US010613912B2

a2 United States Patent (10) Patent No.: US 10,613,912 B2

Guha et al. 45) Date of Patent: Apr. 7, 2020
(54) DATASET INGESTION ARCHITECTURE (38) Field of Classification Search
FOR PARALLEL PROCESSING CLUSTERS CPC GO6F 9/52; GO6F 16/116; GO6F 16/182
USPC e, 717/100-125, 143
(71) Applicant: Accenture Global Solutions Limited, See application file for complete search history.
Dublin (IFE
ubln (1E) (56) References Cited
(72) Inventors: Sandip Guha, Kolkata (IN); Aja.y U.S PATENT DOCUMENTS
Kumar Sharma, Pune (IN); Shridhar
D. Rajgopalan, Bangalore (IN); 8,819,106 B1* 82014 Sirota GO6F 9/485
sunjeet Gupta, Pune (IN); Sanjid 9,998,551 B1* 6/2018 C bell H04102/;/'2/(1)é
. - _ 998, | ampbell
Lalitkumar Deshmukh, Mumbai (IN); 10,209,963 B2* 2/2019 Hutchison GOGF 8/451
Vinay Aditya Mantha, Hyderabad 10,409,560 B1* 9/2019 Bebee ...oocoovv....... GOGF 8/4441
(IN); Manish Madanmohan Malaviya, 2010/0205588 Al* 82010 YU ..ooooovvvviieenrieneinn, GO6F 9/52
Lhane (IN); ahul Sohan al Vantrl, 2016/0291942 Al1* 10/2016 Hutchi GOﬁ?gj’glﬁSl?
: 1 1 1 utchison
ﬁune (ﬁ)’ Amesh Jayendra Karekar, 2018/0089324 AL* 3/2018 Pal woooovvvcrovvrrrrn. GOGF 9/5011
une (IN) 2018/0253478 Al* 9/2018 Schoueri GOGF 3/0643
_ 2018/0336072 Al™* 11/2018 Guha GO6F 16/116
(73) Assignee: ACCENTURE GLOBAL 2018/0349614 Al1* 12/2018 Ionescu GO6F 21/577
SOLUTIONS LIMITED, Dublin (IE) 2019/0095491 Al* 3/2019 Bhattacharjee ... GO6F 16/24553
2019/0095494 Al* 3/2019 Bhattacharee GO6F 11/3433
2019/0138639 Al1l* 5/2019 Pal GO6F 17/2705

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 137 days.

Primary Examiner — Marina Lee
(21) Appl. No.: 15/983,833 (74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(22) Filed: May 18, 2018 (57) ABSTRACT

An 1ngestion code generation architecture facilities making

65 Prior Publication Data : :
(65) large and complex datasets available for processing by
US 2018/0336072 Al Nov. 22, 2018 parallel processing clusters. The architecture generates a set
of data ingestion interfaces through which the operator
(30) Foreign Application Priority Data specifies characteristics of their dataset. After receiving the
specifications, the architecture automatically samples the
May 22,j 2017 (IN) 201741017866 dEltElSetj analyzes 1S StI'llCtLlI'ej and genera’[es program code
to 1ngest the dataset. The architecture solves the technical
(51) Int. Cl. challenges of making complex and extensive datasets read-
GO6E 9/52 (2006.01) i1ly available to the parallel processing cluster so that the
Gool 16/11 (2019.01) cluster may successiully perform its specialized processing
(52) US. CL over the dataset.
CPC GO6L 9/52 (2013.01); GO6F 16/116
(2019.01) 20 Claims, 10 Drawing Sheets
SO0
N v} QOperator
Establiah file communication infariace |
operable to communicate with a AUZ
dataset repository. Commurioation 106
\ 4 Interfaces 1 | Accept language selection al5
Establish operator communication -)lDataset Repository b — =
merface operalie te render adata 504 . - : L
ingestion intarface, identity a paired dataset processor. 520
3 Dataset Processor o . 2
) : C8V_Javal) = Hass parameterization inputs to the
Establish ﬁ1us}er =a{"|guage Jensrator brogram code generation clrcultry. 522
arrays of multiple fe format 506 « Dataset Procassor A4 ¥
HIQ0essors. CSV_dcala) Pass parameterization inputs tothe
Y program cods generation clircuitry., ===
Generals datz fils format selacior. A08 . ¥
\ 4 ngestion Data Exchiangs 112 I Awall confirmation: input jo procead. 526
Reneive format selector of file format. 516 ngestion interfaces 110 l ¥
IR Initiate execution of the paired dataset
Responsive o the format selector processor n the program coda
inpult, generate a file format-specific 519 l Execlie generation circuitry to generate
parameterization interface inthe data = paralle; proceasing custer ingestion
ingastion intarface. rogram Code 134 code for deployment in the parallet Sed
¥ Generalion Circullry ™ processing cluster to ingest project
Accept paramsterization inputs from v dataset files meeting the fiie format
the file format-specific " and parameterization inputs.
nerameterization intarface, including a 214 J!:___ v
path specifier of an input dataset file 438 1= generats a deptoyrment instruction file
iocated in the dataset reposiaty for the parallel procesaing cluster 530
_ \ 4 ngestion code
Genarate oufput language selector, 516 ¥
Deliver dapioymant instruction fils and 530
genarated ngashon cods io cherator,

US 10,613,912 B2

Sheet 1 of 10

Apr. 7, 2020

U.S. Patent

| 2.nbI4

70l

o] f— | mmi—" Sl

 Sii——" Rl Rl
LC)

 M——— |]

| - | smsiss—-"

*e»

| | ——

| m— | m———

| T——————

r——

SYIOMIBN
1818n|D buIsseoold |19jeled
8Ll
AIInou1n) uonelauary vl
apon) Welbolq dl
AINoAIA J8jjojuon
0eT Anoli WasAs
— 390B LIg)U| ol
ch UOIIEDIUNWWIOY

O WelsAg [onuon uonssebul BleQ

Al0)ISOdeY Jesele(]

leAe abelo)s Ble(]

SYIOMSN

$99BJIe)U| UONEDIUNWIWON

801

saoe)laju| uonsaebul

abueyox3 ele uonssbui

e O OVEIO]

Obl

uonsab

901

Y/

Jjojelado

0¢l

001

US 10,613,912 B2

Sheet 2 of 10

Apr. 7, 2020

U.S. Patent

0l

A1JINGIIY) UslBlBUS.)
opon wetbold

ANINOJIN J8Jj0U0N

AlJINOJIN WR)SAS

SooRLISU|
LOIROIUNWLLOY

7 2B

8Ll

seoeLie)u| uonssebul

sinduj uonsebu;

