12 United States Patent

US010609043B2

(10) Patent No.: US 10,609,043 B2

Dubrovsky et al. 45) Date of Patent: Mar. 31, 2020
(54) REASSEMBLY-FREE DEEP PACKET (56) References Cited
INSPECTION ON MULTI-CORE HARDWARE |
U.S. PATENT DOCUMENTS
(71) Applicant: SONICWALL US HOLDINGS INC.,
Milpitas, CA (US) 5,796,942 A 8/1998 Esbensr;n
P1lds, 5,945,933 A 8/1999 Kalkstein
6,088,803 A 7/2000 Tso et al.
(72) Inventors: Aleksandr Dubrovsky, San Mateo, CA 6,108,782 A R/2000 Fletcher et al.
(US); John E. Gmuender, Sunnyvale, 6,119,236 A 9/2000 Shipley
CA (US); Huy Minh Nguyen, Fountain ga ézgaigg g ﬁll/// 3881 ;}ray ft ial
Valley, CA (US); llya Minkin, Los 6449723 Bl 92002 Elgressy et al
Altos, CA (US); Justin M. Brady, San L | Continted
Jose, CA (US); Boris Yanovsky, (Continued)
Saratoga, CA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: SONICWALL INC.,, Milpitas, CA (US) FP 1 222 932 /2001
EP 1 528 743 5/2005
(*) Notice: Subject to any disclaimer, the term of this WO WO 97/39399 10/1997
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days. OTHER PUBLICATIONS
(21) Appl. No.: 16/399,839 Aggarwal, N., “Improving the Efficiency of Network Intrusion
Detection Systems”, Indian Institute of Technology, May 3, 2006,
(22) Filed: Apr. 30, 2019 pp. 1-40.
Continued
(65) Prior Publication Data (Continued)
US 2019/0260766 Al Aug. 22, 2019 Primary Examiner — Brian F Shaw
Related U.S. Application Data (74) Attorney, Agent, or Firm — Polsinelllr LLP
(63) Continuation of application No. 14/456,884, filed on
Aug. 11, 2014, now Pat. No. 10,277,610, whichisa (37) ABSTRACT
gontlglgat;%%g t applgaflil Ng.glé/gg;,QOSj filed on Some embodiments of reassembly-iree deep packet inspec-
P 42 , HOW bl INO. 6,013,442, tion (DPD on multicore hardware have been presented. In
one embodiment, a set of packets of one or more files 1s
(51) Imnt. CL . .
received at a networked device from one or more connec-
HO4L 29/06 (2006.01)
tions. Each packet 1s scanned using one of a set of processing
(52) gPSC Cl. 04T 63/1408 (2013 01 cores 1n the networked device without bullering the one or
Co T e e (01) more files 1n the networked device. Furthermore, the set of
(58) Field of Classification Search processing cores may scan the packets substantially concur-
CPC ... HO4L 63/14-1416; HO4L 63/145; HO4L rently.
45/00; HO4L 47/34; GO6F 21/00
USPC e, 726/22, 23

See application file for complete search history.

RECEIVE A PACKET FROM
CONNECTION X AT ONE
QF & 58T OF
PROCESSING CORES

138

'-':f CDRE HANDLING ANOTHER

/\\G\
T3 ANOTHER PROCESSIN ~ ?%.S_

20 Claims, 7 Drawing Sheets

—_——

POSTPONE HANDEING OF THIS
PACKET UNTIL THE OTHER
- PROCESSING CORE 1S DONE WITH

“RACKET FROM CONNECTION"
-~

KXY
82~

NG

YES

THE OTHER PACKET FROM
CONNEETION X 14

|
1
PERFORM DPI

S TH
PACKET IN-
ORDER? .~
138
NG

1
BLFFER THE PACKET IN
OUT-OF-ORDER BUFFER
OF CONNECTION X NG DOES ANY PACKETIN T
140 e OUT-OF-ORDER BUFFER
|
|

h-| OM THE PACKET
! 136

} . RECENTLY BECOME IN- .~ ¥
DRDER? //
ML
.
I TH ; ™
LB F,i;‘ﬂ“ﬂ | REMOVE THE PACKET, WHICH | |
142 | RECEMNTLY BECAME iN-ORDER, |
| FROMTHE QUT-OF-GRDER -
| BUFFER AND PERFORM GPION | |
l ! THE PACKET 148 s
| WAITFOR
| ANOTHER NEW !
I INCOMING e

| PACKET
' 144

US 10,609,043 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,851,061 Bl 2/2005 Holland et al.
7,134,143 B2 11/2006 Stellenberg et al.
7,185,368 B2 2/2007 Copeland
7,304,996 Bl 12/2007 Swenson et al.
8,813,221 Bl 8/2014 Dubrovsky et al.

10,277,610 B2 4/2019 Dubrovsky et al.

2002/0083331 Al 6/2002 Krumel
2003/0084328 Al 5/2003 Tarquini et al.
2003/0110208 Al 6/2003 Wyschogrod et al.
2003/0145228 Al 7/2003 Suuronen et al.
2004/0093513 Al 5/2004 Cantrell et al.
2004/0123155 Al 6/2004 Etoh et al.
2004/0255163 A1 12/2004 Swimmer et al.
2005/0108518 Al 5/2005 Pandya
2005/0120243 Al 6/2005 Palmer et al.
2005/0216770 Al 9/2005 Rowett et al.
2005/0262556 Al 11/2005 Waisman et al.
2006/0020595 Al 1/2006 Norton et al.
2006/0069787 Al 3/2006 Sinclair
2006/0077979 Al 4/2006 Dubrovsky et al.
2007/0058551 Al 3/2007 Brusotti et al.
2009/0285228 Al 11/2009 Bagepalli et al.
2014/0359764 Al 12/2014 Dubrovsky et al.

OTHER PUBLICATIONS

Bellovin, S., “Firewall-Friendly FIP,” Network Woring Group,
RFC No. 1579, AT&T Bell Laboratories, Feb. 1994, http://www.
ietf.org/rtc 1579 txt?number=1579, downloaded Jul. 15, 2002, 4

pages.
Blyth, Andrew, “Detecting Intrusion”, School of Computing, Uni-
versity of Glamorgan, 14 pages.

