12 United States Patent

Cantrill et al.

US010609035B2

(10) Patent No.: US 10,609,035 B2
45) Date of Patent: *Mar. 31, 2020

(54) ACCESS GUARDS FOR MULTI-TENANT
LOGGING

(71) Applicant: Red Hat, Inc., Raleigh, NC (US)

(72) Inventors: Jeffrey Jon Cantrill, Wilmington, NC
(US); Eric M. Wolinetz, Chicago, IL
(US); Luke R. Meyer, Cary, NC (US)

(73) Assignee: Red Hat, Inc., Raleigh, NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 16/285,658
(22) Filed: Feb. 26, 2019

(65) Prior Publication Data
US 2019/0199727 Al Jun. 27, 2019

Related U.S. Application Data

(63) Continuation of application No. 15/875,614, filed on
Jan. 19, 2018, now Pat. No. 10,263,993, which 1s a

continuation of application No. 15/053,435, filed on
Feb. 25, 2016, now Pat. No. 9,900,317.

(51) Int. CL

HO4L 29/06 (2006.01)
GO6F 16/901 (2019.01)
GO6F 21/62 (2013.01)
(52) U.S. CL
CPC ... HO4L 63/101 (2013.01); GO6F 16/901

(2019.01); GO6F 21/6218 (2013.01); HO4L
63/105 (2013.01)

300

(38) Field of Classification Search
CPC ... HO4L 63/101; HO4L 63/105; GO6F 16/901;
GO6F 21/6218
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,930,760 B2 4/2011 Coles et al.
8,713,693 B2 4/2014 Shanabrook et al.
8,769,644 Bl 7/2014 FEicken et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 103399887 A 11/2013
CN 1040536025 A 9/2014
(Continued)

OTHER PUBLICATIONS

“Elasticsearch acess control based on field value”, Stack Overflow,
5 pages http:|/stackoverflow.com/questions/29170777/elasticsearch-
access-control-based-on-field-value).

(Continued)

Primary Examiner — Christopher A Revak

(74) Attorney, Agent, or Firm — Withrow & Terranova,
PLLC

(57) ABSTRACT

Implementations of the disclosure describe access guards for
multi-tenant logging. A method of the disclosure includes
receiving an access request to access a logging stack com-
prising application logs, wherein the access request 1denti-
fies a user identifier, i1dentifying an authorization token
associated with the user identifier, wherein the authorization
token references an access role, and determining whether the
application logs from the logging stack are accessible 1n
view of the access role.

20 Claims, 5 Drawing Sheets

associated with an

an access request to access a logging stack comprising application logs

Receive

execution of an application
210

l

a user identifier and an authiorization token related io the user ideniifier in
rasponsa 0 the access request

|dentify

310

hbebe—

v

a modinied request by adding the u

(Gensrate

access request, where the authorization token references an access roie for the
user identifier from an access conirod st

ser identifier and authonzation token to the

3301

the modified reguiest to the logging stack te identify the application logs from the
logqing stack that are accessible in view of the access role

Appiy

=240

US 10,609,035 B2
Page 2

References Cited

U.S. PATENT DOCUMENTS

(56)
8,839,209 B2 9/201
9,098,675 Bl 8/201
9,418,213 Bl 8/201
9,774,586 Bl 9/201
9,900,317 B2 2/201
10,263,993 B2 4/201
2009/0288084 Al 11/200
2010/0286992 Al 11/201
2015/0058950 Al 2/201
2015/0059003 Al 2/201
2015/0205974 Al 7/201
2015/0355879 Al 12/201
2017/0116403 Al 4/201
2017/0147808 Al 5/201
2017/0178127 Al 6/201
2017/0213210 Al 7/201
2017/0235936 Al 8/201
FOREIGN PA
CN 105071966 A
CN 105243008 A

~] -] ~1~1~1Jhhtbhbh OO\ ~-10ybh D

ENT DOCUM

Gallagher et al.
Roth et al.
Roth et al.
Roche et al.
Cantrill et al.
Cantrill
Astete et al.
Tkatch et al.
Miu

Bouse

Talley et al.
Beckhardt et al.
Bouse et al.
Kravitz

Kravitz

Kravitz

de los Rios et al.

11/2015
1/2016

tttttttttttttttt

HO4L 63/101

ENTTS

OTHER PUBLICATIONS

Philipp R., “Elasticsearch access control based on field value,” 1

page https://groups.google.comlforum/#!msg/elasticsearch/

D9bNsCeYdpc/Ka715_GblzMJ).

“Protect your Data with Shield”, Shield 1 Security for Elasticsearch,
2016, 4 pages.

Alex Brasetvik, “Securing Your Elasticsearch Cluster”, Elastic Dec.
9, 2013, 11 pages.

“Solve the Nosy Neighbor Problem in Multi-Tenant Environments™,
HyTrust: Solution Brief, 2015, 7 pages.

“Search Guard Security Plugin for ES 1 x-Elasticsearch Security for
Free”, GitHub, Floragunncom/search-guard, 9 pages.

J. Cantrill, “Dynamic sync of ACL based on incoming token and
user”, GitHub, Sep. 10, 2015, 31 pages.

USPTO, Ofhice Action for U.S. Appl. No. 15/875,614, dated Sep.
14, 2018.

USPTO, Notice of Allowance for U.S. Appl. No. 15/875,614, dated
Nov. 21, 2018.

