12 United States Patent

US010616380B2

(10) Patent No.: US 10,616,380 B2

Anand et al. 45) Date of Patent: Apr. 7, 2020
(54) METHOD OF HANDLING LARGE 5,951,651 A 9/1999 Lakshman
PROTOCOL LAYERS FOR CONFIGURABLE 6,088,356 A 7/2000 Hendel et al.
EXTRACTION OF LAYER INFORMATION 6,341,129 B1* 1/2002 Schroeder HO4L 47/10
370/354
AND AN APPARATUS THEREOK 6,356,951 B1* 3/2002 Gentry, Jr. wovcovv...... HO4L, 69/22
: 709/217
(71) Applicant: CAVIUM, INC., San Jose, CA (US) 6.606.301 Bl /2003 Muller et al
6,789,116 Bl 9/2004 Sarkissian et al.
(72) Inventors: Vishal Anand, Saratoga, CA (US); 6,831,917 B1 12/2004 Cheriton
Tsahi Daniel, Palo Alto, CA (US); 6,952,425 Bl 10/2005 Nelson
Premshanth Theivendran, Foster City, 7,017,162 B2 . 3/2006 Smith
CA (US) 7,187,694 Bl 3/2007 Liaocooooiiiennn, HO4L 69/12
370/474
(73) Assignee: Cavium, LLC, Santa Clara, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 CN 101095310 A 12/2007
U.5.C. 154(b) by O days. CN 101543018 A 9/2009
Continued
(21) Appl. No.: 14/309,763 (Continued)
(22) Filed: Jun. 19, 2014 OTHER PUBLICATTONS
: . e Oflice Action for the Japanese Application No. 2015122559 dated
(65) Prior Publication Data Mar. 18, 2019.
US 2015/0373165 Al Dec. 24, 2015 (Continued)
(51) Int. CL | |
HO4L 29/06 (2006.01) Primary Examiner — Rina C Pancholi
HO4L 29/08 (2006.01)
(52) U.S. CL (57) ABSTRACT
CPC HO4L 69722 (2013.01); HO4L 69/321 _ _
(2013.01) Embodiments of the apparatus for handling large protocol
(58) Field of Classification Search layers relate to an implementation that optimizes a field
CPC HO4T. 69/22- HOA4T. 45/24- HOAL, 45/7453- selection circuit. This implementation provides software like
j j HO04T . 49 /3075 flexibility to a hardware parser engine in parsing packets.
See application file for complete search history. The implementation limits a size ot each layer and splits any
layer that exceeds that size into smaller layers. The parser
(56) References Cited engine extracts data from the split layers just as 1t would

5,781,729 A
5,805,808 A

U.S. PATENT DOCUMENTS

7/1998 Baker et al.
9/1998 Hasani et al.

from a non-split layer and, then, concatenates the extracted
data 1n a final result.

