12 United States Patent

Kansal et al.

US010594784B2

US 10,594,784 B2
Mar. 17, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

GEO-DISTRIBUTED DISASTER RECOVERY
FOR INTERACTIVE CLOUD APPLICATIONS

Applicant: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Inventors: Aman Kansal, Redmond, WA (US);
Sriram Govindan, Redmond, WA (US)

Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 541 days.

Appl. No.: 14/076,715

Filed: Nov. 11, 2013

Prior Publication Data

US 2015/0134723 Al May 14, 2015
Int. CIL.
GO6F 11/14 (2006.01)
HO4L 12/24 (2006.01)
(Continued)
U.S. CL
CpPC ... HO4L 6771031 (2013.01); GO6F 11/2023

(2013.01); GO6F 11/2094 (2013.01);
(Continued)

Field of Classification Search
CPC HO4L. 69/40; HO4L. 43/00; HO4L 67/10935;
HO4L. 67/14; HO4L 67/1031; HO4L
67/1097

(Continued)

100
N

Client Computing Device 102

Application Client
110

:

Client State Stare
120

I

Failure Detector
122

!

Client Eescurce Probe

Client 108
Computing Network
Device

116

(56) References Cited

U.S. PATENT DOCUMENTS

GO6F 17/3089

707/E17.116
GOOF 11/2035

709/224

6,480,894 B1* 11/2002 Courts

tttttttttttttttt

7,437,594 B1* 10/2008 Mount

tttttttttttttttt

(Continued)

FOREIGN PATENT DOCUMENTS

1688979 A 10/2005
101535978 A 9/2009

(Continued)

CN
CN

OTHER PUBLICATTONS

“Second Written Opinion Issued in PCT Application No. PCT/
US2014/063614”, dated Oct. 7, 2015, 5 Pages.

(Continued)

Primary Examiner — Vivek Srivastava
Assistant Examiner — Binod J Kunwar

(74) Attorney, Agent, or Firm — Alleman Hall Creasman
& Tuttle LLP

(57) ABSTRACT

Disaster recovery 1s provided for an application that 1s being
hosted on a current data center, thus ensuring the availability
of the application. An option for replicating session state
data for the application 1s selected. This selection 1s made
from a set of diflerent session state data replication options
cach of which has different performance and resource cost

trade-ofls. The selected option determines how the session
state data for the application 1s to be replicated. The selected
option 1s implemented, where the implementation results 1n
the session state data for the application being replicated
outside of the current data center, thus ensuring that this data
remains available 1n the event that the current data center
goes oflline.

17 Claims, 6 Drawing Sheets

R e |

— — - — L

.

124 -=F-1

Current Data Center 104

Application
114

¥

Cecision Engine

126

:

Current Stats Store
128

3

Current
Server Resource Probe [|—

130

Application (Copy)
132

I
I
I
I
I
Backup Data Center 108 :
I
I
I
I
I

Backup
Server Resource Probe [

134

3

136

-1
I

I

I
Backup State Store Ll L
I

I

I

I

I

I

Backip |e e or o o e o -
Date
Center

18 === —-—---"

