United States Patent

US010609174B2

(12) (10) Patent No.: US 10,609,174 B2
Devaraju et al. 45) Date of Patent: Mar. 31, 2020
(54) PARALLEL PREFETCHING LOG/META FOREIGN PATENT DOCUMENTS
STREAM SUB-PORTIONS TO RECREATE
PARTITION STATES IN A DISTRIBUTED WO 2012142820 A1 10/2012
COMPUTING SYSTEM
OTHER PUBLICATIONS
(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US) Gonzalez-Beltran, et al., “Range queries over skip tree graphs”, In
Journal of Computer Communications, vol. 31, Issue 2, Feb. 2008,
(72) Inventors: Jegan Devaraju, Redmond, WA (US); pp. 358-374.
Yongfu Lou, Redmond, WA (US); Zhang, et al., “Reducing the Storage Overhead of Main-Memory
Maneesh Sah, Sammamish, WA (US) OLTP Databases with Hybrid Indexes”, In Proceedings of the
International Conference on Management of Data, Jun. 26, 2016,
(73) Assignee: Microsoft Technology Licensing, LLC, pp. 1567-1581.
Redmond, WA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 Primary Examiner — Shean Tokuta
U.S.C. 154(b) by 441 days. Assistant Examiner — Juan C Turriate Gastulo
(1) Appl. No.: 15/484.778 (74) Attorney, Agent, or Firm — Newport 1P, LLC; Mike
ppi. INO.. , R. Cicero
(22) Filed: Apr. 11, 2017
(37) ABSTRACT
(65) Prior Publication Data
US 2018/0295206 A1 Oct. 11, 2018 Prefetching metadata stream sgl?-portions apd/or lc?g stream
sub-portions to recreate partition states 1n a distributed
(51) Int. Cl comp}lting system. A system mqnitorsiperfonnance meju:ics
HO4L 29/08 (2006.01) associated with a first node running an instance of a partition
HO4L 1226 (2006.01) and, based thereon, cause a second node to duplicate a
HO4L 2906 (2006.01) Qesired operational state of the parti.tion. Tl:l@ desired opera-
(52) U.S. CL tional state may result from transactions being performed on
CPC HO4L 67/2847 (2013.01); HO4L 43/08 e partition alter a previous operational state. Re-creating
(2013.01): HO4L 67/10 (2013.01): HO4L 67/38 the desired qperatlo{lal state may 1nclude causing multiple
(2013.01) prefetch buflers to mmultaneous‘fly load Sllb-pOI"[lOI}S of the
55) Fit of Clastaton Sarc o o s commencig ek operstion s
gPC 1 I?[I.O4Lﬁ?7/f2 347, HO14% 67/101'; I;O ?L 43/08 entirety of the transactions being fully loaded. The system
~& dpPHEALION HEE JOL COMIPIEE SEAItAl TSIOLY. may preemptively analyze individual prefetch buflers to
(56) References Cited identily partial bufllers that have not fully loaded. Then, the

U.S. PATENT DOCUMENTS

7,181,574 Bl 2/2007 Lele
8,725,687 B2 5/2014 Klose

(Continued)

system may cause other prefetch buflers to assist the partial
buflers 1n fully loading a corresponding subset of transac-
tions.

20 Claims, 6 Drawing Sheets

/‘.5.9.!}.

THAT INCLUDES A 177

SUBSET OF TRANSACTIONG

= --- 501
INSTRUCT 1°7 PREFETCH BUFFER TO LOAD 157 SuB- }Jf

[PORTION OF TRANSACTION DATA T

l

503

PORTION OF TRANSACTION DATA THAT INCLUDES A 2% |7
SUBSET OF TRANSATTIONS

[INSTRUCT 2" PREFETCH BUFFER TO LOAD 27 SUIB-

l

RERLAY OF 177 SUBSET OF TRANSACTIONS

505
[ANALYZE 2¥° PREFETCH BUFFER FRICR TO COMPLETING }/

NO D SURSET

2082

h 4

DESIGHATE 2%
PREFETCH BUFFER AS
FPARTIAL BUFFER

l --h11
" AFTER COMPLETIMG 1%
SUBSET GELAY REPLAY
OF 2"~ SUBRBET

FULLY LOADED?

- 507

— 513
, S

DESIGNATE 2™
PREFFTCH BUFFER AS
FULL BUFFER

l =515

[REPLAY 2"° SUBSET J

MAMEDIATELY AFTER °F
SUBZET

US 10,609,174 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,886,796 B2 11/2014 Calder et al.
9,087,012 B1* 7/2015 Hayes GO6F 11/2094
9,256,383 B2 2/2016 De Spiegeleer et al.
9,519,551 B2 12/2016 Larson et al.
2014/0237172 Al1* 8/2014 Shah GOO6F 9/466
711/103
2014/0258499 A9* 9/2014 Calder HO4L 67/1002
709/224
2015/0242263 Al* 82015 Klose ...cooooeviiiniinnnn, G06Q 10/06
714/47.3
2015/0254264 Al1* 9/2015 Yu ..o, GO6F 11/1469
707/674
2015/0278281 Al 10/2015 Zhang
2016/0173599 Al 6/2016 Chablani et al.
2017/0139832 Al1* 5/2017 Gupta GO6F 12/0855

OTHER PUBLICATIONS

He, et al., “Dynamic multidimensional index for large-scale cloud
data”, In Journal of Cloud Computing Advances, Systems and

Applications, Jul. 15, 2016, pp. 1-11.

Liao, et al., “Performing Initiative Data Prefetching in Distributed
File Systems for Cloud Computing”, In Journal of IEEE Transac-

tions on Cloud Computing, Mar. 27, 2015, pp. 1-14.

Sprenger, et al., “Cache-Sensitive Skip List: Eflicient Range Que-
ries on modern CPUs”, https://www2.informatik.hu-berlin.
de/~sprengsz/papers/cssl.pdf, Retrieved on: Feb. 2, 2017, 16 pages.

* cited by examiner

U.S. Patent Mar. 31, 2020 Sheet 1 of 6 US 10,609,174 B2

100 -~ APPLICATION
' 102

DISTRIBUTED COMPUTING PLATEORM 104

FRONT END LAYER 106

PARTITION MaP 108

FARTITION LAYER 110

PARTITION MASTER 112

PARTITION| | PARTITION

PARTITION
NODE
o o o | 114(N)

[P:][Py]

PREFETCH BUFFER LAYER

PREFETCH MANAGER 118

STREAM LAYER 122

STREAM MANAGER

STREAM
NODE

26(11

STREAM
NODE
26 N

STREAM
NODE

26]2)

FI1G. 1

U.S. Patent Mar. 31, 2020 Sheet 2 of 6 US 10,609,174 B2

PARTITION
MASTER 112

MapP DATAL .
226

METRICS
212(1)

METRICS

""" PARTITION 1 | Reouest|
CLIENT 204 206

PART!TION
NODE :

PARTITION
- NopE

| TRANSACTION
| (TXN) REQUEST
; 206

TXN

DATA 208

-
” - »
'''''''

APPLICATION

PREFETCH BUFFER
LAYER 116

STREAM
MANAGER 124

Pbriion

224(2)

. i*-iﬂ-ﬁIﬂ-hiwhiﬂiﬁﬂ-éﬂih.-hi#'i*-li-tl--qill_ll---rl-Illiﬂi-llnlll--trl--_r-n-l-llni-ll-u-l--l--_u-l--1l-I-u---ﬂl----rl---H-l--ﬂ-ﬂ_.#-ﬂuuﬂ-&ﬂ-ﬂi-ﬂ--—u--u-l--ﬂl-utll--|-|-l--tl--ﬂ-l-ﬂ--l--u-Ill-nl-ﬂ-l-_-ﬂ-uﬂ-m--ﬂ-ﬁuiﬂ-iﬂ-#u-h-qhiﬁui-hiéﬂ'lﬁ- d

PARTITION 5 METADATA (Ms)

PsDATA OBJECTS | Op | Oe | O | Os | Ou | O f4LSs CHECKPOINT

Command (CMD) TXN»; TXN5 TXN, TXN3 ‘ -3
TXNm XNm , TRANS. #: 234

List to Check Point] TXN 3

PARTITEON 5 LOG STREAM OF TRANSACTIONS (LS5)

235 (NEW) eee 105 123 { NEW)

TRAN SACT!ON
LDATA

nn

+++

300 MB worth of the Ps
Transaction Data (LSs}

U.S. Patent Mar. 31, 2020 Sheet 3 of 6 US 10,609,174 B2

300

Timeline /

| RI(16)

| RI(15)
| 56-60

r L
AL k . _

RI(17)
64-68 |

2.1

2.6

RI(32) |
124-1281

124 - 128

8.3

FIG. 3

U.S. Patent Mar. 31, 2020 Sheet 4 of 6 US 10,609,174 B2

/—_4_9__

~ 401

___ 403
INSTRUCT A PARTITION NODE TO RECREATE A NEW INSTANCE OF
A PARTITION IN A DUPLICATIVE OPERATIONAL STATE AS A
PREVIOUS INSTANCE OF THE PARTITION

' . —405
OBTAIN METADATA INDICATING A LOG STREAM CHECKPOINT TO
DETERMINE A PORTION OF TRANSACTION DATA TO USE IN A

REPLAY OPERATION

_. 407
PARSE THE TRANSACTION DATA INTO SUB-PORTIONS INCLUDING
SEQUENTIAL SUBSETS OF TRANSACTIONS

DETERMINE SEQUENCE 1Ds CORRESPONDING TO
INDIVIDUAL TRANSACTIONS 409

DETERMINE FRAGMENTATION LEVELS ASSOCIATED WITH
INDIVIDUAL SUB-PORTIONS 411

___ . 413

PREFETCH BUFFERS 415 5

.. . 41 7
SEQUENTIALLY REPLAY THE SUBSETS OF TRANSACTIONS BY

PROCESSING THE INDIVIDUAL SUB-PORTIONS FROM INDIVIDUAL

E_ PREFETCH BUFFERS
Buffer

Loop

419

FIG. 4

U.S. Patent Mar. 31, 2020 Sheet 5 of 6 US 10,609,174 B2

/_5_9._

501

INSTRUCT 1°" PREFETCH BUFFER TO LOAD 1°" SUB-
PORTION OF TRANSACTION DATA THAT INCLUDES A 1°
SUBSET OF TRANSACTIONS

— _ — 503

INSTRUCT 2"° PREFETCH BUFFER TO LOAD 2™ SUB- '

PORTION OF TRANSACTION DATA THAT INCLUDES A 2V
SUBSET OF TRANSACTIONS

505
ANALYZE 2"° PREFETCH BUFFER PRIOR TO COMPLETING
REPLAY OF 1°" SUBSET OF TRANSACTIONS

507

NO " o SUBSET ~_ YES
| N FULLY LOADED?

- 509 - 513

DESIGNATE 2"°

DESIGNATE 2"
PREFETCH BUFFER AS
FULL BUFFER

PREFETCH BUFFER AS
PARTIAL BUFFER

- 511 — 515

REPLAY 2"° SUBSET
IMMEDIATELY AFTER 177
SURSET

AFTER COMPLETING 157 |
SUBSET DELAY REPLAY
OF 2™ SUBSET

FIG. 5

U.S. Patent Mar. 31, 2020 Sheet 6 of 6 US 10,609,174 B2

| PREFETCH
. BUFFER

STREAM

FRONT END PARTITION | ; !
| LAYER 122 |

| LAYER 1086 | LAYER 110 |

| APPLICATION]

LAYER 116

"NETWORK

600

NETWORK | /O

INTERFACE | | oo ;
ONET CONTROLLER |

610 616 618

MASS STORAGE DEVICE
612
OPERATING SYSTEM
614

VMEMORY

STREAM MANAGER

PREFETCH|
BUFFERS |
120 '

PARTITION MAP
108

US 10,609,174 B2

1

PARALLEL PREFETCHING LOG/META
STREAM SUB-PORTIONS TO RECREATE

PARTITION STATES IN A DISTRIBUTED
COMPUTING SYSTEM

BACKGROUND

Distributed computing systems can be configured to
simultaneously deploy numerous partitions across numerous
different computing nodes. Various circumstances may
result 1n a particular partition that 1s operating on a particular
computing node being moved to a different computing node.
More specifically, the particular partition may be loaded
onto the diflerent computing node and may then be trans-
formed into the same operational state that 1t was previously
in on the particular computing node 1t was moved from.
Transtorming the particular partition into the desired opera-
tional state typically involves (1) sequentially reading all the
records 1n the metadata stream, and (2) sequentially replay-
ing numerous transactions that have, in the aggregate,
resulted 1n the desired operational state and that have been
recorded 1n one or more log streams. Therefore, the time 1t
takes to load a partition and return 1t to a desired operational
state 1s partially dependent on an amount of time spent
reading the metadata stream and the one or more log streams
before commencing a replay operation of the numerous
transactions.

Minimizing the duration of partition loading 1s important
for maximizing a distributed computing system’s load-
balancing efliciencies and its availability of service. In
particular, while a particular partition 1s being loaded onto a
computing node, that particular partition may be unavailable
to service transaction requests from one or more applications
that the particular partition 1s supporting. Accordingly,
accelerating the rate at which the metadata stream and the
one or more log streams are read may be helpiul 1n reducing
the duration of partition loading and, ultimately, 1n maxi-
mizing load-balancing efliciency and availability of service
of a distributed computing system.

It 1s with respect to these considerations and others that
the disclosure made herein i1s presented.