28 Claims, 3 Drawing Sheets

100

Splitting layers of a packet based on protocol layers such that each of the

105

protocol layers of the packet is separated

Further splitting each of the protocol layers of the packet that has a size

110

greater than a predetermined size into a plurality of layers

Processing all of the split layers -

119

US 10,616,380 B2

Page 2
(56) References Cited 2011/0022732 Al 1/2011 Hutchison et al.
2011/0040923 Al 2/2011 Ren
U.S. PATENT DOCUMENTS 2011/0058514 A1 3/2011 Lee et al.
2011/0134920 Al 6/2011 Dyke
7,293,113 B1* 11/2007 Krishna HO4L 69/16 2011/0142070 AL 6/2011 Lim et al.
ooy 2L AL 100011 Kamerar ot al
o : 1 1 1 Kini et al.
7,359403 BL® - 4/2008 Rimne ..oooooceee HON;%@SS 2011/0268123 Al 11/2011 Kopelman et al.
7367057 Bl 4/2008 Desant; 2011/0310892 A1 12/2011 DiMambro
7201735 B? 6/7008 Johnson 2012/0159132 Al* 6/2012 Abel ..o GO6F 9/3885
7,502,374 Bl 3/2009 Parker et al. 712/229
7,568,047 B1* 7/2009 Aysan HOAL 45/02 20120281714 Al 11/2012° Chang et al.
ST0352 0130163427 Al 62013 Beliveau et al
1 1 1 eliveau et al.
g’g?g’égg gé 1(5)%803 Ea;lflzgmy ot al 2013/0163475 Al 6/2013 Beliveau et al.
757153611 R 52010 Faton et al 2013/0195457 Al 8/2013 Levy et al.
2’207 000 R) 07010 Cui of al. 2013/0215906 Al 82013 Hidai
7297032 Bl 10/2010 Parker et al. 2013/0238792 Al 9/2013 Kind et al.
75903ﬁ689 R 37011 Niinom: eof al 2014/0078902 Al 3/2014 Edsall et al.
P g C 2014/0119231 Al 5/2014 Chan et al.
8,031,640 B2 10/2011 Mitsumori | : :
8,054,744 Bl 11/2011 Bishara et al. 2014/0153445 Al 6/2014 Carter
2 112.800 Bl 2/2012 Yang et al. 20f4/0269307 Al 9/2054 Banerjee et al.
831443706 R 37012 Daniel et al 2014/0328354 Al 11/2014 Michael
2570713 B? 10/2013 Kumfer 2014/0369365 Al 12/2014 Denio et al.
2576 173 B2 11/2013 Verhaegh 2015/0081726 Al* 3/2015 Izenberg HO4L 47/2433
'mO& N 707/755
DI DL F20e Yenkatraman 2015/0189047 Al 7/2015 Naaman et al
9,590,914 B2 3/2017 Alizadeh Attar et al.
9,742,694 B2 8/2017 Anand FOREIGN PATENT DOCUMENTS
2001/0050914 Al 12/2001 Akahane et al.
2002/0009076 Al 1/2002 Engbersen CN 101563908 A 10/2009
2002/0016852 Al 2/2002 Nishihara CN 101694627 A 4/2010
2002/0062394 Al 5/2002 Bunn et al. CN 101777791 A 7/2010
2002/0076142 Al 6/2002 Song CN 102104541 A 6/2011
2002/0083210 Al 6/2002 Harrison et al. CN 102204180 A 9/2011
2002/0101867 Al 8/2002 O’Callaghan et al. CN 102273149 A 12/2011
2002/0163935 Al 11/2002 Paatela CN 102656850 A 9/2012
2002/0191521 Al 12/2002 Minamino et al. CN 103444138 A 2/2013
2003/0037154 Al 2/2003 Poggio et al. CN 103597794 A 2/2014
2003/0144993 Al 7/2003 Kishigami EP 1735957 A2 12/2006
2003/0152078 Al 8/2003 Henderson et al. JP 2000196672 A 7/2000
2003/0193949 Al 10/2003 Kojima et al. JP 2000253061 A 9/2000
2003/0198216 Al 10/2003 Lewis JP 2003308206 A 10/2003
2003/0210702 Al 11/2003 Kendall JP 2005522948 A 7/2005
2003/0218978 Al 11/2003 Brown JP 2007503770 A 2/2007
2003/0231625 Al 12/2003 Calvignac et al. JP 2007166514 A 6/2007
2004/0019733 Al 1/2004 Garinger JP 2009260880 A 11/2009
2004/0064589 Al 4/2004 Boucher et al. JP 2009272912 A 11/2009
2005/0076228 Al 4/2005 Davis JP 2013055642 A 3/2013
2005/0213570 Al 9/2005 Stacy et al. JP 2014510504 A 4/2014
2005/0220107 Al 10/2005 Del Regno WO 2005036834 Al 4/2005
2005/0232303 Al 10/2005 Deforche et al. WO 2011078108 Al 6/2011
2005/0246716 Al 11/2005 Smith WO 2012138370 A1 10/2012
2005/0276230 Al 12/2005 Akahane et al.
2005/0281281 Al 12/2005 Nair et al.
2006/0039372 Al* 2/2006 Sarkinen ... HO04Q 11/04 OTHER PUBLICATTONS
370/389
7006/0168300 Al 7/2006 Sikdar et al. Oflice Action for the Japanese Application No. 2015122561 dated
2006/0215653 Al 9/2006 LaVigne Mar. 18, 2019.
2006/0215695 Al 9/2006 Olderdissen Office Action for the Japanese Application No. 2015-122562 dated
2006/0259620 Al 11/2006 Tamai Mar. 18, 2019.
2006/0280178 AL* 1272006 Miller ... HO4L 69/22 The Oflice Action and English Translation for the Tairwanese
/ L 3 370/389 hplication No. 104111755
388; /822232? i lﬁll /388; S;leal,‘illldi The Oflice Action and English Translation for the Tairwanese
2008/0008159 Al 1/2008 Bourlas et al application No. 104110829,
2009/0067325 Al* 3/2009 RBaratakke HO4T. 69/16 The Japanese Oflice Action dated Mar. 18, 2019, for Japanese Patent
370/290 Application No. 2015-122560.
2009/0067446 Al 3/2000 T.ee Oflice Action for the Japanese Application No. 2015122564 dated
2009/0234818 Al 9/2009 Lobo et al. Mar. 25, 2019.
2009/0238190 Al 9/2009 Cadigan, Jr. et al. The Office Action dated Aug. 19, 2019 for Chinese Patent Appli-
2010/0161787 Al 6/2010 Jones cation No. 201502297799,
2010/0272125 A1 10/2010 Franke et al. The Oflice Action dated Aug. 26, 2019 for Japanese Patent Appli-
2010/0329255 Al 12/2010 Singhal cation No. 2015122562.