R —— |

US 10,594,784 B2

Page 2
(51) Imnt. CL 2012/0084261 Al1* 4/2012 Parab GO6F 17/30156
HO4L 12/26 (2006.01) 2012/0159595 Al1* 6/2012 Barh HO4L gg/?l/ggg
HO4L 29/06 (2006.01) HHAL e oy
HO4L 29/05 (2006.01) 2012/0260157 Al* 10/2012 Zhu GOGF 17/30902
HO4L 29/14 (2006.01) 715/234
GOGF 11720 (2006.01) 2013/0031403 Al1* 1/2013 Mordani HO4L 67/28
GOG6F 11/34 (2006.01)] 714/4.11
H 2013/0054822 Al1* 2/2013 Mordani HO4L 67/1034
GO6F 11/30 (2006.01) ora ~00/798
(52) U.S. CL 2013/0073670 Al 3/2013 Das et al.
CPC . GO6I 1172097 (2013.01); GO6F 11/3419 2014/0040206 Al1* 2/2014 Ramakrishnan GO6F 11/2097
. : 707/640
(2013.01); HO4L 41/0654 (2013.01); HO4L
2014/0074780 Al1* 3/2014 Goetsch HO4L 67/10
67/1095 (2013.01); HO4L 67/1097 (2013.01); o 613
HO4L 67/14 (2013.01); HO4L 69/40 (2013.01); 2014/0181051 Al* 6/2014 Montulli GOGF 17/30129
GO6F 11/3006 (2013.01); HO4L 41/0668 707/679
(201301) HO4I 43/0864 (201301) HO4T, 2014/0215255 Al1* 7/2014 Zaheer GO6F 11/004
’ " 714/1
_ _ _ 63/045 (2013.01) 2015/0112931 Al* 4/2015 Bourbonnais HO4L 67/1095
(58) Field of Classification Search 707/676
USPC e, 709/203; 714/6.3
See application file for complete search history. FOREIGN PATENT DOCUMENTS
(56) References Cited CN 102202061 A 9/2011
CN 102498715 A 6/2012
U.S. PATENT DOCUMENTS
| OTHER PUBLICATIONS
7,698,416 B2* 4/2010 Potticcceeeeee HO4L 67/1008
2711948 B2* 59010 M HO4T Zg/?S/ égg Abe, et al., “vTube: Efficient Streaming of Virtual Appliances Over
o AED e 700/738 Last-Mile Networks”, 2013 Association for Computing Machinery
7.844,851 B2 11/2010 Cosmadopoulos et al. (ACM) Symposium on Cloud Computing (SOCC ’13), Oct. 1-3,
8,024,566 B2* 9/2011 Stanev G06Q 20/3829 2013, pp. 16, ACM, Santa Clara, California.
| 380/45 Amazon Web Services (AWS) Team, “Summary of the AWS
8,064,356 B1* 11/2011 Kizanowski HO4L 41/04 Service Event in the US East Region™, Jul. 2, 2012, pp. 4, Amazon
370/249 Web Services, Inc., retrieved at <<http://aws.amazon.com/message/
8,281,014 B2* 10/2012 Stanev GO6F 17/30899 67457 />>
8.285.684 B2 10/2012 Prahlad et al. 709/223 Argyrak.j, et al., “Verifiable Netlwork-Performance Measurt?ments”,
3504901 Bl* 1/2013 Bloomstein ... GO6F 11/1662 Proceedings of the 6th International Conference on emerging Net-
714/6.3 working EXperiments and Technologies (CoNEXT 2010), Nov.
8,725,890 B2* 5/2014 Liuccoooveuvnnnn, HO4T. 12/1868 30-Dec. 3, 2010, pp. 12, Association for Computing Machinery
709/230 (ACM), Philadelphia, Pennsylvania.
8,954,786 B2* 2/2015 Mordani HO4L 67/28 Bailis, et al., “Eventual consistency today: limitations, extensions,
. 714/4.12 and beyond”, Communications of the Association for Computing
9,378,060 B2* 6/2016 Jansson GUOL 974862 Machinery (ACM), May 2013, pp. 55-63, vol. 56 Issue 5, ACM,
2003/0110266 Al* 6/2003 Rollins HO4L 29/06
New York, New York.
. 709/227 Bailis, et al., “Probabilistically Bounded Staleness for Practical
2005/0010588 Al1* 1/2005 Zalewski GO6F 11/2069 o v _
2006/0036761 Al* 2/2006 Amra HO4L 67/1095 Partial Quorums”, 33th International Conference on Very Large
709/238 Data Bases (VLDB), Aug. 27-31, 2012, pp. 776-787, Proceedings of
2006/0168334 A1* 7/2006 Potticcccvneee. HO41. 67/1008 the VLDB Endowment, vol. 5, No. 8, VLDB Endowment, Istanbul,
709/239 Turkey.
2006/0248119 Al* 11/2006 Stanev GO6F 9/461 Baker, et al., “Megastore: Providing Scalable, Highly Available
2006/0285489 Al* 12/2006 Francisco HO4L 12/2602 Storage for Interactive Services”, 5th Biennial Conference on
370/229 Innovative Data Systems Research (CIDR *11), Jan. 9-12, 2011, pp.
2007/0180309 Al* 82007 Zohar GO6L 11/2058 223-234, CIDR Conference, Asilomar, Califorma.
. 714/6.12 Barker, et al., “Empirical Evaluation of Latency-sensitive Applica-
2007/0192326 Al N 82007 Angal GOOF 11/1482 tion Performance in the Cloud”, Proceedings of the First Annual
2007/0220155 Al #2007 Nalla ..ooocooviinnnenns HOL”}SS? é ; 71’ Association for Computing Machinery (ACM) SIGMM Conference
Multimedia Syst MMSys *10), Feb. 22-23, 2010, pp. 12
2008/0080374 Al* 4/2008 Nuzman ... Ho4L 41/0806 O Multimedia Systems (MMSys "10), Te S PR RS
370/930 ACM, Phoenix, Arizona.
2009/0144344 A1* 6/2009 McBride GOGF 17/30575 g”m‘m*. T,}lecpmess. Group Afpf}foazh tO.R.eh""'}le glsmb“.ted
2009/0319824 Al* 12/2009 Liu .ooocooovvnnn.nn., HOA4L 12/1868 omputing”, ¢-ommunications ol the Association for -omputing
714/4.1 Machinery (ACM), Dec. 1993, pp. 37-103, vol. 36, No. 12, ACM,
2010/0228819 Al 9/2010 Wei New York, New York. o
7010/0228824 Al1* 9/2010 Lin ... HO4T. 12/1818 Brewer, “Towards Robust Distributed Systems”, Keynote Presen-
709/204 tation at Nineteenth Association for Computing Machinery (ACM)
2010/0299552 Al* 11/2010 Schlackocoooviiii, HO041. 47/10 Symposium on Principles of Distributed Computing (PODC 2000),
714/4.1 Jul. 19, 2000, pp. 12, Portland, Oregon, retrieved at <<http://www.
2010/0325484 Al* 12/2010 Suzukioo...... GO6F 11/1443 cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote>>.
714/14 Brutlag, “Speed Matters for Google Web Search”, Jun. 22, 2009, pp.
2011/0055627 Al* 3/2011 Zawacki HO041. 67/14 1, Google, Inc., retrieved at <<http://services.google.com/th/files/
714/15 blogs/google_delayexp.pdi>>.