SUMMARY

Technologies are described herein for prefetching sub-
portions of metadata streams and/or log streams to recreate
partition states 1 a distributed computing system. Generally
described, configurations disclosed herein enable a system
to monitor performance metrics associated with a first
computing node (may be referred to herein as a “node™) that
1s operating a partition in a particular operational state and,
based on the performance metrics, cause a second node to
recreate the partition 1n the particular operational state.

As used herein, an “operational state” of a partition may
refer generally to a plurality of specific states of one or more
data objects of the partition. For example, a particular data
object may designate a color for a particular graphical
clement of an application associated with the partition, e.g.
a sword element of a virtual gaming environment being at
least partially supported by the partition. Since the particular
operational state may result from a plurality of transactions
being performed with respect to the partition (and/or 1ndi-
vidual data objects thereot) subsequent to a previous opera-
tional state, re-creating the partition may include causing the
partition to enter the previous operational state and then
sequentially replaying the plurality of transactions. To
enable subsequent replaying of the plurality of transactions,

10

15

20

25

30

35

40

45

50

55

60

65

2

the distributed computing system may record the transac-
tions 1n one or both of a metadata stream and a log stream
associated with the partition. During a replay operation, the
transactions may be replayed 1n their original order to ensure
that the desired operational state of the partition 1s precisely
duplicated. The plurality of transactions may be read from
one or both of the metadata stream or the log stream of
transactions and, once read, loaded into a bufler from which
the transactions are replayed to the partition 1n their original
order. Waiting for a large number of transactions to load
betore commencing the replay operation, however, increases
the duration of partition loading which negatively impacts a
distributed computing system’s load-balancing efliciency
and its availability of service. As used herein, a “partition”
may refer generally to an instance of a virtual machine, an
application container, and/or a physical machine that is
configured to provide an idividualized computing environ-
ment to support the resources and/or operating systems
specific to one or more specilic service applications and/or
an individual service application.

Accordingly, causing a plurality of prefetch buflers to
simultaneously load (e.g., 1n parallel) sub-portions of the
plurality of transactions and then commencing the replay
operation after an initial subset of the transactions 1s loaded
provides benefits over waiting for the entirety of the trans-
actions to fully load prior to commencing the replay opera-
tion. For 1llustrative purposes, consider a scenario where the
plurality of transactions associated with a particular replay
operation has grown 1n size to include three-hundred mega-
bytes (MB) of transaction data on the metadata stream and
another three-hundred MB of transaction data on the log
stream. Further consider that the metadata stream and/or log
stream of transactions can be read at a rate of four MB per
second (MBPS). Under these circumstances, waiting for the
entire three-hundred MB of transaction data to load, from
cach of the metadata stream and the log stream, prior to
commencing the replay operation would result 1n a loading
delay of seventy-five seconds for each stream. In contrast,
splitting each stream’s three-hundred MB of transaction data
into a plurality of four MB sub-portions and commencing
the replay operation upon an 1mtial sub-portion being tully
loaded onto an individual prefetch bufler results 1n a loading
delay of only one second before the replay operation can be
commenced from each of the metadata stream and the log
stream.

Furthermore, deploying an appropriate number of
prefetch buflers to simultaneously load multiple individual
sub-portions results in a stream read position remaining
ahead of a record processing position (e.g. a log stream
position corresponding to a transaction that 1s currently
being replayed to the new instance of the partition). For
example, further suppose that the system includes sixteen
individual prefetch buflers each capable of reading a par-
ticular stream of transactions (e.g. either the metadata stream
or the log stream) at the four MBPS rate. Under these
circumstances, 1f each of these sixteen individual prefetch
buflers 1s 1nstructed to read a corresponding four MB
sub-portion at the outset of a read operation, then after the
first one-second of the read operation, the system will have
pre-fetched the first sixty-four MB of the three-hundred MB
of transaction data. Then, upon the mitial four MB sub-
portion being replayed, it’s corresponding prefetch bufler
may be instructed to begin loading and another four MB
sub-portion that corresponds to a range of transactions from
the sixty-fourth MB of the transaction data to the sixty-
eighth MB of the transaction data. Stated alternatively, under
these circumstances, the design parameters of the system

US 10,609,174 B2

3

would cause the stream read position to lead the record
processing position by roughly sixty to sixty-four MB.

According to aspects of the present disclosure, a system
1s provided for monitoring performance metrics correspond-
ing to a first node that 1s operating a partition in association
with an application. For example, the partition may be
performing one or more functions for the application and the
application may be communicating with the partition by
routing communications through a partition client. Further-
more, on the first node, the partition may be running in a
particular operational state that has resulted from a plurality
of transactions that have occurred subsequent to some
previous operational state of the partition on the first node.
Exemplary performance metrics include a computing load
being run on the first node (e.g. an amount of resource usage
in general and/or relative to one or more other nodes) and a
responsiveness of the partition (e.g. whether the partition 1s
processing requests 1 a timely manner and/or whether the
partition has crashed). Then, based on the performance
metrics the system may instruct a second node to generate a
new 1nstance of the partition and to re-create the particular
operational state that resulted from the plurality of transac-
tions occurring subsequent to the previous operational state
(e.g., the transactions that have occurred since the previous
operational state was recorded and checkpointed into meta-
data). In some 1mplementations, the second node may re-
create the particular operational state by bringing the new
instance nto the previous operational state and sequentially
replaying the plurality of transactions to the new instance of
the partition.

In some configurations, the techniques disclosed herein
cnable the system to sequentially replay the plurality of
transactions by obtaining metadata corresponding to the
previous operational state of the partition and analyzing the
metadata to 1dentily the plurality of transactions that resulted
in the desired operational state. The metadata may indicate
a plurality of data object states of a plurality of data objects.
For example, a first data object state may be “Easy,” a
second data object state may be “Blue,” a third data object
state may be “Full,” etc. Alternatively and/or 1n addition, the
metadata may indicate another plurality of transactions that
have occurred prior to the previous operational state and
which have resulted 1n the previous operational state. Under
circumstances 1n which the plurality of transactions of the
metadata stream corresponds to an amount of data that 1s too
great for any individual prefetch bufler to load by 1tself, a
prefetch manager may parse the metadata stream nto a
plurality of sub-portions and then cause individual prefetch
buflers to load individual sub-portions 1n accordance with
the techniques described heremn with respect to the log
stream. Accordingly, i1t should be appreciated that any tech-
nique described herein with respect to parsing the log stream
of transactions 1nto sub-portions and then causing individual
prefetch buflers to fetch individual sub-portions may be
equally apply to the metadata stream, and vice versa. How-
ever, for purposes of clarity and conciseness, these tech-
niques will be described mainly with respect to the log
stream ol transactions.

After having obtained the metadata, the system may
analyze the metadata to i1dentity a checkpoint associated
with a log stream of transactions and, based thereon, i1den-
tifying a portion of the log stream that includes a plurality of
transactions that have occurred with respect to the partition
and subsequent to a previous operational state of the parti-
tion. The system may then parse the portion of the log stream
of transactions into a plurality of sequential sub-portions and
then cause multiple individual prefetch buflers to simulta-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

neously load individual ones of the plurality of sequential
sub-portions. For example, based on the checkpoint, the
system may determine that the portion of transactions
includes the last one-thousand transactions of several thou-
sand transactions in the log stream and that these transac-
tions correspond to three-hundred MB of transaction data.
Then, the system may parse the transaction data into difler-
ent sub-portions that are substantially equally sized in terms
of data (e.g. each sub-portion may be apportioned a number
of transactions up to a predetermined number of MBs)
and/or are apportioned a substantially equal number of
transactions (e.g. each sub-portion be apportioned one-
hundred transactions with a final sub-portion being appor-
tioned a remainder of transactions—if any). Upon determin-
ing the sub-portions of the portion of the log stream (e.g. the
amount of transaction data following the checkpoint), the
system may cause individual ones of multiple pretfetch
buflers to simultaneously load individual sub-portions.

Once at least an 1nitial sub-portion 1s loaded, the system
may begin a replay operation to sequentially replay the
plurality of transactions to a new 1instance of the partition
that has been loaded into the previous operational state. For
example, a new 1nstance of the partition may be booted-up
on a desired computing node and, once operational, may
then be brought into the previous operational state. Then, the
replay operation may be performed to result in the new
instance of the partition being transtormed into a desired
operational state that results from the plurality of transac-
tions.

In some configurations, the techniques disclosed herein
cnable the system to analyze an individual prefetch bufler to
determine whether i1t has fully loaded a corresponding
sub-portion of the log stream (e.g. its currently assigned
transaction data) prior to completely replaying a subset of
transactions corresponding to an earlier sub-portion of the
log stream. For 1llustrative purposes, and consider a scenario
where the system has instructed a first prefetch builer to load
a first sub-portion of the log stream of transactions (e.g. a
first subset of transactions corresponding to an initial four
MB worth of the transaction data after the checkpoint) and
has further instructed a second prefetch butfler to load a
second sub-portion of the log stream of transactions (e.g. a
second subset of transactions corresponding to the next four
MB worth of the transaction data). Under these circum-
stances, while the system 1s 1n the process of replaying the
first subset of transactions to the partition, the system may
simultaneously be analyzing the second prefetch bufler to
determine whether the second subset of transactions 1s fully
loaded. Then, 11 the second prefetch bufler has fully loaded
the second subset of transactions, the system may designate
the second prefetch bufler as a full bufler to inform the
system that 1t may begin replaying the second subset of
transactions immediately upon finishing the first subset of
transactions. Alternatively, if the second pretetch bufler 1s
not fully loaded the second subset of transactions, the system
may designate the second prefetch bufler as a partial bufler
to inform the system that the second subset of transactions
1s not vet ready to be replayed.

It should be appreciated any reference to “first,” “second,”
ctc. items and/or abstract concepts within the description 1s
not intended to and should not be construed to necessarily
correspond to any reference of “first,” “second,” etc. ele-
ments of the claims. In particular, within this Summary
and/or the following Detailed Description, items and/or
abstract concepts such as, for example, individual partitions
and/or sub-portions of transactions and/or prefetch buflers
may be distinguished by numerical designations without

i

US 10,609,174 B2

S

such designations corresponding to the claims or even other
paragraphs of the Summary and/or Detailed Description. For
example, any designation of a “first sub-portion” and *“sec-
ond sub-portion” of the transaction data within a paragraph
of this disclosure 1s used solely to distinguish two different
sub-portions of the transaction data within that specific
paragraph—mnot any other paragraph and particularly not the
claims.

It should be appreciated that the above-described subject
matter may also be implemented as a computer-controlled
apparatus, a computer process, a computing system, or as an
article of manufacture such as a computer-readable medium.
These and various other features will be apparent from a
reading of the following Detailed Description and a review
ol the associated drawings.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s it intended that this Summary
be used to limit the scope of the claimed subject matter.
Furthermore, the claimed subject matter 1s not limited to
implementations that solve any or all disadvantages noted 1n
any part of this disclosure.

DRAWINGS

The Detailed Description 1s described with reference to
the accompanying figures. In the figures, the left-most
digit(s) of a reference number 1dentifies the figure 1n which
the reference number first appears. The same reference
numbers 1 different figures indicates similar or i1dentical
items.

References made to individual items of a plurality of
items can use a reference number followed by a parentheti-
cal containing a number of a sequence of numbers to refer
to each individual 1tem. Generic references to the 1tems may
use the specific reference number without the sequence of
numbers. For example, the items may be collectively
referred to with the specific reference number preceding a
corresponding parenthetical containing a sequence number.

FIG. 1 illustrates an exemplary computing architecture
that includes a distributed computing platform that 1s con-
figurable to deploy techniques described herein.

FIG. 2 illustrates an exemplary block diagram and data
flow scenario of a distributed computing platform that 1s
configured to preifetch sub-portions of metadata stream
transaction data and/or log stream transaction data for re-
creating partition states in accordance with techniques
described herein.

FIG. 3 1s a pictonal flow diagram that shows an illustra-
tive process of instructing multiple prefetch buflers to simul-
taneously load imdividual sub-portions of a metadata stream
of transactions and/or a log stream of transactions and then
causing the individual sub-portions to be sequentially pro-
cessed to bring new instance of a partition into a desired
operational state.

FI1G. 4 15 a flow diagram of a process to prefetch metadata
stream sub-portions and/or log stream sub-portions to re-
create a partition state 1in a distributed computing system.

FIG. 5 1s a flow diagram of a process to analyzing
individual prefetch buflers to determine whether a corre-
sponding transaction subset 1s fully loaded belore an earlier
transaction subset 1s finished being replayed to a partition.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 6 shows additional details of an example computer
architecture for a computer capable of executing the func-
tionalities described herein.

DETAILED DESCRIPTION

The following Detailed Description describes technolo-
gies for prefetching metadata sub-portions and/or log
streams sub-portions to recreate partition states 1n a distrib-
uted computing system. Generally described, configurations
disclosed herein enable a system to momitor performance
metrics of a first node that 1s operating a partition 1n a
particular operational state and, based on the performance
metrics, cause a second node to recreate the partition in the
particular operational state. Since the particular operational
state may result from a plurality of transactions being
performed with respect to the partition subsequent to a
previous operational state, re-creating the partition may
include causing the partition to enter the previous opera-
tional state and then sequentially replaying, in the same
order, the same plurality of transactions that had previously
been performed. To enable subsequent replaying of the
plurality of transactions, the distributed computing system
may record the transactions 1n one or both of the metadata
stream of transactions or a log stream of transactions asso-
ciated with the partition. The plurality of transactions may
be read from the metadata stream and/or log stream and
loaded 1nto a builer from which the transactions are replayed
in their original order to a new instance of the partition.
However, waitting for a single bufler to load a large number
of transactions before commencing the replay operation
increases the duration of partition loading and, ultimately,
negatively impacts a distributed computing system’s load-
balancing efliciency and its availability of service. Accord-
ingly, causing a plurality of prefetch buflers to simultane-
ously load sub-portions of the plurality of transactions and
then commencing the replay operation after an 1nitial subset
of the transactions 1s loaded provides benefits over waiting
for the entirety of the plurality of transactions to fully load
prior to commencing the replay operation.