US 10,616,380 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

The Office Action dated Aug. 27, 2019 for Chinese Patent Appli-
cation No. 201502724360,

The Oflice Action dated Aug. 27, 2019 for Chinese Patent Appli-
cation No. 20150229610.3.

The Office Action dated Sep. 3, 2019 for Chinese Patent Application
No. 2015102726703.

The Oflice Action dated Jul. 17, 2019 for Chinese Patent Applica-
tion No. 201510276426 .4.

The Oflice Action dated Jul. 17, 2019 for Chinese Patent Applica-
tion No. 201510276588.8.

The Oflice Action dated Jul. 29, 2019 for Chinese Patent Applica-
tion No. 2015102724093.

The Oflice Action dated Aug. 2, 2019 for Chinese Patent Applica-
titon No. 2015102369392,

The Oflice Action dated Aug. 5, 2019 for Chinese Patent Applica-
tion No. 201510272163X.

The Ofhice Action from the Chinese Patent Application No.
201510229770.8 dated Aug. 5, 2019.

* cited by examiner

U.S. Patent Apr. 7, 2020 Sheet 1 of 3 US 10,616,380 B2

Splitting layers of a packet based on protocol layers such that each of the 105
protocol layers of the packet is separated

Furtr~ sliting each oé prtocl I'ayers of the packet that has a size 110
greater than a predetermined size into a plurality of layers

Processing all of the split layers 115

U.S. Patent Apr. 7, 2020 Sheet 2 of 3 US 10,616,380 B2

o— 200

Splitting layers of a packet based on protocol layers such that each of the | <205
protocol layers of the packet is separated

Maintaining information regarding a layer type of each of the protocol 210

Further splitting any of the protocol layers of the packet that has a size
greater than a predetermined size into a first part and a second part,
wherein the first part is of the predetermined size

- the information rerdi the further - 220

Based on a determination that the second part has a size greater than the 225
predetermine size, repeating the Steps 215 and 220 with the second part

215

Processing all of the split layers 230

2

Fig.

U.S. Patent Apr. 7, 2020 Sheet 3 of 3 US 10,616,380 B2

a— 300

Parsing a packet based on protocol layers thereby initializing a first array | <305
and a second array

Comparing each element of the first array with a programmable register to 310
determine whether a layer associated with the element needs to be split

Based on the determination that the layer associated with the element 315
needs to be split, splitting the layer

Updating the first array and the secona array according to the split 320

325

Extracting data from a layer associated with each element of the first array

US 10,616,330 B2

1

METHOD OF HANDLING LARGE
PROTOCOL LAYERS FOR CONFIGURABLE
EXTRACTION OF LAYER INFORMATION
AND AN APPARATUS THEREOFK

FIELD OF INVENTION

The present invention relates to network packets. More
particularly, the present mvention relates to a method of
handling large protocol layers for configurable extraction of
layer information and an apparatus thereof.

BACKGROUND OF THE INVENTION

A network packet includes multiple traflic or protocol
layers, where each layer 1s independent of other layers.
While traditional hardware implementations provide parsing
abilities, the ftraditional hardware implementations are
inflexible and resource inethcient. A limitation of such
inflexibility and inethciency 1s the maximum length of the
individual layers. This limitation 1s dictated by a field
selection circuit that must be built in hardware. The logic
that goes into the hardware 1s directly proportional to the
maximum layer length. For example, to extract “IT” total

bytes 1n a programmable way from a layer, where the layer
can be of size “L” bytes, the total number of byte MUXes
required for that layer 1s T*(L:1) MUXes. Thus, the bigger
“L” 1s, the bigger the size of the field selection circuit is,
which increases hardware costs. If a parser engine 1s able to

handle multiple layers 1n a packet, then the overall MUX
structure cost 1s the size of the field selection circuit multi-

plied by the number of layers the parser engine supports.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the apparatus for handling large protocol
layers relate to an implementation that optimizes a field
selection circuit. This implementation provides software like
flexibility to a hardware parser engine in parsing packets.
The implementation limits a size of each layer and splits any
layer that exceeds that size into smaller layers. The parser
engine extracts data from the split layers just as 1t would
from a non-split layer and, then, concatenates the extracted
data 1n a final result.