USPTO, Notice of Allowance for U.S. Appl. No. 15/053,435, dated
Oct. 12, 2017.

* cited by examiner

LR

Faaliernrarlialrianry il L o e]

SL N USHT L ¢ R 091 | LD

i, i,

3
winleie el i i T e, O O N T OO0, . |

ST issmolg TITiesmolg 8T Jesmoug

US 10,609,035 B2

ST wsuodwon
DIBND) $8800Y

*To)
Alousodes aleuw

Bmom

Vi

180S0 WSISAS QrE

Sheet 1 of 5

(b 42{{CGHUDT PROID

60t
ool UOLEZHENESIA

Mar. 31, 2020

Ocl anCa

U.S. Patent

US 10,609,035 B2

Sheet 2 of §

Mar. 31, 2020

U.S. Patent

SIANBNY. o

077 SPON ADIAIRG UONRONUAINY

[T MR TR T T TR TR TI TAR TR THR TR T T T TR T TR TR TR TR TIF TR TRE AR TR T Y

T4

4
2an £2¢ 10V
UZET SPON el ,
: /| m
(¢ 7 J3AB] 2PON ,\ / THET wouodwio) |

DIBTLY §S800Y

FTARTIETY
TR RN N
FTARTIETY

L

077 JSART I01SRIN BRd

00
soe1g BuiBbo

601

SORLISIU] LUONBZIENSIA

ISISBIA]
NEEA

111111111111

717 WSISAG
TUSWIRERURIA

PO} TINOY

SI00],

SUL] DUBLUIBG)

Il e e ol el Sl sl e, Bl

G1C Wiy uen)

U.S. Patent Mar. 31, 2020 Sheet 3 of 5 US 10,609,035 B2

++

Recaive
an access reguest o access g logging stack comprising application iogs
associated with an execution of an application

im
o
O

--

gentity
a user idenitfier and an authorization token reiated {0 the user Wentifier in
response 1o the access request
10

Generate
a modified reguest by adding the user wentitier and authorization token to the
aceess request, where the authorization token references an aceess role for the
Lser igentnier from an access controd fist

SU

Apply 5
the modified request to the logging stack to identify the application logs from the |
I0gaing stack that are accessinie in view of the gccess role f

AR RN

L]
L]
=
=
L
-
i
+
+
+
+
+
+
+
+
+
+
+

FIGURE 3

U.S. Patent Mar. 31, 2020 Sheet 4 of 5 US 10,609,035 B2

400 .

Frocess
a request {0 access g logging stack comprising application 10gs associated with
an execution of an application

L
ol
-

aaa

Obtain
an authorization (oken that 15 associgted with a user identifier and access role In
view of the request

rr

Determine
whether the application logs from the 1ogging stack are accessibie in view of the
access role

4ol

Froduce

an access control list o access the logging stack in view of the determination, the
gecess control st comprises a refterence 1o the authonzation oken
440

FIGURE 4

U.S. Patent Mar. 31, 2020

HROCESSING
UEVICE

PROCESSING LOGIC

Access Guard
component
145

MAIN M

INSTRUCTIONS

Access Guard
Companant
145

506

SHATIC M

93
o)
b

N TWORK
iINTERFACE

UeEVICE

NETYWORK

Sheet 5 of 5

+ +
+++++
+ +

SUS

DATA STORAGE DEVIC

US 10,609,035 B2

=0 DISPLAY

512

ALPHA-NUMERIC

INPUT DEVIC

CURSOR
GONTROL
DEVICE

516

MACHINE-READABLE
MEDIUM

NN 524

+ + +
+++++
+ +

SOFTWARE

526

Access uard
Component
145

SIGNAL
SENERATION
DEVICE

FIGURE S

US 10,609,035 B2

1

ACCESS GUARDS FOR MULTI-TENANT
LOGGING

RELATED APPLICATIONS

This application 1s a continuation of U.S. patent applica-

tion Ser. No. 15/875,614, filed on Jan. 19, 2018, which 1s a
continuation of U.S. patent application Ser. No. 15/053,435,

filed on Feb. 25, 2016, and 1ssued as a U.S. Pat. No.
9,900,317, on Feb. 20, 2018, the entirety of each of which
are incorporated herein by reference.

TECHNICAL FIELD

The implementations of the disclosure relate generally to
computing inirastructures and, more specifically, relate to
access guards for multi-tenant logging.

BACKGROUND

A “tenant” 1n a multi-tenant system 1s a defined set of
computing resources with access privileges provided to a set
of users and protected from access by other users in the
system. A typical multi-tenant system 1s comprised of ten-
ants that can range 1n size from one instance of an applica-
tion to a set of inter-related and replicated applications. The
multi-tenant system 1s designed to allow the users to share
resources for the applications within these tenants.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure can be understood more fully from the
detailed description given below and from the accompany-
ing drawings of various implementations of the disclosure.
The drawings, however, should not be taken to limit the
disclosure to the specific implementations, but are for expla-
nation and understanding only.

The disclosure 1s illustrated by way of examples, and not
by way of limitation, and may be more fully understood with
references to the following detailed description when con-
sidered 1n connection with the figures, 1n which:

FIG. 1 1s a block diagram of a network architecture in
which implementations of the disclosure may operate.

FIG. 2 1s a block diagram of a Platform-as-a-Service
(PaaS) system architecture according to an implementation
of the disclosure.

FI1G. 3 illustrates a flow diagram of a method of providing
access guards for multi-tenant logging according to an
implementation of the disclosure.

