and (2) partial classification of
the activity. Mean of the noise 1s removed from the voltage
signal. An autocorrelation 1s performed in which long
sequence ol peaks are iputted and the autocorrelation
determines how one peak 1s similar to another (for example,
high peaks may be due to heavy boots). Subsequently, the
data 1s divided into two-second windows that have 80%
overlap. The windows are then represented by symbols of 1
where 1 goes from 1 to m and m=21 (frequency). A Short
Length Symbolic Time Series Online classifier (SSTOC)
estimates probability of activity. The partial classification
portion of the Multi-scale Symbolic Time Series Algorithm
(MSTSA) comprises a division of the probabilities P into 40
segments (from 1 to M where M=40) to output P, , (threshold
1s denominated as P,,). Symbols B, are generated for the
segment and the SSTOC (short term symbolic time-series
online classifier) 1s used. The first 40 probabilities are looked
at, then the window 1s shifted to probabailities from 10 to 50
to capture the next 40 probabilities; in order to capture
variations. If probability 1s 1, activity 1s detected.

A preferred embodiment next uses Probabilistic Finite
State Automaton (PEFSA) Construction. The symbolic
sequence 1s modeled as a probabilistic finite state automaton
(PFSA). The data 1s constructed as a tuple G=(Q.,Z,C,II),
where the alphabet X 1s a nonempty finite set of symbols (a.,
3, v, and 0) and the set of states QQ 1s constrained to be
nonempty and finite. In other words, the data 1s converted to
a series of symbols where Q 1s the state, X 1s the symbols
representing the arcs in FIG. 7 which are labeled ., 3, v, and
0, the state transition function C:QxZ—Q vields the new
state, and m 1s the probability, 1.e., how many times a
function has occurred, which has the matrix representation
IT.

Figure Description

Referring now to FIG. 1A, a sensor 10, which may be a
component of a preferred embodiment system, 1s utilized to
detect activity. The component of the preferred embodiment
system comprises a sensor 10 or a sensor suite of multiple
modalities, a data acquisition system (that 1s, a system that
takes the analog data from the sensors and converts into
digital data that can be processed using digital computers)
and a data analysis system which 1s a dedicated computer
that analyzes the data and determines the type of activity.
FIG. 1B illustrates an alternate preferred embodiment com-
prising two sensors 10. Each sensor 10 may be, for example,
a seismic sensor such as a 3-axis geophone. FIG. 1B further
shows a spacing ol four meters between sensors 10 and a
distance of four meters to a digging sight, arranged for
testing the alternate preferred embodiment system. A typical
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run of data 1s 90 seconds long and comprises activities such
as walking to the sight of digging, digging at the sight,
walking away from the site. It also has certain segments
(such as before and after the walking) where there 1s no
activity happening. FIG. 2A 1s an example of such a data
collection. FIG. 2A 1s an illustration of a scan produced by
a seismic sensor showing amplitude (vertical axis) versus
time (horizontal axis). The dashed lines 1n FIG. 1B show the
walking paths.

FIG. 2B 1s a flow chart of an activity detector (AD)
portion of a preferred embodiment of the invention. FIG. 2B
illustrates the individual blocks or subparts of a preferred
embodiment subsystem 11 and their implementation. In box
12, the signal, which may be seismic, 1s inputted in the
computer processing system. In box 13, the signal 1s ana-
lyzed to determine a gait for the signal. In box 14, the
processor completes de-noising and preprocessing of the
inputted signal. Initially, the seismic time series 1s converted
to a zero mean signal and down-sampled to 1 kHz from 4
kHz. Then, the seismic signal 1s de-noised via wavelet
de-noising method (such as SureShrink thresholding as
disclosed 1n D. L. Donoho and I. M. Johnstone, “Adapting
to unknown smoothness via wavelet shrinkage,” Journal of
the American Statistical Association, pp. 1200-1224, 1995)
using three-layer multi-resolution approach with db7 wave-
lets. FIG. 2B, box 14 represents the removal of the mean and
noise from the seismic data. In box 15, as part of the
detection stage, a processor uses a Multi-scale Symbolic
Time Series Algorithm (MSTSA) to detect the presence of
an activity at faster time scale (small time duration (win-
dow)) against the null hypothesis of no activity, the data
de-noising 1s conducted

At box 13, the gait analysis 1s determined for the inputted
signal. In box 19, the probability of the iputted signal
representing digging or walking 1s assessed. In the activity
classification stage, Multi-scale Symbolic Time Series Algo-
rithm (MSTSA) (box 18) along with extracted gait period
(from box 13) classily and segment walking (box 21) vs.
digging at slower time scale (larger time duration (window))
via support vector machine (SVM) classifier.

As to data preprocessing and partitioning, envelop detec-
tion via Hilbert transform 1s carried out on the time series to
reduce the phase distortions in the seismic data for both
activity detection and classification. In the next step, auto-
correlation of the temporal envelop 1s obtained with different
window sizes for different stages of activity recogmition (1.€.,
detection and classification). This auto-correlation function
1s used as an mput to the Multi-scale Symbolic Time Series
Algorithm (MSTSA) technique because 1t can capture the
difference 1n periodicity pattern between walking and dig-
ging.