For illustrative purposes, consider a scenario where a
portion of the log stream of transactions that 1s to be
replayed during a particular replay operation has grown in
s1ze to three-hundred megabytes (MB) of transaction data.
Further consider that the log stream of transactions can be
read at a rate of four MB per second (MBPS). Under these
circumstances, waiting for the entire three-hundred MB of
transaction data to load prior to commencing the replay
operation would result in a loading delay of seventy-five
seconds. In contrast, splitting the three-hundred MB of
transaction data into a plurality of four MB sub-portions and
commencing the replay operation upon an 1nitial sub-portion
(e.g. the first four MB of the transaction data) being fully
loaded onto an individual prefetch bufler would result 1n a
loading delay of only one second. Accordingly, deploying
multiple prefetch bufllers to simultaneously load relatively
small sub-portions of the transaction data provides a marked
improvement over deploying only a single builer to load the
entire relevant portion of the transaction data.

Furthermore, deploying multiple prefetch bufllers to
simultaneously load multiple sub-portions causes a stream
read position to remain ahead of a record processing position
alter the mitial loading period (e.g. one-second per the
immediate example). To 1llustrate this point, further suppose
that the system includes sixteen prefetch buflers each
capable of reading the log stream of transactions at the four
MBPS rate. Under these circumstances, i each of these

US 10,609,174 B2

7

sixteen prefetch buflers 1s mstructed to read a corresponding
four MB sub-portion at the outset of a read operation, then
alter the first one-second of the read operation the system
will have pre-fetched the first sixty-four MB of the three-
hundred MB of transaction data. Then, upon the 1mitial four
MB sub-portion being replayed, 1t’s corresponding prefetch
bufler may be instructed to begin loading another four MB
sub-portion that corresponds to a range of transactions from
the sixty-fourth MB of the transaction data to the sixty-
eighth MB of the transaction data. Stated alternatively, under
these circumstances, the design parameters of the system
would cause the stream read position to lead the record
processing position by roughly sixty to sixty-four MB.

For purposes of the present disclosure, embodiments are
described with reference to a distributed computing platiorm
having a front-end layer, a partition layer, a prefetch bufler
layer, and a stream layer. However, the methods and tech-
niques described herein can be performed 1n diflerent types
of operating environments having alternate configurations of
the functional components described herein. As such, the
embodiments described herein are merely exemplary, and 1t
1s contemplated that the methods and techniques may be
extended to other implementation contexts and/or environ-
ments.

A distributed computing platform may be implemented as
a cloud-based computing platform that runs cloud services
across different data centers and/or geographic regions. The
cloud-based computing platform can implement a fabric
controller component for provisioning and managing
resource allocation, deployment/upgrade, and management
of cloud services. Typically, a cloud-based computing plat-
form 1s configured to store data and/or run service applica-
tions 1n a distributed manner. The service application com-
ponents (e.g., tenant infrastructure or tenancy) of the cloud-
based computing platform may include nodes (e.g.,
computing devices, processing units, or blades 1n a server
rack) that are allocated to run one or more portions of a
tenant’s service applications.

When more than one service application 1s being sup-
ported by an individual node, the node may be partitioned
into virtual machines, application containers and/or physical
machines that concurrently run the separate service appli-
cations, respectively, 1n individualized computing environ-
ments that support the resources and/or operating systems
specific to each service application. Further, each service
application may be divided into functional portions such that
cach functional portion 1s able to run on a separate virtual
machine, application container, and/or physical machine. In
cloud-based computing platforms, multiple servers may be
used to run service applications and perform data storage
operations 1n a cluster. In particular, the servers may perform
data operations independently but exposed as a single device
referred to as a cluster. Each server in the cluster may be
referred to as a node.

Turning now to FIG. 1, embodiments are described with
reference to a computing architecture 100 that includes an
application 102 that 1s configured to send requests and/or
receive responses from a distributed computing platform
104. The distributed computing platform 104 may include a
front-end (FE) layer 106 that maintains a partition map 108.
The FE layer 106 may be configured for receiving incoming
requests from the application 102. Upon receiving a request,
the FE layer 106 may authenticate and authorize the request.
The FE layer 106 may also reference a partition map 108 to
route the request to an appropriate a partition node (e.g. a
computing node configured with one or more partitions)
and, ultimately, to a partition for which the request 1is

5

10

15

20

25

30

35

40

45

50

55

60

65

8

intended. For example, the partition map 108 may be
maintained by the FE layer 106 to keep track of a plurality
of partitions (e.g., by partition name or other 1dentifier) and
which partition node 1s serving which partition names.
The distributed computing platform 104 may further
include a partition layer 110 having a partition master 112
and one or more partition nodes 114(1) through 114(IN)
(which may collectively be referred to herein as partition
nodes 114) that are assigned to operate one or more 1ndi-
vidual partitions. For example, a plurality of service appli-
cations and/or functional components therecol may be
divided amongst a plurality of different partitions (labeled as
P,-P.,). As used herein, the integer “N” 1s used to denote an
open-ended integer amount of various system components
described herein. Accordingly, where two or more system
components are described as having a first through N-th
number of instances, these system components may have the
same number of mstances or may have different numbers of
instances. For example, a first component having N
instances may have the same amount of or more nstances
than a second component having N instances. The partition
master 112 may be configured to assign the partitions to
specific ones of the partition nodes 114. For example, the
partition master may instruct partition node 114(1) to cease
operation of a current instance of P while further instructing
partition node 114(2) to generate a new instance of P< 1n an
operational state that matches the operational state which P.
was operating in on the partition node 114(1). Partition
master 112 may further be configured to determine when a
particular partition 1s not currently hosted by any server (e.g.
due to a partition node failure and/or individual partition
crash) and reassign the partition to a different partition node.
For example, the partition master 112 may determine that P
has crashed on partition node 114(1) and may respond by
instructing partition node 114(2) to generate a new 1nstance
of P. 1n an operational state that i1s duplicative of an
operational state the previous instance of P was in just prior
to the crash. Partition master 112 may also be configured to
control load-balancing of the partition nodes 114 by appro-
priately assigning the individual partitions across the parti-
tion nodes 114. For example, the partition master 112 may
determine that resource utilization of the partition node
114(1) 1s relatively high as compared to resource utilization
of the partition node 114(2) and may respond by moving P-
to the partition node 114(2) for load-balancing purposes.
The distributed computing platform 104 may further
include a prefetch bufler layer 116 having a prefetch man-
ager 118 and a plurality of prefetch buflers 120. The prefetch
bufler layer 116 may be configured to temporarily store a
plurality of transactions that have occurred with respect to a
particular partition and which have resulted 1n the particular
partition being 1n a particular operational state. The prefetch
bufler layer 116 may be further configured to enable a replay
operation that includes sequentially replaying the plurality
ol transactions to a new instance of the particular partition
thereby causing the particular partition to return to the
particular operational state. In some configurations, the
prefetch builer layer 116 1s configured to communicate with
a stream layer 122 of the distributed computing platform 104
to obtain the plurality of transactions and then to commu-
nicate the plurality of transactions to particular partition
nodes 114. Furthermore, the prefetch bufler layer 116 may
be configured to parse the plurality of transactions nto a
plurality of sub-portions and to assign individual ones of the
plurality of prefetch buflers 120 to load individual sub-
portions. For example, 1n a scenario where the plurality of
transactions corresponds to three-hundred MB of transaction

US 10,609,174 B2

9

data, the prefetch manager 118 may determine a plurality of
sub-portions (e.g. seventy-five sub-portions each being sub-
stantially four MB 1n size). Then, the prefetch manager 118
may instruct individual prefetch builers 120 to load indi-
vidual sub-portions of the transaction data wherein each
sub-portion of the transaction data includes a subset of the
plurality of transactions. For example, the first four MB of
transaction data may include the first one-thousand transac-
tions of the plurality of transactions and so on. Once a
particular prefetch bufler 120 has completed loading a first
sub-portion and also communicating the first sub-portion to
a corresponding partition node 114, the partition master 112
may 1nstruct the particular prefetch bufler to load a second
sub-portion of the log stream of transactions.

The stream layer 122 may include a stream manager 124
and a plurality of stream nodes 126 that include log streams
of transactions (labeled as LS,-LS,,) associated with indi-
vidual partitions and/or metadata (labeled as M, -M,,) asso-
ciated with individual partitions. The stream manager 124
may be configured to manage the log streams of transactions
and/or metadata across the plurality of stream nodes 126.
For example, during operation of a particular partition, the
partition layer 110 may process incoming transactions cor-
responding one or more service applications such as, for
example, the application 102. As a more specific but non-
limiting example, the application 102 may transmit one or
more data requests and/or instructions to a particular parti-
tion via the FE layer 106. As these data requests and/or
instructions are processed by the partition layer 110 as
transactions at the particular partition, the stream manager
124 may record these transactions 1n a log stream of trans-
actions corresponding to the particular partition (e.g. by
appending the received transaction data to the log stream of
transactions). Furthermore, the stream manager 124 may be
configured to assign a sequence ID to each individual
transaction to keep track of a sequence 1n which the trans-
actions were performed with respect to the particular parti-
tion and, ultimately, to ensure that a replay operation replays
the mdividual transactions 1n precisely the same sequence
order.

Turning now to FIG. 2, a block diagram and data flow
scenario 1s 1llustrated of a distributed computing platform
that 1s configured to prefetch sub-portions of metadata
stream transaction data and/or log stream transaction data
for re-creating partition states 1n accordance with techniques
described herein. For purposes of clanity and conciseness,
the discussion of FIG. 2 (and the other figures of this
disclosure for that matter) continues mainly with respect to
parsing the log stream of transactions into sub-portions and
causing the prefetch buflers to obtain his sub-portions.
However, it should be appreciated that any prefetch related
technique described with respect to the log stream of trans-
actions 1s equally applicable to the metadata stream. In
particular, FIG. 2 shows a high-level architecture of a cloud
computing system 200 1n accordance with implementations
of the present disclosure. Among other components, the
cloud computing system 200 may include the partition
master 112, one or more partition nodes 114 operating one
or more partitions (e.g. P,-P.,), a stream manager 124 that
maintains log data 202 on one or more stream nodes 126,
and a prefetch bufler layer 116 having a prefetch manager
118 and the plurality of pretetch buflers 120. The cloud
computing system 200 may also include a partition client
204 that 1s configured to reference the partition map 108 to
act as a liaison between the application 102 and the partition
nodes 114. It should be understood that this and other
arrangements described herein are set forth only as

10

15

20

25

30

35

40

45

50

55

60

65

10

examples. Other arrangements and elements (e.g., machines,
interfaces, functions, orders, and groupings of functions,
etc.) can be used 1n addition to or mnstead of those shown,
and some elements may be omitted altogether. Further, many
ol the elements described herein are functional entities that
may be implemented as discrete or distributed components
or in conjunction with other components, and 1n any suitable
combination and location.

With respect to the example data tlow scenario of FIG. 2,
the application 102 1s shown to transmit a transaction
request 206 to the partition client 204 which ultimately
routes the transaction request 206 to a corresponding parti-
tion. For purposes of the present discussion, assume that the
application 102 has generated the transaction request 206
with respect to a particular service application that 1s being
operated on partition P, and furthermore that the transaction
request 206 1s recerved by the partition client 204 at a time
when the partition P 1s being operated on the partition node
114(1). In various embodiments, the partition client 204 may
be linked to the application 102 and may be configured to
utilize the partition map 108 to route requests from the
application 102 to an appropriate partition. For example,
upon receiving the transaction request 206, the partition
client 204 may determine that the transaction request 206
has been generated with respect to the particular service
application that 1s being operated on partition P.. Then, the
partition client 204 may reference the partition map 108 to
determine that the partition P; 1s currently being operated by
partition node 114(1). Based on the determinations that the
transaction request 206 1s intended for P, which 1s operating
on partition node 114(1), the partition client 204 may route
the transaction request 206 to the partition node 114(1)
which then passes the transaction request 206 to the partition
P..

As used herein, a “transaction” may refer to specific
processes such as, for example, computer commands and/or
routines that facilitate the worktflow of the application 102
and/or the storage for the application 102. For example, the
transaction request 206 may cause the partition P. to process
and commit to memory a transaction that changes a state of
a data object i some specific manner. For illustrative
purposes, suppose that the application 102 1s a cloud-based
multiplayer strategy videogame and that the partition P 1s
operating one of numerous service applications correspond-
ing to application 102. Further suppose that the particular
service application being operated by partition P. corre-
sponds to a particular user account and parameters thereof
that vary over time based on transactions being performed
on P.. With particular reference to the log data 202 of FIG.
2, under these circumstances, an exemplary transaction
request 206 may be associated with changing states of one
or more data objects of the cloud-based multiplayer strategy
videogame such as, for example, data object O, associated
with a difliculty setting, data object O, associated with a
color of a sword element, and data object O~ associated with
a current health status of a user.

