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LOW-COMPLEXITY DETECTION OF
POTENTIAL NETWORK ANOMALIES
USING INTERMEDIATE-STAGE
PROCESSING

BACKGROUND

Technical Field

This field generally relates to monitoring network activi-
ties. More specifically, embodiments relate to network
anomaly detection.

Background

A communication network may, for example, provide a
network connection that allows data to be transierred
between two geographically remote locations. A network
may include network elements connected by links. The
network elements may be any type of managed device on the
network, including routers, access servers, switches,
bridges, hubs, IP telephones, IP video cameras, computer
hosts, and printers. Network elements can be physical or
logical and can communicate with one another via intercon-
nected links.

Network anomalies in a communication network may
occur for various reasons. For example, the number of
network flows created by an individual user may appear
usually high on a network device. Such high number of
network flows could be an indication that the user has
mitiated a demial-of-service (DOS) attack. Algorithms to

detect such attacks may be computationally expensive and
require large amounts of memory.

SUMMARY

In an embodiment, an anomaly detection system performs
intermediate processing on network flow data to detect a
potential anomaly and determine whether to initiate execu-
tion of anomaly detection algorithms. The system receives
flow data for one or more flows that correspond to a
device-circuit pair. The system parses the flow data to focus
on a subset of the available fields, and normalizes the parsed
data. The system calculates statistics using the normalized
and parsed data for the most recent time frame, producing a
short-term trend. The system also calculates statistics using
the normalized and parsed data for an aggregate of a
plurality of recent time frames, producing a long-term trend.
The system then compares the long-term trend to the short-
term trend to detect a potential anomaly. Upon detection of
a potential network anomaly, the system initiates a more
robust anomaly detection algorithm to determine whether a
network anomaly exists.

Computer-implemented method and computer-readable
medium embodiments are also disclosed.

Further embodiments and features, as well as the structure
and operation of the various embodiments, are described 1n
detail below with reference to accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated herein and
form a part of the specification.

FIG. 1 illustrates an example system architecture for
network anomaly detection including intermediate-stage
processing.
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FIG. 2 illustrates an example data flow in a network
anomaly detection system employing intermediate-stage

processing.

FIG. 3 15 a flowchart illustrating an exemplary method for
performing intermediate processing on network flow data to
detect potential network anomalies according to one
embodiment.

FIG. 4A illustrates exemplary short-term and long-term
cluster distributions that may indicate the presence of no
potential network anomalies.

FIG. 4B illustrates exemplary short-term and long-term
cluster distributions that may indicate the presence of a
potential denial-of-service anomaly.

In the drawings, like reference numbers generally indicate
identical or similar elements. Generally, the left-most digit
(s) of a reference number 1dentifies the drawing in which the
reference number {irst appears.

DETAILED DESCRIPTION

Network anomaly detection (AD) systems monitor net-
works for unusual events or trends. Some network anomaly
detection systems perform computationally complex algo-
rithms that process network flow data (e.g., nettlow data) to
identify heavy hitters (e.g., Internet Protocol (IP) addresses
that account for an outsized number of flows in the network).
Such heavy hitter algorithms 1nclude lossy counting, proba-
bilistic lossy counting, and sketch algorithms. For example,
in a lossy counting algorithm, the most frequently appearing
source IP 1n network flow data 1s calculated for fixed
segments of time. If the same source IP appears as the most
frequently appearing source IP for two consecutive seg-
ments, a counter 1s icreased. By identifying heavy hitters,
network anomaly detection systems can detect and mitigate
denial of service (DoS) attacks.

Heavy hitter detection algorithms are expensive in terms
of computational resources, such as processing time and
memory. Thus, 1n networks where DoS attacks are relatively
rare, continuous execution ol heavy hitter detection algo-
rithms 1s ineflicient. The present disclosure introduces an
intermediate stage of processing that utilizes low-complex-
ity computations on relatively small data sets to detect
potential anomalies. With such an intermediate stage, the
high-complexity heavy hitter detection algorithm can be
initiated and run during periods where a heavy hitter 1s more
likely to be detected, efliciently using computational and
Memory resources.