FIG. 3 illustrates data preprocessing steps for walking and
digging over 10 s window (sampling rate=1 kHz). The
auto-correlation function, corresponding to a certain win-
dow, 1s partitioned via uniform partitioning based on the
current data. The partitioning information 1s not kept con-
stant over the whole sample of training and testing to
facilitate the understanding of the texture change 1n the data,
not the change of amplitude. Once the symbol sequence 1s
created after partitioning, 1t 1s fed into Multi-scale Symbolic
Time Series Algorithm (MSTSA) for activity recognition

The Multi-scale Symbolic Time Series Algorithm
(MSTSA) has two main steps, namely, 1) Detection of
Activity (as shown in FIG. 4), and 2) Partial classification of
Activity as shown 1n FIG. 5.

FIG. 4 1llustrates in box 14 A the removal of the mean and
de-noising of the data signal by the computer or processor.
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Once the auto correlation 1s completed by the computer or
processor 1 box 15A, the data signal 1s segmented 1into N
segments using overlapping windows, with an overlap of
80%, as represented by box 15B of FIG. 4. Continuing in the
flow chart of FIG. 4, box 23 the mteger I 1s incremented by
1 for each segment of the data signal. Box 24 indicates
whether or not the last segment N has been processed. If the
answer 1s no, the subroutine continues to box 27 wherein a
symbol for each of the N segments of data 1s generated. Each
segmented data 1s now symbolized to generate a probabi-
listic finite state automaton as shown 1n FIG. 7. In box 28,
a Short-Length Symbolic Time-Series Online Classifier (S5-
TOC) 1s used to estimate the probability of activity. In Box
26, the mteger 11s incremented and the subroutine returns to
box 24. If all N segments have been processed, the prob-
abilities are outputted as represented by box 25, which
continues at the top of FIG. 5.

FI1G. 5 1llustrates the classification portion of the MSTSA
(part 2) Data 1s divided into two second windows, the two
second windows have 80% overlap (see box 29). The
windows are then represented by symbols Bi (box32), where
1 goes from 1 to m (box 31) and m=21 (frequency) Short
Length Symbolic Time Series Online classifier (SSTOC)
(box 33) estimates probability of activity.

FIG. 6 1s a diagrammatic illustration of the Short Length
Symbolic Time Series Online classifier (SSTOC) process
(indicated by upward arrows). The time series 1s segmented
into overlapping windows 38A, 38B and 38C, shown 1n FIG.
6 are the intermediate probabilistic finite state automatons
(PFSAs) (39A, 39B and 39C) and Upper level PFSA 40.
Symbolization of Time-Series:

The sensor time series 1s encoded by data partitioning in
the range of the signal, where the conversion to symbol
strings 1s achieved by substituting each (real-valued) data
point 1n the time series by a symbol corresponding to the
region (1.e., iterval) within which the data point lies. This
step enables transformation of the sensory information from
the continuous domain to the symbolic domain; 1 other
words, the sensor data at each sampling 1s replaced by a
symbol. Thus, as shown at the top of FIG. 7, the time series
data 1s used to generate the symbols a, {3, v, . . . if the data
levels fall 1n certain voltage ranges.

Probabilistic Finite State Automaton (PFSA) Construction

The symbolic sequence 1s modeled as a probabilistic finite
state automaton (PFSA) (FIG. 7) that 1s constructed as a
tuple G=(Q, X, o, II), where the alphabet X 1s a nonempty
finite set of symbols and the set of states () 1s constrained to
be nonempty and finite. This invention disclosure considers
only a class of PFSA, known as D-Markov machines, where
the states are strings of the D past symbols; the positive
integer D 1s called the depth of the machine and the number
of states |QI=<|ZI”, where || indicates the number of ele-
ments 1n the set 2. Given the previous state and observed
symbol, the state transition function 0:Qx=—Q vyields the
new state. In addition, the morph function m: QxZ—[0, 1] 1s
an output mapping that satisties the condition: 2__.7(q,
o)=1 for all q=Q. The morph function mhas a matrix
representation I1, called the (probability) morph matrix of
dimension (1QIx|XZ]). Each row sum of II 1s equal to 1 and
each matrix element II; 1s strictly positive due to the finite
length constraint of time series from which PFSA models are
constructed.

Each row of row of II 1s considered as a random vector.
The preferred embodiment system determines 1ts distribu-
tion so that when such a random vector 1s generated by a
symbol sequence the state (class) from which 1t can be
estimated. For detection or classification 1t can be seen from
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the flowchart 1n FIGS. 4 and 5 that Short-Length Symbolic
Time-Series Online Classifier (SSTOC) 1s used, which 1s a
building block of Multi-scale Symbolic Time Series Algo-
rithm (MSTSA). Steps 1n mmplementing SSTOC are
described 1n the following.