Branch, Joel, “Denial of Service Intrusion Detection Using Time
Dependent Deterministic Finite Automata”, RPI Graduate Research
Confterence 2002, Oct. 17, 2002, 7 pages.

Juniper Networks, “Attack Prevention,” www.juniper.net/products/
intrusion/prevention.html, downloaded Jun. 11, 2004, 2 pages.
Juniper Networks, “Attack Detection,” www. juniper.net/products/
intrusion/detection. html,downloaded Jun. 11, 2004, 7 pages.
Juniper Networks, “Intrusion Detection and Prevention,” www.
juniper.net/products/intrusion/downloaded Jun. 11, 2004, 2 pages.
Juniper Networks, “Architecture,” www. juniper.net/products/intrusion/
architecture.html,downloaded Jun. 11, 2004, 3 pages.

Juniper Networks, “Juniper Networks NetScreen—IDP 10/100/500/
1000,” Intrusion Detection and Prevention, Spec Sheet, Apr. 2004,
2 pages.

Kruegal, Christopher, “Using Decision Trees to Improve Signature-
Based Instrusion Detection”, Sep. 8, 2003, RAID 2003: recent
Advance 1n Instrusion Detection, 20 pages.

Roberts, Paul, “NetScreen Announces Deep Inspection Firewall,”
IDG News Service, Oct. 20, 2003, http://www.nwiusion.com/news/
2003/1020netscannou.html,downloaded Jun. 11, 2004, 5 pages.
Roesch, Martin and Green, Chris, “Snort Users Manual,” Snort
Release 2.0.0, M. Roesch, C. Green, Copyright 1998-2003 M.
Roesch, Copyright 2001-2003 C. Green, Copyright 2003 Sourcefire,
Inc. dated Dec. 8, 2003 (53 pgs).

“SonicOS Standard 3.8.0.2 Release Notes, SonicWALL Secure
Anti-Virus Router 80 Series,” SonicWALL, Inc., Software Release:
Apr. 11, 2007, 13 pp.

“SonicWALL Complete Anti-Virus, Automated and Enforced Anti-
Virus Protection,” © 2005, 2 pp.

SonicWALL Content Filtering Service, Comprehensive Internet
Security™, © 2005, 2pp.

“SonicWALL Content Security Manager Series, Easy-to-use, Afford-
able, Content Security and Internet Threat Protection,” © 2006,
Dec. 20006, 4 pp.

“SonicWALL Endpoint Security: Anti-Virus, Automated and Enforced
Anti-Virus and Anti-Spyware Protection,” © 2007, Mar. 2007, 2 pp.
SonicWALL Internet Security Appliances, “Content Security Man-
ager Integratred Solutions Guide”, Version 3.0, © 2007, 160 pp.
Snort.org, ““The Open Source Network Intrusion Detection System”,
www.snort.org/about.html, 2 pages.

“The Ultimate Internet Sharing Solution, WinProxy, Usesr Manual,”
Copyright 1996-2002 Osistis Software, Inc., dated Feb. 2002 (290
pgs).

Van Engelen, R., “Constructing Finite State Automata for High-
Performance XML Web Services,” International Symposium on
Web Services and Applications, 2004, pp. 1-7.

U.S. Appl. No. 12/238,205, Final Office Action dated Dec. 12, 2013.
U.S. Appl. No. 12/238,205, Office Action dated Jul. 10, 2013.
U.S. Appl. No. 12/238,205, Final Office Action dated Aug. 23, 2012.
U.S. Appl. No. 12/238,205, Oflice Action dated Mar. 13, 2012.
U.S. Appl. No. 14/456,884, Final Office Action dated Sep. 11, 2017.
U.S. Appl. No. 14/456,884, Oflice Action dated Feb. 28, 2017.
U.S. Appl. No. 14/456,884, Final Office Action dated Oct. 26, 2016.
U.S. Appl. No. 14/456,884, Office Action dated Jul. 6, 2016.

U.S. Appl. No. 14/456,884, Final Office Action dated Feb. 19, 2016.
U.S. Appl. No. 14/456,884, Oflice Action dated Oct. 29, 2015.

U.S. Patent

Mar. 31, 2020

RECEIVE A PACKET FROM
CONRECTION X AT ONE
OF ASET OF
PROCESSING CORES
ERLY]

)

/1/ "i'h\E:N

</ PACKET IN- \

YES

Sheet 1 of 7

PERFORM DPI
ON THE PACKET

. ORDER?

BUFFER THE PACKET IN
QUT-OF-ORDER BUFFER

118

™

P

US 10,609,043 B2

}ﬁ‘"”‘:

EOR CORNECTION X N //"K)FS ANY PACKET IN THEN_
44 | < OUT-OF-ORDER BUFFER
e . RECENTLY BECOME IN-

| ~~. ORDER? 7~
? H“"“x..__h 118 f...f-""f
x,&vﬂ_,f
LET THE PACKET YES %
PASS |] e :
115 REMOVE THE PACKET
SBECENTLY BECAME IN-
] ORDER FROM THE OUT-
| OF-ORDER BUFFER AND
i PERFORRM DRI ON THIS
¥ PACKET
WAIT FOR 122
ANCTHER NEW
INCOMING g
PACKET
1282

FIG. 1A

U.S. Patent

RECEIVE A PACKET FROM
CONNECTION X AT ONE
OF ASET OF
PROCESSING CORES

7 e
AS ANOTHER PROCESSING~

Mar. 31, 2020

Sheet 2 of 7 US 10,609,043 B2

. POSTPONE HANDLING OF THIS
. PACKET UNTIL THE OTHER

< CORE HANDLING ANOTHER oo i PROCESSING CORE IS DONE WiTH |
“RACKET FROM CONNECTION | THE OTHER PACKET FROM
~_ X7 P CONNECTION X 134
S im
""M\:'ff
NO |
X
% ﬁgg‘"ﬁ;\ e PERFORM DP1 |
< - e el ON THE PACKET
. ORDER? 138
. 138
B
NG Y e
BN — 1 Y
BUFFER THE PACKET iN | Ny
OUT-OF-ORDER BUFFER | - Ry
OF CONNECTIONX | NO . -TDOES ANY PACKET IN THE- _
144 . < OUT-OF-ORDER BUFFER >
I—— i} TS RECENTLY BECOME IN-
% \\ ORDERT P -~
| SN 148 7
? “"‘x,_, f/
‘ ‘ YES ?
LET THE PACKET | e e S
Ay REMOVE THE PACKET, WHICH |
142 RECENTLY BECAME IN-ORDER, |
FROM THE QUT-OF-ORDER)
BUFFER AND PERFORM DPI ON
} THE PACKET 148
h
) ¥
WAIT FOR |
ANOTHER NEW |
INCOMING (g N
PACKET |
1 G, 18