FIG. 1 1s a diagram 1llustrating an example system 100 for
creating aggregate network tlow time series for network
anomaly detection. System 100 includes network devices
102a-102/, one or more collector servers 104, and anomaly
detection (AD) server 110. Network devices 102a-102/ may
be any hardware devices that mediate data 1n a computer
network. Network devices 1024-102f may be gateways,
routers, network bridges, modems, wireless access points,
networking cables, line drivers, switches, hubs, and repeat-
ers. Network devices 1024-102f may also include hybnd
network devices such as multilayer switches, protocol con-
verters, bridge routers, proxy servers, firewalls, network
address translators, multiplexers, network interface control-
lers, wireless network interface controllers, ISDN terminal
adapters, and other related hardware.

Network devices 102a-102f are configured to enable
network flow data collection, and may send network flow
data (e.g., netflow data) to one or more collector servers 104.
One or more collector servers 104 may analyze the network
flow data and forward the network flow records (e.g.,
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netflow records) to AD server 110 for network anomaly
detection. AD server 110 includes three modules: time series

module 106, intermediate stage module 107, and detection
module 408.

Time series module 106 may receive network flow data
that correspond to a device-circuit pair. As described in
further detail below relative to FIGS. 2 and 3, time series
module 106 may parse the received network flow data to
extract a subset of data from the received network flow data

to be used by the low-complexity mtermediate stage 106,
assign that data to one or more time buckets, and determine
whether a time bucket 1s complete. In some embodiments,
when time series module 106 determines that a time bucket
1s complete, time series module 106 normalizes the data
corresponding to the time bucket and sends the normalized
data to intermediate stage module 107 to detect potential
network anomalies. Alternatively, imtermediate stage mod-
ule 107 may perform the data extraction and normalization
alter recerving network flow data for a complete bucket from
the time series module 106.

Intermediate stage module 107 may perform low-com-
plexity computations on relatively small data sets to detect
potential anomalies before i1nmitiating a computationally
expensive heavy hitter detection algorithm. As discussed
below relative to FIGS. 2 and 3, intermediate stage module

107 may observe and compare short-term and long-term
statistics of network flow data to determine whether a
potential network anomaly exists in the network. For
example, 11 the short-term statistics of network flow data
significantly diverge from the long-term statistics of network
flow data, mtermediate stage module 107 may determine a
potential network anomaly exists 1n the network and imitiate
heavy hitter anomaly detection 1n detection module 108.
Detection module 108 may run any type of heavy hitter
anomaly detection algorithm and may be able to mmitiate
action based on detection of a heavy hitter. For example,
based on the network flow data corresponding to the time
buckets, detection module 108 may determine that the
number of network flows are too high for a specific time
period, which could indicate that a subscriber has mitiated a

DOS attack. The time series module 106 may be capable of

adjusting its operation based on the heavy hitter anomaly
detection algorithm employed i detection module 108.

Detection module 108 may be any type ol anomaly
detection system. The system may be taught to recognize
normal system activity. Anomalies may be detected in
several ways, including with artificial intelligence type tech-
niques, such as neural networks. Another method is to define
what normal usage of the system comprises using a strict
mathematical model, and flag any deviation from this as an
attack. Other techniques used to detect anomalies 1nclude
data mining methods, grammar based methods, and Artifi-
cial Immune System. Example anomaly detection systems
include the SECURITY THREAT RESPONSE MANAGER
system available from Juniper Networks of Sunnyvale,
Calif., the RIVERBED CASCADE system available from
Riverbed Technology of San Francisco, Calif., and the
SYMANTEC ADVANCED THREAT DETECTION SYS-
TEM available from Symantec of Sunnyvale, Calif.

FI1G. 1 1llustrates an embodiment where time series mod-
ule 106 1s a component of AD server 110. In another
embodiment, time series module 106 1s a component of a
separate server located between one or more collector serv-
ers 104 and AD server 110. In yet another embodiment, time
series module 106 1s a component of one of the collector
servers 104.
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Similarly, FIG. 1 illustrates an embodiment where inter-
mediate stage module 107 1s a component of AD server 110.
In another embodiment, intermediate stage module 107 1s a
component of a separate server located between one or more
collector servers 104 and AD server 110. In yet another
embodiment, intermediate stage 106 1s a component of one
ol the collector servers 104.