Short-Length Symbolic Time-Series Online Classifier (SS-
TOC):

This formulation quantitatively incorporates the effects of
finite-length symbol strings in both training and testing
phases of pattern classification. The Dirichlet and multino-
mial distributions have been used to construct the a priori
and a posterior1 models of uncertainties, respectively. The

mathematical background and details for this can be found
in S. Sarkar, K. Mukherjee, S. Sarkar, and A. Ray, “Sym-

bolic dynamic analysis of transient time series for fault
detection 1n gas turbine engines,” ASME Journal of
Dynamic Systems, Measurement and Control, vol. 135, pp.

14506-1-14506-6, January 2013, herein incorporated by

reference and hereimnaiter Sarkar article. Here we provide the
practical aspects i implementing the Short-Length Sym-
bolic Time-Series Online Classifier (SSTOC). There are two
phases for SSTOC, namely, training and testing phase as
shown 1 FIG. 8.

TRAINING ALGORITHM FOR SSTOC: The training
algorithm for the SSTOC comprises the following steps:

Step 1—For each set of data belonging to a particular
activity ‘1” segment the data and symbolize and concatenate
it as shown 1n box 49 of FIG. 10. The sequence of symbols
is denoted by S’ for i” activity. (Box 41TR). The corre-
sponding Box 41TE represents the test symbol sequence.

Step 2—Construct D-Markov machine and generate the
PFSA, that is, estimate the Q' and IT* for each class/activity
1. (Box 42TR). The corresponding Box 42TE represents the
testing phase.

Step 3—Estimate the number of times a particular symbol
is emitted by a given state, that is, find N’, where 1 denotes
the class/activity, m state m&EQ' and n symbol. The number
N’ will be used to compute the posteriori probabilities of an
activity/class. (Box 45).

Experiments

The objective 1s to detect and classily different human
activities from seismic signature in real time. One of the
most significant and dreaded threat scenarios in tactical
situations 1s comprised of the activities such as, a personnel
walking to a site and digging there to bury explosives and
walking away. It 1s challenging to detect and segment such
activities from only seismic signature in real time because of
its inherent multi-timescale nature with low SNR 1n varied
environmental conditions. Also, the persistence level and
type of digging activity have a sigmificant variability, which
make the problem more complex. In a seismic signal, both
of the activities are viewed as an array of near-identical
impulses of fast time scale. But, 1t 1s the time evolution of
those impulse units 1n slower time scale that captures the
separability of those activities.

Experiments on activity recognition were conducted on a
moderately moist field to simulate the scenarios mentioned
above. FIG. 1B presents the schematics describing the
experiments for data collection. Two 3-axis geophones were
deployed as seismic sensors at distances of 4 m and 8 m from
the site of digging. A typical run of the data collection 1s 90
s long and 1t comprises the activities such as walking to the
site of digging, digging at the site, walking away from the
site 1n order. It also has certain segments, before and after the
activities, where there 1s no activity happening around the
SEeNsor.
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Different routes were followed for walking around the
sensors to icorporate the eflect of distance of target from
the sensors. Two types of tools (1.e. spade shovel and metal
hoe) were used for digging. The digging activities were
performed with different speed and impact to achieve a 4
realistic variability 1n the data. Walking activity ivolved
both single person and multiple people (mostly two). Thirty
sets of 90 seconds long data (FIG. 2A) was collected 1n total
at a sampling rate of 4 kHz. All the different scenarios (e.g.,
digging type, number of walking persons etc.), as described
above, are equally distributed in the dataset for training.

The problem of activity recognition 1s seen as a bi-layer
classification problem as shown in the FIG. 2B. In the
detection stage, Multi-scale Symbolic Time Series Algo-
rithm (MSTSA) detects the presence of an activity at faster
time scale (small window) against the null hypothesis of no

activity; 1n the activity classification stage, Multi-scale Sym-
bolic Time Series Algorithm (MSTSA) classifies and seg-
ments walking vs. digging at slower time scale (larger

window). While the detection stage should be robust to
reduce the false alarm rates, the classification stage must be
sufliciently sensitive to discriminate among walking and
digging with high fidelity and small segmentation time
delay.
Multi-Scale Symbolic Time Series Analysis (MSTSA)
Framework and Solution Approach

A preferred embodiment of the present invention utilizes
an MSTSA framework for activity recognition from seismic
signature at multiple time scale. SSTOC, the building block
of Multi-scale Symbolic Time Series Algorithm (MSTSA),
1s described along with the steps of data symbolization.
Symbolization of Time-Series

A compact (1.e., closed and bounded) region Q2ER”,
where n&N, within which the time series 1s circumscribed,
1s 1dentified. The space of time series data sets may be
represented as Q = RV, where the NEN is sufficiently large
for convergence of statistical properties within a specified
threshold. (Note: n represents the dimensionality of the time
series and N 1s the number of data points in the time series.)
Encoding of €2 1s accomplished by introducing a partition
B={B,,....B,_;,} consisting of m mutually exclusive (i.e.,
B,MNB,=0 ¥j6=Kk), and exhaustive (i.e., UFD"”'IB].:Q) cells.
Let each cell be labeled by symbols s&E, where
>={sy, . . . .8, is called the alphabet. This process of
coarse graining can be executed by umform, maximum
entropy, or any other scheme of partitioning. Then, the time
series, which visit the cell B, are denoted as s Vj=0,
1, ..., m-1. This step enables transformation of the time
series to a symbol sequence {s}.
PFSA Construction