In one aspect, a method of implementing a parser engine
1s provided. The method includes splitting layers of a packet
based on protocol layers such that each of the protocol layers
of the packet 1s separated. In some embodiments, splitting
layers of a packet includes storing layer type of each
protocol layer of the packet 1n a first array and storing an
oflset of where each protocol layer of the packet ends is
stored 1n a second array.

The method 1ncludes further splitting each of the protocol
layers of the packet that has a size greater than a predeter-
mined size 1nto a plurality of layers. The first array and the
second array are updated based on the further split. In some
embodiments, the predetermined size 1s software defined.

The method includes processing all of the split layers. In
some embodiments, processing all split layers include gen-
cralizing each of the split layers to a generic format and
selecting contents from each of the generalized split layers.
In some embodiments, selecting contents from each of the
generalized split layers includes applying at least one from
a set ol generic commands to the generalized split layer to
thereby extract a field from the generalized split layer. In
some embodiments, each within the set of generic com-
mands 1s agnostic of specific fields within protocol layers.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the method 1includes concatenating,
results from the processing are concatenated to form a token,
wherein the token 1s used for further processing of the
packet.

In some embodiments, the method 1includes applying a bit
vector to results from the processing to form an mput to a
hash function, wherein an output of the hash function 1s a
umque signature that identifies which of equal-cost multi-
path routes the packet should take.

In another aspect, a method of implementing a parser
engine 1s provided. The method includes splitting layers of
a packet based on protocol layers such that each of the
protocol layers of the packet 1s separated.

The method also includes maintaining information
regarding a layer type of each of the protocol layers and an
oflset of where each of the protocol layers ends. In some
embodiments, the mmformation regarding the layer type is
stored 1 a first array, and the information regarding the
oflsets 1s stored in a second array.

The method also includes further splitting any of the
protocol layers of the packet that has a size greater than a
predetermined size into a first part and a second part,
wherein the first part 1s of the predetermined size. The
predetermined size 1s soltware defined.

The method also includes updating the information based
on the further split. In some embodiments, updating the
information includes storing information regarding layer
types of the first part and the second part in sequential
clements of the first array, and storing information regarding
oflsets of the first part and the second part in sequential
clements of the second array.

The method also includes, based on a determination that
the second part has a size greater than the predetermine size,
repeating the further splitting step and the updating step with
the second part.

The method also 1includes processing all of the split layers.
In some embodiments, prior to processing, generalizing each
of the split layers to a generic format. In some embodiments,
processing the split layers includes extracting data from the
generalized layers.

In yet another aspect, a method of implementing a net-
work switch 1s provided. The method includes parsing a
packet based on protocol layers, thereby initializing a first
array and a second array. In some embodiments, parsing a
packet includes 1dentitying a layer type of each layer in the
packet, storing the layer type of each layer in the first array,
identifying an offset of where each layer ends 1n the packet
1s, and storing the oflset of where each layer ends in the
second array. In some embodiments, the method includes

storing the first array and the second array in the memory of
the network switch.

The method also includes comparing each element of the
first array with a programmable register to determine
whether a layer associated with the element needs to be split.
In some embodiments, the programmable register includes a
layerType field, which indicates which a corresponding
entry matches, a splitLength field, which indicates an oilset
at which a corresponding layer should be split at, and a
newlLayerlype field, which indicates a layer type value of
the new split layer. In some embodiments, prior to parsing
a packet, the method includes programming the layerType
field, the splitLength field and the newLayerType field via
soltware.

The method also includes, based on the determination that
the layer associated with the element needs to be split,
splitting the layer.

US 10,616,330 B2

3

The method also includes updating the first array and the
second array according to the split, and extracting data from
a layer associated with each element of the first array.

In some embodiments, the method includes joining the
extracted data to thereby form a final result. In some
embodiments, applying a bit vector to results from logical
AND operations, wherein each of the logical AND opera-
tions 1s applied on a bit mask and the extracted data from a
layer.

In yet another aspect, a parser engine 1s provided. The
parser engine mncludes a circuit configured to split layers of
a packet based on protocol layers such that each of the
protocol layers of the packet 1s separated, further split each
of the protocol layers of the packet that has a size greater
than a predetermined size into a plurality of layers, and
process all of the split layers.

In some embodiments, information regarding a layer type
ol each of the protocol layers and an oflset of where each of
the protocol layers ends 1s maintained. The information 1s
updated after further splitting each of the protocol layers of
the packet that has a size greater than a predetermined size
into a plurality of layers.