FIG. 2 illustrates an example data flow 200 1n a network
anomaly detection system employing intermediate-stage
processing, such as system 100 shown 1n FIG. 1. A network
flow record 202 (e.g., nettlow record) containing tlow data
1s received, for example by time series module 106. A
network flow record 202 may contain data related to one or
more network flows. For example, the time series module
106 may receive a network flow record 202 from one or

more flow collector servers 104 that collect network flow
data from network devices 1024-1021.

Network flow data, as the term 1s used herein, 1s not
limited to data from a particular brand or type of router. The
network flow data may include a network flow record 202
for each data flow. Each data flow may be one or more
packets in time proximity with one another having a com-
mon protocol identified via Internet Protocol (IP) addresses
and Transport Control Protocol (TCP) or User Datagram
Protocol (UDP) ports. The network devices 102a-102f deter-
mine that a flow has ended, for example when a certain
amount of time passes after receipt of a packet having the
aforementioned characteristics. If, after the certain amount
of time passes, for example, the network devices 102a-102f
receive additional packets with these characteristics, the
network devices 1024-102f may regard the packets as
belonging to a new data flow and may represent them with
a new network flow record 202. Each network flow record
202, such as a netflow record, may include, but 1s not limited
to, the data flow’s (1) source and destination IP addresses,
(2) source port number and destination port number, (3) type
of layer 3 protocol (e.g., TCP or UDP), (4) start and end
times, (5) size (e.g., number of octets or packets), and (6)
input logical interface (1findex). The last field, input logical
interface, 1s also called a circuit, which can be used to
identify a user (e.g., a subscriber to the network services
provided by a service provider).

Network flow data collection functionality may be con-
figured on a per-interface basis on a network device 102a-
102/. For instance, for some versions of CISCO routers, the
1ip flow 1ngress command can be used to enable netflow on
an 1interface. The 1p flow-export destination <address>
<port> command may be used to configure where the
netflow data 1s exported.

In this way, network flow data can summarize certain
characteristics of a data tlow. Each flow record 1s created by
identifying packets with similar flow characteristics and
counting or tracking the packets and bytes per tflow. The tlow
details or cache information 1s exported to a tlow collector
server 104 periodically based upon flow timers. Expired
flows may be grouped together into datagrams, such as
“netflow export” datagrams, for export.

From the received network flow record 202, the time
series module 106 may identify flow data for one or more
flows that correspond to the device-circuit pair. As described
above, a circuit (1.e., mput logical interface) can be used to
identify a user. Further, when the time series module
receives a network flow record 202 that a network device
102a-102/ exports to a collector server 104, the time series
module 106 can 1dentity the network device 102a-102f that

exports the network tlow record 202. In this way, the time
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series module may determine a device-circuit pair that
corresponds to a user for a network device 102a-102/.

A3-tuple 204 may be extracted from one or more network
flow records 202. In an embodiment, the 3-tuple 204 com-
prises a time duration of the flow, the number of packets
transmitted during the flow, and the number of octets trans-
mitted during the flow. Note that the 3-tuple 204 1n this
example does not comprise information that would allow
identification of a user or a network device 102a-102f. The
3-tuple may be designed to provide enough information to
enable analysis of the short-term and long-term trends of the
flows in the network, but without occupying the large
amounts ol memory required for heavy hitter detection
algorithms.

A 3-tuple 204 may be assigned to one or more buckets
206a-206k. In the 1illustrated example, 3-tuple 204 1s
assigned to bucket 206/. The buckets 206a-2064 correspond
to time segments and thus have a chronological ordering.
For example, bucket 2064 may correspond to a time segment
occurring before a time segment corresponding to bucket
206b. In this sense, bucket 206a may be said to be “before”
or “ecarlier” than bucket 2065.

In one embodiment, buckets 206a-206% correspond to
consecutive S-minute time segments. However, the duration
of a time segment can be tuned to optimize performance. For
example, longer time segments allow for the collection of
more data 1n each bucket, and thus a better view of trends,
but may result in missed short-term trends that occur on
shorter time spans than the time segment. As an example, a
DoS attack lasting one minute may not be detected using
time segments of five minutes. Further, even 1f such attacks
are detected, several minutes have passed by the time they
are 1dentified, rendering it too late to 1dentily the heavy hitter
or mitigate the attack.