FIG. 4 1llustrates a flow diagram of a method to generate
an access control list for multi-tenant logging according to
an 1mplementation of the disclosure.

FIG. 5 1llustrates a block diagram illustrating a computer
system 1n which implementations of the disclosure may be
used.

DETAILED DESCRIPTION

The disclosure provides techniques for implementing
access guards for multi-tenant logging. Many Platform-as-
a-Service (PaaS) systems, such as OpenShift®, provide
resources to host the execution of applications owned or
managed by multiple users. A PaaS system provides a
platform and environment that allow users to build applica-
tions and services over the network. A variety of PaaS
system offerings exist that include software and/or hardware
components for facilitating the execution of applications

10

15

20

25

30

35

40

45

50

55

60

65

2

across many machines in a clustered compute environment
(the “cloud”). Although implementations of the disclosure
are described 1n accordance with a certain type of system,
this should not be considered as limiting the scope or
uselulness of the features of the disclosure. For example, the
features and techniques described herein can be used with
other types of multi-tenant systems.

Some infrastructure systems allow users to share data and
work for the applications within tenants. A “tenant” 1s a
collection of resources for running 1nter-related applications.
The system can host a plurality of tenants on a single cluster
of nodes (e.g., virtual machines). The nodes of the multi-
tenant system can run multiple applications that may be
owned or managed by different users and/or organizations.
When an application executes, the application may produce
logs that can include, but are not limited to, relevant runtime
information, such as transactional, environment and system
information, data, debugging and/or private code, and other
types of information. Some application owners may want to
allow particular users access to these logs to perform certain
tasks, while limiting access to other user of the tenant or
users of different organizations. This type of limited access
helps ensure the confidentiality and security of the logs.

To enable access to logs, some multi-tenant systems can
include a type of aggregated logging system that 1s 1mple-
mented per tenant and/or globally within the entire system.
For example, the PaaS system may utilize an object store,
which 1s a collection of data along with metadata that
describes the data and a tool, such as Elasticsearch™, to be
able to examine this object store. The object store may
comprise a logging stack (e.g., a data structure comprising
logs and the metadata associated with the logs) that is
indexed (e.g., a type of data organization that allows user to
partition data a certain way) and made searchable. When the
agoregated logging system 1s deployed on a cluster, it
aggregates logs for all nodes and projects on that cluster into
the logging stack. In some situations, a web-enabled Ul
(user interface), such as Kibana™, provides visualization
capabilities on top of the indexed logs on this logging stack
for users and/or administrators. The multi-tenant system.,
however, may be severely impacted by the overhead
incurred to run the logging system for every individual
tenant, as well as the administrative overhead sustained to
manage logs by system administrators for each individual
organization associated with the cluster.

In accordance with the disclosure, a multi-tenant logging
system 15 provided that allows a user to have an individual
profile that controls the user’s access to tenant logs. This
multi-tenant logging system 1ncludes an access guard plugin
(e.g., a modular component that can selectivity add new
features to an existing system) to a multi-tenant system, such
as the PaaS system. The plugin adds features of an access
control list (ACL) to indexes of the logging stack in view of
a user’s access role. The logging stack 1s an aggregate of
logs for all nodes and projects on a cluster that 1s stored 1n
a globally accessible location 1n the PaaS system. In one
implementation, when a user requests a particular index to
logs 1n the logging stack, an authorization token associated
with the user 1s provided. Before the user request 1s allowed
to proceed, the access guard plugin performs access control
on the logging stack by referencing the ACL using the
authorization token to determine which tenants a user can
access 1n view ol the user’s current access role. In some
implementations, the access guard plugin uses the authori-
zation token and the user identifier to construct the ACL to
enable each user’s access to the logging stack. An advantage
of the access guard plugin 1s that logs remain 1solated from

US 10,609,035 B2

3

one another in the logging system, while still providing a
common location for accessing logs across an entire cluster
in view of an access role of a user that can change over time.

If the user uses a web-enabled UI to request the logs, the
authorization token and user 1identifier are used to modify the
request from the Ul to perform access control on the logging
stack. For example, the access guard plugin retrieves the
user 1dentifier and authorization token in view of the user’s
browser session, and then passes that information along as
a request header with each request. As noted above, the
access guard plugin uses this information to construct the
logging system’s ACL 1n view of the user’s current role. In
some 1mplementations, the ACL 1s periodically flushed by
the access guard plugin to ensure that 1t remains up to date
with the current access roles of users defined in the multi-
tenant system.

FIG. 1 1s a block diagram of a network architecture in
which implementations of the disclosure may operate. The
network architecture 100 includes a cloud 130 that includes
nodes 111, 112, 121, 122 to execute software and/or other
processes. In some implementations these nodes are virtual
machines (VMs) that are hosted on a physical machine, such
as host 1 110 through host N 120, implemented as part of the
cloud 130. In some implementations, the host machines 110,
120 are often located 1n a data center. For example, nodes
111 and 112 are hosted on physical machine 110 in cloud 130
provided by cloud provider 104. When nodes 111, 112, 121,
122 are implemented as VMs, they may be executed by OSs

115, 125 on each host machine 110, 120.