U.S. Patent Mar. 31, 2020 Sheet 3 of 7 US 10,609,043 B2

T START DPTON A
[PACKET FROM
. CONNECTION X

‘

PERFORM PATTERN
MATCHING ON THE PACKET
FROM THE LAST STORED

STATE OF PATTERN
MATCHING FOR
CONNECTION X
124
1 l
ANYS BLOCK THE |
< _MATCH? > . PACKET
\"\ 104 /./’ 160
\ e R
No ;
UPDATE AND STORE THE ¥
CURRENT STATE OF PATTERN
MATCHING OF CONNECTION X ISSUE AN
iN DATABASE . ALARM
156 | i8g
¥ S A
" RETURN \ 7 END “\)
L 128 184

US 10,609,043 B2

Sheet 4 of 7

Mar. 31, 2020

FEEO, ‘NEHLIVE U3NIWEZ1L3038d ¥ H0 FIdRYXE

U.S. Patent

US 10,609,043 B2

Sheet 5 of 7

¢ S

VAR RN

ARYEY LY

\\x\, SNIHMO LY

-~ d | zmwﬁﬂqa

Z J 7 I—
.\f m o M _\\\\ f.f;xu
...-EME zomummwwou N d

yze -

,,,,,,,, I A

0eg HAAA4NE HIQHO-40-LN0

1
N
'
’
!
'
'
- . b
. W &
¢
1 1
L. e et e e e , :
.-.I T ke T T L el T ek W' e Wity dp o = PT T T T
1
1
1
1
1
1
{
' i . _— - .
1 L
1 '
" N
1 y
|

Mar. 31, 2020

U.S. Patent

N 3HOO | ® & @& Z OO L IHOD
i i I S /
~ OLE
]
Z
7 SNOLLDINNDGD
0% THOW HO ING NON S
ORIAIMHY SLIHOV

US 10,609,043 B2

Ocy
ALOMLAN

+++++
+++++++++
+++++++

Sheet 6 of 7

DNIHOLYY
Pl LV

Mar. 31, 2020

U.S. Patent

P ol

SZv ISVEVIVA |

0cy
NHALSAS NOLLNIALDNA
/NOILDZ L300 NOISNTYANI

\\.\ iif,_....// (A
| H3H4NG
H30™0
N “S0-LN0
/.ff...,--:.mixu\\
[¥44
H0554004d
3RO

0Ly
B e H+ Mm OEM Z
__ 03103108d

GOy —

iy
ASNIHOYIN ANZGDNO

U.S. Patent

PROCESSOR
N

Mar. 31, 2020

~ 502

A

PROCESSING ||

MAIN MEMORY

504

+
+ +
+

F
]
I
F
F
I

- |INSTRUCTIONS ||
N

e sl .l sl gy

206

STATIC MEMORY |-

NETWORK
INTERFACE
DEVIOE

+ +
++++++
+ +

NE TWORK

- 522

520

+ + +
++++++
+ + + o

+
++++++
+ +

- oy T T g, e T Sl e e, Sl e, e

Sheet 7 of 7

et D32

US 10,609,043 B2

VIDED DISPLAY

+ +
+++++
+ +

312

| ALPHA-NUMERIC
i INPUT DEVICE |

i
;

514

CURSOR
CONTROL
DEVICE

516

SIGNAL
GENERATION
DEVICE

+ + *
+++++
+ +

518
| DATA STORAGE DEVICE
: MACHINE-ACCESSIBLE * 830
STORAGE MEDIUM
A R
. msmuc:ﬂomsé | 522

US 10,609,043 B2

1

REASSEMBLY-FREE DEEP PACKET
INSPECTION ON MULTI-CORE HARDWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation and claims the
priority benefit of U.S. patent application Ser. No. 14/456,
884 filed Aug. 11, 2014, now U.S. Pat. No. 10,277,610,
which 1s a continuation and claims the priority benefit of
U.S. patent application Ser. No. 12/238,205 filed Sep. 25,
2008, now U.S. Pat. No. 8,813,221, the disclosures of which

are 1ncorporated herein by reference.

TECHNICAL FIELD

The present invention relates to intrusion detection and
prevention in a networked system, and more particularly, to
performing multiple packet payloads analysis on multicore
hardware.

BACKGROUND

Today, 1n many security products, scanning by pattern
matching 1s used to prevent many types of security attacks.
For example, some existing desktop virus scanmng may
include scanning files against certain recognizable patterns.
These files may come from mail attachments or website
downloads. These desktop applications are simpler 1n that by
the time the pattern matching i1s performed, the mmput has
been all accumulated 1n the correct order. The situation 1s
more complicated for gateway products, such as firewalls,
attempting to match patterns for other purposes. Some of
these products scan for patterns over Transport Control
Protocol (TCP) packets. Since TCP usually breaks down
application data into chunks called TCP segments, the full
pattern may reside 1n several TCP segments. One conven-
tional approach 1s to reassemble all TCP packets together
into one large chunk and perform pattern matching on this
chunk, similar to scanning files. The disadvantage of this
approach 1s that this approach requires processing to reas-
semble, and it further requires memory to butler the inter-
mediate result before pattern matching can take place.

To further complicate the problem, many security attacks
exhibit more than one pattern, and thus, multiple pattern
matching has to be performed 1n order to successiully screen
out these attacks. Such a collection of patterns 1s called a
signature. For example, an attack signature may contain a
recognizable header and a particular phrase 1n the body. To
detect such an attack, the detection mechanism has to match
all the patterns 1n the signature. If only part of the signature
1s matched, false positives may occur. As such, the term
“attack pattern” 1s used to refer to a single pattern or a
signature.