0¢C 777

.mmiﬂ abelo)g 18he ebe. 1ehe ebelo)s

eled 10S eleq eled NOSP
S80BLI8)U| LRV S80B LIe)U]
UORBOIUNWILIOY UO[BOIUNWIWOND UONBOIUNWIWON

Aloyisode JAX| || 90¢ Asojsodeyq NOSH

¢0¢ Mojisodey TOS 0C

X

Ocl
SHIOM)SN

801
ETIEN 30}

7

oLl

joreled)
mmomtm_
cozmm@
Jasmolg yJomeN X
001

US 10,613,912 B2

Sheet 3 of 10

Apr. 7, 2020

U.S. Patent

e 2inbi4

<
gt Aleiqr epon) uonssebuj Jeisnin buissenold [ejesed ‘
d sigpweled :
' Jewlo m
7 ebenbue + ~C0
‘0 Jojesedo Pd 04 g7 bd 14]
2P0 uonsebu| oueo B0 :9p0D 'L O @po) :
uonsebuj Lonsebu] :
] e —— '
<>]
— OTE sS8oel8)U] 8UIUOBIA w
Ainonn Aeydsi :
01507 UojjelaUsD :
e0elielU| sulyoe ANINonn) soelsiu] O] M BUISS8001 __M.
01607 UoNEIsUSS m .
opon) Welbo. ARINoJI weish :
Pod d HIOD HeISAS L (sylomeN T Aloysodey jeseleq
0i1b07 J8jjonuon :
9|Jed :
SA | HAS 7 LINOS | 1euseyi3 : 801 90}
Aninon) xd / X1 :
; N
(S)euueiuy : N
' Sy
m ‘ jo)etedo
OF | aylieres | Ny M] >
ADINOAID BAI908Y / JIWISURI | “
: L] s 380B)9)
Se0BLISIU| UOHEOIUNUWWIOD|] D — uonseb
- VIT 1esmoig yJomeN %

00

US 10,613,912 B2

Sheet 4 of 10

Apr. 7, 2020

U.S. Patent

907

3)850|NY
UoNelauer)

7Oy AInouD uonelsuss) epoy) welbold

18)snin) Bunse| Buissenold |9|esed

8Ll

()eleos NOSI

105582014 18SB1. (]

(Jerer NOSH
108820014 12SElE(]

(Jeleos TAIX
10889001 Jasele(]

10550001+ |85E]B(]

()eleos ASD

108580014 183E)e(]

Qerer ASOl
(_ommmoo._& Emmﬁ@

(erer TAXL

2187

L

/L

8CY

9lv

viv

+ 8nDI4

FEY Mmelneld eje(buisied

I0JJUOT) UOIRISUSE) 3P0

700 ANINoJID) Jejjosjuon

...llllll.l..._u.

1..(111111.111

%’

—— S80BJI8JU
T HojU]

uonssbul
19SMOLG YIOMIBN

201 90l
yW
R

jojeladp

Oty
9tV

007

US 10,613,912 B2

Sheet 5 of 10

Apr. 7, 2020

U.S. Patent

'J0)81800 0] 8p0oo UojseliL

| pojelauel

DU 8J1} UoIjonusul JuswiAo

dsp JeAle(]

G 2inbi-

apoo uonsebu
181snjo buisseooud |s|je.led sy o)
9]} Uoijonsisul JusAojdep e ajelaush

8ty

sindul uonezisjewered pue
JewLo) sy ay) bunesw sa|i 1eseiep
100l04d 18806UI 0] I181SNI0 BUISS800Id
9|leJed ay) ul uswAo|dep Joj 8poo
uonsabul Isisnio Buisseocoud s|leiea
ajelaush 0) Aljinoiio uonelsuab

opoo Weiboid 8y) Ul 10sseo0Io
19se)ep palled ay) jo uonoaxe sjeNiu

— ANIN2AI7y UoneJaus
s 1INV Uoh 9

apon welboid

2N0B0X

sg0eLeju| uonsabu

'09800Jd 0] INduUl UONBULIJUOD JleMmy

abueyox3 eje(] uonssbu

‘Al INOAIO Uonelausb epod welbold
alj} 0] S)hdu} Uonezielelleled ssed

Jereos ASO
108899044 Jesele(
'AJ}INOJI0 Uonetauab apod wielbold

aU} 0) s)hdui uoeziejaweled ssed Uerer ASO

108880014 19see(]
'1088900.d J8se)ep palled e Ajusp]

'UoI09|es abenbue| 1decoy Aojisodey Jesele(

e 901

T S80BIBU|
UOBOIUNWWON

JoyelsdQ

'Jojos|es ebenbue| Indino sjeieuUsL)

Alo)Isodsl
9|1} Jeseiep ndul

Jeselep au) Ul pejeoo)
Ue jo Jayloeds yjed
w7 € Buipnjoul ‘eoepie)ul uopezusleuleed|

oljtoads-jewio} o)1 sy
WoJj sindui uonezlisjsuleled Jdeooy

‘90BLI8)ul uonssbul

e1ep eU) Ul 80BJI8)UI UONBZII8)eWR.IBd

olj108ds-BWwlIo) &
10]08}8S Jew.o.

| & 8jelaush)ndu

U 0} 9AISUOdSEM

1ew o} 81} JO 10]08|8S Jew.0} SAI808Y

10108183 JBULIO} 8]l} B]ep 8)elausc)

JeUIO) 8

Jolelsush sebenbl

8108390040
| 8|diinw jo sAelle
el JRJSNO Ysiideis

‘a0eJI8)ul uonssebul

ejep e Jopusl 0} ajqeledo soelisjul
LUONBoIUNWWOY Jojetedo Usligess

'Al0}ISOd8) 185B1EP

B U}IM 8]B01UNWWO0Y 0} 8|qeledo

90BJI8)UI UONEDIUNWIWOD 81} Usiiae1s

00

US 10,613,912 B2

Sheet 6 of 10

Apr. 7, 2020

U.S. Patent

9 ainbi4

A YN Loljelaliar) 9Pl —

y % q-41 N jesieln

A SASSiWIed OPO

Juesge © Jueseid @ Jepes -

E.m_QEmmE Yed+1
pajiIed

pel4 pexi Iz OSF | TAX E PO

SECTY. Y Y Y)Y
219 8L9 919 FLY AR

0i9

809

909
09

¢09

003

US 10,613,912 B2

Sheet 7 of 10

Apr. 7, 2020

U.S. Patent

J 8Inbi4

uoleunse(]

A YA LUONBIeUSS) 3P0

A gdln| °SEUW

A SASsiLIed 9POA

Juesge © Jueseid @ Jspes

Aso'ejdwes | a4 esooyn | Wed

YOG ser o b
-l R AL L L
S

plei4 pexi4 | Nose | ix [ASEE peuieq H
B3 (=] D D D
819 819 919 P

¢l9

¢04

004

9 aInbi

US 10,613,912 B2

ey | s
._* <>d_, uoille laliac) span)

s -

Yo

: Z o "o

v o

= A SASssILIed SPOIA -

& |

h .

v asje O onl] @ |NN Se enjea Aldwg jeal| -
asled O onl| @ 8NgUNY BpN|joX3 _

—

S oney buldweg |-

S oo | oreutu il

o~ £ Demoy

% [oofiodue | -

o .