Upon successiully processing one or more transactions
corresponding to the transaction request 206, the partition
node 114(1) may transmit transaction data 208 to the stream
manager 124 to indicate that the one or more transactions
have been successtully performed. The transaction data 208
may further associate a sequence ID with individual trans-
actions to preserve a record of a sequence in which the one
or more transactions were performed. For example, with
reference to the log data 202 and in particular the partition
five log stream of transactions labeled LS., individual trans-
actions of the transaction data 208 may indicate an ordered

US 10,609,174 B2

11

sequence of commands that have been performed with
respect to specific data objects, e.g. a first transaction labeled
with sequence ID 233 may correspond to a computer com-
mand CMD;, being performed with respect to data object
O, a second transaction labeled with sequence 1D 234 may
correspond to a computer command CMD.. being per-
formed with respect to a data object O,,, etc. For purposes
of the present discussion, suppose that CMD, corresponds to
a command to incrementally increase the difliculty setting of
the cloud-based multiplayer strategy videogame. For
example, 11 the current difliculty setting of the cloud-based
multiplayer strategy videogame 1s set to “Easy” CMD, may
change the difficulty setting to “Medium,” whereas if the
current difliculty setting of the cloud-based multiplayer
strategy videogame 1s set to “Medium” CMD, may change
the difliculty setting to “Hard.” Further suppose that the
difficulty setting of “Hard” 1s the highest difliculty setting
possible for the cloud-based multiplayer strategy videogame
so that 1f the command CMD 1s performed while the current
dificulty setting 1s already set to “Hard” the difliculty setting
will not actually change. It can be appreciated that a current
state of a particular data object may have an eflect on the
result of any particular command being performed. Accord-
ingly, 1t can further be appreciated that performing the
plurality of transactions to a new 1instance of a particular
partition 1n a different order than the plurality of transactions
was pertormed with respect to a previous instance of the
partition may result in an operational state ol the new
instance not being duplicative of an operational state of the
previous instance.

Based on the transaction data 208, the stream manager
124 may compile a log stream of transactions corresponding
to the individual partitions and may transmit data corre-
sponding to the log stream of transactions to one or more
stream nodes 126 for durable storage. For example, as
illustrated, the stream manager 124 1s shown to transmit log
stream transaction data 210 (also referred to herein as simply
“transaction data”), that may be appended to the log stream
of transactions LS., to both of the stream node 126(1) and
the stream node 126(N). The stream manager 124 may also
compile metadata corresponding to the individual partitions
and may transmit the metadata to one or more stream nodes
126 for durable storage. For example, as illustrated, the
stream manager 124 1s shown to transmit metadata M- (1.e.
metadata corresponding to partition P.) to the stream node
126(N). Although as 1llustrated the metadata M- 1s shown to
be transmitted to a single stream node, 1n various 1mple-
mentations metadata may be transmitted to and stored across
multiple stream nodes.

In some implementations, the metadata may retlect a
previous operational state of the partition at some particular
point 1n time and the log stream of transactions may be
usable to determine a more recent operational state of the
partition. For example, the metadata may indicate one or
more data object states associated with a particular partition
at the particular point in time 1n the log stream of transac-
tions may indicate one or more sequential transactions that
have occurred since the particular point 1n time and have
changed the one or more data object states. For purposes of
the present discussion, assume that the metadata indicates a
data object state of “Easy” corresponding to the “Dathcultly
Setting”” data object, 1.e. data object O,. In some implemen-
tations, the metadata may directly indicate the one or more
data object states as of a particular transaction having
occurred with respect to the partition. For example, the
metadata M. may include an indication of a checkpoint
associated with the log stream of transactions LS. that

10

15

20

25

30

35

40

45

50

55

60

65

12

indicates data object states for individual data objects as of
a particular transaction having been performed, e.g. as
identified by a sequence ID. In the illustrated scenario, the
metadata M. indicates that as of transaction number 234
having been performed with respect to partition P., the state
of data object O, 15 “Easy,” the state of data object O, 1s
“Blue,” the state of data object O 1s “Full,” etc. In some
implementations, the metadata may indirectly indicate the
one or more object states. For example, the metadata M
may include a listing of one or more transactions that have
been processed with respect to the partition prior to the
particular point in time and have resulted in the partition
entering the previous operational state at the particular point
in time. For example, 1n the illustrated scenario, the meta-
data M. indicates that as of transaction number 234
(TXN,,,) having been performed with respect to partition
P., both of TXN, and TXN,, have occurred with respect to
data object Op. Furthermore, suppose that the metadata
associated with each of TXN, and TXN, ; indicates a par-
ticular command such as, CMD, and/or CMD....

The partition master 112 may also be configured to
monitor performance metrics 212 associated with various
partition nodes 114 for purposes of allocating the plurality of
partitions across the plurality of partition nodes 114. For
example, as illustrated, the partition master 112 1s monitor-
ing first performance metrics 212(1) corresponding to the
first partition node 114(1) and 1s further monitoring second
performance metrics 212(2) corresponding to the second
partition node 114(2). Exemplary performance metrics
include, but are not limited to, an indication that one or more
partitions has crashed on a particular node, resource utili-
zation corresponding to individual nodes, and/or software
update schedules associated with individual nodes. For
purposes of the present discussion, assume that the first
performance metrics 212(1) include an indication that the
partition P has crashed at the first partition node 114(1) and
turther assume that the performance metrics 212(2) indicate
the second partition node 114(2) has ample available com-
puting resources to 1mnitiate a new nstance of the partition P-.
Further assume that based on these performance metrics
212, the partition master 112 has made a determination to
move the partition P, from the first partition node 114(1) to
the second partition node 114(2). Accordingly, as illustrated,
the partition master 112 may transmit a first command
214(1) to cause the first partition node 114(1) to cease
operation of the partition P; and a second command 214(2)
to cause the second partition node 114(2) to begin operation
ol a new 1nstance of the partition P and furthermore to bring
the new instance of the partition P into an operational state
that 1s duplicative of the last operatlonal state recorded by
the combination of the metadata M; and the log stream of
transactions LS.

Upon recerving the second 1nstruction 214(2), the second
partition node 114(2) may establish a communication link
216 with the prefetch butler layer 116 to employ the prefetch
bufler layer’s 116 services in quickly re-creating the new
instance of the partition P. and bringing 1t into the opera-
tional state that 1s duplicative of the last operational state
recorded by the combination of the metadata M. and the log
stream of transactions LS. Then, the prefetch bufler layer
116 may establish a commumnication link 218 with the stream
manager 124 through which the stream manager 124 may
transmit LS, map information 220 to inform the prefetch
manager 118 as to which stream nodes 126 are currently
storing various portions of the log data 202. For example, as
illustrated, the LS, map information 220 may indicate that
the metadata M 1s currently being stored on the N-th stream

US 10,609,174 B2

13

node 126(IN) and that each of the first stream node 126(1)
and the N-th stream node 126(N) are each storing copies of
the log stream of transactions LS. Accordingly, the prefetch
manager 118 may request the metadata M. from the N-th
stream node 126(N) Then, the prefetch manager 118 may
communicate various details of the metadata M; to the
second partition node 114(2) to bring the new instance of the
partition P, into the previous operational state.

In some configurations, the metadata M may correspond
to an amount of data that 1s too great for any one individual
prefetch butler 120 to fully load. For example, suppose that
cach individual pretetch bufler 1s capable of loading up to
4.2 MB of data and furthermore that the metadata M.
corresponds to 100 MB of data. Under these circumstances,
the prefetch manager 118 may parse the metadata mto a
plurality of sub-portions and then cause individual prefetch
buflers to load individual sub-portions 1n accordance with
techniques described herein with respect to the log stream of
transactions. In some configurations, the metadata may
correspond to an amount of data that can be fully loaded
onto a single prefetch bufler 120. Under these circum-
stances, the prefetch manager 118 may simply instruct a
particular prefetch bufler to load the entirety of the metadata.

The prefetch manager 118 may analyze the metadata to
identify a checkpoint 1 the log stream of transactions
associated with the partition and, based on the checkpoint,
may 1dentify a plurality of transactions that have occurred
with respect to the partition subsequent to the previous
operational state. As illustrated, the metadata M. 1ndicates
that a current checkpoint for LS 1s designated as transaction
sequence ID number 234, i1.e. the idenftified checkpoint
informs the prefetch manager 118 that the data object states
indicated by the metadata M. are current up through trans-
action number 234. Accordingly, the prefetch manager 118
may determine that the portion of the log stream of trans-
actions that follows transaction number 234 corresponds to
a plurality of transactions that have yet to be reflected within
the metadata Mx. To bring the new instance of the partition
P. into the desired operational state (e.g. the last state
recorded by the combination of M. and LS.), the partition
node 114(2) may first bring the new instance of the partition
P. into the previous operational state indicated by the
metadata M. Then, a replay operation may be performed to
replay to the new instance of the partition P< that portion of
the log stream of transactions LS. which follows the check-
point.

Based on the 1dentified checkpoint, the prefetch manager
118 may i1dentily a plurality of transactions following the
last checkpointed transaction. As illustrated, this portion of
the log stream of transactions includes transactions TXN,, -
through TXN, 5,3 which corresponds to three-hundred
MB of data. Contmumg with the supposition that each
individual prefetch bufler 1s capable of loading up to 4.2 MB
of data, 1t can be appreciated that no individual prefetch
builer 1s capable of loading the entirety of the three-hundred
MB of data. Accordingly, the prefetch manager 118 may
parse the portion of the log stream of transactions to be
replayed into a plurality of sequential sub-portions. For
example, the three-hundred MB portion of the log stream of
transactions may be parsed into seventy-five sequential
sub-portions that each correspond to substantially four MB
of the log stream of transactions. In some implementations,
the prefetch manager 118 may parse the portion of the log
stream 1nto the plurality of sequential sub-portions based at
least partially on the sequence IDs. For example, the
prefetch manager 118 may be configured to parse the portion
based on predetermined target data sizes (e.g. four MB each)

10

15

20

25

30

35

40

45

50

55

60

65

14

but also to not split data associated with anyone 1ndividual
transaction across two or more individual prefetch buflers
120. Accordingly, in some implementations, a plurality of
sequential sub-portions may be substantially equal to but not
exactly equal to the predetermined target data size. For
example, the prefetch manager 118 may determine a {first
sub-portion as corresponding to TXN,,. through TXN, ;4
corresponding to the first 3.97 MB of the portion of the log
of transactions, a second sub-portion as corresponding to
TXN, 405 through TXN,,0o corresponding to the next 4.01
MB of the portion of the log of transactions, etc.

Then, the prefetch manager 118 may 1ssue read instruc-
tions to individual ones of the prefetch bufilers 120 to cause
multiple prefetch bullers 120 to simultaneously load differ-
ent individual sub-portions of the plurality of sequential
sub-portions of the transaction data. For example, the
prefetch manager 118 may issue a {first read instruction to
cause the first prefetch bufler 120(1) to load the first sub-
portion (e.g. the first 3.9 MB that includes TXN, ;. through
TXN,150), a second to read instruction to cause the second
prefetch butler 120(2) to load the second sub-portion (e.g.
the next 4.01 MB that includes TXN, 44, through TXN;66),
etc. Upon recelvmg a particular read instruction, the 1ndi-
vidual prefetch buflers 120 may issue sub-portion requests
to one or more stream nodes 126 that are determined to be
storing, individually and/or in combination, at least the
sub-portion corresponding to the read instruction. For
example, as illustrated, the first pretetch builer 120(1) 1s
shown to transmit a first sub-portion (SP) request 222(1) to
the N-th stream node 126(N), the second prefetch bufler
120(2) 1s shown to transmit a second SP request 222(2) to
the first stream node 126(1), and so on. Then, 1n response to
the SP requests 222, the individual stream nodes 126 are
shown to transmit the requested sub-portions to a corre-
sponding 1ndividual prefetch bufler 120. For example, as
illustrated, the first stream node 126(1) 1s shown to transmit
a {irst sub-portion 224(1) to the first prefetch bufler 120(1),
the N-th stream node 126(IN) 1s shown to transmit a second
sub-portion 224(2) to the second prefetch bufler 120(2), and
so on. Ultimately, the individual sub-portions 224 and, more
particularly, subsets of transactions corresponding thereto,
are sequentially replayed to the new instance of the partition
to return the partition to a desired operational state.

In some 1mplementations, the prefetch manager 118 may
be configured to determine transaction data replica distribu-
tions corresponding to replications of multiple copies of the
transaction data across multiple ones of the plurality of
stream nodes. For example, as illustrated i FIG. 2, the
stream manager 124 1s illustrated to transmit copies of the
transaction data 210 to each of the first stream node 126(1)
and the N-th stream node 126(N). Therefore, the prefetch
manager 118 may be able to obtain various sub-portions of
the transaction data 210 from various ones of the plurality of
stream nodes 126. In some implementations, the pretetch
manager 118 may be configured to generate read instructions
that instruct the prefetch managers 120 to obtain sub-
portions of the transaction data 210 from specific ones of the
stream nodes 126 1n order to efliciently balance read traflic
across the nodes. For example, the prefetch manager 118
may 1ssue sixteen initial read instructions to cause the
prefetch buflers 120 to obtain corresponding sub-portions of
the transaction data from multiple different stream nodes
126 rather than causing the prefetch buflers to attempt to
simultaneously read from the same nodes and potentially
disrupt each other’s read operations.