The symbolic sequence 1s modeled as a probabilistic finite
state automaton (PFSA) that 1s constructed as a tuple G,
(Q,2,0,11), where the alphabet 2 1s a nonempty finite set of
symbols and the set of states Q 1s constrained to be non-
empty and finite. Although others may be used, this speci-
fication describes a class of PFSA, known as D-Markov
machines as reported 1n A. Ray, “Symbolic dynamic analysis
of complex systems for anomaly detection,” Sig. Process.,
vol. 84, no. 7, pp. 1115-1130, 2004 (herein incorporated by
reference), where the states are strings of the D past sym-
bols; the positive integer D 1s called the depth of the machine
and the number of states 1QI=<|ZI”. Given the previous state
and an observed symbol, the state transition function o:
Qx2—(Q) yields the new state. In addition, the morph func-
tion mt: QxE—[0,1] 1s an output mapping that satisfies the
condition: Po_sm(q,0)=1 for all g=Q. The morph function 65
m has a matrix representation II, called the (probabaility)
morph matrix of dimension (1QIxI2l). Each row sum of II 1s
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equal to 1 and each matrix element I1; 1s strictly positive due
to the finite length constraint of time series from which
PFSA models are constructed. Adenis, Y. Wen, and A. Ray,
“An 1nner product space on irreducible and synchronizable
probabilistic finite state automata,” Math. Control Signals
Syst., vol. 23, no. 4, pp. 281-310, 2012 (herein incorporated
by reference.

SSTOC

This formulation quantitatively incorporates the effects of
finite-length symbol strings in both training and testing
phases of pattern classification. The Dirichlet and multino-
mial distributions have been used to construct the a priori
and a posterior1 models of uncertainties, respectively. See
box 43TR and box 43TE in FIG. 8 for a schematic repre-
sentation.

The symbol K 1s used to designate K symbolic systems
(1.e., classes) of interest, denoted by C,, C,, . . ., C,, over
the same alphabet 2. Each class C, 1s modeled by an ergodic
(equivalently, irreducible) PFSA=G'=(Q’2".8',IT'), where
1=1, 2 . . ., K. During the training phase, a symbol string
S'25s,"s," ... sy is generated from each class C,. The state
transition function S and the set of states Q of the D-Markov
machine are fixed by choosing an appropriate depth D. Thus,
I1"’s become the only unknowns and could be selected as the
feature vectors for the purpose of classification. The distri-
bution of the morph matrix IT' is computed in the training
phase from the finite length symbol sequences for each class.

In the testing phase, let another symbol string S be to
determine the class of this observed symbol string So by
calculating 1ts posterior. Then, the task 1s to determine the
class of this observed symbol string S by calculating 1ts
posterior.

In the training phase, each row of IT' is treated as a random
vector. Let the m™ row of IT” be denoted as IT’, and the n™”
element of the m” row as I, >0 and =, _,'"*'TI '=1.

The a prior1 probability density function fqi,, 1 of the
random row-vector I1_’°, conditioned on a symbol string S’,
follows the Dirichlet distribution as described below.

(1)

. . 2 B
foi 1518 = =—=| | @,
=1

B(ay,)

H

where 0°_is a realization of the random vector IT°, , namely,

0 '0..°'6,, ...0 <] and the normalizing constant is
= (2)
[ |
PN n=1
B(afm) - |Z|
(T
=1

where o' =[a,,, - ... & '] with & =N _‘+1 and
N_*is the number of times the symbol o, in S’ is emanated
from the state q,, 1.€.,

(3)

where s’, is the k”” symbol in S’ and v,’ is the k™ state as
derived from the symbolic sequence S’. Recall that a state is
defined as a string of D past symbols. Then, the number of

occurrence of the state g, in the state sequence 1s given by
N 23> =N _* It follows from Eq. (2) that

A . . : .
NmnI — |{(Sk11 vkz):SkI:GHJFkIZQm} |
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DI DI (4)
[ [rovi, +n ] [V
: n=1 n=l1
Bla' ) = = —
= (NL +121=-1D)!
(S M 1]

by use of the relation I'(n)=(n-1)!VnEN,.

By the Markov property of the PFSA G, the (1xI2|) row
vectors, {IT' _}, m=1, .. .|QlI, are statistically independent of
cach other. Theretore, i1t follows from Egs. (1) and (4) that
the a priori joint density fi 1 of the probability morph
matrix IT°, conditioned on the symbol string S’, is given as

[e] ()

fniﬂ|sf(9£ | 5) = ]_[fn;;ﬂmf(gjn | 5%)
m=1

14 ||

| )
(N‘ )

[0, HIQIHIZI

(@) @) ... @) e

where € =

In the testing phase, the probability of observing a symbol
string Se belonging to a particular class of PFSA (Q,X,8,IT)
1s a product of independent multinomaial distribution given
that the exact morph matrix IT' is known.