! wx sjdwes | a4 esooyn | Hed

>wo

U.S. Patent

142",
¢i8
0L8

808
908

08
08
¢08

008

US 10,613,912 B2

Sheet 9 of 10

Apr. 7, 2020

U.S. Patent

6 aInbi-

ey | wang
A YN UOillejaust) apOd

uos[-sjdwes | s|i4 esooyn | -Hed

| NOST

plol4 paxI 2@%%5 pajUeq H
Ed (=] D D D N I I
819 “N8l9 “9l9 I 219

06

¢06

006

US 10,613,912 B2

Sheet 10 of 10

Apr. 7, 2020

U.S. Patent

0} @Inbi4

clol & VAVF | Uonelus epoo
I e TV Rl
| plel4 ejelsuan) . spiel} JO JequInN

E OUi| g Ul 31aj0eieyd |0 IsQUINN

8001

11189} | 8)14 esooyn | -Hied

P31 paxi4

Ji090] nosr | wix | aso | pemeq
l_m_l""ll

7101

0101

3001
7001

001

0001

US 10,613,912 B2

1

DATASET INGESTION ARCHITECTURE
FOR PARALLEL PROCESSING CLUSTERS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to Indian Patent Applica-
tion No. 201741017866, entitled “DATASET INGESTION

ARCHITECTURE FOR PARALLEL PROCESSING
CLUSTERS”, filed on May 22, 2017/, the entirety of which
1s hereby incorporated by reference.

TECHNICAL FIELD

This application relates to parallel processing clusters.
This application also relates to automatic generation of
program code 1n a language selected from multiple options
that ingests large and complex datasets so that the parallel
processing cluster can operate on the data.

BACKGROUND

Parallel processing clusters of individual computing
devices provide a Iframework for high-speed distributed
processing of immense datasets. However, the amount of
data 1n many datasets can easily reach and exceed multiple
terabytes (TBs) and the dataset may have significant com-
plexity in terms of file type, delimiters, data field length and
so on. The size and complexity of datasets presents a
significant technical challenge to executing important pro-
cessing tasks on a parallel processing cluster. Improvements
in making large, complex datasets readily available to the
many devices 1n the cluster will enhance the ability of
parallel processing clusters to execute complex processing
tasks.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a data ingestion architecture
including a data ingestion control system for a parallel
processing cluster.

FIG. 2 shows another example of a data ingestion archi-
tecture including a data ingestion control system for a
parallel processing cluster.

FIG. 3 shows an example system implementation for the
data ingestion control system.

FI1G. 4 1llustrates another example system implementation
for the data ingestion control system.

FIG. 5 shows logic that the data ingestion control system
may implement to generate parallel processing cluster inges-
tion code for deployment 1n a parallel processing cluster to
ingest project dataset files.

FIGS. 6-10 1illustrate example data ingestion interfaces
including, as examples: format-specific parameterization
interfaces, data file format selectors, output language selec-
tors, parsing review interfaces.

DETAILED DESCRIPTION

FIGS. 1 and 2 provide an example context for the dis-
cussion below of the technical solutions 1n the data ingestion
architecture. The examples 1n FIGS. 1 and 2 show possible
implementation environments. In that respect, the technical
solutions 1n the architecture are not limited in their appli-
cation or implementation to the contexts shown in FIGS. 1
and 2, and the implementations are not limited to those
shown 1n any of the Figures. Instead, the technical solutions

10

15

20

25

30

35

40

45

50

55

60

65

2

may be applied in many other system implementations,
contexts, environments, and architectures.

FIG. 1 shows an example data ingestion architecture 100
in which a data ingestion control system 102 (*system™ 102)
facilitates data ingestion of large and complex datasets that
the parallel processing cluster 104 will process. An operator
106 1nteracts with the system 102 through a local or remote
system 108 1n communication with the system 102. In that
respect, the system 102 may generate and communicate data
ingestion interfaces 110 to the other system 108, and per-
form ingestion data exchange 112 with the other system 108.
The mngestion data exchanges 112 may include operator
input for the system 102 through the ingestion interfaces
110, and system output to the operator concerning the data
ingestion process, described in detail below.

In one implementation, the system 102 connects to the
operator over an exposed network protocol layer. Such a
layer may include a network browser 114 based web 1nter-
face using an Apache Tomcat™ webserver and hypertext
markup language (HITML), Java, and JavaServer Pages
(JSP), JavaQuery (JQuery), as examples. The system 102
communicates with other entities over any number and type
of public or private networks, e.g., the networks 116 and
118. Examples of suitable networks include the Internet,
public or private local area networks (LANs) and wide area
networks (WANSs) whether wired or wireless.

As described 1n detail below, the system 102 will auto-
matically generate parallel processing cluster ingestion code
for deployment 1n the parallel processing cluster 104. In
some 1mplementations, the system 102 may generate a data
schema upon reading an input data file as well, and provide
the schema to the operator for review and to the parallel
processing cluster 104 to facilitate operating on the ingested
data. If the operator 106 chooses to deploy the code to the
parallel processing cluster 104, then the parallel processing,
cluster 104 may execute the code to mgest project dataset
files meeting the file format and parameterization inputs
given by the operator 106.

The dataset files may exist 1n dataset repositories 120,
¢.g., the dataset repository 122. In the example 1n FIG. 1, the
dataset repository 122 includes communication interfaces
124 and a data storage layer 126. The data storage layer 126
may be, as examples, a database system or a file system for
any OS (e.g., NTFS for Windows™ OS). The data storage
layer 126 stores the datasets 127 to be ingested to the parallel
processing cluster 104. The datasets 127 may be of any type
and 1 any number and size, e.g., SQL database files, flat

files, XML files, JSON files, CSV files, and text files, and

these files may have varying structures, including a wide
variety of formats, tags, record lengths, field delimiters, and
fixed or variable field widths. In many real-world scenarios,
the datasets 127 span multiple TB of data across many
different file formats, and these complexities give rise to the
technical challenge of efliciently ingesting the complex
datasets to the parallel processing cluster 104.

The system 102 also includes communication interfaces
128 and system circuitry 130. The communication interfaces
128 and 124 connect to the networks 116 and 118. Examples
of communication interfaces and network implementations
are given below in connection with FIG. 3. In one 1imple-
mentation, the system circuitry 130 includes controller cir-
cuitry 132 and program code generation circuitry 134. As
will be described 1n detail below, the controller circuitry 132
handles operator interactions via the ingestion interfaces 110
and directs the operation of the program code generation

US 10,613,912 B2

3

circuitry 134. The program code generation circuitry 134
produces ingestion code for complex datasets responsive to
the operator interactions.