In some configurations, upon the new instance of the
partition being loaded onto a particular node and/or being

US 10,609,174 B2

15

decommissioned from another particular node, the partition
master 112 may transmit map data 226 to update the
partition map 108. For example, upon the partition P being
moved from the partition node 114(1) to the partition node
114(2), the partition master 112 may update the partition
map 108 to inform the partition client to no longer route
transaction requests 206 associated with the application 102
to the first partition node 114(1) but rather to route such
requests to the second partition node 114(2).

Turning now to FIG. 3, a pictorial flow diagram shows an
illustrative replay operation 300 of istructing multiple
prefetch bullers 120 to simultaneously load individual sub-
portions of transaction data and then causing transactions
included within the individual sub-portions to be sequen-
tially processed to bring new instance of a partition into a
desired operational state. The replay operation 300 1is
described with reference to a timeline 302 that progresses
from the top of the page to the bottom of the page and 1s
labeled 1n terms of seconds. It can be appreciated that
specific times are labeled on the timeline 302 for 1llustrative
purposes only and with respect to the specific system
configurations and process parameters described herein.
Accordingly, the system configurations, process parameters,
and specific times labeled on the timeline 302 are set forth
solely to convey the techniques described herein and not to
limit the scope of the claimed subject matter.

The replay operation 300 1s further described with refer-
ence to 16 individual prefetch butlers, 1.e. prefetch buller
120(1) through prefetch bufler 120(16), six of which are
illustrated 1n FIG. 3. Each of the six prefetch buflers selected
for 1llustration are graphically represented at six different
points 1n time to clearly 1llustrate concepts described herein.
In particular, of the 16 individual prefetch buflers included
in this particular system configuration, prefetch buflers one
through four, fifteen, and sixteen are graphically represented
at each of 0.5 seconds, 1.5 seconds, 1.7 seconds, 2.1
seconds, 2.6 seconds, and 9.3 seconds. Furthermore, in each
graphical representation of the individual prefetch buflers, a
portion of each imdividual prefetch butler has been darkened
from left to right to represent graphically a percentage
and/or amount of an individual sub-portion of transaction
data that has been loaded as of the indicated point in time.
The darkened region being close to the left border of the
individual prefetch bufler 1s representative of the individual
prefetch butler being empty, €.g. having no transaction data
loaded. The darkened region being close to the right border
of the mdividual prefetch bufler 1s representative of the
individual can fetch bufler being full, e.g. having an entire
sub-portion of transaction data loaded. The darkened region
falling between the extremes of “Empty” and “Full” 15 a
linear graphical representation of a percentage ol a sub-
portion that has been loaded, e.g. the first prefetch bufler
120(1) 1s graphically represented as holding two MB of a
first sub-portion (1.e. 50% of the four MB) whereas the
second prefetch bufler 120(2) 1s graphically represented as
holding one MB of a second sub-portion (1.e. 25% of the
four MB).

For purposes of the present discussion, assume that each
individual prefetch bufiler 120 1s capable of loading up to 4.2
MB of data and that the portion of the log stream of
transactions corresponds to three-hundred MB of data. Fur-
ther suppose that each individual prefetch bufler 1s capable
of reading the log stream of transactions from one or more
of the stream nodes 126 at a rate of up to four MBPS. In
some 1mplementations, the actual rate that an individual
prefetch butler 1s capable of reading a specific sub-portion
may depend on a variety of factors such as, for example, a

10

15

20

25

30

35

40

45

50

55

60

65

16

level of fragmentation of various bytes of data correspond-
ing to the specific sub-portion and/or a level of resource
utilization on a particular stream node 126 from which the
individual prefetch bufler 1s attempting to read the specific
sub-portion. Further suppose that the prefetch manager 118
(not shown 1n FIG. 3), 1s configured to parse a portion of the
log stream of transactions, corresponding to a particular
replay operation, into a plurality of sequential sub-portions
that each correspond to substantially four MB of transaction
data.

At some point in time prior to T=0, the prefetch manager
118 may determine at least an 1mitial batch of the plurality of
sequential sub-portions of the log stream of transactions. For
example, the prefetch manager 118 may analyze the meta-
data M: to 1dentily a checkpoint in the log stream of
transactions LS. Then, based on the checkpoint, the
prefetch manager 118 may identily the portion of the log
stream of transactions LS; corresponding to the plurality of
transactions occurring subsequent to the previous opera-
tional state of the partition. For example, as illustrated in
FIG. 2, the prefetch manager 118 may identily transactions
TXN,;5 through TXN, 5 ,,5 as being “New” in the sense
that these transactions are not retlected in the object states
indicated by the metadata M.. Ultimately, once the relevant
portion of the log stream of transactions 1s identified, the
prefetch manager 118 may parse this relevant portion into a
plurality of sub-portions. For example, continuing with the
present assumptions, the prefetch manager 118 may parse
the relevant portion into sequential and substantially equally
s1zed sub-portions of roughly 4 MB.

At time T=0.0, the prefetch manager 118 may 1ssue read
istructions to imdividual prefetch buflers 120. For example,
the prefetch manager 118 may issue a first read mstruction
RI(1) to the first prefetch bufler 120(1), a second read
instruction RI(2) to the second prefetch butler 120(2), and so
on. Under the present assumptions, each of the read instruc-
tions corresponds to sequential portions of roughly four MB
of data such that the initially 1ssued sixteen read instructions
correspond to roughly the first sixty-four MB of the three-
hundred MB of transaction data. In FIG. 3, each individual
prefetch builer’s current to read assignment 1s indicated just
below the graphical representation of each 1individual
prefetch buffer. For example, at T=0.5 the first prefetch
buffer 120(1) has a read assignment corresponding to the
first four MB of the log stream portion whereas at T=1.7 the
first prefetch bufler 120(1) has a new read assignment
corresponding to roughly MBs 64-68 of the log stream
portion. In some implementations, the replay operation may
commence once the imitial sub-portion 1s fully loaded onto
the first prefetch bufler 120(1). For example, under the
present assumptions where the first read instruction RI(1) 1s
issued at T=0 and corresponds to roughly four MB of data,
the first prefetch bufler 120(1) will fully load the initial
sub-portion at roughly T=1 second 1f it reads at close to its
maximum rate of four MBPS. Accordingly, in the 1llustrated
scenario, the replay operation begins at roughly T=1.

At time T=0.5, the first prefetch butler 120(1) has loaded
one-half of the 1mitial sub-portion corresponding to the first
read 1nstruction RI(1), the second prefetch bufler 120(2) has
loaded one-quarter of the next sub-portion corresponding to
the second read instruction RI(2), and the other illustrated
prefetch bufllers have each loaded an amount of their cor-
responding sub-portion as graphically represented. Further-
more, at time 1=0.5, the replay operation 300 has not yet
begun processing any sub-portions. In some 1mplementa-
tions, the replay operation 300 will commence replaying

US 10,609,174 B2

17

transactions corresponding to the initial sub-portion once the
initial sub-portion 1s fully loaded 1nto the first prefetch butler
120(1).

At time T=1.5, the replay operation 300 has nearly
completed processing the first sub-portion as indicated by
the processor symbol (labeled “CPU”) and the correspond-
ing progress-arrow 304(1) imndicating how much of the first
sub-portion has been replayed to the partition. In some
implementations, the prefetch manager 118 may be config-
ured to analyze one or more prefetch buflers that are
sequentially i front of a current processing position. For
example, i the illustrated scenario, at time T=1.5 the
prefetch manager 118 has already analyzed the second
prefetch bufler 120(2) to determine whether the second
sub-portion has been fully loaded such that the replay
operation 300 may immediately proceed to replaying the
second sub-portion upon completion of the first sub-portion.

Here, the second prefetch bufler 120(2) has fully loaded the

second sub-portion and, therefore, the prefetch manager 118
has designated this prefetch bufler with a full bufler indi-
cation (graphically illustrated as a check). As illustrated 1n
FIG. 3, the magnifying glass symbol indicates that the
prefetch manager 118 1s currently analyzing a particular
prefetch bufler 120 at the indicated pomnt in time. For
example, at T=1.5 the prefetch manager 1s currently analyz-

ing each of the third prefetch bufler 120(3) and the fourth
prefetch bufler 120(4).

At time T=1.7, the replay operation 300 has just begun
processing the second sub-portion as indicated by the pro-
cessor symbol and the corresponding progress-arrow 304(2).
Furthermore, the prefetch manager 118 has finished analyz-
ing each of the third prefetch bufler 120(3) and the fourth

prefetch bufler 120(4) and 1s currently analyzing the fif-
teenth prefetch bufler 120(15) and the sixteenth pretetch
butler 120(16). As illustrated, the prefetch manager 118 has
designated the third prefetch butler 120(3) with a full bufler
indication but has designated the fourth prefetch bufler
120(4) with a partial builer indication (graphically illus-
trated as an “X”’) to indicate that this prefetch bufler has not
tully loaded 1ts corresponding sub-portion, 1.e. the fourth

sub-portion. In some implementations, the pretfetch manager
118 may be configured to 1ssue supplemental read nstruc-
tions based on an individual prefetch bufler failing to timely
load a corresponding sub-portion. For example, as 1llus-
trated, at T=1.7 the fourth prefetch builer 120(4) has only
successiully loaded the first two MB of 1ts sub-portion while
failing to load the remaining final two MB of 1ts sub-portion,
¢.g. a system glitch or anomalous events may have caused
this prefetch bufler to timeout prior to completion of 1ts read
assignment. As illustrated, the prefetch manager 118 has
issued a supplemental read instruction directly back to the
tourth prefetch butler 120(4) instructing this prefetch butler
to read the remaining two MB (e.g. the fourteenth through
sixteenth MB of data). In some implementations, the
prefetch manager 118 may 1ssue supplemental read 1nstruc-
tions to one or more individual prefetch buflers other than
the imdividual prefetch bufler originally receiving the cor-
responding read assignment. For example, although not
illustrated, the prefetch manager 118 may have 1ssued the
supplemental read instruction to the first prefetch builer
120(1) to enlist the first prefetch buller to assist the fourth
prefetch bufler 120(4) or to take over the fourth prefetch
butler’s duties entirely.

Also at time T=1.7, the prefetch manager 118 has 1ssued

a new read instruction RI(17) to the first prefetch bufler

10

15

20

25

30

35

40

45

50

55

60

65

18

120(1) due to the replay operation 300 having completed
replaying the subset of transactions corresponding to the
initial read instruction RI(1).

At time T=2.1, the replay operation 300 has nearly
completed processing the second sub-portion as indicated by
the progress-arrow 304(2). Furthermore, as the third
prefetch bufler 120(3) has already been designated with a
tull bufler indication, the prefetch manager 118 has cleared
the replay operation 300 to begin processing the third
sub-portion from the third prefetch bufler 120(3) immedi-
ately upon completing the second sub-portion. Furthermore,
having received the supplemental read 1nstruction, the fourth
prefetch builer 120(4) has been caused to remnitiate 1ts read
operation to load the remaining two MBs of 1ts read assign-
ment.

At time T=2.6, the replay operation 300 has begun pro-
cessing the third sub-portion as indicated by the processor
symbol and the corresponding progress-arrow 304(3). Fur-
thermore, the prefetch manager 118 1s currently reanalyzmg
the fourth prefetch bufler 120(4) and 1s also analyzing the
first prefetch bufler 120(1). Furthermore, as the replay
operation 300 has finished processing the third sub-portion,
the prefetch manager 118 has 1ssued another new read
instruction RI(18) to the second pretfetch butler 120(2).

At time T=9.3, the replay operation 300 has finished
processing the sixteenth sub-portion and, therefore, the
prefetch manager 118 has 1ssued another new read 1nstruc-
tion RI(32) to the sixteenth prefetch buffer 120(16). As
turther illustrated, the replay operation has begun processing
seventeenth sub-portion from the first prefetch bufler 120(1)
as indicated by the processor symbol and the corresponding
progress-arrow 304(17). Accordingly, 1t can be appreciated
that the replay operation 300 may resemble an 1terative loop
operation to sequentially process portions of log stream
transaction data that are greater than an aggregate amount of
prefetch bufler storage by parsing the portions into more
manageable sub-portions. For example, according to the
present assumptions and system parameters, the aggregate
amount of prefetch bufler storage 1s equal to 67.2 MB (e.g.
4.2 MB times sixteen individual prefetch buflers) whereas
the relevant portion of the log stream transaction data 1s
equal to three-hundred MB.

Turning now to FIG. 4, a flow diagram 1s illustrated of a
process 400 to prefetch log stream sub-portions to re-create
a partition state mn a distributed computing system. The
process 400 1s described with reference to FIGS. 1-3. The
process 400 1s 1llustrated as a collection of blocks 1n a logical
flow graph, which represent a sequence of operations that
can be implemented 1n hardware, software, or a combination
thereof. In the context of software, the blocks represent
computer-executable instructions that, when executed by
one or more processors, perform the recited operations.
Generally, computer-executable instructions include rou-
tines, programs, objects, components, data structures, and
the like that perform or implement particular functions. The
order 1n which operations are described 1s not intended to be
construed as a limitation, and any number of the described
blocks can be combined in any order and/or in parallel to
implement the process. Other processes described through-
out this disclosure shall be interpreted accordingly.