In some implementations, the host machines 110, 120 are
often located 1n a data center. Users can interact with
applications executing on the cloud-based nodes 111, 112,
121, 122 using client computer systems, such as clients 160,
170 and 180, via corresponding web browser applications
161, 171 and 181. In other implementations, the applications
may be hosted directly on hosts 1 through N 110, 120
without the use of VMs (e.g., a “bare metal” implementa-
tion), and 1n such an implementation, the hosts themselves

are referred to as “nodes”.
Clients 160, 170, and 180 are connected to hosts 110, 120

in cloud 130 and the cloud provider system 104 via a
network 102, which may be a private network (e.g., a local
area network (LAN), a wide area network (WAN), intranet,
or other similar private networks) or a public network (e.g.,
the Internet). Each client 160, 170, 180 may be a mobile
device, a PDA, a laptop, a desktop computer, a tablet
computing device, a server device, or any other computing
device. Each host 110, 120 may be a server computer
system, a desktop computer or any other computing device.
The cloud provider system 104 may include one or more
machines such as server computers, desktop computers, etc.

In one implementation, the cloud provider system 104 1s
coupled to a cloud controller 108 via the network 102. The
cloud controller 108 may reside on one or more machines
(e.g., server computers, desktop computers, etc.) and may
manage the execution of applications in the cloud 130. In
some 1mplementations, cloud controller 108 receives com-
mands from PaaS system controller 140. In view of these
commands, the cloud controller 108 provides data (such as
pre-generated 1images) associated with different applications
to the cloud provider system 104. In some implementations,
the data may be provided to the cloud provider 104 and
stored 1n an 1mage repository 106, 1n an 1mage repository
(not shown) located on each host 110, 120, or in an 1mage
repository (not shown) located on each VM 111, 112, 121,

10

15

20

25

30

35

40

45

50

55

60

65

4

122. This data may be used for the execution of applications
for a multi-tenant PaaS system managed by the PaaS pro-
vider controller 140.

In one implementation, the data used for execution of
applications includes application 1mages built from pre-
existing application components and source code of users
managing the application. An 1image refers to data repre-
senting executables and files of the application used to
deploy functionality for a runtime instance of the applica-
tion. The image build system may be provided on compo-
nents hosted by cloud 130, on a server device external to the
cloud 130, or even run on nodes 111, 112, 121, 122. The
image build system generates an application image for an
application by combining pre-existing ready-to-run applica-
tion 1mage corresponding to core functional components of
the application (e.g., a web framework, database, etc.) with
source code speciiic to the application provided by the user.
The resulting application image may be pushed to an image
repository (not shown) for subsequent use i launching
instances ol the application 1mages for execution in the PaaS
system.

Upon recerving a command 1dentiiying specific data (e.g.,
application data and files, such as application images, used
to 1mtialize an application on the cloud) from the PaaS
provider controller 140, the cloud provider 104 retrieves the
corresponding data from the image repository 106, creates
an 1nstance of the image, and loads 1t to the host 110, 120 for
execution by nodes 111, 112, 121, 122. In addition, a
command may 1dentily specific data to be executed on one
or more of the nodes 111, 112, 121, 122. The command may
be received from the cloud controller 108, from the PaaS
system controller 140, or a user (e.g., a system administra-
tor) via a console computer or a client machine.

When the specific data, such as an application image, 1s
executed at a particular node certain logs (e.g., logs 1
through N 151,152,153,154) may be produced. The logs
151,152,153,154 may comprise event data logged by an
application or other types of processes. The format of these
logs 151,152,153,154, can be application specific and con-
tain relevant information regarding the runtime environment
for the applications that produced the logs. In one 1mple-
mentation, the logs 151,152,153,154 for all the nodes 111,
112, 121, 122 may be aggregated into a logging stack 107.
For example, the multi-tenant PaaS system managed by the
PaaS provider controller 140 may collect these logs along
with any metadata that describes the logs into a location that
1s globally accessible in the multi-tenant PaaS system. In
some 1mplementations, the logging stack 107 includes a
plurality of indexes 103 that are in view of a plurality of
different data types (e.g. categories of data).

Some users (e.g., clients 160, 170, 180 and/or adminis-
trators) request access to the logging stack 107 1n order to
analyze logs, and to inspect events or system incidents or
detect abnormalities in the runtime environments for appli-
cations of the user. In some implementations, the users are
able to run queries directly against the logging stack 107
using one or a combination of two or more indexes 103 to
analyze logs. In one implementation, the users may use a
visualization interface 109. For example, the visualization
interface 109 may include a web-enabled portal that pro-
vides users visualization capabilities to search and analyze
logs.

In one mmplementation, the multi-tenant PaaS system
managed by the PaaS provider controller 140 may include a
plugin, such as access guard component 145, that 1s installed
to provide an individual profile for a user that controls the
user’s access to the logs of the logging stack 107. When a

US 10,609,035 B2

S

user requests access to a log on the logging stack 107, for
example, by directly accessing the logging stack 107 or
through the visualization interface 109, the access guard
component 145 determines which indexes 103 of the stack
107 that the user 1s entitled to access 1n view of their current
access role. For example, the access guard component 1435
identifies an authorization token that corresponds to the
user’s credential (e.g., user 1d and password) 1n the system.
This authorization token 1s used to check the current role of
the user for accessing certain tenants (e.g., a collection of
inter-related applications) as defined by the system. In this
regard, the access guard component 145 communicates with
the PaaS system controller 140 1n order to add access control
teatures for logs of the system as discussed in more detail
turther below with respect to FIGS. 2 through 5.