FIG. 2 shows another example data ingestion architecture
200. In this example, the dataset repositories 120 include the
SQL repository 202, the XML repository 204, and the JISON
repository 206. The communication interfaces 208, 210, and
212 connect the repositories 202-206 to the system 102.
Each repository includes a data storage layer, e.g., the SQL
data storage layer 214, the XML data storage layer 216, and
the JSON data storage layer 218. The repositories 202-206
may represent physical data storage facilities, for instance,
and the data storage layers 214-218 may represent offloaded
files from databases, file systems, or other data storage
mechanisms. Note however, that any given repository need
not be dedicated to a single type of file or data structure, but
may store any type and number of {ile.

FIG. 2 illustrates dataset sample sources as well, includ-
ing the SQL sample database 220, the XML sample file 222,
and the JSON sample fie 224. The dataset sample sources
may provide, for instance, representative sources of data of
selected types for analysis by the program code generation
circuitry 134. The program code generation circuitry 134
may sample any of the datasets, including the dataset sample
sources, 1n the course of its analysis to determine and verily
file structure against the inputs received in the ingestion data
exchanges 112, and 1n the course of automatically generat-
ing ingestion code that correctly recognizes and accepts data
organized according a specific file structure.

FIG. 3 shows an example system implementation 300 for
the data mgestion control system 102. The example 1mple-
mentation 300 includes communication mterfaces 302, sys-
tem circuitry 304, and input/output (I/0) interface circuitry
306. The data ingestion control system 102 includes display
circuitry 308 that generates machine interfaces 310 locally
or for remote display, e.g., in a web browser running on a
local or remote machine. The ingestion interfaces 110
described below are examples of machine interfaces 310.
The machine interfaces 310 and the 1/0 interfaces 306 may
include GUIs, touch sensitive displays, voice or facial
recognition mputs, keys, switches, speakers and other user
interface elements.

The communication interfaces 302 may include wireless
transmitters and recervers (“transceivers”) 312 and any
antennas 314 used by the transmit and receive circuitry 1n
the transceivers 312. The transceivers 312 and antennas 314
may support WiF1 network communications, for instance,
under any version of IEEE 802.11, e.g., 802.11b, g, n, or ac.
The communication interfaces 302 may also include physi-
cal transceivers 316. The physical transceivers 316 may
provide physical layer interfaces for any of a wide range of
communication protocols, such as any type of Ethernet, data
over cable service interface specification (DOCSIS), digital
subscriber line (DSL), Synchronous Optical Network
(SONET), or other protocol.

The system circuitry 304 may include hardware, software,
firmware, or other circuitry 1in any combination. The system
circuitry 304 may be implemented, for example, with one or
more systems on a chip (SoC), application specific inte-
grated circuits (ASIC), microprocessors, discrete analog and
digital circuits, and other circuitry. The system circuitry 304
1s part ol the implementation of any desired functionality 1n
the data ingestion control system 102, including the con-
troller circuitry 132 and the program code generation cir-
cuitry 134. As just one example, the system circuitry 304
may include one or more instruction processors 318 and
memories 320. The memory 320 stores, for example, control

10

15

20

25

30

35

40

45

50

55

60

65

4

instructions 322 executed by an operating system 324. In
one implementation, the processor 318 executes the control
instructions 322 and the operating system 324 to carry out
any desired functionality for the data ingestion control
system 102. The control parameters 326 specily configura-
tion and operating options for the control instructions 322,
operating system 324, and other functionality of the data
ingestion control system 102.

In this example, the control instructions 322 include
controller logic 328, program code generation logic 330, and
machine interface generation logic 332. The controller logic
328 guides the operation of the data ingestion control system
102, including, as examples: generating data file format
selectors, generating format-specific parameterization inter-
faces, accepting output language selections, identifying
paired dataset processors, and imtiating execution of the
paired dataset processor in the program code generation
circuitry. The program code generation logic 330 accepts
parameterization mputs from the controller logic 328 and
directives to execute a particular paired dataset processor.
The program code generation logic 330 may sample the
format and structure of a specific input file to test 1t against
the parameterization inputs, and responsive to the param-
cterization 1nputs generates parallel processing cluster
ingestion code 334. The parallel processing cluster ingestion
code 334 1s written in the selected output language (e.g.,
Java or Scala) and i1s configured for deployment in the
parallel processing cluster 104 to ingest project dataset files
meeting the file format and parameterization inputs. The
ingestion code 334 may be retained 1n a parallel processing
cluster ingestion code library 336, along with any other
previously generated ingestion code for any operator, for
any output language, file format, and parameterization
inputs. The parallel processing cluster ingestion code library
336 provides a data storage platform for review, modifica-
tion, and deployment of 1ingestion code under, e.g., operator
control.

The machine interface generation logic 332 generates and
delivers a linked interactive set of GUIs (e.g., the ingestion
interfaces 110) that facilitate interaction with the data inges-
tion control system 102. The linked interactive set of GUIs,
¢.g., accept format selector inputs representing a file format,
accept parameterization nputs for the file format, accept
language selections between various cluster programming
languages, generate post-ingestion data preview, and display
and accept confirmation inputs from the post-ingestion data
Previews.

FI1G. 4 illustrates another example system implementation
400 for the data ingestion control system 102. In FIG. 4, the
system 1mplementation 400 includes controller circuitry
402, program code generation circuitry 404, and a parallel
processing testing cluster 406. As noted above, the controller
circuitry 402 guides the operation of the data ingestion
control system 102. To that end, the controller circuitry 402
generates and delivers the ingestion interfaces 110 to the
operator 106. The 1ingestion interfaces 110 may include data
file format selectors, format-specific parameterization inter-
faces, and output language selectors. The controller circuitry
402 i1dentifies paired dataset processors in the program code
generation circuitry 404 and imitiates execution of the paired
dataset processor.