At block 401, a system may monitor performance metrics
associated with a distributed computing system. In some
implementations, the system may monitor performance met-
rics on an individual node basis. For example, as illustrated
in FIG. 2, the system may include a partition master 112 that
1s configured to monitor first performance metrics 212(1)
corresponding to a first partition node 114(1), second per-

US 10,609,174 B2

19

formance metrics 212(2) corresponding to a second partition
node 114(2), and so on. In some implementations, the
system may monitor performance metrics on an individual
partition basis. For example, the partition master 112 may be
configured to monitor a performance of the partition P, and
the partition P while each are operating on the first partition
node 114(1) and, may 1identify that the partition P, has
become slow to respond and/or nonresponsive to transaction
requests 206 that are 1ssued by the application 102. As a
more specific but nonlimiting example, the partition master
212 may determine that the partition P has crashed on the
first partition node 114(1).

At block 403, the system may instruct a particular parti-
tion node to re-create a new instance of a partition 1n an
operational state that 1s duplicative of a previous 1nstance of
the partition. For example, as illustrated in FIG. 2, the
system may 1ssue one or more instructions 214 to cause a
particular partition node to re-create a new instance of the
partition P.. In some implementations, the one or more
instructions 214 1ssued at block 403 may be based upon the
performance metrics associated with block 401. For
example, the partition master 112 may identify that the
partition P has crashed at the first partition node 114(1) and,
based thereon, the partition master 112 may issue the first
command 214(1) to cause the first partition node 114(1) to
cease operation of the partition P and the second command
214(2) to cause the second partition node 114(2) to begin
operation of a new 1nstance of the partition P, and further-
more to bring the new instance of the partition P. into an
operational state that 1s duplicative of the last operational
state recorded by the combination of the metadata M< and
the log stream of transactions LS.

At block 405, the system may obtain metadata that
indicates a log stream checkpoint that enables the system to
determine a portion of transaction data to use 1n a replay
operation. For example, as illustrated in FIG. 2, a prefetch
manager 118 may obtain the metadata M. from one or more
stream nodes 126. In some configurations, the metadata may
tully indicate a plurality of data object states corresponding
to a plurality of data objects of the partition such that, based
solely on the metadata, the system can bring a new instance
of the partition 1nto a previous operational state. Upon
receiving the metadata, the system may analyze the metadata
to 1dentily the checkpoint of the log stream of transactions
associated with the partition. Then, based on the checkpoint,
the system may 1dentify a portion of the transaction data that
includes a plurality of transactions that have occurred sub-
sequent to this previous operational state and have resulted
in a desired operational state, 1.e. an operational state result-
ing from the plurality of transactions being performed with
respect to the partition once 1t has been brought into the
previous operational state. As described elsewhere herein,
this “portion” of the transaction data may correspond to a
plurality of transactions that are “New” in the sense that
these transactions are not reflected 1n the object states
indicated by the metadata.

At block 407, the system may parse the transaction data
into a plurality of sub-portions of transaction data wherein
the individual sub-portions include sequential subsets of
transactions of the plurality of transactions. As used herein,
the term “portions” used in the context of portions of the
transaction data may refer generally to an amount of data
(c.g. 1n terms ol data size such as, for example, bytes,
kilobytes, megabytes) that 1s associated with a particular
subset of transactions. For example, a portion of the trans-
action data may correspond to a particular four MB chuck of
the transaction data. As used herein, the term ““subset” used

10

15

20

25

30

35

40

45

50

55

60

65

20

in the context of subsets of the plurality of transactions may
refer generally to a discrete number of transactions. A subset
of the plurality of transactions may correspond to a speciific
one-thousand of the plurality of transactions, e.g. transac-
tions TXN, 44, through TXN, 0.

As 1ndicated by block 409, parsing the transaction data at
block 407 may include determining sequence IDs corre-
sponding to individual transactions. Then, the system may
determine the sub-portions of transaction data based at least
partially on the sequence 1Ds. In some implementations, the
system may parse the transaction data into sub-portions that
cach include a substantially equal number of transactions.
For example, the system may be configured to parse the
transaction data into sub-portions that each iclude a corre-
sponding subset of one-hundred transactions with a final
sub-portion including a subset of a remainder of transactions
if the plurality of transactions 1s not a multiple of one-
hundred.

As indicated by block 411, parsing the transaction data at
block 407 may include determining fragmentation levels
associated with individual sub-portions. Then, the system
may determine data sizes corresponding to individual sub-
portions based upon the fragmentation levels. For example,
the system may determine that a first sub-portion of trans-
action data 1s highly fragmented (e.g. distributed across
numerous nodes and/or stored on one or more disks 1n large
amounts of relatively small fragment sizes) whereas a sec-
ond sub-portion of the transaction data i1s highly consoli-
dated (e.g. distributed across a single/small number of nodes
and/or stored on a single disc as a single data fragment). It
can be appreciated that a fragmentation level associated with
a portion of data may have an effect on the rate at which such
a portion of data can be obtained, e.g. loaded 1nto a particular
prefetch butler 120. For example, if a first prefetch builer 1s
instructed to read a highly fragmented four MB portion of
transaction data whereas a second prefetch buller 1s
instructed to read a highly consolidated four MB of trans-
action data, then all other things being equal the first
prefetch bufler will likely need more time to fully read the
highly-fragmented portion. Accordingly, in some implemen-
tations, the system may be configured to determine data
s1zes corresponding to individual sub-portions based at least
partially on the fragmentation levels for the purpose of
managing loading times corresponding to the individual
sub-portions.

At block 413, the system may cause multiple prefetch
buflers to simultaneously load individual sub-portions of the
transaction data. For example, as illustrated 1in FIG. 3, the
system may 1ssue a plurality of read instructions that each
individually correspond to an individual sub-portion of the
transaction data.

As 1ndicated by block 415, causing prefetch buflers to
load sub-portions of the transaction data may include 1ssuing
supplemental read instructions to individual prefetch bui-
ters. For example, as illustrated 1n FIG. 3, the system may
determine when a particular prefetch bufler has failed to
timely load a sub-portion corresponding to a particular read
instruction. In some implementations, the system may 1den-
tify one or more data fragments of a particular sub portion
that have yet to be loaded into a particular prefetch butler.
Then, the system may 1ssue a supplemental read instruction
with respect to the one or more data fragments. In some
implementations, the system may issue the supplemental
read instruction back to the same prefetch bufler which was
originally instructed to load the one or more data fragments.
For example, as illustrated in FIG. 3, 1 response to the
tourth pretetch butter 120(4) failing to load one or more data

US 10,609,174 B2

21

fragments corresponding to the last two MB of data of the
tour MB sub-portion corresponding to read instruction four
RI(4), the system has 1ssued the supplemental read mstruc-
tion back to the fourth prefetch buffer 120(4). In some
implementations, the system may issue the supplemental
read instruction to a prefetch bufler that 1s different than the
prefetch bufler originally instructed to load the one or more
data fragments. For example, 1n an alternative scenario to
that illustrated in FIG. 3, the system could have 1ssued the

illustrated supplemental read 1nstruction (e.g. labeled “Supp.
RI) to the first prefetch bufler 120(1) at time T=1.7. Accord-

ingly, in some implementations the system may be config-
ured to instruct particular prefetch buflers to assist other
prefetch buflers 1 instances one particular sub-portions of
transaction data are not timely loaded.

At block 417, the system may sequential replay the
subsets of transactions by processing the individual sub-
portions that have been loaded onto the individual prefetch
buflers 120. For example, as illustrated 1in FIG. 3, system
may replay a first subset that has been loaded onto the first
prefetch buller 120(1), and then once finished with replaying,
the first subset the system may commence replaying a
second subset that has been loaded onto the second pretetch
butter 120(2) and so on.

As 1ndicated by the builer loop 419, 1n implementations
where an aggregate amount of buller storage 1s less than a
data size corresponding to the relevant portion of transaction
data, the system may iteratively loop between blocks 413
and 417 until the replay operation has completed. Stated
alternatively, when the system finishes replaying individual
subsets of the transactions corresponding to a particular read
istruction issued to a particular prefetch bufler, the system
may 1ssue the particular prefetch bufler a different read
instruction to cause the prefetch builer to load a different sub
portion of the transaction data. For example, as illustrated in
FIG. 3, when the system begins replaying the second subset
after having finished replaying the first subset, the system
may 1ssue a new read instruction to the first prefetch bufler
120(1).

Turning now to FIG. 3, a flow diagram 1s illustrated of a
process 500 to analyzing individual prefetch buflers to
determine whether a corresponding transaction subset 1s
tully loaded before an earlier transaction subset 1s finished
being replayed to a partition.

At block 501, a system may instruct a {irst prefetch butler
to load a first sub-portion of transaction data that lists the
first subset of transactions. For example, the prefetch man-
ager 118 may 1nstruct the first prefetch butler 120(1) to load
an 1nitial four MB of transaction data of the relevant portion
of the log stream of transactions and/or the metadata stream
of transactions. For purposes of the discussion of FIG. 5,
assume that the imitial four MB of transaction data lists a
subset of transactions ranging from TXN; ,,, through TXN,,
000,

At block 503, a system may 1instruct a second pretetch
builer to load a second sub-portion of transaction data that
lists a second subset of transactions. For example, the
prefetch manager 118 may instruct the second prefetch
butler 120(2) to load the next four MB of transaction data of
the relevant portion of the luxury transactions. For purposes
of the present discussion of FIG. 5, assume that the next four
MB of transaction data lists a subse‘[of transactions ranging
trom TXN, ,o,; through TXNjy ;0. Accordingly, 1t can be
appreciated that the first subset of transactions and second
subset of transactions are immediately sequential 1 the
sense that the final transaction of the first subset (i.e.

10

15

20

25

30

35

40

45

50

55

60

65

22

TXN, g00) 1Immediately precedes the initial transaction of
the second subset (1.e. TXN, 4,)-

At block 505, the system may analyze the second prefetch
bufler prior to completing replay of the first subset of
transactions. At decision block 507, the system may deter-
mine whether the second prefetch bufler has tully loaded the
second subset of transactions.

Based on a determination that the second prefetch builer
has not fully loaded the second subset of transactions, the
process 300 may proceed to block 509 at which the second
prefetch bufler 1s designated as a partial bufler to inform
system components that a replay of the second subset 1s not
yet ready to be commenced. Then, at block 511, the system
may delay a replay of the second subset of transaction after
completing a replay of the first subset of transactions based
on the designation put on the second prefetch buller at block
509. Ultimately, the process 500 may iteratively loop back
to decision block 507 thereby causing the system to delay
commencing a replay of the second subset of transactions
until such time as the second subset of transactions 1s fully
loaded onto the second prefetch bufler and/or a third
prefetch bufler.

Based on a determination that the second prefetch builer
has fully loaded the second subset of transactions, the
process may proceed from block 507 to block 513 at which
the second prefetch buifler 1s designated as a full builer to
inform system components that a replay of the second subset
1s ready to be commenced. Then, at block 515, the system
may immediately commence a replay of the second subset
alter completing a replay of the first subset of transactions
based on the designation put on the second prefetch bufler
at block 513.

FIG. 6 shows additional details of an example computer
architecture 600 for a computer capable of executing the
partition Master 112, prefetch manager 118, stream manager
124, partition map 108, and/or any program components
thereol as described herein. Thus, the computer architecture
600 illustrated in FIG. 6 1llustrates an architecture for a
server computer, or network of server computers, or any
other types of computing devices suitable for implementing
the functionality described herein. The computer architec-
ture 600 may be utilized to execute any aspects of the
soltware components presented herein.

The computer architecture 600 illustrated i FIG. 6
includes a central processing umt 602 (“CPU”), a system
memory 604, including a random-access memory 606
(“RAM”) and a read-only memory (“ROM”) 608 and the
plurality of prefetch buflers 120 described herein, and a
system bus 610 that couples the memory 604 to the CPU
602. A basic mput/output system containing the basic rou-
tines that help to transfer information between elements
within the computer architecture 600, such as during startup,
1s stored i the ROM 608. The computer architecture 600
further includes a mass storage device 612 for storing an
operating system 614, other data, and one or more applica-
tion programs. The mass storage device 612 may further
include one or more of the partition master 112, the prefetch
manager 118, the stream manager 124, and/or the partition
map 108.

The mass storage device 612 1s connected to the CPU 602
through a mass storage controller (not shown) connected to
the bus 610. The mass storage device 612 and 1ts associated
computer-readable media provide non-volatile storage for
the computer architecture 600. Although the description of
computer-readable media contained herein refers to a mass
storage device, such as a solid-state drive, a hard disk or

CD-ROM drive, 1t should be appreciated by those skilled 1n

US 10,609,174 B2

23

the art that computer-readable media can be any available
computer storage media or communication media that can
be accessed by the computer archutecture 600.

Communication media includes computer readable
instructions, data structures, program modules, or other data
in a modulated data signal such as a carrier wave or other
transport mechanism and includes any delivery media. The
term “modulated data signal” means a signal that has one or
more of its characteristics changed or set in a manner as to
encode 1nformation 1n the signal. By way of example, and
not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of the any of the above should
also be included within the scope of computer-readable
media.

By way of example, and not limitation, computer storage
media may include volatile and non-volatile, removable and
non-removable media implemented 1n any method or tech-
nology for storage of information such as computer-readable
instructions, data structures, program modules or other data.
For example, computer media includes, but 1s not limited to,
RAM, ROM, EPROM, EEPROM, tlash memory or other
solid state memory technology, CD-ROM, digital versatile
disks (“DVD”), HD-DVD, BLU-RAY, or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk stor-
age or other magnetic storage devices, or any other medium
which can be used to store the desired information and
which can be accessed by the computer architecture 600. For
purposes ol the claims, the phrase “computer storage
medium,” “computer-readable storage medium”™ and varia-
tions thereof, does not include waves, signals, and/or other
transitory and/or mtangible communication media, per se.