While various implementations are described in terms of
the environment described above, the facility may be imple-
mented 1n a variety of other environments including a single,
monolithic computer system, as well as various other com-
binations of computer systems or similar devices connected
in various ways. For example, the access guard component
145 may be running on a node of the PaaS system hosted by
cloud 130, or may execute external to cloud 130 on a
separate server device. In some implementations, the access
guard component 145 may include more components than
what 1s shown that operate 1n conjunction with the PaaS
system. For example, the access guard component 145 may
access an authentication utility to obtain the benefits of the
techniques described herein. In another example, data from
the application 1mage may run directly on a physical host
110, 120 instead of being instantiated on nodes 111, 112,
121, 122. In some implementations, an environment other
than a VM may be used to execute functionality of the PaaS
applications. As such, in some implementations, a “node”
providing computing functionality may provide the execu-
tion environment for an application of the PaaS system. The
“node” may refer to a VM or any other type of computing
environment.

FIG. 2 1s a block diagram of a Platform-as-a-Service
(PaaS) system architecture according to an implementation
of the disclosure. The PaaS system architecture 200 allows
users to launch software applications in a cloud computing
environment, such as cloud computing environment pro-
vided 1n network architecture 100 described with respect to
FIG. 1. The PaaS system architecture 200, in one imple-
mentation, includes a client layer 210, a PaaS master layer
220, and a node layer 230.

In one implementation, the components of the PaaS
system architecture 200 are 1n commumnication with each
other via a network (not shown). The network may include,
for example, the Internet in one implementation. In other
implementations, other networks, wired and wireless, such
as an intranet, local area network (LAN), wide area network
(WAN), or broadcast network may be used.

In one implementation, the client layer 210 resides on a
client machine, such as a workstation of a software devel-
oper, and provides an interface to a user of the client
machine to the PaaS master layer 220 and the node layer 230
of the PaaS system 200. In one implementation, the client
machine can be a client 160, 170, 180 described with respect
to FIG. 1. The PaaS master layer 220 may facilitate the
creation and deployment on the cloud (via node layer 230)
ol software applications being developed by an end user at
client layer 210.

In one implementation, the client layer 210 includes a
source code management system 212, sometimes referred to
as “SCM?” or revision control system. One example of such

5

10

15

20

25

30

35

40

45

50

55

60

65

6

an SCM or revision control system 1s Git, available as open
source soltware. Another example of an SCM or revision
control system 1s Mercurnal, also available as open source
software. Git, Mercunial, and other such distributed SCM
systems typically include a working directory for making
changes, and a local software repository for storing the
changes for each application associated with the end user of
the PaasS system 200. The packaged software application can
then be “pushed” from the local SCM repository to the
node(s) 232a, 2326 running the associated application.

The client layer 210, in one implementation, also includes
a set of command line tools 214 that a user can utilize to
create, launch, and manage applications using a PaaS sys-
tem. In one implementation, the command line tools 214 can
be downloaded and installed on the user’s client machine,
and can be accessed via a command line interface or a
graphical user interface, or some other type of interface. In
one implementation, the command line tools 214 utilize an
application programming interface (“API”) of the PaaS
master layer 220 and perform other applications manage-
ment tasks 1n an automated fashion using other interfaces, as
1s described 1n more detail further below 1n accordance with
some 1implementations.

In one implementation, the PaaS master layer 220 acts as
middleware between the client layer 210 and the node layer
230. The node layer 230 includes the nodes 232a-b on which
applications 235a—are provisioned and executed. In one
implementation, each node 232q-b 1s a VM. In some 1mple-
mentations, the VMs are provisioned by an Infrastructure as
a Service (laaS) provider. In other implementations, the
nodes 232a-c may be physical machines or VMs residing on
a single physical machine. In one implementation, the PaaS
master layer 220 1s implemented on one or more machines,
such as server computers, desktop computers, etc. In some
implementations, the PaaS master layer 220 may be imple-
mented on one or more machines separate from machines
implementing each of the client layer 210 and the node layer
230, or may be implemented together with the client layer
210 and/or the node layer 230 on one or more machines, or
some combination of the above.

In 1implementations of the disclosure, the PaaS system
architecture 200 of FIG. 2 1s a multi-tenant PaaS environ-
ment. In a multi-tenant PaaS environment, each node 232a-5
runs multiple applications 233a-c¢ that may be owned or
managed by different users (e.g., owners) and/or organiza-
tions. As such, a first customer’s deployed applications
235a-c may co-exist with any other customer’s deployed
applications on the same node 232 that 1s hosting the first
customer’s deployed applications 235a-c. In some 1mple-
mentations, portions of an application execute on multiple
different nodes 232a-b. For example, as shown 1 FIG. 2,
components of application 1 2354 run 1n both node 2324 and
node 232bH. Similarly, components of application 2 2335
may run in node 232a and node 2325b.

In one implementation, the PaaS master layer 220
includes a PaaS master component 222 that coordinates
requests from the client layer 210 with actions to be per-
formed at the node layer 230. Examples of the requests can
include a request to create an application, a request to
perform an action (e.g., creating, removing, and/or manag-
ing an application), a request to deploy source code of an
application, a request to designate a system to host a remote
SCM repository (e.g., an indication that a system has been
designated by a user to host a remote SCM repository), etc.
In one implementation, a user, using the command line tools
214 at client layer 210, can request the creation and/or
execution of a new application 235a-c, deployment of

US 10,609,035 B2

7

source code of the application 2335a-c, the designation of a
system that hosts a remote SCM repository, etc.