In some embodiments, the circuit 1s also configured to
concatenate results from the processing to form a token,
wherein the token 1s used for further processing of the
packet.

In some embodiments, the circuit 1s also configured to
apply a bit vector to results from the processing to form an
input to a hash function.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated 1n the accompanying drawings 1in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to
scale, emphasis 1instead being placed upon illustrating
embodiments of the present invention.

FIG. 1 1llustrates a method of a parser engine 1n accor-
dance with some embodiments of the present invention.

FIG. 2 illustrates another method of a parser engine in
accordance with some embodiments of the present inven-
tion.

FIG. 3 illustrates a method of a network switch in
accordance with some embodiments of the present inven-
tion.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

In the following description, numerous details are set
torth for purposes of explanation. However, one of ordinary
skill 1n the art will realize that the invention can be practiced
without the use of these specific details. Thus, the present
invention 1s not intended to be limited to the embodiments
shown but 1s to be accorded the widest scope consistent with
the principles and features described herein.

Embodiments of the apparatus for handling large protocol
layers relate to an implementation that optimizes a field
selection circuit. This implementation provides software like
flexibility to a hardware parser engine in parsing packets.
The implementation limits a size of each layer and splits any
layer that exceeds that size into smaller layers. The parser
engine extracts data from the split layers just as 1t would
from a non-split layer and, then, concatenates the extracted
data 1n a final result.

10

15

20

25

30

35

40

45

50

55

60

65

4

A network device, such as a network switch, 1s able to
switch/route network traflic. The network switch includes at
least one nput/incoming port and at least one output/
outgoing port for receiving and transmitting packets. In
some embodiments, the network switch also includes a
parser and a rewriter. The parser can include one or more
parser engines to 1dentily contents ol network packets, and
the rewriter can include one or more rewrite engines to
modily packets before they are transmitted out from the
network switch. The parser engine(s) and the rewrite engine
(s) are flexible and operate on a programmable basis.

The network switch also includes memory to store data
used by the network switch. For example, the memory stores
at least two arrays used in the implementation to keep track
of the split layers. For another example, the memory stores
a set of generic commands to extract fields from protocol
headers. For yet another example, the memory also stores
counters and statistics.

In Ethernet, packets include multiple protocol layers.
Each protocol layer carries different imformation. Some

examples of well known layers are:
Ethernet
PBB Ethernet
ARP

IPV4

ICMPv6

VxLAN

TRILL

CNM
Theoretically, the protocol layers can occur in any order.
However, only some well-known combinations of these
layers occur. Some examples of valid combinations of these
layers are:

Ethernet
FEthernet, ARP
FEthernet, CNM
Ethernet, FCoE
Etheret, IPV4
Ethemet, IPV4, ICMP
FEthernet, IPV4, 1IGMP

For packet parsing operations, a packet 1s broken into
layers. This split 1s done based on well-known layers such as
those listed above. As explained above, 1n traditional hard-
ware 1mplementations, to extract “I” total bytes 1n a pro-
grammable way from a layer, where the layer can be of size
“L” bytes, the total number of byte MUXes required for that
layer 1s T*(L:1) MUXes. Thus, the bigger “L” 1s, the bigger
the size of a field selection circuit, which increases hardware
COsts.

The current implementation optimizes a field selection
circuit of the parser engine. The current implementation
relies on an assumption regarding byte processing order.
Typically, the order of bytes output by the parser engine
matches the order 1n which the bytes appear 1n an incoming
layer. For example, if byte 1, byte 3 and byte 5 are to be
selected, then the order in which the bytes appear 1s 1, 3 and
Sand 1s not 3, 1 and 5 or 35, 3 and 1 or any other such
combination. Based on this assumption, the total number of

US 10,616,330 B2

~

MUXes required 1s no longer T*(L:1) but, rather, 1s (L:1)+
(L-1:D)+(L-2:1)+(L-3:1)+ . . . +(1:1), assuming T<L.

Since the cost of the hardware 1s proportional to the length
of the layer “L”, the current implementation limits the size
of “L” that will be supported and splits any layer that
exceeds the length “L” into N smaller layers. The informa-
tion from the N split layers 1s extracted just as the parser
engine would have from a single layer and then concat-
enated back 1n a final result. Extracted data can be used to
either form a token or a hash mput. Exemplary data extrac-

tion from packets 1s discussed 1n U.S. patent application Ser.
No. 14/309,726, entitled “A Method of Extracting Data from

Packets and An Apparatus thereot,” filed Jun. 19, 2014, and

in U.S. patent application Ser. No. 14/309,739, entitled “A

Method of Forming a Hash Input from Packet Contents and

An Apparatus thereot,” filed Jun. 19, 2014, which are hereby

incorporated by reference in their entirety.