When such attacks are transported over TCP, the contents,
and therefore the recognizable patterns, may exist in difler-
ent TCP segments. In fact, even a single pattern 1s often split
over several segments. Therefore, two problems have to be
solved at the same time. On one hand, the detection mecha-
nism has to scan each pattern across multiple segments, and
on the other hand, the detection mechanism also has to scan
across patterns. One existing approach 1s to reassemble all
packets and scan for each pattern 1n sequence. This approach
1s inethicient 1n terms of processing time and memory usage
because scanning cannot start until all packets are recerved
and reassembled and extra memory 1s needed to store the
packets received.

10

15

20

25

30

35

40

45

50

55

60

65

2

Another problem in pattern matching 1s that the packets
may arrive out of order. Again, using TCP as an example, the
application data 1s broken into what TCP considers the best
s1zed chunks to send, called a TCP segment or a TCP packet.
When TCP sends a segment, 1t maintains a timer and waits
for the other end to acknowledge the receipt of the segment.
The acknowledgement 1s commonly called an ACK. If an
ACK 1s not recerved for a particular segment within a
predetermined period of time, the segment 1s retransmitted.
Since the IP layer transmits the TCP segments as IP data-
grams and the IP datagrams can arrive out of order, the TCP
segments can arrive out of order as well. Currently, one
receiver of the TCP segments reassembles the data so that
the application layer receives data in the correct order.

An existing Intrusion Detection/Prevention System (IPS)
typically resides between the two ends of TCP communica-
tion, inspecting the packets as the packets arrive at the IPS.
The IPS looks for predetermined patterns in the payloads of
the packets. These patterns are typically application layer
patterns. For example, the pattern might be to look for the
word “windows.” However, the word may be broken into
two TCP segments, ¢.g., “win” 1 one segment and “dows”
in another segment. If these two segments arrive in the
correct order, then IPS can detect the word. However, 11 the
segments arrive out of order, which happens relatively often,
then the IPS may first receive the segment contaiming
“dows”, and have to hold this segment and wait for the other
segment. A typical approach is for the IPS to force the sender
to re-transmit all the segments from the last missing one,
hoping that the segments may arrive in order the second
time. One disadvantage of this approach 1s the additional
tratlic in between and the additional processing on both ends
of the TCP communication.

To take advantage of the introduction of multi-core pro-
cessors (e.g., Intel® Core™2 Quad Processors from Intel
Corporation of Santa Clara, Calif.), some conventional ISPs
use multi-core processors to scan incoming segments 1o
speed up the process. In general, each multi-core processor
has two or more processing cores. According to one con-
ventional approach, one of the processing cores 1s used to
completely reassemble the file while the remaining process-
ing cores perform scanning or pattern matching in the
background after the file has been completely reassembled.
However, this approach does not scale 1n terms of having
enough memory to store all files. Also, background scanning
by multiple processing cores 1s less eflicient due to extra
memory copying overhead and extra scheduling processing
overhead.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s 1llustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which:

FIG. 1A 1illustrates one embodiment of a method to
perform multiple packet analysis on multi-core hardware.

FIG. 1B 1illustrates an alternate embodiment of a method
to perform multiple packet analysis on multi-core hardware.

FIG. 1C 1illustrates one embodiment of a method to
perform deep packet inspection.

FIG. 2 1illustrates an exemplary Deterministic Finite
Automaton (DFA) according to one embodiment of the
invention.

FIG. 3 illustrates a functional block diagram of one
embodiment of multi-core hardware usable to perform mul-
tiple packet analysis.

US 10,609,043 B2

3

FIG. 4 illustrates one embodiment of a system in which
embodiments of the present invention may be implemented.

FIG. 5 illustrates a block diagram of an exemplary com-
puter system, 1 accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION

Described herein are some embodiments of reassembly-
free deep packet ispection on multi-core hardware. In one
embodiment, a set of packets of one or more files 1s received
at a networked device from one or more connections. Each
packet 1s scanned using one of a set of processing cores in
the networked device without buflering the one or more files
in the networked device. Furthermore, the set of processing
cores may scan the packets substantially concurrently.

In the following description, numerous details are set
torth. It will be apparent, however, to one skilled in the art,
that the present imnvention may be practiced without these
specific details. In some 1instances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the present imnvention.

Some portions of the detailled descriptions below are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “computing’ or “calculating” or “deter-
mimng” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories to other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

The present invention also relates to apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1 a com-
puter-readable storage medium, such as, but 1s not limited to,
any type of disk including floppy disks, optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, flash memory, magnetic or optical cards, or any
type ol media suitable for storing electronic instructions, and
cach coupled to a computer system bus.

10

15

20

25

30

35

40

45

50

55

60

65

4

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs 1n accordance with the teachings herein, or 1t may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear from the descrip-
tion below. In addition, the present nvention 1s not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.

FIG. 1A 1illustrates one embodiment of a method to
perform multiple packet analysis on multi-core hardware,
where multiple processing cores of a set of processing cores
are allowed to handle packets from the same connection
(heremaftter, “connection X”). In some embodiments, the set
of processing cores includes processing cores ol a multi-core
processor. The method may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, processing cores, etc.), soltware
(such as instructions run on a processing core), firmware, or
a combination thereof.

Initially, one of a set of processing cores receives a packet
from connection X (processing block 110). The packet 1s
part of a file, which may be re-constructed by re-assembling
the packet with other packets of the file. Then the processing
core determines 1 the packet 1s 1n-order (processing block
112). For example, the processing core may check a
sequence number 1 a header of the packet against a next
packet sequence number of connection X, which may be
stored 1n a database commonly accessible by the processing
cores.

If the packet 1s not mn-order, 1.e., out-of-order, then the
processing core may buller the packet 1n an out-of-order
bufler associated with connection X (processing block 114).
The processing core may allow the packet to pass (process-
ing block 115). Then the processing core waits for another
new incoming packet (processing block 120).

If the packet 1s in-order, then the processing core performs

deep packet inspection (DPI) on the packet (processing
block 116). Details of some embodiments of DPI are dis-
cussed below. Then the processing core checks 1f there 1s any
packet 1n the out-of-order buller associated with connection
X that recently became in-order (processing block 118). IT
there 1s no packet in the out-of-order bufler associated with
connection X that 1s next 1 sequence (in-order), the pro-
cessing core transitions to processing block 120 to wait for
another new mcoming packet. Otherwise, 11 there 1s a packet
in the out-of-order builer associated with connection X that
1s now 1n-order, then the processing core removes this packet
and performs DPI on this packet (processing block 122).
When the processing core completes DPI on this packet, the
processing core returns to processing block 118 to check it
there 1s another packet i the out-of-order builer associated
with connection X that 1s in-order.
Note that the incoming packets are scanned without
buflering the file for reassembly because the packets can be
inspected for the predetermined pattern without being reas-
sembled into the file. Thus, the above technique 1s well
suited for IPSs that have limited capacity for buflering or
storage. Furthermore, the above technique allows the set of
processing cores to scan incoming packets substantially
concurrently. Therefore, the speed of the scanning may be
improved over conventional approaches.