Because flows are not confined to a segmented structure,
a flow corresponding to a given 3-tuple 204 may overlap
multiple buckets. In such a case, the 3-tuple 204 may be
assigned to more than one bucket. For these same reasons,
a bucket may be assigned incoming 3-tuples 204 even after
the time segment corresponding to that bucket has passed.
After some short delay time, however, a bucket can be
declared complete such that no new 3-tuples will be
assigned to that bucket.

Short-term network flow characteristics may be observed
using the data 1n the most recently completed bucket 210,
whereas long-term network flow characteristics may be
observed by aggregating several of the most recently com-
pleted buckets 1nto a long-term bucket 208. In the illustrated
example, the ten most recently completed buckets 206a-206/
are aggregated 1nto a long-term bucket 208. Note that, 1n the
illustrated example, once bucket 2064 1s complete, 1t will
become the short-term bucket 210, and the long-term bucket
will comprise buckets 2065-2064.

In an embodiment, the data in the long-term bucket 208
1s normalized 212 such that the largest value for any term 1n
a 3-tuple in the long-term bucket 208 1s equal to 1, and all
other values are between 0 and 1. For example, 11 one 3-tuple
contains a larger duration, more packets, and more octets
than any other 3-tuple 1n the long-term bucket 208, then that
3-tuple 1s normalized to be equal to (1, 1, 1).

The normalized 3-tuples 1n the long-term bucket 208 are
then processed 212 using a clustering algorithm such that the
normalized 3-tuples are classified into distinct clusters.
Clustering 1s described below relative to FIGS. 4A and 4B.

Similarly, in an embodiment, the data in the short-term
bucket 210 1s normalized 214 such that the largest value for
any term 1n a 3-tuple in the short-term bucket 208 1s equal
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to 1, and all other values are between 0 and 1. For example,
if one 3-tuple contains a larger duration, more packets, and
more octets than any other 3-tuple 1n the short-term bucket
210, then that 3-tuple 1s normalized to be equal to (1, 1, 1).
The normalized 3-tuples 1n the short-term bucket 210 are
then processed 214 using a clustering algorithm such that the
normalized 3-tuples are classified into distinct clusters.

The long-term trend and short-term trend, which may be
measured using clustering algorithms, are compared 216 in
the 1llustrated example. The comparison 216 may result in
identification of a potential network anomaly when the
short-term trend 1s significantly different than the long-term
trend. Moreover, the specific vanation of the short-term
trend from the long-term trend may provide insight into
what type of network anomaly exists. For example, a
short-term trend exhibiting a significant increase in short-
duration flows than the long-term trend may indicate a DoS
attack. Conversely, a short-term trend exhibiting a signifi-
cant increase in long-duration, large-packet flows compared
to the long-term trend may indicate a wide-spread download
anomaly where many users are downloading large amounts
of information at the same time. Detection of a potential
anomaly, or a specific type of anomaly such as a potential
DoS attack, by comparison 216 may result 1n initiation of a
high-complexity AD algorithm such as a heavy hitter detec-
tion algorithm.

The data flow and blocks illustrated 1n FIG. 2 may be
performed by various components of the network anomaly
detection system, such as network devices 1024-102f, col-
lector servers 104, time series module 106, intermediate
stage module 107, or detection module 108. For example,
the extraction of 3-tuples 204 can occur at any ol network
devices 102a-102/, collector servers 104, time series module
106, or intermediate stage module 107.

FIG. 3 1s a flowchart illustrating an exemplary method
300 for performing intermediate processing on network tlow
data to detect potential network anomalies according to one
embodiment. Although the method 300 iterates over a plu-
rality of buckets using the iterator 1, the use of such an
iterator 1s for 1llustrative purposes only, and a skilled artisan
would understand that the processes illustrated 1n method
300 could be performed without an iterator. In method 300
illustrated 1n FIG. 3, the iterator 1 refers to the next bucket
to serve as the source for short-term trend data. Method 300
begins by setting iterator 1=0 at step 302. This assignment 1s
illustrative, however, and the iterator, 1f used, could be set to
any value such that the method progresses through buckets
corresponding to time segments.