According to various techniques, the computer architec-
ture 600 may operate 1mn a networked environment using,
logical connections to remote computers through a network
650 and/or another network (not shown). The computer
architecture 600 may connect to the network 650 through a
network interface unit 616 connected to the bus 610. It
should be appreciated that the network interface unit 616
also may be utilized to connect to other types of networks
and remote computer systems. The computer architecture
600 also may include an input/output controller 618 for
receiving and processing nput from a number of other
devices, including a keyboard, mouse, or electronic stylus
(not shown in FIG. 6). Similarly, the mnput/output controller
618 may provide output to a display screen, a printer, or
other type of output device (also not shown 1n FIG. 6). It
should also be appreciated that via a connection to the
network 6350 through a network interface unit 616, the
computing architecture may enable communication between
the functional components described herein.

It should be appreciated that the software components
described herein may, when loaded into the CPU 602 and
executed, transform the CPU 602 and the overall computer
architecture 600 from a general-purpose computing system
into a special-purpose computing system customized to
facilitate the functionality presented herein. The CPU 602
may be constructed from any number of transistors or other
discrete circuit elements, which may individually or collec-
tively assume any number of states. More specifically, the
CPU 602 may operate as a finite-state machine, 1in response
to executable mstructions contained within the software
modules disclosed herein. These computer-executable
instructions may transform the CPU 602 by specifying how

10

15

20

25

30

35

40

45

50

55

60

65

24

the CPU 602 transitions between states, thereby transform-
ing the transistors or other discrete hardware elements

constituting the CPU 602.

Encoding the software modules presented herein also may
transiform the physical structure of the computer-readable
media presented herein. The specific transformation of
physical structure may depend on various factors, in difler-
ent implementations of this description. Examples of such
factors may include, but are not limited to, the technology
used to implement the computer-readable media, whether
the computer-readable media 1s characterized as primary or
secondary storage, and the like. For example, if the com-
puter-readable media 1s 1implemented as semiconductor-
based memory, the software disclosed herein may be
encoded on the computer-readable media by transforming
the physical state of the semiconductor memory. For
example, the software may transform the state of transistors,
capacitors, or other discrete circuit elements constituting the
semiconductor memory. The software also may transform
the physical state of such components 1n order to store data
thereupon.

As another example, the computer-readable media dis-
closed herein may be implemented using magnetic or optical
technology. In such implementations, the software presented
herein may transform the physical state of magnetic or
optical media, when the software 1s encoded therein. These
transformations may include altering the magnetic charac-
teristics of particular locations within given magnetic media.
These transformations also may include altering the physical
features or characteristics of particular locations within
grven optical media, to change the optical characteristics of
those locations. Other transformations of physical media are
possible without departing from the scope and spirit of the
present description, with the foregoing examples provided
only to facilitate this discussion.

In light of the above, 1t should be appreciated that many
types of physical transformations take place in the computer
architecture 600 in order to store and execute the software
components presented herein. It also should be appreciated
that the computer architecture 600 may include other types
of computing devices, including hand-held computers,
embedded computer systems, personal digital assistants, and
other types of computing devices known to those skilled 1n
the art. It 1s also contemplated that the computer architecture
600 may not include all of the components shown 1n FIG. 6,
may include other components that are not explicitly shown
in FIG. 6, or may utilize an architecture completely different

than that shown in FIG. 6.

Example Clauses

The disclosure presented herein may be considered in
view of the following clauses.

Example Clause A, a system for prefetching log stream
sub-portions to recreate partition states in a distributed
computing system, the system comprising: one or more
processors; and a memory 1n communication with the one or
more processors, the memory having computer-readable
instructions stored thereupon that, when executed by the one
or more processors implement a partition master and a
prefetch manager: the partition master configured to: moni-
tor performance metrics corresponding to a first node that 1s
operating a partition 1n association with at least one appli-
cation, wherein an operational state of the partition corre-
sponds to a plurality of transactions that have occurred
subsequent to a previous operational state of the partition;
and 1nstruct, based at least in part on the performance

US 10,609,174 B2

25

metrics, a second node to recreate the operational state of the
partition, with respect to the at least one application, by
sequentially replaying the plurality of transactions to a new
instance of the partition that 1s 1n the previous operational
state; and the prefetch manager configured to: obtain meta-
data corresponding to the previous operational state of the
partition; analyze the metadata to 1dentily a checkpoint of a
log stream associated with the partition, wherein the check-
point indicates an 1nitial transaction of a portion of the log
stream that sequentially lists the plurality of transactions;
determine, based at least in part on the checkpoint, a
plurality of sub-portions of the portion of the log stream that
sequentially lists the plurality of transactions wherein the
plurality of sub-portions sequentially forms the portion of
the log stream that sequentially lists the plurality of trans-
actions; and cause individual prefetch buflers, of a plurality
of prefetch buflers, to simultaneously load individual sub-
portions, of the plurality of sub-portions, to enable the
second node to sequentially replay the plurality of transac-
tions to the new instance of the partition.

Example Clause B, the system of Example Clause A,
wherein the prefetch manager i1s further configured to:
instruct a first pretetch bufler to load a first sub-portion, of
the plurality of sub-portions, that sequentially lists a first
subset of the plurality of transactions; and mstruct a second
prefetch bufler to load a second sub-portion, of the plurality
ol sub-portions, that sequentially lists a second subset of the
plurality of transactions, wherein the second node 1s con-
figured to begin replaying the second subset to the new
instance of the partition after successiully replaying the first
subset to the new 1nstance of the partition.

Example Clause C, the system of any one of Example
Clauses A through B, wherein the prefetch manager 1is
turther configured to: 1dentily one or more data fragments,
of the second sub-portion, that have not been loaded to the
second prefetch bufler; and instruct at least one of the second
prefetch bufler or a third prefetch bufler to load the one or
more data fragments.

Example Clause D, the system of any one of Example
Clauses A through C, wherein the prefetch manager 1is
turther configured to, based at least 1n part on a determina-
tion that the second node has finished replaying the first
subset to the new 1nstance of the partition, cause the first
prefetch bufler to load a third sub-portion, of the plurality of
sub-portions, that sequentially lists a third subset of the
plurality of transactions, wherein the second subset 1s 1mme-
diately subsequent to the first subset, and wherein the third
subset 1s subsequent the second subset.

Example Clause E, the system of any one of Example
Clauses A through D, wherein the operational state of the
partition 1s based at least partially on a plurality of data
object states, corresponding to a plurality of data objects,
associated with the at least one application, and wherein the
metadata indicates at least some of the plurality of data
object states.

Example Clause F, the system of any one ol Example
Clauses A through E, wherein the operational state of the
partition further corresponds to a second plurality of trans-
actions that have occurred prior to the previous operational
state, wherein the metadata sequentially lists the second
plurality of transactions, and wherein the prefetch manager
1s Turther configured to cause the individual pretfetch buflers
to load the second plurality of transactions to enable the
second node to sequentially replay the second plurality of
transactions to the new instance to change the new instance
into the previous operational state.

10

15

20

25

30

35

40

45

50

55

60

65

26

Example Clause G, the system of any one of Example
Clauses A through F, wherein the prefetch manager 1s further
configured to: i1dentily one or more data fragments of the
portion of the log stream to determine fragmentation levels
associated with the plurality of sub-portions; and determine
data sizes for the individual sub-portions based at least 1n
part on the fragmentation levels.

While Example Clauses A through G are described above
with respect to a system, 1t 1s understood in the context of
this document that the subject matter of Example Clauses A
through G can also be implemented by a device, via a
computer-implemented method, and/or via computer-read-
able storage media.

Example Clause H, a computer-implemented method,
comprising: receiving an instruction to generate, at a second
node, a new 1nstance of a partition 1n an operational state that
1s duplicative of a previous instance of the partition at a first

-

node, the operational state resulting from a plurality of
transactions occurring subsequent to a previous operational
state of the partition; analyzing metadata, corresponding to
the previous operational state, to 1dentity a checkpoint of a
log stream of transactions that have occurred with respect to
the previous instance of the partition at the first node;
determining, based at least in part on the checkpoint, a
plurality of sequence identifiers (IDs) associated with a
portion of the log stream that corresponds to the plurality of
transactions, wherein individual sequence IDs of the plural-
ity of sequence IDs correspond to individual transactions of
the plurality of transactions; parsing the portion of the log
stream 1nto a plurality of sub-portions based at least partially
on the plurality of sequence IDs; causing individual prefetch
buflers, of a plurality of prefetch buflers, to simultaneously
load 1ndividual sub-portions of the plurality of sub-portions;
causing the new instance of the partition to enter the
previous operational state at the second node; and trans-
forming, at the second node, the new instance of the partition
into the operational state by replaying, to the new instance
of the partition 1n the previous operational state, the plurality
of transactions by sequentially processing the individual
sub-portions according to the plurality of sequence IDs.
Example Clause I, the computer-implemented method of
Example Clause H, the computer-implemented method of
claim 8, turther comprising: causing a first pretetch bufler to
load a first sub-portion, of the plurality of sub-portions, that
lists a first subset of the plurality of transactions, wherein a
final transaction of the first subset corresponds to a {first
sequence ID of the plurality of sequence IDs; causing a
second prefetch bufler to load a second sub-portion, of the
plurality of sub-portions, that lists a second subset of the
plurality of transactions, wherein an 1nitial transaction of the
second subset corresponds to a second sequence 1D, of the
plurality of sequence IDs, that 1s immediately subsequent to
the first sequence ID; and replaying the initial transaction
from the second prefetch builer immediately subsequent to
replaying the final transaction from the first prefetch butiler.
Example Clause I, the computer-implemented method of
any one ol Example Clauses H through I, further compris-
ing: determining that the second prefetch bufler has loaded
a first plurality of data fragments of the second sub-portion
and has not loaded a second plurality of data fragments of
the second sub-portion; mstructing a third prefetch bufler to
load the second plurality of data fragments; and processing
the second plurality of data fragments from the third
prefetch bufler immediately subsequent to processing the
first plurality of data fragments from the second prefetch

butter.

US 10,609,174 B2

27

Example Clause K, the computer-implemented method of
any one ol Example Clauses H through J, further compris-
ing: structing a first pretetch bufler to load a first sub-
portion, of the plurality of sub-portions, that lists a first
subset of the plurality of transactions; mstructing a second
prefetch butler to load a second sub-portion, of the plurality
of sub-portions, that lists a second subset of the plurality of
transactions; analyzing, prior to completely replaying the
first subset, the second prefetch bufler to determine whether
the second prefetch buller has fully loaded the second subset
to: designating the second pretfetch buller as a full bufler
based at least in part on a determination that the second
prefetch bufller has fully loaded the second subset, or des-
ignating the second prefetch bufler as a partial bufler based
at least 1n part on a determination that the second prefetch
builer has not fully loaded the second subset.

Example Clause L, the computer-implemented method of
any one of Example Clauses H through K, further compris-
ing: commencing replay of the second subset immediately
subsequent to completely replaying the first subset based at
least 1n part on the second prefetch bufler being designated
as the tull bufler; or delaying replay of the second subset
subsequent to completely replaying the first subset based at
least 1n part on the second prefetch bufler being designated
as the partial bufler.

Example Clause M, the computer-implemented method of
any one of Example Clauses H through L, wherein parsing
the portion of the log stream into the plurality of sub-
portions includes determining a plurality of sequence 1D
groupings that result in the individual sub-portions substan-
tially conforming to a predetermined data size.

Example Clause N, the computer-implemented method of
any one of Example Clauses H through M, further compris-
ing: analyzing the metadata to 1dentity a second plurality of
transactions that have occurred, at the first node, with
respect to the previous instance of the partition to result in
the previous operational state; parsing the second plurality
of transactions 1nto a second plurality of sub-portions based
at least partially on the plurality of sequence IDs; and
causing the individual prefetch butflers to load second indi-
vidual sub-portions of the second plurality of sub-portions,
wherein causing the new instance to enter the previous
operational state include sequentially processing the second
individual sub-portions according to the plurality of
sequence 1Ds.

Example Clause O, the computer-implemented method of
any one of Example Clauses H through N, further compris-
ing analyzing the metadata to 1dentity, for a plurality of data
objects, a plurality of data object states that correspond to
the previous operational state of the partition, and wherein
causing the new instance to enter the previous operational
state includes causing individual data objects of the plurality
of data objects to enter a corresponding individual data
object state of the plurality of data object states.

While Example Clauses H through N are described above
with respect to a method, it 1s understood 1n the context of
this document that the subject matter of Example Clauses H
through N can also be implemented by a device, by a system,
and/or via computer-readable storage media.

Example Clause P, a system, comprising: one or more
processors; and a memory 1n communication with the one or
more processors, the memory having computer-readable
instructions stored thereupon that, when executed by the one
Or more processors, cause the one or more processors to:
receive an struction to generate a new instance of a
partition in an operational state that 1s duplicative of a
previous 1instance of the partition; analyze metadata to

5

10

15

20

25

30

35

40

45

50

55

60

65

28

identify a plurality of transactions that have occurred with
respect to a previous operational state of the previous
instance to result in the previous instance entering the
operational state, wherein individual transactions of the
plurality of transactions correspond to individual sequence
identifiers (IDs); parse the plurality of transactions into a
plurality of subsets of transactions that includes at least: a
first subset of transactions, and a second subset of transac-
tions that 1s subsequent to the first subset of transactions;
cause 1mdividual prefetch butlers, of a plurality of prefetch
buflers, to simultaneously load individual subsets of trans-
actions of the plurality of subsets of transactions; based at
least 1n part on a determination that a first prefetch butler has
completely loaded the first subset of transactions, commence
replay of the first subset of transactions to the new instance
while the new 1nstance 1s 1n the previous operational state
and prior to a second prefetch butler fully loading the second
subset of transactions.