0 ¥ (6)

s o] | 2
(N )

Pr(SIIT) as O and & are kept invariant. (7)

Similar to N7 defined earlier for S, N, is the number
of times the symbol an 1s emanated from the state q,&Q 1n
the symbol string Se 1n the testing phase, 1.e.,

(8)

o Y o e e ~
Nmn — {(Skli vkz) :SkI:Um vkz :"'?m} |

where s, is the k” symbol in the string S and v, is the k™ state
derived from S. It is noted that =

The results, derived 1n the training and testing phases (see
FIG. 8), are now combined according to Dirichlet Com-
pound Multinomial model (DCM) construction. Given a
symbol string S1 1n the training phase, the probability of
observing a symbol string S in the operation phase 1is
obtained as

/ St

[Tool 1425
(Nmn)'

1% |2

(N + |Z] - 1)*]—[ ((Nj)
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-continued

[T

|2
[ | @)tV
n=1

0 BN

H(ﬁm)!(N;+|z| — 1)!' %
m=1

There exists a closed form solution for Pr(SelS") as
referenced 1n S. Sarkar, K. Mukherjee, S. Sarkar, and A. Ray,

“Symbolic dynamic analysis of transient time series for fault
detection 1n gas turbine engines,” ASME Journal of

Dynamic Systems, Measurement and Control, vol. 135, pp.
14506-1-14506-6, January 2013, and Y. Wen, K. Mukherjee,

and A. Ray, “Adaptive pattern classification for symbolic
dynamic systems,” Signal Processing, vol. 93, pp. 252-260,
January 2013, both of which are herein incorporated by

reference, which 1s as follows

o |
(N H(NE + |2

(N + NI, + |2

2~

N N
S

(9,01,

— D!

—1)!

Pr{S|S") =

m=1

It is recommended to compute the logarithm of Pr(SIS")
by using Stirling’s approximation formula log(n!)=n log
(n)-n because both N* and N would be large numbers. The
posterior probability of a symbol string S belonging to the
class C, is denoted as Pr(C,IS) and is given as

Pr{S |8 )Pr(C; (11)
P}-"(C”E): . F’( | ) HC;) =12 .. K

> PAS|Si)PrC))

7=1

where Pr(C)) 1s the known prior distribution of the class C..
It 1s assumed to have uniform distribution in this paper.
When there are L number of symbol sequences (indexed by
D), S; for training a class C,, the posterior probability is

L (12)

Z Pr(S| S1)Pr(C;)
=1

Pr{C;|5) = =1,2,....K

K L > !
> PrSIsiPrC))

=1 f=1

The final classification decision 1s made as tollows.
Dﬂ.‘fﬂss — argmax Pr(ci | 3)

Multi-Scale Symbolic Time Series Analysis (MSTSA)

In general, an activity 1s constituted of intermediate
events happening at faster time scale. Multi-Scale Symbolic
Time Series Analysis (MSTSA) 1s built upon SSTOC to
tackle time series at multiple time scale for activity recog-
nition in real time. FIG. 6 shows the schematics of the
Multi-Scale Symbolic Time Series Analysis (MSTSA)
framework. At the bottom layer, a time window 1s traversed
over the time-series with a certain overlap. The length of the
time window depends on the time-scale of the intermediate
events which combine to form the whole activity. The signal
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from the window, 1s symbolized via preprocessing and
subsequently, PFSA 1s constructed. SSTOC 1s necessary as
it can analyze short length time series coming from a limited
length window. Posterior probability of PFSAs for interme-
diate patterns are calculated via SSTOC, which 1s shown 1n
the second layer of FIG. 6. This step yields in a time series
ol posterior probability of constitutive events (denoted by
different intermediate PEFSAs) with a lesser resolution than
the original signal. More the overlap, more the resolution of
time series would be. In the next step, SSTOC 1s applied on
the time series of intermediate pattern symbols at slower

time scale to obtain the posterior probability of upper level
PFSA. This PFSA denotes the activity whose states and

transition probabilities are learnt from intermediate patterns
(at faster time scale) via SSTOC. This step 1s also called
short term smoothing as i1t captures the persistence of
activity, resulting 1n a reduced false alarm.

Results

The data preprocessing and feature extraction along with
the performance of Multi-scale Symbolic Time Series Algo-
rithm (MSTSA) 1n activity recognition from data collected
via seismic sensor 1s explained hereinatter.

Regarding data preprocessing and partitioning, initially
seismic time series 1s converted to zero mean signal and
down-sampled to 1 kHz from 4 kHz. Then, 1t 1s denoised via
wavelet de-noising method (SureShrink thresholding as set
forth 1n D. L. Donoho and I. M. Johnstone, “Adapting to
unknown smoothness via wavelet shrinkage,” Journal of the
American Stafistical Association, pp. 1200-1224, 19935
herein incorporated by reference) using three-layer multi-
resolution approach with db7 wavelets. For both activity
detection and classification, envelop detection via Hilbert
transiorm 1s done on the time series to reduce phase distor-
tions 1n the seismic data. Then, autocorrelation of the
temporal envelop 1s obtained with diflerent window sizes for
different stages of activity recognition (i.e., detection and
classification). This autocorrelation function 1s used as an
mput to Multi-scale Symbolic Time Series Algorithm
(MSTSA) because 1t can capture the diflerence 1n periodicity
pattern between walking and digging. FIG. 3 shows the data
preprocessing stages for walking and digging signals over
10 s window.