In response to recerving such a request, the PaaS master
component 222 may first authenticate the user using an
authentication service 224. The authentication service 224 5
determines an 1dentity of the user making the request and
creates a token, such as authorization token 260, for that
user. The authorization token 260 may be text passed to end
user for authentication purposes. In one implementation, the
authentication service 224 may comprise custom authenti- 10
cation methods, or standard protocols such as SAML,
QOauth, etc. Once the user has been authenticated and
allowed access to the PaaS system by authentication service
224, the PaaS master component 222 collects information
about the nodes 232a-b. For example, the PaaS master 15
component 222 may aggregate logs associated with the
application 235a-c on nodes 232a-b mto the logging stack
107. In some implementations, the logging stack 107 com-
prises a globally-accessible object store 1n the multi-tenant
PaaS system 200 for storing logs and metadata for the logs. 20
In one implementation, the logging stack 107 may be
indexed in view of a plurality of different data types (e.g.
categories of data) and made searchable via the indexes.

In one implementation, the multi-tenant PaaS system 200
provides a service for clients to access logs on logging stack 25
107 1n the cloud environment. As noted above, the PaaS
system 200 includes an access guard component 145 that
allows users to access logs of the logging stack 107 1n view
of their current access role. In one implementation, the
access guard component 145 utilizes the authorization token 30
260 associated with the user to construct an access control
list (ACL) 223 for accessing the logs. The ACL 223 may be
a data structure (e.g., an array, tree, list or other types of data
structures) that stores a number of rows 221 with each row
associated with a particular user. Each entry 1n a row may 35
contain nformation related to that particular user, for
example, the row may include an entry 225 storing a user
identifier (e.g., user name), an entry 225 storing an autho-
rization token associated with the user identifier, as well as
an entry 227 to store other relevant information regarding 40
the user’s access role.

Access roles of the users grant them various levels of
access to the logs on the logging stack 107. For example, the
access roles can define applications that a user can access, a
time frame or date that the access 1s allowed, as well as 45
certain permission levels associated with the user, such as
whether the user has user-level access and/or administrative
access to the applications. If the user requests a specific
index to the logging stack 107 associated with an applica-
tion, the access guard component 145 uses information 50
about the requesting user to determine 11 the request should
be allowed. For example, the authorization token 260 asso-
ciated with the user 1s 1dentified to determine which appli-
cations the user can access 1n view of their access role. As
noted above, the authorization token 260 1s generated by the 55
authentication service 224 at a time when the user’s creden-
tials are authenticated. The access guard component 145
then updates the ACL 223 with this information before the
request 1s allowed to proceed.

In some 1mplementations, the multi-tenant PaaS system 60
200 1includes a visualization interface 109 that provides
certain capabilities 1n addition to indexing the log content on
the logging stack 107. In this regard, all request to access the
logging 107 are handled by the access guard component 145
no matter whether the request originates from the visualiza- 65
tion interface 109 or directly against the logging stack 107.

I1 the visualization interface 109 1s used to access the logs,

8

the access guard component 143 retrieves the authorization
token 260 and user 1dentifier associated with the user’s client
(e.g., web browser session). For example, when a user
provides credentials in the browser session to log into the
PaaS system 200, the authorization token 1s 1dentified by the
PaaS system 200 1in view of these credentials and passed
along to the access guard component 145.

In one implementation, the user request may be modified
or otherwise rewritten to incorporate the access role of the
user. For example, the access guard component 145, after
determining the authorization token and user 1dentifier asso-
ciated with the request, appends this information to a request
header associated with the request. The request i1s then
transformed to use an index that 1s unmique for the user
requesting the logs and 1s separate from indices generated
for other users. This 1ndex 1s 1n view of the particular user’s
access role profile that 1s identified by using the authoriza-
tion token sent with the modified request. Then, the access
guard component 145 applies the index to the logging stack
107 to select logs that correspond to applications the user 1s
allowed to access 1n view of the information retrieved from
the ACL 223. Thereupon, the portions of the logs associated
with these applications are i1dentified in the logging stack
107 and provided to the user for analyses. I the user requests
an index that the user 1s not allowed to access, the access
guard component 145 may generate an error message 1ndi-
cating that the request 1s denied.

To ensure that the ACL 223 1s kept up-to-date with the
current access roles of the users, the access guard component
145 may at times remove certain entries 221 from the ACL
223. In some 1mplementations, the ACL 223 is periodically
cleared out by the access guard component 145 to ensure 1t
remains up to date or otherwise in sync with the access roles
of users defined 1n the PaaS system 200. For example, the
ACL 223 1s constructed as users make request to view
certain logs although some users (e.g., admimstrators) may
be persistently added to the ACL. If the same user keeps
making requests, that user’s information remains on the
ACL 223. If a certain period of time 1s passed (e.g., a time
threshold of minutes, hours, days etc.) since the user made
a request that added their authorization to the ACL 223, the
access guard component 145 may remove the user’s infor-
mation from the ACL 223. If the user’s access role has been
changed (e.g., by an administrator or tenant owner), the next
time the user makes a request to access the logs the user’s
updated role 1s reflected on the ACL 223 when the user’s
updated authorization token 1s added. Thus, the user may no
longer have access to logs that they were able to previously
access or they may now have access to additional logs 1n
view of their new access role.