The method 300 proceeds by receiving network flow data
(e.g., netflow data) at step 304. For example, as discussed
above relative to FIGS. 1-2, the time series module 106 may
receive 304 netflow data from one or more collector servers
104. At step 306, the nettlow data may be parsed to extract
a subset of information. For example, the duration (d),
number of packets (p), and number of octets (0) of a flow
may be extract from netflow data to form a 3-tuple (d, p, 0),
and other information 1n the nettlow data such as 1dentitying
information may be disregarded i an effort to conserve
memory.

At step 308, the 3-tuple i1s assigned to one or more
buckets. As previously discussed with respect to FIG. 2,
flows are not restricted to a single time segment, and thus
may be considered as belonging to more than one bucket.
For example, the most recently received 3-tuple may not be
assigned to bucket 1, but rather could be assigned to buckets
1+1 and 1+2. However, in the illustrated embodiment, the
received 3-tuple would not be assigned to bucket 1-1
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because bucket 1—1 has been determined to be complete. At
step 310, bucket 1 1s tested for “completeness™ such that no
turther 3-tuples can be assigned to 1t.

If bucket 1 1s not complete, then processing continues at
304 with reception of further nettlow data. If bucket 1 1s
complete, then processing of long-term and short-term
trends begins. The processing performed on short-term data
and long-term data may be the same, albeit on different data
sets. For example, the short-term trend may consider the
most recently completed bucket, which in the illustrated
embodiment 1s bucket 1. The long-term trend may consider
data from the 10 most recently completed buckets, which 1n
the illustrated embodiment are buckets 1-9, . . . 1. This
long-term data may be collected into a long-term bucket at
312.

At steps 314 and 316, the short-term and long-term data,
respectively, are normalized. As discussed above relative to
FIG. 2, normalization results in data between 0 and 1,
inclusive. For example, the number of packets (p) 1n each
3-tuple may be normalized by the largest value in the
respective bucket (short-term or long-term), such that the
3-tuple with the most packets (p) 1n the long-term bucket
will have a (p) value of 1. However, other normalization
techniques could be used within the scope of the present
disclosure. At steps 318 and 320, the normalized 3-tuples 1n
the short-term and long-term buckets, respectively, may be
classified into distinct clusters using a clustering algorithm.
Clustering 1s discussed below relative to FIGS. 4A and 4B.

At step 322, the long-term clusters and short-term clusters
are compared. For example, the comparison 322 may com-
pare the percentage of flows assigned to certain clusters to
determine that a potential network anomaly exists. The
comparison 322 may result 1 1dentification of a potential
network anomaly when the short-term trend 1s significantly
different than the long-term trend. Moreover, the specific
variation of the short-term trend from the long-term trend
may provide insight into what type of network anomaly
exists. In one embodiment, one cluster in the short-term
bucket represents short-lived, low-data flows. In such an
embodiment, a spike 1n such tlows may represent a potential
DoS attack. Examples of cluster comparison 322 are dis-
cussed below relative to FIGS. 4A and 4B. Detection of a
potential anomaly at step 324 by comparison 322 may result
at step 326 1n 1mitiation of a high-complexity AD algorithm
such as a heavy hitter detection algorithm. Otherwise, the
intermediate-stage processing of FIG. 3 continues by incre-
menting the iterator 1 at step 328 and continuing to receive
the nettlow data at step 304.

The method 300 1llustrated 1n the embodiment of FIG. 3
allows for low-complexity processing using a relatively
small amount of data during normal operation of the net-
work. Such processing can detect (324) potential anomalies
in the network and imitiate (326) higher-complexity AD
algorithms, such as heavy hitter detection algorithms, when
the network appears to be experiencing an anomalous event.
Such intermediate-stage processing preserves computational
and memory resources for times when higher-complexity
AD algorithms are likely to be able to detect and mitigate
anomalies.

FIG. 4A 1llustrates exemplary short-term (420) and long-
term (410) cluster distributions that may indicate that no
potential network anomalies exist in the network. Each dot
414 1n FIG. 4A corresponds to a 3-tuple. Thus, 1 the
illustrated embodiment, the data may be clustered in 3-di-
mensional space, although for ease of 1llustration the data 1s
shown 1n 2-dimensions. As illustrated in FIG. 4A, the
long-term cluster distribution 410 contains more 3-tuples
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414 than the short-term cluster distribution 420 because the
long-term bucket comprises the 3-tuples 1n the short-term
bucket 1n addition to the 3-tuples 1n a plurality of older
buckets.