In the example of FIG. 4, the program code generation
circuitry 404 accepts a sample mput file 408, e.g., provided
by the controller circuitry 402 1n response to operator
identification of a sample file. Code generation rulesets 410
may provide code generation rules 412 to the program code
generation circuitry 404. More particularly, the program

US 10,613,912 B2

S

code generation circuitry 404 accepts parameterization
inputs from the controller circuitry 402 and responds to
directives to execute a particular paired dataset processor.
The controller circuitry 402 provides a sample data file with
its parameterization mputs to the program code generation
circuitry 404. The sample data file and the parameterization
inputs may be stored as different files in the architecture that
are available to the program code generation circuitry 404.
As described 1n more detail below, a specific file format
processor will operator to generate the program code, e.g.,
responsive to the file type and language selection inputs. The
program code generation circuitry 404 reads the sample data
file and the parameterization inputs and 1dentifies within the
sample data file the different data fields by name, type,
length, and other characteristics, and also reads the param-
cterization 1nputs to i1dentily file characteristics such as
character set, presence or absence ol a header, and how to
treat NULL values. With this information known, the match-
ing file format processor 418-428 discussed below will call
the relevant Spark library for that type of {ile 1n the specified
language (e.g., Java or Scala) to generate a data frame 1n
Spark which 1s deployable in the parallel processing cluster.
As described further below, the generated code may be
deployed 1n the parallel processing testing cluster 406 for
testing purposes. If the tests pass, the controller circuitry 402
may return the results to the operator 1n tabular format for
confirmation purposes prior to downloading to the operator.

In one implementation, the program code generation
circuitry 404 includes one or more cluster language genera-
tor arrays ol multiple file format processors. In the example
in FIG. 4, there 1s a Java cluster language generator array
414 and a Scala cluster language generator array 416. Fach
cluster language generator array includes file format pro-
cessors for that particular cluster language. The file format
processors may include scripts, executable applications, or
other logic that outputs language specific instructions to
recognize fields 1n the dataset and read and save the data
clements from the fields. The Java cluster language genera-
tor array 414 includes a CSV file format processor 418, an
XML file format processor 420, and a JSON file format
processor 422. The Scala cluster language generator array
416 includes a CSV f{ile format processor 424, an XML file
format processor 426, and a JSON file format processor 428.
Java and Scala are example first and second parallel pro-
cessing cluster programming languages, and the data inges-
tion control system 102 may generate ingestion code 1n any
other pre-selected programming language.

The program code generation circuitry 404 may execute
ingestion tests 1n the parallel processing testing cluster 406.
In that respect, the program code generation circuitry 404
may instantiate and execute the parallel processing cluster
ingestion code i1t has generated in the parallel processing
testing cluster 406, e.g., with input from the sample input file
408. The program code generation circuitry 404 may report
the test results to the operator 106, e.g., via the review
interface 430.

The controller circuitry 402 generates and delivers the
review interface 430 to the operator 106. The review 1nter-
face 430 may include the test results 432 of executing the
generated parallel processing cluster mngestion code in the
parallel processing test cluster 406. In addition, the review
interface 430 may deliver a parsing data preview 434 to the
operator 106. The parsing data preview 434 may include a
tabular structure view that illustrates how the data in the
dataset 1s parsed for ingestion. The tabular structure may
include, e.g., a table of data columns that show the data
fields parsed out of the dataset.

10

15

20

25

30

35

40

45

50

55

60

65

6

The operator 106 may provide feedback via the review
interface 430 to the data igestion control system 102 to
correct errors 1n the parsing. The parsing data preview 434
provides post-ingestion view of the dataset assuming the
program code generation circuitry 404 executes given the
current selected file format, the parameterization inputs, and
the input (e.g., sample) dataset file. After generating the
review interface 430, the controller circuitry 402 may await
a confirmation mmput to proceed.

In response to the confirmation nput, the controller
circuitry 402 initiates execution of the file format processor
paired to the selected file format and parameterization
iputs, ¢.g., the JSON file format processor 428 for output
language Scala. Furthermore, after generation of the parallel
processing cluster ingestion code, the controller circuitry
402 may generate a deployment instruction file 436 for the
parallel processing cluster imngestion code, and deliver the
deployment instruction file 436 and the parallel processing
cluster ingestion code 438 to the operator 106. The deploy-
ment nstruction file 436 may include, as examples, direc-
tions to the operator 106 for how to setup and execute the
ingestion code in the parallel processing cluster 104.
Examples of directions include IP addresses of the parallel
processing cluster, login instructions, file transier protocol
details, cluster commands to execute code, and the like.

The functionality of the systems shown in FIGS. 1-4 are
discussed in connection with FIG. 5. FIG. 5 shows ingestion
logic 500 that the data ingestion control system 102 may
implement, e.g., 1n the controller circuitry 132 and 402 and
program code generation circuitry 134 and 404 or in the
controller logic 328 and program code generation logic 330.
The mgestion logic 500 facilitates and controls the genera-
tion of parallel processing cluster ingestion code for deploy-
ment 1n a parallel processing cluster to ingest project dataset
files.

The data ingestion control system 102 establishes a file
communication interface operable to communicate with a
dataset repository (502) and establishes an operator com-
munication interface operable to render an 1ngestion inter-
face 110 for the operator 106 (504). The data ingestion
control system 102 includes program code generation cir-
cuitry that establishes a first cluster language generator array
of multiple file format processors for a first cluster language,
and a second cluster language generator array ol multiple
file format processors for a second cluster language (506).

The data ingestion control system 102 also includes
controller circuitry configured to generate a data file format
selector 1n the data ingestion interface (508) and receive a
format selector mput specitying a file format from the data
file format selector (510). Responsive to the format selector
input, the ingestion logic 500 generates a file format-specific
parametrization interface in the data ingestion interface for
the file format (512). The ingestion logic 500 also accepts
parameterization inputs from the file format-specific param-
cterization intertace for the file format, including a path
specifler of an 1nput dataset file located in the dataset
repository (514).

In addition, the mgestion logic 500 generates an output
language selector 1n the data ingestion interface (516). The
output language selector includes GUI elements that are
configured to allow the operator 106 to select between the
first cluster language and the second cluster language. The
ingestion logic 500 accepts a language selection between the
first cluster language and the second cluster language from
the output language selector.

Responsive to the file format and the language selection,
the mngestion logic 500 identifies a paired dataset processor

US 10,613,912 B2

7

(520). The paired dataset processor 1s chosen from among
the first cluster language generator array and the second
cluster language generator array that matches to the lan-
guage selection and the file format. The 1ngestion logic 500
also passes the parameterization inputs to the program code
generation circuitry (522). The parameterization mputs may
include the path specifier of a sample dataset file, among
other parameters.

The 1ngestion logic 500 optionally generates a parsing
review interface comprising a post-ingestion data preview
responsive to the file format, the parameterization inputs,
and the input dataset file (524). The ingestion logic 500 may
then await a confirmation nput to proceed from the operator
106 (526). In response to the confirmation mput, the inges-
tion logic 500 also initiates execution (e.g., be sending an
execution command) of the paired dataset processor in the
program code generation circuitry to generate parallel pro-
cessing cluster ingestion code for deployment in the parallel
processing cluster to ingest project dataset files meeting the
file format and parameterization inputs (528). After genera-
tion of the parallel processing cluster ingestion code, the
ingestion logic 500 may generate a deployment instruction
file for the parallel processing cluster ingestion code (530)
and deliver the deployment instruction file and the parallel
processing cluster ingestion code the system operator 106
over the operator communication channel (532).