FIG. 3 illustrates a tlow diagram 1illustrating a method of
providing access guards for multi-tenant logging according
to an implementation of the disclosure. In one implementa-
tion, the access guard component 145 of FIG. 1 may perform
method 300. The method 300 may be performed by pro-
cessing logic that may comprise hardware (circuitry, dedi-
cated logic, etc.), solftware (e.g., software executed by a
general purpose computer system or a dedicated machine),
or a combination of both. In alternative implementations,
some or all of the method 300 may be performed by other
components of a multi-tenant system. It should be noted that
blocks depicted 1mn FIG. 3 can be performed simultaneously
or 1n a different order than that depicted.

Method 300 begins at block 310 where a request to access
a logging stack comprising application logs associated with
an execution of an application is recerved. For example, a
client associated with client layer 210 of FIG. 2 may request

US 10,609,035 B2

9

access to the logging stack 107 of Paas System 200. In block
320, a user 1dentifier and an authorization token related to
the user identifier 1s 1dentified 1n response to the access
request. For example, this information may be 1dentified in
view ol a browser session associated with the client layer
210. A modified request 1s generated 1 block 330 1n view of
the access request. For example, the access request recerved
in block 310 can be rewritten to include the user 1dentifier
and authorization token. In this regard, the authorization
token references an access role for the user identifier from an
access control list. In block 340, the modified request is
applied to the logging stack to 1dentify the application logs
from the logging stack that are accessible 1n view of the
access role.

FIG. 4 1llustrates a flow diagram of a method to generate

an access control list for multi-tenant logging according to
an 1mplementation of the disclosure. In one implementation,
the access guard component 145 of FIG. 1 may perform
method 400. The method 400 may be performed by pro-
cessing logic that may comprise hardware (circuitry, dedi-
cated logic, etc.), software (e.g., soltware executed by a
general purpose computer system or a dedicated machine),
or a combination of both. In alternative implementations,
some or all of the method 400 may be performed by other
components of a PaaS system. It should be noted that blocks
depicted 1n FIG. 4 can be performed simultaneously or 1n a
different order than that depicted.
Method 400 begins at block 410 where a request to access
a logging stack comprising application logs associated with
an execution ol an application 1s processed. An authorization
token that 1s associated with a user identifier and access role
1s obtained 1n view of the request 1n block 420. A determi-
nation as to whether the application logs from the logging
stack are accessible 1n view of the access role 1s made 1n
block 430. In block 440, an access control list to access the
logging stack 1 view of the determination 1s produced. In
this regard, the access control list comprises a reference to
the authorization token.

FIG. 5 illustrates a diagrammatic representation of a
machine 1n the example form of a computer system 500
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative implementations, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client device 1n a client-server network environment, or as a
peer machine 1n a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specily actions to be taken by that machine.
Further, while only a single machine 1s illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The computer system 500 includes a processing device
502, a main memory 504 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data
storage device 518, which communicate with each other via

a bus 508.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Processing device 502 represents one or more general-
purpose processing devices such as a miCroprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set coms-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
istruction sets, or processors implementing a combination
ol instruction sets. Processing device 502 may also be one
or more special-purpose processing devices such as an
application specific imtegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
502 1s to execute the processing logic 526 for performing the
operations and steps discussed herein.

The computer system 500 may further include a network
interface device 522 communicably coupled to a network
564. The computer system 300 also may include a video
display unit 510 (e.g., a liqud crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 512
(e.g., a keyboard), a cursor control device 514 (e.g., a
mouse), and a signal generation device 516 (e.g., a speaker).

The data storage device 518 may include a non-transitory
machine-accessible storage medium 524 on which 1s stored
software 526 embodying any one or more of the method-
ologies of functions described herein. The software 526 may
also reside, completely or at least partially, within the main
memory 504 as instructions 526 and/or within the process-
ing device 502 as processing logic 526 during execution
thereol by the computer system 500; the main memory 504
and the processing device 502 also constituting machine-
accessible storage media.

The non-transitory machine-readable storage medium 524
may also be used to store instructions 526 to implement an
access guard component 145 to provide access guards for
multi-tenant logging in a system, such as the PaaS system
described herein, and/or a software library containing meth-
ods that call the above applications. While the machine-
accessible storage medium 524 1s shown 1n an example
implementation to be a single medium, the term “machine-
accessible storage medium™ should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-accessible storage medium”™ shall also be taken to
include any medium that 1s capable of storing, encoding or
carrying a set of instruction for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the disclosure. The term “machine-
accessible storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, and
optical and magnetic media.

It 1s to be understood that the above description 1s
intended to be 1illustrative, and not restrictive. Many other
implementations are apparent upon reading and understand-
ing the above description. The scope of the disclosure
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

In the above description, numerous details are set forth. It
1s apparent, however, that the disclosure may be practiced
without these specific details. In some 1nstances, structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the disclosure.

Some portions of the detailed descriptions above are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.

US 10,609,035 B2

11

These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such

7, “recerving’’, “determiming”’, “1dentifying”,

as “monitoring’”’,
”, “applying”, “processing” or the like, refer to

“generating’”’,
the action and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories nto
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The disclosure also relates to an apparatus for performing,
the operations herein. This apparatus may be specially
constructed for the required purposes, or 1t may comprise a
general purpose computer selectively activated or recontfig-
ured by a computer program stored in the computer. Such a
computer program may be stored imn a computer readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMSs, magnetic
or optical cards, or any type of media suitable for storing
clectronic 1nstructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems appears as set forth in the
description below. In addition, the disclosure 1s not
described with reference to any particular programming
language. It 1s appreciated that a variety of programming
languages may be used to implement the teachings of the
disclosure as described herein.