US 10,594,784 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Calder, et al., “Windows Azure Storage: A Highly Available Cloud

Storage Service with Strong Consistency”, 23rd Association for
Computing Machinery (ACM) Symposium on Operating Systems
Principles (SOSP ’11), Oct. 23-26, 2011, pp. 143-157, ACM,
Cascais, Portugal.

Chandra, et al., “Unreliable Failure Detectors for Reliable Distrib-
uted Systems”, Journal of the Association for Computing Machin-

ery (ACM), Mar. 1996, pp. 225-267, vol. 43, No. 2, ACM, New
York, New York.

Cisco Systems, Inc., “Design Best Practices for Latency Optimiza-
tion”, Cisco White Paper, 2007, pp. 1-8, Cisco Systems, Inc., San

Jose, Californmia, retrieved at <<http://www.cisco.com/application/
pdf‘en/us/guest/netsol/ns407/c654/ccmigration_09186a008091d542.
pdi>>.

Cisco Systems, Inc., “Distributed Virtual Data Center for Enterprise
and Service Provider Cloud”, Cisco White Paper, Jan. 2012, pp.
1-34, Cisco Systems, Inc. San Jose, California.

Citrusbyte, “Introduction to Redis”, Oct. 25, 2013, pp. 1, Citrusbyte,
LLC, retrieved at <<http://redis.1o/topics/introduction>>.