The current implementation advantageously achieves the
same Tunctionality at a reduced hardware cost. The sequence
of the current implementation can be summarized as:

(1) Parse an incoming packet and i1dentify a layer type for
cach layer along with an offset of where each layer ends.
This mformation 1s stored 1n two arrays, namely layer-
Type| | and layerEndPtr[].

(2) At an end of parsing, compare each layerlype| | with a
programmable register(s). The programmable register(s)
contains the following fields:
layerType: indicates a layer type for which the corre-

sponding entry matches;

splitLength: indicates an oflset at which this layer should

be split at; and

newlLayerlype: indicates a layer type value of the new

split layer

An exemplary pseudo-code for this comparison 1s shown
in Table 1.

TABLE 1

for (layer=0; layer < MAX_LAYERS; layer++)
for (index=0; index < MAX__ENTRIES; index++)
if (layerType[layer] == progEntry[index] .layerType) {
// change the end position of this layer
layerEndPtr[layer| = layerEndPtr[layer] -
progEntry[index] .splitLength;
// shift the existing layers information down by 1
for (shift=MAX TLAYERS; shift >= layer+2; shift——) {
layerType[shift] = layerType[shift—1];
layerEndPtr[shift] = layerEndPtr[shift-1];
h
// add the new layer
layerType[index+1] = progEntry[index| .newLayerType;
layerEndPtr[index+1] = layerEndPtr[index] +
progEntry[index+1].splitLength;

h
h

The parser engine 1s a highly configurable hardware
parser engine that provides software like flexibility in how
network traflic 1s parsed FIG. 1 illustrates a method 100 of
the parser engine 1n accordance with some embodiments of
the present invention. The parser engine 1s part of the
network switch and identifies contents of network packets.
At a step 103, layers of a packet are split based on protocol
layers such that each of the protocol layers of the packet i1s
separated A layer type of each protocol layer of the packet
1s stored 1n a first array, namely layerlype[|. An oflset of
where each protocol layer of the packet ends 1s stored 1n a
second array, namely layerEndPtr|].

At a step 110, each of the protocol layers of the packet that
has a size greater than a predetermined size i1s further split

10

15

20

25

30

35

40

45

50

55

60

65

6

into a plurality of layers. The first array and the second array
based on the fturther split. The predetermined size 1s software

defined.

At a step 1135, all of the split layers are processed. In some
embodiments, each of the split layers 1s generalized to a
generic format. Contents are selected from each of the
generalized split layers. In some embodiments, at least one
from a set of generic commands 1s applied to the generalized
split layer to thereby extract a field from the generalized split
layer. In some embodiments, each within the set of generic
commands 1s agnostic of specific fields within protocol
layers. In some embodiments, results from the processing
are concatenated to form a token that 1s used for further
processing of the packet. Alternatively, a bit vector 1s applied
to results from the processing to form an input to a hash
function, wherein an output of the hash function 1s a unique
signature that identifies which of equal-cost multi-path
routes the packet should take.

FIG. 2 1llustrates another method 200 of the parser engine
in accordance with some embodiments of the present inven-
tion. At a step 203, layers of a packet are split based on
protocol layers such that each of the protocol layers of the
packet 1s separated.

At a step 210, information regarding a layer type of each
of the protocol layers and an offset of where each of the
protocol layers ends 1s maintained. The information regard-
ing the layer type 1s stored 1n a first array (e.g., layerlype|
). The information regarding the ofisets 1s stored in a second
array (e.g., layerEndPtr|]).

At a step 215, any of the protocol layers of the packet that
has a size greater than a predetermined size 1s further split
into a first part and a second part, wherein the first part 1s of
the predetermined size. The predetermined size 1s software
defined.

At a step 220, the information 1s updated based on the
turther split. Information regarding layer types of the first
part and the second part 1s stored in sequential elements of
the first array. Information regarding oflsets of the first part
and the second part 1s stored 1n sequential elements of the
second array.

At a step 2235, based on a determination that the second
part has a size greater than the predetermine size, repeating
the steps 215 and 220 with the second part; and

At a step 230, all of the split layers are processed. In some
embodiments, prior to the step 230, each of the split layers
1s generalized to a generic format. In some embodiments,
processing the split layers includes extracting data from the
generalized layers.