FIG. 1B illustrates one embodiment of a method to
perform multiple payload analysis on multi-core hardware,

US 10,609,043 B2

S

where only a single core 1 a set of processing cores 1s
allowed to handle packets from a particular connection
(heremaftter, “connection X’) at a time. In some embodi-
ments, the set of processing cores includes processing cores
of a multi-core processor. The method may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, processing cores, etc.),
soltware (such as instructions run on a processing core),
firmware, or a combination thereof.

Initially, one processing core of the set of processing cores
receives a packet from connection X (processing block 130).
Then the processing core checks 1f there 1s another process-
ing core in the set of processing cores handling another
packet from connection X (processing block 132). If there 1s
another processing core handling another packet from con-
nection X currently, then the processing core postpones
handling of this packet until the other processing core 1s
done with the other packet from connection X (processing
block 134). The processing core may transition to processing,
block 144 to wait for another new 1mncoming packet.

If the processing core determines that there 1s no other
processing core in the set of processing cores handling
another packet from connection X, then the processing core
checks 11 this packet 1s m-order (processing block 136). If
this packet 1s not in-order, 1.e., out-of-order, then the pro-
cessing core bullers this packet in an out-of-order builer
associated with connection X (processing block 140). The
processing core may allow this packet to pass (processing
block 142). Then the processing core waits for another new
incoming packet (processing block 144). If the processing
core determines that thus packet 1s in-order, then the pro-
cessing core performs DPI on this packet (processing block
138). Details of some embodiments of DPI are discussed
below. After performing DPI on the packet, the processing,
core checks if there 1s any packet 1n the out-of-order buller
associated with connection X, which i1s now in-order (pro-
cessing block 146). 11 there 1s a packet in the out-of-order
butler that 1s now 1n-order, then the processing core removes
the packet that recently became in-order from the out-oi-
order bufler and performs DPI on this packet (processing
block 148). Then the processing core returns to processing,
block 146 to repeat the above process. If there 1s no packet
in the out-of-order builer that 1s 1n-order, then the processing
core transitions to processing block 144 to wait for another
new mncoming packet.

Like the techmique 1llustrated in FIG. 1A, the technique
illustrated 1n FIG. 1B also allows scanning of the incoming
packets without buflering the file for reassembly because the
packets can be scanned for the predetermined pattern, with-
out reassembling the packets into the file, by DPI.

FIG. 1C 1illustrates one embodiment of a method to
perform deep packet inspection (DPI) using one of a set of
processing cores. In some embodiments, the set of process-
ing cores includes processing cores ol a multi-core proces-
sor. The method may be performed by processing logic that
may comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, processing cores, etc.), software (such
as structions run on a processing core), firmware, or a
combination thereof.

Initially, the processing core starts DPI on a packet from
connection X at block 150. This packet 1s hereinafter
referred to as the current packet. The processing core
performs pattern matching on the current packet from the
last stored state of pattern matching for connection X
(processing block 152). Specifically, the processing core 1s
trying to look for a predetermined pattern or signature in the
incoming packets, which may be associated with a computer

10

15

20

25

30

35

40

45

50

55

60

65

6

virus or malicious code. By identifying such pattern or
signature in the mcoming packets and blocking at least one
of the packets contaiming part of the predetermined pattern
or signature, the set of processing cores can protect a system
from computer viral attack. In some embodiments, the last
stored state of pattern matching for connection X is stored 1n
a database commonly accessible by the set of processing
cores. As such, each of the set of processing cores can handle
packets from connection X, even though some of the packets
may be ispected by diflerent processing cores.

In some embodiments, 1f there 1s a match between a
predetermined pattern and the data pattern 1n the imncoming
packets mspected so far (which includes the current packet),
then the processing core blocks the current packet (process-
ing block 160). Then the processing core may 1ssue an alarm
to warn a system administrator of detection of potentially
malicious code or virus 1n the incoming packets (processing
block 162), and the process ends at block 164.

If there 1s no match between the predetermined pattern
and the data pattern 1n the incoming packets inspected so {far,
then the processing core may update and store the current
state ol pattern matching of connection X 1n the database
(processing block 156). The method then ends at block 158.

In some embodiments, pattern matching performed 1n
DPI 1s accomplished using Deterministic Finite Automaton
(DFA). An exemplary DFA 1s shown 1n FIG. 2 to illustrate
the concept.

FIG. 2 illustrates an exemplary DFA according to one
embodiment of the invention. In this example, an IPS is
programmed to detect and to prevent a pattern of “0111” to
pass through. The DFA 200 shown 1n FIG. 2 corresponds to
this pattern. A set of processing cores may use the DFA 200
to perform pattern matching on a number of packets to
determine whether the packets contain the pattern “01117.
Furthermore, to simplily the i1llustration, 1t 1s assumed in this
example that each packet contains only one digit. However,
it should be appreciated that the concept 1s applicable to
scenarios where a packet contains more than one digits

and/or alphabetic letters.
Retferring to FIG. 2, the DFA 200 includes 5 states

211-219. The states 211-219 in the DFA 200 may be referred
to as nodes. A processing core 1n the set of processing cores
begins pattern matching at the initial state 211. If a packet
received contains a “1”, the processing core remains in the
initial state 211. If the packet contains a “0””, which corre-
sponds to the first digit in the predetermined pattern, the
processing core transitions to the A state 213.

If the processing core receirves a “0” subsequently, the
processing core remains in the A state 213. If the processing
core receives a “1”, which corresponds to the second digit in
the predetermined pattern, then the processing core transi-
tions nto the B state 215. From the B state 215, the
processing core may transition back to the A state 213 1f the
next packet received contains a “0”. If the next packet
received contains a “1”, which corresponds to the third digit
in the predetermined pattern, then the processing core tran-
sitions to the C state 217. However, note that another
processing core in the set of processing cores may receive
and process the next packet 1n some embodiments.