Cooper, et al., “PNUTS: Yahoo!’s Hosted Data Serving Platform™,
Proceedings of the Very Large Data Bases (VLDB) Endowment
(VLDB ’08), Aug. 24-30, 2008, pp. 12, Association for Computing
Machinery (ACM), Auckland, New Zealand.

Corbett, et al., “Spanner: Google’s Globally-Distributed Database™,
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI *12), Oct. 8-10, 2012, pp. 14,
USENIX Association, Hollywood, California.,

Cully, et al., “Remus: high availability via asynchronous virtual
machine replication”, Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’08),
Apr. 16-18, 2008, pp. 161-174, USENIX Association, San Fran-
cisco, California.

Decandia, et al., “Dynamo: Amazon’s Highly Available Key-value
Store”, Proceedings of Twenty-first Association for Computing
Machinery (ACM) SIGOPS Symposium on Operating Systems
Principles (SOSP ’07), Oct. 14-17, 2007, pp. 205-220, ACM,
Stevenson, Washington.

Dhawan, et al., “Fathom: A Browser-based Network Measurement
Platform”, Proceedings of the 2012 Association for Computing
Machinery (ACM) Conference on Internet Measurement Confer-
ence (IMC ’12), Nov. 14-16, 2012, pp. 14, ACM, Boston, Massa-
chusetts.

Dischinger, et al., “Characterizing Residential Broadband Net-
works”, Proceedings of the 7th Association for Computing Machin-
ery (ACM) Special Interest Group on Data Communication
(SIGCOMM) Conference on Internet Measurement (IMC *07), Oct.
24-26, 2007, pp. 14, ACM, San Diego, California.

Dolev, et al., “On the Minimal Synchronism Needed for Distributed
Concensus”, Journal of the Association for Computing Machinery
(ACM), Jan. 1987, pp. 77-97, vol. 34, No. 1, ACM, New York, New
York.

Dovrolis, et al., “What do packet dispersion techniques measure?”,
Proceedings of the Twentieth Annual Joint Conference of the
Institute of Electrical and Electronics Engineers (IEEE) Computer
and Communications Societies (INFOCOM 2001), Apr. 22-26,
2001, pp. 10, vol. 2, IEEE, Anchorage, Alaska.

Dwork, et al., “Consensus 1n the presence of partial synchrony”,
Journal of the Association for Computing Machinery (ACM), Apr.
1988, pp. 288-323, vol. 35 Issue 2, ACM, New York, New York.

Fischer, et al., “Impossibility of Distributed Concensus with One

Faulty Process™, Journal of the Association for Computing Machin-
ery (ACM), Apr. 1985, pp. 374-382, vol. 32, No. 2, ACM, New

York, New York.

Fletcher, “Introduction to SignalR”, Feb. 27, 2013, pp. 5, Microsoft
Corporation, retrieved at <<http://www.asp.net/signalr/overview/
signalr-1x/getting-started/introduction-to-signalr>>.

Ghita, et al., “Network Tomography on Correlated Links”, Proceed-
ings of the 10th Association for Computing Machinery (ACM)

Special Interest Group on Data Communication (SIGCOMM) Con-
ference on Internet Measurement (IMC *10), Nov. 1-3, 2010, pp. 14,
ACM, Melbourne, Australia.

Gilbert, et al., “Brewer’s Conjecture and the Feasibility of Consis-
tent, Available, Partition-Tolerant Web Services”, Association for
Computing Machinery (ACM) Special Interest Group on Algo-
rithms and Computational Theory (SIGACT) News, Jun. 2002, pp.
51-59, vol. 33 Issue 2, ACM, New York, New York.

Google App Engine Team, “Post-mortem for Feb. 24, 2010 outage™,
Mar. 4, 2010, pp. 4, Google Groups, retrieved at <<https://groups.
google.com/forum/print/msg/google-appengine/p2QKJIOOSLc8/
TMEZ3YCOTqQJ>>.