FIG. 3 illustrates a method 300 of the network switch 1n
accordance with some embodiments of the present inven-
tion. At a step 3035, a packet 1s parsed based on protocol
layers. A first array (e.g., layerlype|]) and a second array
(e.g., layverEndPtr| |) are initialized according to the parsing.
When the packet 1s parsed, a layer type of each layer in the
packet 1s 1dentified and stored 1n the first array, and an oflset
of where each layer ends in the packet 1s identified and
stored 1n the second array. The first array and the second
array are stored 1n the memory of the network switch.

At a step 310, each element of the first array 1s compared
with a programmable register to determine whether a layer
associated with the element needs to be split. The program-
mable register includes a layerlype field, which indicates
which a corresponding entry matches, a splitLength field,
which idicates an oflset at which a corresponding layer
should be split at, and a newLayerType field, which indicates
a layer type value of the new split layer. Typically, prior to

US 10,616,330 B2

7

the step 3035, the layerlype field, the splitLength field and
the newlLayerType field are programmed via software.

At a step 315, based on the determination that the layer
associated with the element needs to be split, the layer 1s
split.

At a step 320, the first array and the second array are
updated according to the split.

At a step 325, data from a layer associated with each
clement of the first array 1s extracted. In some embodiments,
the extracted data 1s joined to thereby form a final result.
Alternatively, a bit vector 1s applied to results from logical
AND operations, wherein each of the logical AND opera-
tions 1s applied on a bit mask and the extracted data from a
layer.

The implementation relies on the assumption that the
order of bytes output by the parser engine matches the order
in which the bytes appear in an mncoming layer to advanta-
geously optimize the field selection circuit of the parser
engine. Any layer that exceeds a predetermined size 1s split
into smaller layers. The parser engine extracts data from the
split layers just as 1t would from a non-split layer and, then,
concatenates the extracted data in a final result.

One of ordinary skill in the art will realize other uses and
advantages also exist. While the invention has been
described with reference to numerous specific details, one of
ordinary skill 1n the art will recognize that the invention can
be embodied 1n other specific forms without departing from
the spirit of the invention. Thus, one of ordinary skill in the
art will understand that the mnvention 1s not to be limited by
the foregoing illustrative details, but rather 1s to be defined
by the appended claims.

We claim:

1. A method of implementing a parser engine, the method
comprising;

splitting a header of a packet, the header having a plurality

of protocol layers, wherein the splitting 1s based on the
protocol layers such that each of the protocol layers of
the header 1s separated with the parser engine;

turther splitting each of the protocol layers of the header

that has a size greater than a predetermined size nto a
plurality of layer subsections with the parser engine;
processing all of the subsections with the parser engine by

extracting data from one or more of the subsections and
concatenating the extracted data to form a token,
wherein the token 1s used for further processing of the
packet; and

outputting the packet out of the parser engine after the

subsections have been processed.

2. The method of claim 1, wherein splitting layers of a
packet includes storing a layer type of each protocol layer of
the header 1n a first array and storing an offset of where each
protocol layer of the header ends 1n a second array.

3. The method of claim 2, wherein further splitting each
of the layers of the header includes updating the first array
and the second array based on the turther split.

4. The method of claim 1, wherein the extracting data
from one or more of the subsections 1ncludes applying at
least one from a set of generic commands to one or more of
the subsections to thereby extract a field from the one or
more of the subsections.

5. The method of claim 4, wherein each generic command
of the set of generic commands 1s agnostic of specific fields
within the protocol layers.

6. The method of claim 1, further comprising applying a
bit vector to results from the processing to form an input to
a hash function.

10

15

20

25

30

35

40

45

50

55

60

65

8

7. The method of claim 1, wherein the packet has a body
and the splitting of the packet comprises a splitting of the
header thereby forming separated parts of the header and the
turther splitting of the protocol layers comprises the splitting
of the separated parts of the header into subparts.
8. The method of claim 1, wherein the further splitting of
the protocol layers 1s independent of whether the protocol
layer includes an options field.
9. The method of claim 1, wherein the further splitting of
the protocol layers comprises further splitting a TCP proto-
col layer that does not have an options field-1f the size of the
TCP protocol layer 1s greater than the predetermined size.
10. A method of mmplementing a parser engine, the
method comprising:
splitting a header of a packet, the header having a plurality
of protocol layers, wherein the splitting 1s based on the
protocol layers such that each of the protocol layers of
the header 1s separated with the parser engine;

maintaining information regarding a layer type of each of
the protocol layers and an oflset of where each of the
protocol layers ends;

turther splitting any of the protocol layers of the header

that has a size greater than a predetermined size into a
first part and a second part, wherein the first part 1s of
the predetermined size;

updating the mmformation based on the further split;

based on a determination that the second part has a size

greater than the predetermine size, repeating the turther
splitting step and the updating step with the second
part;

processing all of the split layers by extracting data from

one or more of the split layers and concatenating the

extracted data to form a token, wherein the token 1is

used for further processing of the packet; and
outputting the packet out of the parser engine aiter the

split layers have been processed.