From the C state 217, the processing core may transition
back to the A state 213 11 the next packet received contains
a “0”. I the next packet received contains a “1”, which
corresponds to the last digit in the predetermined pattern,
then the processing core transitions to the final state 219.
When the processing core reaches the final state 219, the
processing core knows that the packets received so far
contain the predetermined pattern. Hence, the processing

US 10,609,043 B2

7

core may perform the appropriate operations 1n response to
receiving the predetermined pattern, such as blocking the
packet of the predetermined pattern last received and 1ssuing,
an alarm to alert system admimstrators. To keep track of
which state of the DFA 1s in currently, the processing core
stores the current state of the DFA 1n a database commonly
accessible by the set of processing cores. As such, another
processing core may continue pattern matching on the next
packet from the current state if the other processing core
receives the next packet. Furthermore, the current state of
the DFA may be associated with a connection from which
the packet 1s received so that the set of processing cores may
ispect packets from multiple connections using the infor-
mation from the database.

One advantage of using the DFA to perform pattern
matching on packets 1s to eliminate the need to reassemble
the packets because the processing cores can walk through
the DFA as each packet 1s received and examined. Because
a pattern 1s typically broken up into a number of segments
and each segment 1s transmitted using a packet, it 1s neces-
sary to inspect multiple packets in order to identily the
pattern. Using the DFA, the processing cores may not have
to reassemble the packets i order to find out what the
pattern contained in the packets i1s 1 order to match the
pattern against a predetermined pattern. The processing
cores may perform pattern matching on a packet-by-packet
basis as each of the packets 1s received without reassembling,
the packets by walking through the DFA. If a processing
core reaches a final state, there 1s a match between the
pattern contained in the packets received so far and the
predetermined pattern. There 1s no need to store the packets
for reassembling the packets. Instead, the processing cores
may simply store the current state of the DFA 1n a database
commonly accessible by the processing cores.

The concept described above may be expanded to signa-
ture detection. A signature 1s a collection of multiple pat-
terns. To keep track of which pattern within a signature 1s
being matched, processing logic may use a tree structure,
where each node within the tree structure corresponds to a
pattern and each pattern 1s represented using a DFA. Alter-
natively, a single DFA may represent multiple patterns.

FIG. 3 illustrates a functional block diagram of one
embodiment of multi-core hardware usable to perform mul-
tiple payload analysis 1n an IPS. The IPS may be imple-
mented within a set-top box coupled to a protected network.
The multi-core hardware 300 includes a set of processing
cores 310, a pattern matching database 320, and an out-oi-
order bufler 330. In some embodiments, the set of process-
ing cores 310 includes processing cores 1 a multi-core
processor. The processing cores 310 are communicably
coupled to the database 320 so that each of the processing
cores 310 may retrieve and update information in the
database 320. Likewise, the processing cores 310 are also
communicably coupled to the out-of-order builer 330 so that
cach of the processing cores 310 may access the out-of-order
butler 330.

In some embodiments, the processing cores 310 receive
packets from one or more connections. To prevent harmiul
virus or malicious code from reaching the protected net-
work, the processing cores 310 performs reassembly-free
DPI on the packets. When one of the processing cores 310
receives a packet, the processing core may determine 11 the
packet 1s 1n-order or out-of-order. An out-of-order packet
may be temporarily stored 1n the out-of-order bufler 330 and
be associated with the connection from which the out-of-
order packet 1s received. In-order packets are examined by
the processing cores 310 and are allowed to pass to the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

protected network 11 no pattern of harmful virus or malicious
code 1s detected. The processing cores 310 update and store
the current pattern matching state of each connection 1n the
database 320. As such, any one of the processing cores 310
can continue with the on-going pattern matching from the
current state of a connection that sends the current packet. In
some embodiments, the database 320 includes a relational
database that stores the current pattern matching states 324
with their corresponding connections 322 as shown 1n FIG.
2. Details of some embodiments of the method to perform
reassembly-iree DPI have been discussed above.

FIG. 4 illustrates one embodiment of a system 1n which
embodiments of the present invention may be implemented.
The system 400 includes a client machine 412 within a
protected network 410, an IPS 420, and a network 430. The
protected network 410 1s communicably coupled to the
network 430 via the IPS 420. Thus, packets transmitting
between the protected network 410 and the network 430
have to pass through the IPS 420. In some embodiments,
there may be more than one client machines coupled to the
protected network 410. The network 430 may include a
variety of networks, such as local area network (LAN), wide
area network (WAN), etc. Furthermore, the network 430
may be publicly accessible, and therefore, computer virus
and malicious code targeting the protected network 410 may
be sent from the network 430. As such, the IPS 420 scans the
incoming packets to prevent computer virus and malicious
code from entering the protected network 410.

In some embodiments, the IPS 420 includes a multi-core
processor 421, an out-of-order bufler 423, and a pattern
matching database 425. The multi-core processor 421
includes a set of processing cores, such as the processing
cores 310 shown i FIG. 3.

In some embodiments, each of the processing cores
receives packets from the network 430 through different
connections. Furthermore, the packets may arrive out-oi-
order, and 11 so, the out-of-order packets may be temporarily
stored 1n the out-of-order bufler 423 to be 1nspected later.
The processing cores of the multi-core processor 421 per-
form DPI on the in-order packets and store the current
pattern matching states of the connections in the pattern
matching database 425. If a pattern associated with com-
puter virus or malicious code 1s 1dentified in the mncoming
packets inspected so far, the multi-core processor 421 blocks
the packet currently being inspected and may further 1ssue a
warning to a system admimstrator. If no pattern associated
with computer virus or malicious code 1s 1dentified in the
incoming packets inspected so far, then the multi-core
processor 421 allows the packet currently being inspected to
pass to the protected network 410, which may be further
transmitted to the client machine 412. By blocking the
packet currently being inspected 11 the pattern 1s 1dentified in
the packets received so far, the computer virus or malicious
code cannot be completely passed mto the protected network
410, and hence, the computer virus or malicious code cannot
be completely reassembled on the client machine 412. The
incomplete computer virus or malicious code typically can-
not harm the client machine 412 coupled thereto. Details of
some embodiments of a method to perform reassembly-iree
DPI have been discussed above.