In the 1llustrated embodiment, the 3-tuples 414 may be
classified mto a plurality of clusters according to their
distance to a pre-determined centroid. In one embodiment,
three centroids form three clusters 411-413 for the long-term
data: LO (413) having “centroid” of (0, 0, 0), L1 (412)
having a centroid of (d-mean, p-mean, o-mean), and L2
(411) having a “centroid” of (1, 1, 1). Note that, because the
normalized data in some embodiments cannot be greater
than (0, 0, 0) or (1, 1, 1), those points are not true cluster
centroids, those points may nevertheless form an 1nitial
point around which clusters may form. The values (d-mean,
p-mean, o-mean) for the long-term data may be calculated
using long-term data from the previous long-term bucket,
rather than from the current long-term bucket which
includes bucket 1.

Standard clustering algorithms may be applied to assign
the 3-tuples 414 to one of the three clusters. However, the
s1ze of the clusters 1s not likely to be equal. For example, the
cluster L1 (412) 1s likely to have the most 3-tuples because
it encompasses the average flows in the network. The
clusters LO (413) and L2 (411) represent outlier flows and
thus are likely to have fewer 3-tuples assigned to them. For
similar reasons, the cluster L1 (412) may be assumed to
encompass a larger volume than clusters L0 (413) and L2
(411).

Similarly, 1n one embodiment, three centroids form three
clusters 421-423 for the short-term data: S0 (423) having
centroid of (0, 0, 0), S1 (422) having a centroid of (d-mean,
p-mean, o-mean), and S2 (421) having a centroid of (1, 1, 1).
The values (d-mean, p-mean, o-mean) for the short-term
data may be calculating using short-term data from the
previous short-term bucket (1.e., bucket 1-1 in the illustrated
embodiment), rather than from the current short-term bucket
(1.e., bucket 1 1n the illustrated embodiment). As with the
long-term cluster distribution 410, the average-based cluster

S1 (422) 1s likely to have the most 3-tuples 414 and may
encompass a larger volume than outlier clusters S0 (423) and
S2 (421).

As discussed above relative to FIGS. 2 and 3, an inter-
mediate stage may compare the short-term (420) and long-
term (410) cluster distributions to determine whether a
potential anomaly exists 1n the network. For example, the
intermediate stage may compare the percentage of flows 1n
the lowest cluster S0 (423) of the short-term bucket with the
percentage ol flows in the lowest cluster L0 (413) of the
long-term bucket. The intermediate stage may also consider
the number of tlows in the current short-term bucket (T'S-
current) compared to the number of tlows in the previous
short-term bucket (TS-previous). For example, a DoS
anomaly may be detected when

(TS-current>>TS-previous )&&(S0>>1.0).

That 1s, a DoS anomaly may be detected when the current
short-term bucket contains many more flows than the pre-
vious short-term bucket and the number of flows 1n the
short-term bucket S0 (423) 1s significantly more than the
number ol flows in the long-term bucket LO (413). In
examples, one value may be significantly more than another
when a difference between the two values exceeds a thresh-
old or when a ratio of the first value to the second exceeds

a threshold.
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Similarly, a wide-spread download anomaly may be
detected when

(TS-current>>TS-previous)&&(S2>>1.2).

That 1s, a wide-spread download anomaly may be
detected when the current short-term bucket contains many
more tlows than the previous short-term bucket and the
number of flows in the short-term bucket S2 (421) 1s
significantly more than the number of flows 1n the long-term
bucket L2 (411). For example, i S2 (421) contains >13
percentage points more clusters than L2 (411), then S2 (421)
may be observed as having significantly more tlows than 1.2
(411). In such a case, the short-term trend may be observed
as diverging from the long-term trend.

Returming to FIG. 4A, one may observe that S0 (423)
contains 39% of short-term flows, and L0 (413) contains
34% of long-term tlows. Thus, S0 (423) 1s not significantly
more than L0 (423) and there 1s not likely to be a DoS
anomaly 1n the network during the time segment corre-
sponding to the short-term bucket. Furthermore, S2 (421)
contains 6% of short-term tlows, and L.2 (411) contains 10%
of long-term flows. Thus, S2 (421) 1s not significantly more
than L2 (411) and there 1s not likely to be a wide-spread
download anomaly 1n the network during the time segment
corresponding to the short-term bucket.