As 1llustrated 1n FIG. 3, the autocorrelation function from
a window 1s partitioned via uniform partitioning based on
the current data. The partitioning information 1s not kept
constant over the whole sample of training and testing to
tacilitate the understanding of the texture change in the data,
not amplitude variation.

Once the symbol sequence 1s created after partitioning, it
1s fed into Multi-scale Symbolic Time Series Algorithm
(MSTSA) for activity recognition. As depicted in FIG. 11, as
to Activity Detection, this step detects activities (walking or
digging) against the null hypothesis of no activity around the
seismic sensors. A window of 2 s 1s traversed over the
seismic signal with 80% overlap. The window size 1s
considered to be 2 s because 1t can capture at least one
complete human gait pattern (~0.6-0.7 s between two con-
secutive footsteps for single human walking) or two digging
impulses. Hence, at least one dominant peak can be found on
autocorrelation function when there 1s some activity. Uni-
form partitioning, with an alphabet size of three, 1s used to
symbolize the autocorrelation function which 1s obtained by
the method described 1n subsection IV-A. FIG. 6 shows the
steps of activity detection on a 90 s seismic signal by the
proposed technique of Multi-scale Symbolic Time Series

Algorithm (MSTSA). The ground truth for the signal, as
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shown 1n the top most plot of figure, 1s as follows: no activity
at 0 s<t=13.5 s, activity at 13.5 s<t<79 s and no activity at
79 s<t=<90 s.

Posterior probability of intermediate events, based on
50% training from both the geophones, 1s calculated via
SSTOC (D=1) over time. The second plot from top of FIG.
11 shows the posterior probability of intermediate events
happening around the sensor at fast time scale, which has
false alarms 1n the ‘no activity’ zone (posterior threshold for
activity decision=0.5). To reduce the false alarm, the per-
sistence of the activity 1s incorporated via short time
smoothing (lower most graph in FIG. 11). Short time
smoothing, the second stage of Multi-scale Symbolic Time
Series Algorithm (MSTSA), 1s operated on the symbolized
form of the intermediate posterior probability. Regarding
this problem, a window of 40 symbols 1s traversed over the
symbol sequence of posterior probability and the {inal
posterior of activity 1s obtained via SSTOC at a slower time
scale. At this stage, transition matrices for training are
constructed with a symbol size of three and a depth equal to
one. Out of the two ftransition matrices for training of
intermediate posterior probability symbol sequence, one has
persistence of the activity and other shows fluctuations in
fast time scale. In FIG. 6, the plot at the bottom presents the
final posterior probability of activity. Table I denotes that the
average accuracy ol activity detection can achieve 98.8%
with a false alarm rate of 1.5% obtained via cross validation.
FIG. 11 illustrates activity detection from a 90 s seismic

signal via Multi-scale Symbolic Time Series Algorithm
(MSTSA)

TABLE 1

Performance of MSTSA in activity recognition from seismic time-series

False alarm rate 1.5%
False alarm rate 5.2%

Activity Detection
Activity Classification

Accuracy 98.8%
Accuracy 91.2%

As to activity classification, the segments on the seismic
time series, which are detected to be having some activity,
are fed mto the next layer of the activity recognition frame-
work, namely, activity classification. In this layer, 2-stage
MSTSA 1s applied 1n the same way it 1s applied in the
detection stage, but with a different window size. A longer
window 1s required to capture the time evolution of walking
and digging at slower time scale, such that 1t manifests
enough class separability 1n training. In this paper, a window
length of 10 s 1s used with 80% overlap. Large overlap 1s
considered here to reduce the segmentation delay when
activity switches from walking to digging or vice versa.
Uniform partitioning 1s performed on the autocorrelation
function (subsection IV-A) with an alphabet size of 6. A
variable partitioning, dependent on the online data, 1s used
to capture the signal texture variation.

Starting from top, FIG. 12 shows a typical seismic signal
spanning 90 s, the final probability of activity posterior for
detection and a decision vector regarding activity classifi-
cation with corresponding ground truth. Ground truth for
this particular time-series 1s as follows: no activity at O
s<t=l1 s, two persons walking to the digging site at 11
s<t=32.5.5 s, digging activity with metal hoe at 32.5 s<t<62
s, two persons walking away from the site at 62 s<t<81.5 s
and no activity at 81.5 s<t=90 s. FIG. 7 denotes that the
activities are detected with high accuracy and those are
classified with a segmentation delay of 1.5 s which 1s small
compared to the complete activity period.
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An average classification accuracy of 91.2% (table 1) 1s
obtained, which 1s based on random testing with 50%
training False alarm rate, misclassification of walking as
digging, 1s averaged at 5.2% which 1s impressive. The total
running time Jfor activity recogmtion via MSTSA
(MATLAB2010a, CPU 4 GB RAM), which starts from the
feeding of 90 s long raw data and finishes at the final
decision vector of activities, 1s of the order of 20 s. Hence,
there would be enough time to feed the next 90 s of seismic
signal into the MSTSA framework, with up to 50% overlap.
This fact makes 1t possible to implement the proposed
technique 1n real time. FIG. 11 illustrates major steps of
activity recognition from a 90 s seismic signal via MSTSA.