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of mstructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, and/or the

US 10,609,043 B2

9

Internet. The machine may operate in the capacity of a server
or a client machine 1n client-server network environment, or
as a peer machine 1n a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, a switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specily actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The exemplary computer system 500 includes a process-
ing device 502, a main memory 304 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or Ram-
bus DRAM (RDRAM), etc.), a static memory 506 (e.g.,
flash memory, static random access memory (SRAM), etc.),
and a data storage device 518, which communicate with
cach other via a bus 332.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, a
central processing umt, or the like. More particularly, the
processing device may be complex mstruction set comput-
ing (CISC) microprocessor, reduced instruction set comput-
ing (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
istruction sets, or processors implementing a combination
of 1nstruction sets. Processing device 502 may also be one
or more special-purpose processing devices such as an
application specific itegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
502 1s configured to execute the processing logic 526 for
performing the operations and steps discussed herein.

The computer system 500 may further include a network
interface device 308. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(c.g., a mouse), and a signal generation device 516 (e.g., a
speaker).

The data storage device 518 may include a machine-
accessible storage medium 530 (also known as a machine-
readable storage medium or a computer-readable medium)
on which 1s stored one or more sets ol instructions (e.g.,
soltware 522) embodying any one or more of the method-
ologies or functions described herein. The software 522 may
also reside, completely or at least partially, within the main
memory 404 and/or within the processing device 502 during,
execution thereof by the computer system 300, the main
memory 504 and the processing device 502 also constituting,
machine-accessible storage media. The software 522 may
turther be transmitted or received over a network 520 via the
network interface device 508.

While the machine-accessible storage medium 530 1s
shown 1n an exemplary embodiment to be a single medium,
the term “machine-accessible storage medium” should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “machine-accessible storage medium” shall also
be taken to include any medium that 1s capable of storing,
encoding or carrying a set of instructions for execution by
the machine and that cause the machine to perform any one

10

15

20

25

30

35

40

45

50

55

60

65

10

or more of the methodologies of the present invention. The
term “machine-accessible storage medium” shall accord-
ingly be taken to include, but not be limited to, solid-state
memories, optical and magnetic media, etc. In some
embodiments, machine-accessible storage medium may also
be referred to as computer-readable storage medium.

Thus, some embodiments of reassembly-free DPI on
multi-core hardware have been described. It 1s to be under-
stood that the above description 1s intended to be 1llustrative,
and not restrictive. Many other embodiments will be appar-
ent to those of skill 1n the art upon reading and understand-
ing the above description. The scope of the invention should,
therefore, be determined with reference to the appended
claims, along with the full scope of equivalents to which
such claims are entitled.

What 1s claimed 1s:

1. A method for scanning received data packets, the
method comprising:

storing a first data packet of a first data set 1n an out-oi-

order buller based on an i1dentification by a first pro-

- a multi-core processor that the first data

cessor of
packet was recerved out-of-order;

identifying that a second data packet of the first data set
has been received m-order by a second processor of the
multi-core processor;

transmitting the second data packet to a first destination
based on a scan of the second data packet indicating
that a current status of the first data set does not match
a malware pattern;

scanning the first data packet based on an identification
that the first data packet 1s in-order after the scan of the
second data packet, the first data packet scanned by the
second processor; and

blocking the first data packet from being transmitted to
the first destination based on the scan of the first data
packet indicating that an updated current status of the
first data set matches the malware pattern.

2. The method of claim 1, further comprising:

performing an in-order scan of one or more previously
received data packets of the first data set by a plurality
of processors of the multi-core processor; and

sending the previously received data packets to the first
destination based on the in-order scan indicating that
the current status of the first data set does not match the
malware pattern.

3. The method of claim 1, further comprising:

identitying by the second processor that the second data
packet corresponds to a first portion of the malware
pattern, wherein the indication that the first data set
matches the malware pattern i1s based on the first data
packet corresponding to a second portion of the mal-
ware pattern; and

updating the current status of the first data set based on an
in-order scan of the second packet and the first packet,
wherein the updated current status matches the mal-
ware pattern, wherein the updated current status is
made available to other processors of the multi-core
Processor.

4. The method of claim 1, further comprising:

transmitting one or more data packets of a second data set
to a second destination aiter the one or more data
packets of the second data set are scanned in-order,
wherein the first data packet of the first data set 1s
scanned by the second processor at a same time that at
least one of the packets of the second data set 1s being
scanned by another processor of the multi-core proces-
SOF;

US 10,609,043 B2

11

scanning a last data packet of the second data set, wherein
the last data packet i1s i1dentified as not matching the
malware pattern; and

sending the last data packet of the second data set to the
second destination.

5. The method of claim 1, further comprising;:

identifying by the second processor that the current status
of the first data set does not match the malware pattern
by comparing the current status of the first data set to
the malware pattern and to a second malware pattern;
and

identifying by the second processor that the updated
current status of the first data set matches the malware
pattern by comparing the updated current status of the
first data set to the malware pattern and to the second
malware pattern.

6. The method of claim 1, further comprising:

identifying by the first processor that the first data packet
1s out-of-order based on a sequence number of the first
data packet being out-of-order following a sequence
number of a last-scanned data packet of the first data
set;

identifying by the second processor that the second data
packet 1s m-order based on a sequence number 1n the
second data packet being in-order following the
sequence number of the last-scanned data packet; and

scanning the second data packet based on the i1dentifica-
tion that the second data packet 1s in-order relative to
the last-scanned data packet.

7. The method of claim 1, further comprising;:

receiving a third data packet;

storing the third data packet in the out-of-order bufler
based on the second data packet preceding the third
data packet 1n a sequential order, wherein the third data
packet 1s stored at the out-of-order bufler at a same time
that the first data packet i1s stored in the out-of-order
bufter:

retrieving the third data packet from the out-of-order
bufler after scanning the second data packet, wherein
the third data packet 1s immediately after the second
data packet in the sequential order; and

scanning the third data packet.