The use of three clusters 1n FIG. 4A 1s 1llustrative, and the
present disclosure 1s not limited to using three clusters. The
use of more than three clusters may advantageously provide
higher accuracy 1n the detection of potential anomalies.

FIG. 4B 1llustrates exemplary short-term (470) and long-
term (460) cluster distributions that may indicate the pres-
ence of a potential denial-of-service anomaly. The long-term
cluster distribution 460 1n FIG. 4B 1s i1dentical to the
long-term cluster distribution 410 1n FIG. 4A. However, the
short-term cluster distribution 470 1n FIG. 4B 1s different
than the short-term cluster distribution 420 1n FIG. 4A.

Specifically, S0 (473) contains 51% of short-term flows,
compared to LO (463) which contains 34% of long-term
flows. Comparing these two values indicates an increase 1n
17 percentage points, idicating that SO0 >>L0. I a com-
parison also shows that TS-current >>TS-previous, then a
potential DoS anomaly may be detected and a high-com-
plexity AD algorithm such as a heavy hitter detection
algorithm may be 1nitiated.

CONCLUSION

Each of the blocks and modules 1n FIGS. 1-3 may be

implemented in hardware, software, firmware, or any com-
bination thereof.

Each of the blocks and modules 1n FIGS. 1-3 may be
implemented on the same or different computing devices.
Such computing devices can include, but are not limited to,
a personal computer, a mobile device such as a mobile
phone, workstation, embedded system, game console, tele-
vision, set-top box, or any other computing device. Further,
a computing device can include, but 1s not limited to, a
device having a processor and memory, including a non-
transitory memory, for executing and storing instructions.
The memory may tangibly embody the data and program
instructions. Software may include one or more applications
and an operating system. Hardware can include, but is not
limited to, a processor, memory, and graphical user interface
display. The computing device may also have multiple
processors and multiple shared or separate memory compo-
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nents. For example, the computing device may be a part of
or the entirety of a clustered computing environment or
server farm.

Identifiers, such as “(a),” “(b),” *“(1),” “(1),” etc., are
sometimes used for different elements or steps. These 1den-
tifiers are used for clarity and do not necessarily designate an
order for the elements or steps.

The present invention has been described above with the
aid of functional building blocks illustrating the implemen-
tation of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries can be defined so long as the
specified functions and relationships thereot are appropri-
ately performed.

The foregoing description of the specific embodiments
will so fully reveal the general nature of the invention that
others can, by applying knowledge within the skill of the art,
readily modily and/or adapt for various applications such
specific embodiments, without undue experimentation,
without departing from the general concept of the present
invention. Therefore, such adaptations and modifications are
intended to be within the meaning and range of equivalents
of the disclosed embodiments, based on the teaching and
guidance presented herein. It 1s to be understood that the
phraseology or terminology herein 1s for the purpose of
description and not of limitation, such that the terminology
or phraseology of the present specification 1s to be inter-
preted by the skilled artisan in light of the teachings and
guidance.

The breadth and scope of the present embodiments should
not be limited by any of the above-described examples, but
should be defined only 1n accordance with the following
claims and their equivalents.

While the invention 1s described herein with reference to
illustrative embodiments for particular applications, 1t
should be understood that the invention i1s not limited
thereto. Those skilled 1n the art with access to the teachings
provided herein will recognize additional modifications,
applications, and embodiments within the scope thereot and
additional fields 1n which the invention would be of signifi-
cant utility.