FIG. 6 shows an example format-specific parameteriza-
tion interface 600 of GUI elements for dataset files with
specific delimiters. The path element 602 accepts a path
specifier of the dataset file, and may accept globbing expres-
sions. The header element 604 specifies, when set to true,
that the first line of the dataset file will be used to name
columns and will not be included 1n data. The default value
may be set to false. The delimiter element 606 specifies what
dividing character exists between columns (e.g., a comma or
vertical bar), and may be set to any character. Other GUI
clements may be provided to designate the quote character,
the character set used 1n the dataset, the escape character,
and to designate a parser library for the file type (e.g., to
selected between “commons” and “unmivocity” for CSV
parsing).

The mode element 608 determines the parsing mode. By
default 1t 1s PERMISSIVE. Possible values may include:
PERMISSIVE: try to parse all lines and insert nulls for
missing tokens, extra tokens are i1gnored; DROPMAL-
FORMED: drop lines which have fewer or more tokens than
expected or tokens which do not match the schema; FAIL-
FAST: abort with an error 1f the system 102 encounters any
maltformed line. The interface 600 also includes the code
generation element 610 which 1s configured to provide a
selection between cluster programming languages to be used
for the generated 1ngestion code, e.g., Java or Scala.

Other GUI elements may include an inference element
that allows selection of whether or not to infer the schema
in the dataset. If this 1s chosen, the system 102 automatically
infers column types by performing a first pass over the
dataset. A comment element may specily whether to skip
lines beginning with a specified character (e.g., “#”). A null
value element may specily a string that represents a null
value, and the system 102 may set instances of this string to
nulls 1n the output. In addition, a date format element may
specily a string that indicates the date format to use when
reading dates or timestamps. Custom date formats may
follow the formats at java.text.SimpleDateFormat. This
applies to both DateType and TimestampType. By default,
the date format element may be null, and the system 102 wall

10

15

20

25

30

35

40

45

50

55

60

65

8

try to parse times and dates using the java.sgl.Time-
stamp.valueO1() and java.sql.Date.valueO1() library func-
tions.

FIG. 6 also shows data file format selectors: the format
selector 612 to choose delimited files, the format selector
614 to choose CSV files, and format selector 616 to choose
XML files, the format selector 618 to choose JSON files, and
the format selector 620 to choose fixed field files. Respon-
s1ve to the format selector iput, the system 102 generates a
format-specific parametrization interface, e.g., the interface
600 for delimited files. The GUI elements 602-612, and the
other elements noted above, accept parameterization inputs
from the format-specific parameterization interface for the
file format. These mputs include, e.g., a path specifier of an
input dataset file located 1n the dataset repository, an output
code language selection (e.g., Java or Scala), delimiters,
escape characters, and other inputs.

FIG. 7 shows an example format-specific parameteriza-
tion 1nterface 700 for CSV dataset files, 1.e., the delimiter 1s
a comma. The interface 700 shares many of the GUI
clements as FIG. 6, and also shows an example of a
destination element 702 which specifies the delivery point
for the generated ingestion code. Note that the interface 600
may be chosen when delimiters other than commas are used
in the dataset.

FIG. 8 shows an example format-specific parameteriza-
tion mterface 800 for XML dataset files. The path element
802 specifies a path specifier of an input dataset. The rowTag
clement 804 specifies the row tag of an XML {ile to treat as
a row. For instance, i the XML string <books>
<book><book>. . . </books>, the appropriate value would

be book. Default 1s ROW. The system 102 detect and

respond to seli-closing XML tags.

The sampling ratio element 804 specifies a sampling ratio
for inferring the schema 1n the XML file. The sampling ratio
clement 804 may, for instance, accept values from 0.0 to 1.0,
with a default of 1.0. Possible types are Structlype, Array-
Type, Stringlype, LongType, Doublelype, BooleanType,
TimestampType and NullType.

The sampling ratio 1s used to infer the schema from a

given XML file. The sampling ratio may, for instances, take
a value between 0.0 to 1.0, with 0.0 representing 0% and 1.0
representing 100%. That 1s, the sampling ratio specifies what
percentage ol a given XML file to check to infer the schema
of the XML. As a specific example, 1f the sampling ratio 1s
0.3, then the system will evaluate 30% of the sample XML
file to infer the schema. For large XML files that are well
formed, the sampling ratio may be set lower and still obtain
accurate results.

In other implementations, the sampling ratio 1s not used
and instead the interface 800 provides a schema definition
input section through which the operator may directly pro-
vide a synthetic schema to the system that represents the
schema, e.g., as a StructType object. The StructType ellec-
tively builds the schema using specified types such as
String Iype and Long Type as different datatypes for different
fields 1n the XML file.

One specific example 1s:

StructType(Array(
StructField("_1d", StringType, nullable = true),
StructField("author", StringType, nullable = true),
StructField("description”, StringType, nullable = true),
StructField("genre"”, StringType ,nullable = true),

US 10,613,912 B2

9

-continued

StructField("price”, DoubleType, nullable = true),
StructField("publish_date"”, StringType, nullable = true),
StructField("title”, StringType, nullable = true)))

The exclude attribute 806 specifies whether to exclude
attributes 1n elements or not, and the default 1s false. The null
clement 808 specifies whether to treat whitespaces as null
values, and the default 1s false. The interface 800 also
includes a mode element 810, a character set element 812,
and a code generation element 814 with the functionality
described above with respect to FIG. 6.

Other GUI elements that may be included are the corrupt
record element that specifies the name of a new field where
malformed strings are formed, with a default of _corrup-
t record; an attribute prefix field that specifies a prefix for
field names to differentiate attributes from elements, with a
default of underscore “’; and a value tag field that specifies

the value when there are attributes 1n the element having no
child, with a default value of VALUE.

FIG. 9 shows an example format-specific parameteriza-
tion interface 900 for JSON dataset files. The interface 900
includes a path element 902 and a code generation element
904 with the functionality described above with respect to
FIG. 6. For JSON files, the system 102 will convert the
JSON 1nto a tabular format for ingestion into Hive or HDFS,
as examples. The following code segment 1n Table 1 1s one

example of code that may be used to analyze the JSON using
SQL.

TABLE 1

// Create SQLContext

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// Input JSON File as follows

// {"name":"ABC", "address":{"city":"PQR","state":"XYZ" } }

// {"name":"ABC2", "address":{"city":PQR2, "state":"XYZ2"}}
// Create a SchemaRDD for the JSON dataset.

val address = sqlContext.jsonFile("[the path to the JSON file]")
// Register the created SchemaRDD as a temporary table.
people.registerTempTable("address")

When Hive 1s selected as an output destination, then the
system 102 may provide a datamodel definition interface to
the operator 106. The datamodel definition interface allows
the operator 106 to define a Hive datamodel. The datamodel
definition interface also allows the operator 106 to specily
the Hive table name that will receive the ingested data.