A preferred embodiment of the present invention com-
prises a multi-scale symbolic time series analysis (MSTSA)
framework for real-time activity recognition from seismic
signature. It incorporates the short-length symbolic time-
series online classifier (SSTOC) via Dirichlet Compound-
Multinomial model (DCM) construction as the building
block, which works on symbol sequences generated from
seismic time-series and mtermediate event class time-series
at different time-scales. These building blocks, with different
window sizes for different time scales, are cascaded 1n
multiple layers for event detection and activity classifica-
tion. Realistic data collection scenarios, consisting of varied
activities such as walking and digging, were set up for
experimental validation of the proposed Iframework.
MSTSA achieved a detection accuracy of more than 98%
with negligible false alarm rate and activity classification
accuracy of 91.2% with 5.2% of false alarm (classiiying
walking as digging). MSTSA results in a small segmentation
delay along with a short running time (~20 s for 90 s long
seismic signal) for activity recognition, which makes the
proposed technique applicable in real time. Other possible
time-series analysis architecture include the Hierarchical

Hidden Markov Model (HHMM) as referenced 1n s. Fine, Y.
Singer, and N. Tishby, “The hierarchical hidden Markov
model: Analysis and applications,” Machine Learning, vol.
32, pp. 41-62, 1998, and/or J. Francoise, Realtime Segmen-
tation and Recognition of Gestures using Hierarchical
Markov Models. Master’s thesis, Universite’ Pierre et Marie
Curnie, Ircam, 2011, both of which are incorporated by
reference.

As used herein the terminology Dirichlet-multinomial
distribution 1s a probability distribution for a multivariate
discrete random variable. It 1s also called the Dirichlet
compound multinomial distribution (DCM) or multivariate
Polya distribution. It is a compound probability distribution,
where a probability vector p 1s drawn from a Dirichlet
distribution with parameter vector a and a set of discrete
samples 1s drawn from the categorical distribution with
probability vector p. The compounding corresponds to a
Polya urn scheme. In document classification, for example,
the distribution 1s used to represent the distributions of word
counts for different document types. Source: Wikipedia.

As used herein the terminology Dirichlet distribution
which may be denoted Dir(a) 1s a family of continuous
multivariate probability distributions parameterized by a
vector o of positive reals. It 1s the multivariate generaliza-
tion of the beta distribution. Its probability density function
returns the belief that the probabilities of K rival events are
x. given that each event has been observed o,-1 times.
Source: Wikipedia.

As used herein, the Dirichlet distribution of order K=2
with parameters o.,, . . . , a>0 has a probability density
function with respect to Lebesgue measure on the Fuclidean
space R>' given by
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1 u ;-1
(X015 ooy X3 QL oeny, QK) = X',
/ B(af)l_l[

on the open (K-1)-dimensional simplex defined by:

X1y o o« Xp 0
X+ ... e <l
J.Tfl—xl— . _J:K—l

and zero elsewhere. Source: Wikipedia.

As used herein, the terminology Markov chain (discrete-
time Markov chain or DTMC"), is a random process that
undergoes transitions from one state to another on a state
space. It possesses a property that 1s usually characterized as
“memorylessness™: the probability distribution of the next
state depends only on the current state and not on the
sequence ol events that preceded 1t. This specific kind of
“memorylessness” 1s called the Markov property. Source:
Wikipedia.

As used herein, the terminology autocorrelation, also
known as serial correlation or cross-autocorrelation, means
the cross-correlation of a signal with 1tself at different points
in time. It 1s the similarity between observations as a
function of the time lag between them. It 1s a mathematical
tool for finding repeating patterns, such as the presence of a
periodic signal obscured by noise, or identiiying the missing
fundamental frequency 1n a signal implied by 1ts harmonic
frequencies. Source: Wikipedia.

As used herein, time series means a sequence ol data
points representing successive measurements made over an
interval of time. Time series analysis comprises methods for
analyzing time series data in order to extract characteristics
of the data.

As used herein the terminology “processor” includes
computer, CPU, microprocessor, main frame, multiproces-
sor, terminal, minicomputer, laptop, and the like.

As used herein, the terminology algorithm means a pro-
cedure or formula for solving a problem; a processing
routine or subroutine and the like.

Obviously, many modifications and variations of the
present invention are possible in light of the above teach-
ings. It 1s therefore to be understood that, within the scope
of the appended claims, the invention many be practiced
otherwise than as specifically described.