What 1s claimed 1s:

1. A computer implemented method, comprising:

recerving flow data for a network flow;

parsing the flow data into a plurality of time buckets;

extracting a plurality of tuples describing the flow data,

the tuple comprising a time duration of the network
flow and information identifying an amount of data
transmitted during the flow;

calculating a long-term trend based at least 1n part on at

least a first tuple and two or more time buckets of the
plurality of time buckets including assigning the first
tuple to a long-term cluster of a plurality of long-term
clusters;

calculating a short-term trend based at least in part on a

second tuple and a most recent time bucket of the
plurality of time buckets including assigning the sec-
ond tuple to a short-term cluster of a plurality of
short-term clusters;

determining that the short-term trend diverges from the

long-term trend to detect a potential network anomaly
by determining that a percentage of tuples 1n a short-
term cluster relative to other short-term clusters 1s
significantly more than a percentage of tuples 1n a
long-term cluster, corresponding to the short-term clus-
ter, relative to other long-term clusters; and
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when the potential network anomaly 1s detected, initiating
a heavy hitter detection algorithm.

2. The method of claim 1, further comprising assigning,
one or more tuples of the plurality of tuples to a time bucket.

3. The method of claim 2, wherein calculating the long-
term trend comprises forming a long-term bucket compris-
ing tuples assigned to at least one of the two or more
buckets.

4. The method of claim 3, wherein calculating the long-
term trend further comprises normalizing the first tuple
relative to other tuples 1n the long-term bucket.

5. A system, comprising;:

a memory; and

at least one processor coupled to the memory and con-

figured to:

receive flow data for a network flow:

parse the tlow data into a plurality of time buckets;

extract a plurality of tuples describing the flow data,
wherein a tuple comprises a time duration of the
network tlow and information 1dentifying an amount
of data transmitted during the flow;

calculate a long-term trend based at least 1n part on at
least a first tuple and two or more time buckets of the
plurality of time buckets including assigning the first
tuple to a long-term cluster of a plurality of long-
term clusters:

calculate a short-term trend based at least 1n part on a
second tuple and a most recent time bucket of the
plurality of time buckets including assigning the
second tuple to a short-term cluster of a plurality of
short-term clusters;

determining that the short-term trend diverges from the
long-term trend to detect a potential network
anomaly by determining that a percentage of tuples
in a short-term cluster relative to other short-term
clusters 1s significantly more than a percentage of
tuples 1 a long-term cluster, corresponding to the
short-term cluster, relative to other long-term clus-
ters; and

when the potential network anomaly 1s detected, 1niti-
ate a heavy hitter detection algorithm.

6. The system of claim 35, wheremn the at least one
processor 1s further configured to assign one of more tuples
of the plurality of tuples to a time bucket.

7. The system of claim 6, wherein the at least one
processor 1s configured to calculate the long-term trend by
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forming a long-term bucket comprising tuples assigned to at
least one the two or more buckets.

8. The system of claim 7, wherein the at least one
processor 1s further configured to calculate the long-term
trend by normalizing the first tuple relative to other tuples in
the long-term bucket.

9. A non-transitory computer-readable medium having
instructions stored thereon that, when executed by at least
one computing device, causes the at least one computing
device to perform operations comprising:

recerving flow data for a network flow;

parsing the flow data into a plurality of time buckets;

extracting a plurality of tuples describing the flow data,

wherein a tuple comprises a time duration of the
network tlow and information 1dentifying an amount of
data transmitted during the tlow;

calculating a long-term trend based at least in part on at

least a first tuple and two or more time buckets of the
plurality of time buckets including assigning the first
tuple to a long-term cluster of a plurality of long-term
clusters;

calculating a short-term trend based at least 1n part on a

second tuple and a most recent time bucket of the
plurality of time buckets including assigning the sec-
ond tuple to a short-term cluster of a plurality of
short-term clusters:

determining that the short-term trend diverges from the

long-term trend to detect a potential network anomaly
by determining that a percentage of tuples in a short-
term cluster relative to other short-term clusters 1s
significantly more than a percentage of tuples in a
long-term cluster, corresponding to the short-term clus-
ter, relative to other long-term clusters; and

when the potential network anomaly 1s detected, nitiating

a heavy hitter detection algorithm.

10. The non-transitory computer-readable medium of
claim 9, the instructions further comprising assigning on or
more tuples of the plurality of tuples to a time bucket.

11. The non-transitory computer-readable medium of
claim 10, wherein calculating the long-term trend comprises
forming a long-term bucket comprising tuples assigned to at
least one of the two or more buckets.

12. The non-transitory computer-readable medium of
claam 11, wherein calculating the long-term trend further
comprises normalizing the first tuple relative to other tuples

in the long-term bucket.
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