11. The method of claim 10, wherein the information
regarding the layer type is stored in a first array, and the
information regarding the oflsets 1s stored 1n a second array.

12. The method of claim 11, wherein updating the infor-
mation includes:

storing information regarding layer types of the first part

and the second part 1n sequential elements of the first
array; and

storing information regarding offsets of the first part and

the second part 1n sequential elements of the second
array.
13. The method of claim 10, further comprising, prior to
maintaining information, soitware defining the predeter-
mined size.
14. The method of claim 10, further comprising, prior to
processing, generalizing each of the split layers to a generic
format.
15. A method of implementing a network switch, the
method comprising:
parsing a header of a packet, the header having a plurality
ol protocol layers, wherein the parsing 1s based on the
protocol layers thereby separating each of the protocol
layers of the header and 1imitializing a first array and a
second array;
comparing each element of the first array with a program-
mable register to determine whether one of the protocol
layers associated with the element needs to be split;

based on the determination that the one of the protocol
layers associated with the element needs to be split,
splitting the one of the protocol layers;

US 10,616,330 B2

9

updating the first array and the second array according to
the split; and

extracting data from the protocol layers associated with
cach element of the first array;

concatenating the extracted data to form a token, wherein
the token 1s used for further processing of the packet;
and

outputting the packet out of the network switch after the
protocol layers have been processed.

16. The method of claim 13, wherein parsing the packet

includes:

identifying a layer type of each of the protocol layers in
the packet;

storing the layer type of each of the protocol layers in the
first array;

identifying an oflset of where each of the protocol layers
ends 1n the packet; and

storing the offset of where each of the protocol layers ends
in the second array.

17. The method of claim 15, wherein the programmable

register includes:

a layerType field, which indicates which a corresponding
entry matches;

a splitLength field, which indicates an offset at which a
corresponding protocol layer of the protocol layers
should be split; and

a newLayerType field, which indicates a layer type value
of a new split layer.

18. The method of claim 17, further comprising, prior to
parsing a packet, programming the layerType field, the
splitLength field and the newLayerlype field via software.

19. The method of claim 15, further comprising storing
the first array and the second array i a memory of the
network switch.

20. The method of claim 15, further comprising applying
a bit vector to results from logical AND operations, wherein
cach of the logical AND operations 1s applied on a bit mask
and the extracted data from one of the protocol layers.

21. A network switch comprising;:

an mnput port and an output port for receiving and trans-
mitting packets each having a header including a plu-
rality of protocol layers;

a memory for storing a first array and a second array to
keep track of the protocol layers; and

a parser engine for:
splitting a header of a packet into the protocol layers;

10

15

20

25

30

35

40

45

10

further splitting any of the protocol layers that exceeds
a predetermined size into a plurality of sublayer;

extracting data from all of the sublayers;

concatenating the extracted data to form a token,
wherein the token 1s used for further processing of
the packet; and

outputting the packet out of the parser engine after the
sublayers have been processed.

22. The network switch of claim 21, wherein the prede-
termined size 1s software defined.

23. The network switch of claim 21, wherein the parser
engine further:

applies a logical AND operation on a bit mask and the

extracted data for each of the sublayers; and

applies a bit vector to results from the logical AND

operations to form an input of a hash function.

24. The network switch of claim 23, wherein an output of
the hash function 1s a unique signature that identifies which
of equal-cost multi-path routes the packet should take.

25. A parser engine comprising a circuit configured to:

split a header of a packet, the header having a plurality of

protocol layers, wherein the splitting 1s based on the
protocol layers such that each of the protocol layers of
the header 1s separated;

turther split each of the protocol layers of the header that

has a size greater than a predetermined size nto a
plurality of sublayers;

process all of the sublayers by extracting data {from one or

more of the sublayers and concatenate the extracted
data to form a token, wherein the token 1s used for
further processing of the packet; and

output the packet out of the parser engine after the

sublayers have been processed.

26. The parser engine of claim 25, wherein information
regarding a layer type of each of the protocol layers and an
oflset of where each of the protocol layers ends 1s main-
tained.

277. The parser engine of claim 26, wherein the informa-
tion 1s updated after the further splitting each of the protocol
layers of the header that has a size greater than a predeter-
mined size mto a plurality of sublayers.

28. The parser engine of claim 25, wherein the circuit 1s
also configured to apply a bit vector to results from the
processing to form an mnput to a hash function.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