Example Clause), the system of Example Clause P,
wherein the computer-executable mstructions further cause
the one or more processors to: analyze the second prefetch
bufler to make a second determination that the second
prefetch bufler has completely loaded the second subset of
transactions, wherein an i1nitial transaction of the second
subset of transactions corresponds to a first individual
sequence ID; and based at least in part on the second
determination, commence replay of the second subset of
transactions to the new mstance immediately subsequent to
completing replay of a particular transaction that corre-
sponds to a second individual sequence 1D that immediately
precedes the first individual sequence ID.

Example Clause R, the system of any one of Example
Clauses P through), wherein the computer-executable
instructions further cause the one or more processors to
cause the first prefetch bufler to load a third subset of
transactions that 1s subsequent to the second subset of
transactions based at least in part on a second determination
that the first subset of transactions has been completely
replayed to the new instance of the partition.

Example Clause S, the system of any one of Example
Clauses P through R, wherein the second subset of transac-
tions 1s immediately subsequent to the first subset of trans-
actions, and wherein the plurality of intervening subsets of
transactions separate the third subset of transactions from
the second subset of transactions.

Example Clause T, the system of any one of Example
Clauses P through S, wherein the computer-executable
instructions further cause the one or more processors to:
determine transaction replica distributions associated repli-
cations of the plurality of transactions stored across the
plurality of stream nodes; and generate a plurality of read

instructions based at least 1n part on the transaction replica
distributions.

While Example Clauses P through T are described above
with respect to a system, 1t 1s understood 1n the context of
this document that the subject matter of Example Clauses P
through T can also be implemented by a device, via a
computer-implemented method, and/or via computer-read-
able storage media.

In closing, although the various techmiques have been
described in language specific to structural features and/or
methodological acts, it 1s to be understood that the subject
matter defined in the appended representations 1s not nec-
essarily limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as
example forms of implementing the claimed subject matter.

US 10,609,174 B2

29

What 1s claimed 1s:
1. A system for prefetching log stream sub-portions to
recreate partition states 1n a distributed computing system,
the system comprising;:
one or more processors; and
a memory in communication with the one or more pro-
cessors, the memory having computer-readable mstruc-
tions stored thereupon that, when executed by the one
or more processors implement a partition master and a
prefetch manager:
the partition master configured to:
monitor performance metrics corresponding to a first
node that 1s operating a partition in association with
at least one application, wherein an operational state
ol the partition corresponds to a plurality of trans-
actions that have occurred subsequent to a previous
operational state of the partition; and
istruct, based at least i part on the performance
metrics, a second node to recreate the operational
state of the partition, with respect to the at least one
application, by sequentially replaying the plurality of
transactions to a new instance of the partition that is
in the previous operational state; and
the prefetch manager configured to:
obtain metadata corresponding to the previous opera-
tional state of the partition;
analyze the metadata to 1dentify a checkpoint of a log
stream associated with the partition, wherein the
checkpoint 1indicates an initial transaction of a por-
tion of the log stream that sequentially lists the
plurality of transactions;
determine, based at least 1n part on the checkpoint, a
plurality of sub-portions of the portion of the log
stream that sequentially lists the plurality of trans-
actions, wherein the plurality of sub-portions
sequentially forms the portion of the log stream that
sequentially lists the plurality of transactions; and
cause individual prefetch buflers, of a plurality of
prefetch buflers, to simultaneously load individual
sub-portions, of the plurality of sub-portions, to
enable the second node to sequentially replay the
plurality of transactions to the new instance of the
partition, wherein the second node begins to sequen-
tially replay the plurality of transactions subsequent
to an initial sub-portion, of the plurality of sub-
portions, being loaded 1into a first prefetch bufler and
prior to at least one other sub-portion, of the plurality
of sub-portions, being loaded into at least one other
prefetch butler.
2. The system of claim 1, wherein the prefetch manager
1s further configured to:
instruct the first prefetch bufler to load the initial sub-
portion, wherein the mnitial sub-portion sequentially
lists a first subset of the plurality of transactions; and

instruct the at least one other prefetch butler to load the at
least one other sub-portion, wherein the at least one
other sub-portion sequentially lists a second subset of
the plurality of transactions, and wherein the second
node 1s configured to begin replaying the second subset
to the new 1nstance of the partition after successtully
replaying the first subset to the new instance of the
partition.

3. The system of claim 2, wherein the prefetch manager
1s further configured to:

identily one or more data fragments, of the at least one

other sub-portion, that have not been loaded to a second
prefetch bufler; and

5

10

15

20

25

30

35

40

45

50

55

60

65

30

instruct at least one of the second prefetch butler or a third

prefetch buller to load the one or more data fragments.

4. The system of claim 2, wherein the prefetch manager
1s Turther configured to:

based at least 1n part on a determination that the second

node has finished replaying the first subset to the new
instance of the partition, cause the first prefetch bufler
to load a third sub-portion, of the plurality of sub-
portions, that sequentially lists a third subset of the
plurality of transactions, wherein the second subset 1s
immediately subsequent to the first subset, and wherein
the third subset 1s subsequent the second subset.

5. The system of claim 1, wherein the operational state of
the partition 1s based at least partially on a plurality of data
object states, corresponding to a plurality of data objects,
associated with the at least one application, and wherein the
metadata indicates at least some of the plurality of data
object states.

6. The system of claim 1, wherein the operational state of
the partition further corresponds to a second plurality of
transactions that have occurred prior to the previous opera-
tional state, wherein the metadata sequentially lists the
second plurality of transactions, and wherein the pretetch
manager 1s further configured to cause the individual
prefetch bullers to load the second plurality of transactions
to enable the second node to sequentially replay the second
plurality of transactions to the new instance to change the
new 1instance into the previous operational state.

7. The system of claim 1, wherein the prefetch manager
1s further configured to:

identily one or more data fragments of the portion of the

log stream to determine fragmentation levels associated
with the plurality of sub-portions; and

determine data sizes for the individual sub-portions based

at least in part on the fragmentation levels.

8. A computer-implemented method, comprising:

recerving an instruction to generate, at a second node, a

new 1nstance of a partition 1n an operational state that
1s duplicative of a previous instance of the partition at
a first node, the operational state resulting from a
plurality of transactions occurring subsequent to a
previous operational state of the partition;

analyzing metadata, corresponding to the previous opera-

tional state, to 1dentify a checkpoint of a log stream of
transactions that have occurred with respect to the
previous instance of the partition at the first node;
determining, based at least in part on the checkpoint, a
plurality of sequence 1dentifiers (IDs) associated with a
portion of the log stream that corresponds to the
plurality of transactions, wherein individual sequence
IDs of the plurality of sequence IDs correspond to
individual transactions of the plurality of transactions;

parsing the portion of the log stream into a plurality of
sub-portions based at least partially on the plurality of
sequence 1Ds;

causing individual prefetch builers, of a plurality of

prefetch buflers, to simultaneously load individual sub-
portions of the plurality of sub-portions;

causing the new instance of the partition to enter the

previous operational state at the second node; and
transforming, at the second node, the new instance of the
partition into the operational state by replaying, to the
new 1nstance of the partition in the previous operational
state, the plurality of transactions by sequentially pro-
cessing the individual sub-portions according to the
plurality of sequence IDs, wherein the sequentially
processing includes processing a first sub-portion, of

US 10,609,174 B2

31

the plurality of sub-portions, from a first prefetch builer
prior to at least one other sub-portion, of the plurality
of sub-portions, being fully loaded into at least one
other prefetch butler.

9. The computer-implemented method of claim 8,

wherein a final transaction of the first sub-portion corre-

sponds to a first sequence ID of the plurality of
sequence IDs, and wherein an 1mitial transaction of the
second sub-portion corresponds to a second sequence
ID, of the plurality of sequence IDs, that 1s immediately
subsequent to the first sequence 1D, and wherein

the 1mitial transaction 1s replayed from the second prefetch

bufler immediately subsequent to the final transaction
being replayed from the first prefetch builer.

10. The computer-implemented method of claim 9, fur-
ther comprising;:

determining that the second prefetch bufler has loaded a

first plurality of data fragments of a second sub-portion
and has not loaded a second plurality of data fragments
of the second sub-portion;

istructing a third pretetch bufler to load the second

plurality of data fragments; and

processing the second plurality of data fragments from the

third prefetch bufler immediately subsequent to pro-
cessing the first plurality of data fragments from the
second prefetch bufler.
11. The computer-implemented method of claim 8 further
comprising:
prior to completely replaying the first sub-portion, ana-
lyzing the second prefetch bufler to determine whether
the second prefetch bufler has fully loaded the second
sub-portion to:
designate the second prefetch bufler as a full bufler
based at least in part on a determination that the
second prefetch bufler has fully loaded the second
sub-portion, or
designate the second prefetch buller as a partial bufler
based at least in part on a determination that the
second prefetch bufler has not fully loaded the
second sub-portion.
12. The computer-implemented method of claim 11, fur-
ther comprising;:
commencing replay of the second sub-portion immedi-
ately subsequent to completely replaying the first sub-
portion subset based at least in part on the second
prefetch buller being designated as the full bufler; or

delaying replay of the second sub-portion subsequent to
completely replaying the first sub-portion based at least
in part on the second prefetch bufller being designated
as the partial bufler.

13. The computer-implemented method of claim 8,
wherein parsing the portion of the log stream into the
plurality of sub-portions includes determining a plurality of
sequence ID groupings that result in the individual sub-
portions substantially conforming to a predetermined data
S1ZE.

14. The computer-implemented method of claim 8, fur-
ther comprising;:

analyzing the metadata to 1dentity a second plurality of

transactions that have occurred, at the first node, with
respect to the previous instance of the partition to result
in the previous operational state;

parsing the second plurality of transactions into a second

plurality of sub-portions based at least partially on the
plurality of sequence IDs; and

causing the individual prefetch buflers to load second

individual sub-portions of the second plurality of sub-

5

10

15

20

25

30

35

40

45

50

55

60

65

32

portions, wherein causing the new instance to enter the
previous operational state includes sequentially pro-
cessing the second individual sub-portions according to
the plurality of sequence IDs.

15. The computer-implemented method of claim 8, fur-
ther comprising analyzing the metadata to i1dentity, for a
plurality of data objects, a plurality of data object states that
correspond to the previous operational state of the partition,
and wherein causing the new 1nstance to enter the previous
operational state includes causing individual data objects of
the plurality of data objects to enter a corresponding 1ndi-
vidual data object state of the plurality of data object states.

16. A system, comprising:

one or more processors; and

a memory 1n communication with the one or more pro-

cessors, the memory having computer-readable mnstruc-

tions stored thereupon that, when executed by the one

Or more processors, cause the one or more processors

to:

receive an instruction to generate a new 1nstance of a
partition in an operational state that 1s duplicative of
a previous 1nstance of the partition;

analyze metadata to identify a plurality of transactions
that have occurred with respect to a previous opera-
tional state of the previous instance to result in the
previous instance entering the operational state,
wherein individual transactions of the plurality of
transactions correspond to mndividual sequence 1den-
tifiers (IDs);

parse the plurality of transactions into a plurality of
subsets of transactions that includes at least: a first
subset of transactions, and a second subset of trans-
actions that 1s subsequent to the first subset of
transactions;

cause individual prefetch buflers, of a plurality of
prefetch buflers, to simultaneously load 1ndividual
subsets of transactions of the plurality of subsets of
transactions; and

based at least 1n part on a determination that a first
prefetch bufler has completely loaded the first subset
ol transactions, commence replay of the first subset
of transactions to the new instance while the new
instance 1s 1n the previous operational state and prior

to a second prefetch bufler fully loading the second
subset of transactions.
17. The computer-readable storage medium of claim 16,
wherein the computer-executable instructions further cause
the one or more processors to:
analyze the second prefetch bufler to make a second
determination that the second prefetch builer has com-
pletely loaded the second subset of transactions,
wherein an 1nitial transaction of the second subset of
transactions corresponds to a first individual sequence
ID: and

based at least 1n part on the second determination, com-
mence replay of the second subset of transactions to the
new instance immediately subsequent to completing
replay of a particular transaction that corresponds to a
second individual sequence ID that immediately pre-
cedes the first individual sequence ID.

18. The computer-readable storage medium of claim 16,
wherein the computer-executable instructions further cause
the one or more processors to cause the first prefetch bufler
to load a third subset of transactions that 1s subsequent to the
second subset of transactions based at least in part on a

US 10,609,174 B2
33

second determination that the first subset of transactions has
been completely replayed to the new instance of the parti-
tion.
19. The computer-readable storage medium of claim 18,
wherein the second subset of transactions 1s 1immediately 53
subsequent to the first subset of transactions, and wherein
the plurality of mtervening subsets of transactions separate
the third subset of transactions from the second subset of
transactions.
20. The computer-readable storage medium of claim 16, 10
wherein the computer-executable instructions further cause
the one or more processors to:
determine transaction replica distributions associated rep-
lications of the plurality of transactions stored across
the plurality of stream nodes; and 15

generate a plurality of read instructions based at least in
part on the transaction replica distributions.

Gx e * % s

34

	Front Page
	Drawings
	Specification
	Claims