The mvention claimed 1s:
1. A system for detection of at least one of human activity
and vehicle activity comprising:

at least one sensor adapted to generate a data signal 1n
response to detecting human or vehicular activity,

at least one processor operatively connected to the sensor,
the at least one processor operating to perform an
analysis of the signal without human intervention in
order to recognize and classily the type of activity
detected by the sensor;

the at least one processor being configured to denoise the
data signal from the sensor; generate an autocorrelation
of the data signal, partition the data signal nto a
predetermined number of overlapping segments to
form a time series of data; generate symbols for the
overlapping segments; compare the pattern ol gener-
ated symbols with known patterns of symbols repre-
senting human or vehicular activity; determine whether
a threshold probability 1s exceeded which attributes the
data signal to human or vehicular activity; analyze the
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patterns presented in the data signal by transforming
the patterns of symbols 1nto states and determining the
transitions between states; and classily the activity
based upon the transitions between states wherein the at
least one sensor comprises a seismic sensor configured
to generate a seismic signature and the at least one
processor performs a detection analysis using a multi-
scale symbolic time series analysis framework for
real-time activity recognition from the seismic signa-
ture and wherein the at least one processor utilizes a
short-length symbolic time-series online classifier (SS-
TOC) wvia Dirichlet Compound-Multinomial model
(DCM) which works on symbol sequences generated
from seismic time-series and intermediate event class
time-series at different time-scales and wherein the
classification of the activity utilizes a symbolic
sequence modeled as a probabailistic finite state automa-
ton.

2. The system of claam 1 wherein the at least one
processor utilizes different window sizes for different time
scales that are cascaded in multiple layers for event detec-
tion and activity classification.

3. The system of claim 1 wherein the activity 1s sensed
using a seismic sensor to detect ground movement and
wherein the signal 1s divided into a predetermined number of
sequential segments having a two second duration with
approximately 80% overlap, and wherein the determining of
the probabaility of occurrence of a human event comprises of
generating a compound probability distribution, where prior
uncertainty 1s modeled by Dirichlet distribution and poste-
rior uncertainty 1s modeled by multinomial distribution.

4. The system of claim 1 wherein the classifying of the
activity comprises generating a compound probability dis-
tribution, and wherein the at least one processor 1s pro-
grammed using the mput of known human activity that is
modeled using Dirichlet distribution and during subsequent
system operation the posterior uncertainty 1s modeled by
multinomial distribution.

5. The system of claim 1 wherein whether or not an
activity has occurred i1s determined using a short length
symbolic time series online classifier procedure that esti-
mates probability of activity, and wherein the partial clas-
sification portion comprises a division of the probabilities
into 40 segments to output a threshold and wherein during
classification of the activity symbols are again generated for
the segments and the short term symbolic time-series online
classifier 1s used on a first predetermined number of prob-
abilities, then the window 1s shifted a predetermined number
of probabilities to capture the next predetermined number of
probabilities; 1n order to capture variations, and wherein the
classification comprises a probabilistic finite state automa-
ton construction.

6. A method for detection and classification of human or
vehicular activity using a sensor and at least one processor
comprising the following steps not necessarily in the fol-
lowing order:
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sensing activity using a seismic sensor; the sensor being
operatively connected to at least one processor and
providing a seismic data signal extending for a prede-
termined time frame;

denoising the data signal from the sensor and removal of
the mean from the data signal;

generating an autocorrelation of the data signal;

partitioning data signal ito a predetermined number of
overlapping segments to form a time series of data;

generating symbols for the overlapping segments;

comparing the pattern of generated symbols with known
predetermined patterns of symbols representing human

or vehicular activity;
determining the probability of whether or not the seismic

data signal 1s attributable to human activity;

determining whether or not the probability determination
meets or exceeds a predetermined threshold;

recognizing the data signal as being possibly attributable
to an activity when the threshold 1s met or exceeded;

accumulating additional time frames of data signals
repeating the steps of denoising, autocorrelation, par-
titioning the data signal 1into a predetermined number of
overlapping segments and generating symbols for over-
lapping segments;

transforming the generated symbols representing the 1ni-

tial and additional time frames into states and deter-
mining the transitions between states;

based upon the transitions, determining whether or not a

human or vehicular activity has occurred and classify-
ing the activity based upon the transitions between
states wherein the activity 1s sensed using a seismic
sensor to detect ground movement and wherein the
signal 1s divided into a predetermined number of
sequential segments having a two second duration with
approximately 80% overlap, and wherein the determin-
ing of the probability of occurrence of a human event
comprises ol generating a compound probability dis-
tribution, where prior uncertainty 1s modeled by
Dirichlet distribution and posterior uncertainty 1s mod-
cled by multinomial distribution.

7. The method of claim 6 wherein the step of determining
whether or not a human or vehicular activity has occurred
comprises generating a compound probability distribution,
where prior uncertainty 1s modeled by Dirichlet distribution
and posterior uncertainty 1s modeled by multinomial distri-
bution.

8. The method of claim 6 wherein the data signal 1s a time
series of data and wherein the denoising of the data signal
further comprises temporal envelop detection utilizing Hil-
bert transform of the time series to reduce phase distortions
and an autocorrelation of the temporal envelop 1s obtained
with different window sizes for recognizing and classifying
the activity.

9. The method of claim 8 wherein the autocorrelation 1s
used as an iput to a multi-scale symbolic time series
algorithm so as to capture the diflerence 1n the periodicity
pattern in the autocorrelation between walking and digging.
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