FIG. 10 shows an example format-specific parameteriza-
tion interface 1000 for fixed fields dataset files. The interface
1000 includes a path element 1002 and a code generation
clement 1014 with the functionality described above with
respect to FI1G. 6. The intertace 1000 allows the operator 106
to specilty the number of characters i a line using the line
clement 1004, and the number of fields using the field
number element 1006. The field generation element 1008
will cause the system 102 to create the number of fields
specified 1n the field number element 1006. Each field may
have a name given the label element 1010 of the size given
by the size element 1012. The interface 1000 may be used
for fixed length fields 1n which every record has a fixed
number of characters and out of which every field has a fixed
length as well. The label element 1010 takes mput from the
operator of the field name, and the size element 1012 takes
input from the operator of the size of the field. The division
of each record 1n the data field among different fields occurs
accordingly. For instance, assume the total length of a record

10

15

20

25

30

35

40

45

50

55

60

65

10

1s 24 characters and that there are five fields in each record.
In this example, the interface 1000 generates five label and
size elements 1n which the label and the size for each field
may be entered, with validation that the total size of the five
fields adds to the 24 character total record size.

The methods, devices, processing, circuitry, and logic
described above may be implemented in many different
ways and 1n many different combinations of hardware and
software. For example, all or parts of the implementations
may be circuitry that includes an 1nstruction processor, such
as a Central Processing Unit (CPU), microcontroller, or a
microprocessor; or as an Application Specific Integrated
Circuit (ASIC), Programmable Logic Device (PLD), or
Field Programmable Gate Array (FPGA); or as circuitry that
includes discrete logic or other circuit components, includ-
ing analog circuit components, digital circuit components or
both; or any combination thereof. The circuitry may include
discrete interconnected hardware components or may be
combined on a single integrated circuit die, distributed
among multiple integrated circuit dies, or implemented 1n a
Multiple Chip Module (MCM) of multiple integrated circuit
dies 1n a common package, as examples.

Accordingly, the circuitry may store or access instructions
for execution, or may implement its functionality 1n hard-
ware alone. The instructions may be stored n a tangible
storage medium that 1s other than a transitory signal, such as
a flash memory, a Random Access Memory (RAM), a Read
Only Memory (ROM), an Frasable Programmable Read
Only Memory (EPROM); or on a magnetic or optical disc,
such as a Compact Disc Read Only Memory (CDROM),
Hard Disk Drive (HDD), or other magnetic or optical disk;
or in or on another machine-readable medium. A product,
such as a computer program product, may include a storage
medium and instructions stored 1n or on the medium, and the
instructions when executed by the circuitry 1n a device may
cause the device to implement any of the processing
described above or illustrated 1n the drawings.

The implementations may be distributed. For instance, the
circuitry may include multiple distinct system components,
such as multiple processors and memories, and may span
multiple distributed processing systems. Parameters, data-
bases, and other data structures may be separately stored and
controlled, may be incorporated into a single memory or
database, may be logically and physically organized in many
different ways, and may be implemented 1n many different
ways. In other implementations, any of the databases may be
part of a single database structure, and, more generally, may
be 1mplemented logically or physically 1n many diflerent
ways. Fach of the databases defines tables storing records
that the control instructions read, write, delete, and modify
to perform the processing noted below. Example implemen-
tations 1nclude linked lists, program variables, hash tables,
arrays, records (e.g., database records), objects, and implicit
storage mechanisms. Instructions may form parts (e.g.,
subroutines or other code sections) of a single program, may
form multiple separate programs, may be distributed across
multiple memories and processors, and may be implemented
in many different ways. Example implementations include
stand-alone programs, and as part of a library, such as a
shared library like a Dynamic Link Library (DLL). The
library, for example, may contain shared data and one or
more shared programs that include instructions that perform
any ol the processing described above or illustrated in the
drawings, when executed by the circuitry.

The 1individual features described above may be used 1n
any combination. For instance, any of the ingestion inter-
faces may include or exclude any of the GUI elements

US 10,613,912 B2

11

illustrated 1 FIGS. 6-10. The controller circuitry may
implement additional or fewer features, as may the program
code generation circuitry. In other implementations, sample
dataset files may not be used, and instead the program code
generation circuitry may analyze a full dataset file.

The data ingestion control system 102 provides many
technical advantages in solving the technical problem of
ingesting large complex datasets. One technical aspect of the
ingestion control system 1s an eflicient and lucid interface
via the ingestion interfaces 110. The data ingestion control
system 102 generates re-usable code with multiple language
support, ¢.g., Java and Scala, with deployment to parallel
processing clusters such as Hadoop™ clusters. The code 1s
tested before delivery to the operator 106. At the same time,
the system 102 provides multiple data format support. As
examples the system 102 may support CSV, delimited, fixed
width, XML, JSON or other file formats.

Note also that the data ingestion control system 102 does
not require a local application installation, e.g., on the local
system 108. Instead, the system 102 may be deployed as a
web based application running on top of a cloud based
tour-node Hadoop™ cluster. Furthermore, the ingestion
code generation circuitry supports code generation for mul-
tiple platforms, including Hadoop, Hive, Cassandra, Mon-
goDB or other NO SQL platforms. In other implementa-
tions, the system 102 implements a web-based schema
creation interface in which the operator 106 may create a
structured schema for data ingestion to a persistence table
(e.g. 1n Apache Hive). The operator 106 need not write any
code; instead the schema creation interface allows the opera-
tor 106 to directly create the schema, with ingestion into the
same data layer.

Various 1mplementations have been specifically
described. However, many other implementations are also
possible.

What 1s claimed 1s:
1. A system comprising:
in a data ingestion control system for a parallel processing,
cluster:
a flle communication interface operable to communi-
cate with a dataset repository;
an operator communication interface operable to render
a data ingestion interface; and
system circuitry 1in communication with the file com-
munication interface and the operator communica-
tion interface, the system circuitry configured to:
generate a data file format selector 1in the data
ingestion 1nterface;
recerve a format selector mput representing a file
format from the data file format selector:
responsive to the format selector input, generate a
format-specific parametrization interface in the
data ingestion interface for the file format;
accept parameterization iputs from the format-spe-
cific parameterization interface for the file format,
including a path specifier of an input dataset file
located 1n the dataset repository;
responsive to the format selector nput, i1dentify
format-specific code generation logic, and pass the
parameterization 1puts and the path specifier to
the format-specific code generation logic;
execute the format-specific code generation logic,
the format-specific code generation logic config-
ured to:
receive the parameterization nputs;
receive the path specifier;

10

15

20

25

30

35

40

45

50

55

60

65

12

sample, responsive to the parameterization inputs,
the 1nput dataset file located by the path speci-
fier 1n the dataset repository; and

responsive to the sampling, generate parallel pro-
cessing cluster mgestion code for deployment
in a parallel processing cluster to mgest project
dataset files meeting the file format and param-
eterization 1nputs.