The disclosure may be provided as a computer program
product, or software, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
devices) to perform a process according to the disclosure. A
machine-readable medium includes any mechanism for stor-
ing or transmitting information 1 a form readable by a
machine (e.g., a computer). For example, a machine-read-
able (e.g., computer-readable) medium includes a machine
(e.g., a computer) readable storage medium (e.g., read only
memory (“ROM”), random access memory (“RAM”), mag-
netic disk storage media, optical storage media, flash
memory devices, etc.), a machine (e.g., computer) readable

transmission medium (electrical, optical, acoustical or other

10

15

20

25

30

35

40

45

50

55

60

65

12

form of propagated signals (e.g., carrier waves, nirared
signals, digital signals, etc.)), etc.

It 1s to be understood that the above description 1s
intended to be 1illustrative, and not restrictive. Many other
implementation examples are apparent upon reading and
understanding the above description. Although the disclo-
sure describes specific examples, i1t 1s recognized that the
systems and methods of the disclosure are not limited to the
examples described herein, but may be practiced with modi-
fications within the scope of the appended claims. Accord-
ingly, the specification and drawings are to be regarded in an
illustrative sense rather than a restrictive sense. The scope of
the disclosure should, therefore, be determined with refer-
ence to the appended claims, along with the full scope of
equivalents to which such claims are entitled.

What 1s claimed 1s:

1. A method comprising:

recerving, by a processing device, an access request to

access a logging stack comprising application logs,
wherein the access request identifies a user 1dentifier;
identifying, by the processing device, an authorization
token associated with the user identifier, wherein the
authorization token references an access role; and
determining whether the application logs from the logging
stack are accessible 1n view of the access role.

2. The method of claim 1, further comprising providing a
portion of the application logs associated with the execution
of the application 1n view of the access role.

3. The method of claim 1, wherein the authorization token
1s 1dentified 1n view of a browser session associated with the
access request.

4. The method of claim 1, further comprising generating,
an index for the logging stack 1n view of the access request,
the mdex to reference application logs accessible by the user
identifier.

5. The method of claim 4, further comprising providing,
access to the application logs in accordance with a service 1in
a cloud environment.

6. The method of claim 1, further comprising generating,
by the processing device, an access control list identifying
application logs of the logging stack that are accessible 1n
view of the access role.

7. The method of claim 6, further comprising syncing a
current access role associated with the user identifier with
the access role referenced by the authorization token from
the access control list.

8. The method of claim 7, wherein the syncing comprises,
responsive to detecting that a time threshold 1s satisfied,
removing the access role referenced by the authorization
token from the access control list.

9. A system comprising:

a memory storing an access control list; and

a processing device, operatively coupled to the memory,

to:

receive an access request to access a logging stack
comprising application logs, wherein the access
request 1dentifies a user 1dentifier;

identily an authorization token associated with the user
identifier, wherein the authorization token references
an access role; and

determine whether the application logs from the log-
ging stack are accessible in view of the access role.

10. The system of claim 9, wherein the processing device
1s further to provide a portion of the application logs
associated with the execution of the application in view of
the access role.

US 10,609,035 B2

13

11. The system of claim 9, wherein the authorization
token 1s 1dentified 1n view of a browser session associated
with the access request.

12. The system of claim 9, wherein the processing device
1s Turther to generate an index for the logging stack 1n view
of the access request, the index to reference application logs

accessible by the user 1dentifier.
13. The system of claim 12, wherein the processing device

1s further to provide access to the application logs 1n
accordance with a service 1n a cloud environment.

14. The system of claim 9, wherein the processing device
1s further to:

generate an access control list identifying application logs

of the logging stack that are accessible 1 view of the
access role; and

sync a current access role associated with the user 1den-

tifier with the access role referenced by the authoriza-
tion token from the access control list.

15. The system of claim 14, further comprising wherein to
sync, the processing device i1s further to, responsive to
detecting that a time threshold is satisfied, remove the access
role referenced by the authorization token from the access
control list.

16. A non-transitory computer-readable storage medium
comprising executable instructions that when executed, by a
processing device, cause the processing device to:

receive, by the processing device, an access request to

access a logging stack comprising application logs,
wherein the access request 1dentifies a user 1dentifier;

5

10

15

20

25

14

identity an authorization token associated with the user
identifier, wherein the authorization token references
an access role; and

determine whether the application logs from the logging,

stack are accessible 1n view of the access role.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the processing device 1s
turther to provide a portion of the application logs associated
with the execution of the application i view of the access
role.

18. The non-transitory computer-readable storage
medium of claim 16, wherein the authorization token 1is
identified 1n view of a browser session associated with the
access request.

19. The non-transitory computer-readable storage
medium of claim 16, wherein the processing device 1s
further to generate an 1ndex for the logging stack 1n view of
the access request, the index to reference application logs
accessible by the user 1dentifier.

20. The non-transitory computer-readable storage
medium of claim 16, wherein the processing device 1s
turther to:

generate an access control list identifying application logs

of the logging stack that are accessible 1n view of the
access role; and

sync a current access role associated with the user 1den-

tifier with the access role referenced by the authoriza-
tion token from the access control list.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