8. A non-transitory computer-readable storage medium

having embodied thereon a program executable by a pro-
cessor to perform a method for scanning received data

packets, the method comprising;

storing a first data packet of a first data set 1n an out-oi-
order buller based on an 1dentification by a first pro-
cessor of a multi-core processor that the first data
packet was recerved out-of-order;

identifying that a second data packet of the first data set
has been received m-order by a second processor of the
multi-core processor;

transmitting the second data packet to a first destination
based on a scan of the second data packet indicating
that a current status of the first data set does not match
a malware pattern;

scanning the first data packet based on an identification
that the first data packet 1s in-order after the scan of the
second data packet, the first data packet scanned by the
second processor; and

blocking the first data packet from being transmitted to
the first destination based on the scan of the first data
packet indicating that an updated current status of the
first data set matches the malware pattern.

9. The non-transitory computer-readable storage of claim

8, further comprising instructions executable to:

10

15

20

25

30

35

40

45

50

55

60

65

12

perform an 1n-order scan of one or more previously
received data packets of the first data set by a plurality
of processors of the multi-core processor; and

send the previously received data packets to the first
destination based on the in-order scan indicating that
the current status of the first data set does not match the
malware pattern.

10. The non-transitory computer-readable storage of

claim 8, further comprising 1nstructions executable to:

identily by the second processor that the second data
packet corresponds to a first portion of the malware
pattern, wherein the indication that the first data set
matches the malware pattern 1s based on the first data
packet corresponding to a second portion of the mal-
ware pattern; and

update the current status of the first data set based on an
in-order scan of the second packet and the first packet,
wherein the updated current status matches the mal-
ware pattern, wherein the updated current status is
made available to other processors of the multi-core

Processor.
11. The non-transitory computer-readable storage of

claim 8, further comprising 1nstructions executable to:

transmit one or more data packets of a second data set to
a second destination after the one or more data packets
of the second data set are scanned 1n-order, wherein the
first data packet of the first data set 1s scanned by the
second processor at a same time that at least one of the
data packets of the second data set 1s being scanned by
another processor of the multi-core processor;

scan a last data packet of the second data set, wherein the
last data packet 1s 1dentified as not matching the mal-

ware pattern; and
send the last data packet of the second data set to the

second destination.
12. The non-transitory computer-readable storage of

claim 8, further comprising 1nstructions executable to:

identily by the second processor that the current status of
the first data set does not match the malware pattern by
comparing the current status of the first data set to the
malware pattern and to a second malware pattern; and

identity by the second processor that the updated current
status of the first data set matches the malware pattern
by comparing the updated current status of the first data
set to the malware pattern and to the second malware
pattern.

13. The non-transitory computer-readable storage of

claim 8, further comprising 1nstructions executable to:

identily by the first processor that the first data packet 1s
out-of-order based on a sequence number of the first
data packet being out-of-order following a sequence
number of a last-scanned data packet of the first data
set;

identity by the second processor that the second data
packet 1s m-order based on a sequence number in the
second data packet being in-order following the
sequence number of the last-scanned data packet; and

scan the second data packet based on the identification
that the second data packet 1s 1n-order relative to the
last-scanned data packet.

14. The non-transitory computer-readable storage of

claim 8, the program further executable to:

recerve a third data packet;

store the third data packet in the out-of-order bufler based
on the second data packet preceding the third data
packet 1 a sequential order, wherein the third data

e

US 10,609,043 B2

13

packet 1s stored at the out-of-order builer at a same time
that the first data packet i1s stored in the out-of-order
bufller:;

retrieve the third data packet from the out-of-order butler
alter scanning the second data packet, wherein the third
data packet 1s immediately after the second data packet
in the sequential order; and

scan the third data packet.

15. An apparatus for scanning received data packets, the
apparatus comprising;

a multi-core processor that includes a plurality of proces-
sors, wherein the plurality of processor includes a first
processor that 1dentifies that a first data packet of a first
data set was received out-of-order,

a memory that includes an out-of-order bufler that stores
the first data packet based on the identification by the
first processor;

a second processor of the multi-core processor that 1den-
tifies that a second data packet of the first data set has
been received n-order by the second processor of the
multi-core processor; and

a communication interface that transmits the second data
packet to a first destination based on a scan of the
second data packet indicating that a current status of the
first data set does not match a malware pattern, wherein
the second processor scans the first data packet based
on an 1dentification that the first data packet 1s 1n-order
alter the scan of the second data packet and blocks the
first data packet from being transmitted to the first
destination based on the scan of the first data packet
indicating that an updated current status of the first data
set matches the malware pattern.

16. The apparatus of claim 15, wherein the plurality of
processors of the multi-core processor has performed in-
order scans of one or more previously recerved data packets
of the first data set, and wherein the previously received data
packets were sent to the first destination based on the
in-order scans indicating that the current status of the first
data set does not match the malware pattern.

17. The apparatus of claim 15, wherein the second pro-
CEeSSOr:

identifies that the second data packet corresponds to a first
portion of the malware pattern and the indication that
the first data set matches the malware pattern 1s based

10

15

20

25

30

35

40

14

on the first data packet corresponding to a second
portion of the malware pattern; and

updates the current status of the first data set based on an

in-order scan of the second packet and the first packet,
wherein the updated current status matches the mal-
ware pattern, wherein the updated current status 1s
made available to other processors of the multi-core
ProCessor.

18. The apparatus of claim 135, wherein the plurality of
processors of the multi-core processor has allowed one or
more data packets of a second data set to be transmitted to
a second destination after the one or more data packets of the
second data set are scanned in-order, the first data packet of
the first data set scanned by the second processor at a same
time that at least one of the data packets of the second data
set 15 being scanned by another processor of the multi-core
processor, and wherein one of the processors scans a last
data packet of the second data set, the last data packet being
identified as not matching the malware pattern and sent to
the second destination.

19. The apparatus of claim 15, wherein the second pro-
cessor further:

identifies that the current status of the first data set does

not match the malware pattern by comparing the cur-
rent status of the first data set to the malware pattern
and to a second malware pattern, and

identifies that the updated current status of the first data

set matches the malware pattern by comparing the
updated current status of the first data set to the
malware pattern and to the second malware pattern.

20. The apparatus of claim 15, wherein:

the first processor i1dentifies that the first data packet 1s

out-of-order based on a sequence number of the first
data packet being out-of-order following a sequence
number of a last-scanned data packet of the first data
set,

the second processor 1dentifies that the second data packet

1s 1n-order based on a sequence number in the second
data packet being in-order following the sequence
number of the last-scanned data packet, and

the second data packet 1s scanned based on the identifi-

cation that the second data packet i1s in-order relative to
the last-scanned data packet.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