2. The system of claim 1, where:

the system circuitry 1s further configured to:
accept a language specifier of a parallel processing

cluster language; and
generate the parallel processing cluster ingestion code
in the parallel processing cluster language.

3. The system of claim 2, where:

the system circuitry 1s further configured to:
generate an output language selector 1n the data inges-

tion interface that 1s configured to accept the lan-
guage specilier, and where the language selector
input comprises a Scala selector, a Java selector, or
both.

4. The system of claim 1, where:

the system circuitry 1s further configured to:
execute an ngestion test of the parallel processing

cluster 1ingestion code on a test cluster.
5. The system of claim 4, where:
system circuitry 1s further configured to:
generate a deployment instruction file for the parallel
processing cluster ingestion code; and

deliver the deployment 1nstruction file and the parallel
processing cluster ingestion code to a system opera-
tor.
6. The system of claim 1, where:
the operator communication interface 1s configured to
render the data ingestion interface over an exposed
network protocol layer.
7. The system of claim 1, where:
system circuitry 1s further configured to:
generate a parsing review interface comprising a post-
ingestion data preview responsive to the file format,
the parameterization inputs, and the input dataset
file;

await a confirmation mput to proceed; and

in response to the confirmation input, sample the input
dataset file and generate the parallel processing clus-
ter 1ngestion code.
8. The system of claim 1, where:
the format selector mput comprises:
a ‘delimited’ selector, a comma separated value (CSV)
selector, a ‘fixed field” selector, or any combination
thereof.
9. The system of claim 1, where:
the format selector mput comprises:
a extensible markup language (XML) selector, a
javascript object notation (JSON) selector, or both.
10. A method comprising:
in a data ingestion control system for a parallel processing,
cluster:
establishing a file communication channel to a dataset
repository;

establishing an operator communication channel for
interaction with the data ingestion control system;

rendering a data ingestion interface over the operator
communication channel; and

with system circuitry in communication with the file
communication channel and the operator communi-
cation channel:

US 10,613,912 B2

13

generating a data file format selector 1n the data
ingestion interface;
recerving a format selector input representing a file
format from the data file format selector;
responsive to the format selector mput, generate a
format-specific parametrization interface in the
data ingestion interface for the file format;
accepting parameterization inputs from the format-
specific parameterization interface for the file for-
mat, including a path specifier of an mput dataset
file located 1n the dataset repository;
responsive to the format selector mput, identifying
format-specific code generation logic;
passing the parameterization inputs and the path
specifier to the format-specific code generation
logic;
with the format-specific code generation logic:
receiving the parameterization inputs;
receiving the path specifier;
sampling, responsive to the parameterization
inputs, the mput dataset file located by the path
specifier in the dataset repository; and
responsive to the sampling, generating parallel
processing cluster ingestion code for deploy-
ment 1n a parallel processing cluster to mngest
project dataset files meeting the file format and
parameterization mputs.

11. The method of claim 10, further comprising:

accepting a language specifier of a parallel processing
cluster language; and

generating the parallel processing cluster ingestion code
in the parallel processing cluster language.

12. The method of claim 11, further comprising:

generating an output language selector 1n the data inges-
tion interface that 1s configured to accept the language
specifier, and where the language selector input com-
prises a Scala selector, a Java selector, or both.

13. The method of claim 12, further comprising:

executing an 1ingestion test of the parallel processing
cluster 1ingestion code on a test cluster.

14. The method of claim 13, further comprising:

generating a deployment instruction file for the parallel
processing cluster mgestion code; and

delivering the deployment instruction file and the parallel
processing cluster ingestion code to a system operator
over the operator communication channel.

15. The method of claim 14, further comprising;

rendering the data ingestion interface over an exposed
network protocol layer.

16. The method of claim 15, further comprising:

generating a parsing review interface comprising a post-
ingestion data preview responsive to the file format, the
parameterization mputs, and the mput dataset file;

awaiting a confirmation mnput to proceed; and

in response to the confirmation mput, sampling the input
dataset file and generating the parallel processing clus-
ter ingestion code.

17. The method of claim 16, where:

the format selector input comprises:

a ‘delimited” selector, a comma separated value (CSV)
selector, a ‘fixed field’ selector, or any combination
thereof.

18. The method of claim 17, where:

the format selector imput comprises:

a extensible markup language (XML) selector, a
javascript object notation (JSON) selector, or both.

10

15

20

25

30

35

40

45

50

55

60

65

14

19. A system comprising:
in a data ingestion control system for a parallel processing
cluster:
a fille communication interface operable to communi-
cate with a dataset repository;
an operator communication interface operable to render
a data ingestion interface;
system circuitry in communication with the file com-
munication interface and the operator communica-
tion interface, the system circuitry comprising;:
program code generation circuitry comprising:

a first cluster language generator array ol multiple
file format processors for a first cluster lan-
guage,

a second cluster language generator array of mul-
tiple file format processors for a second cluster
language; and

controller circuitry configured to:

generate a data file format selector in the data
ingestion interface;

receive a format selector mput specilying a file
format from the data file format selector:;

responsive to the format selector input, generate a
file format-specific parametrization interface in
the data ingestion interface for the file format;

accept parameterization inputs from the file for-
mat-specific parameterization interface for the
file format, including a path specifier of an input
dataset file located in the dataset repository;

generate an output language selector in the data
ingestion interface, the output language selector
operable to distinguish between the first cluster
language and the second cluster language;

accept a language selection between the first clus-
ter language and the second cluster language
from the output language selector; and

responsive to the file format and the language
selection, 1dentily a paired dataset processor
among the first cluster language generator array
and the second cluster language generator array
that matches to the language selection and the
file format;

pass the parameterization inputs to the program
code generation circuitry; and

initiate execution of the paired dataset processor 1n
the program code generation circuitry to gen-
erate parallel processing cluster ingestion code
for deployment 1n the parallel processing clus-
ter to ingest project dataset files meeting the file
format and parameterization nputs.

20. The system of claim 19, where:
the controller circuitry 1s further configured to:
generate a parsing review interface comprising a post-
ingestion data preview responsive to the file format, the
parameterization mputs, and the mput dataset file;
await a confirmation input to proceed;
in response to the confirmation mput, iitiate execution of
the paired file format generator; and
alter generation of the parallel processing cluster inges-
tion code:
generate a deployment instruction file for the parallel
processing cluster mgestion code;
deliver the deployment instruction file and the parallel
processing cluster ingestion code to a system opera-
tor over the operator communication channel.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