Gray, et al., “Milliseconds Matter: An Introduction to Microstrate-
gies and to Their Use in Describing and Predicting Interactive
Behavior”, Journal of Experimental Psychology: Applied, May
2000, pp. 322-335, vol. 6, No. 4, ; American Psychological Asso-
ciation, Inc., Washington, DC.

Gummadi, et al., “King: Estimating Latency between Arbitrary
Internet End Hosts™, Proceedings of the 2nd Association for Com-
puting Machinery (ACM) Special Interest Group on Data Commu-
nication (SIGCOMM) Workshop on Internet measurment (IMW
"02), Nov. 6-8, 2002, pp. 14, ACM, Marsellle, France.

Hayjat, et al., “Cloudward Bound: Planning for Beneficial Migration
of Enterprise Applications to the Cloud”, Proceedings of the Asso-
ciation for Computing Machinery (ACM) Special Interest Group on
Data Communication (SIGCOMM) 2010 Conference (SIGCOMM
"10), Aug. 30-Sep. 3, 2010, pp. 12, ACM, New Delhi, India.

Hamilton, “Inter-Datacenter Replication & Geo-Redundancy™, Per-
spectives: James Hamilton’s Blog, May 10, 2010, pp. 9, James

Hamilton, published online, retrieved at <<http://perspectives.
mvdirona.com/2010/05/10/InterDatacenterR eplicationGeoR edundancy.
aspx-~>-~.

Huang, et al., “An In-depth Study of LTE: Effect of Network
Protocol and Application Behavior on Performance”, Proceedings
of the Association for Computing Machinery (ACM) Special Inter-
est Group on Data Communication (SIGCOMM) 2013 Conference
(SIGCOMM ’13), Aug. 12-16, 2013, pp. 12, ACM, Hong Kong,
China.

I, et al., “A Comparison of Hard-state and Soft-state Signaling
Protocols™, Institute of Electrical and FElectronics Engineers
(IEEE) / Association for Computing Machinery (ACM) Transac-
tions on Networking, Apr. 2007, pp. 281-294, vol. 15 Issue 2, IEEE

Press, Piscataway, New Jersey.

Kansal, et al., “Using Dark Fiber to Displace Diesel Generators™,
Proceedings of the 14th USENIX Conference on Hot Topics in
Operating Systems (HotOS *13), May 13-15, 2013, pp. 7, USENIX
Assoclation, Santa Ana Pueblo, New Mexico.

Kohavi, et al., “Practical Guide to Controlled Experiments on the
Web: Listen to Your Customers not tb the HIPPO™, Proceedings of
the 13th Association for Computing Machinery (ACM) Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD
"07), Aug. 12-15, 2007, pp. 9, ACM, San Jose, California.
Kraska, et al., “Consistency Rationing in the Cloud: Pay only when
it matters”, Proceedings of the Very Large Data Bases (VLDB)
Endowment (VLDB ’09), Aug. 24-28, 2009, pp. 12, vol. 2 Issue 1,
Association for Computing Machinery (ACM), Lyon, France.
Kumar, et al., “A Cloud-Assisted Design for Autonomous Driving”,
Proceedings of the First Edition of the MCC Workshop on Mobile
Cloud Computing (MCC *12), Aug. 17, 2012, pp. 6, Association for
Computing Machinery (ACM), Helsinki, Finland.

L1, et al., “CloudCmp: Comparing Public Cloud Providers”, Pro-
ceedings of the 10th Association for Computing Machinery (ACM)
Special Interest Group on Data Communication (SIGCOMM) Con-
ference on Internet Measurement (IMC *10), Nov. 1-3, 2010, pp. 14,
ACM, Melbourne, Australia.

L1, et al., “Eflicient Batched Synchronization in Dropbox-like Cloud
Storage Services”, retrieved Oct. 25, 2013, pp. 20, <<https://www.
cs.ucsb.edu/~ravenben/publications/pdf/dropbox-middlewarel3.
pdi>>.

L1, et al., “Making Geo-Replicated Systems Fast as Possible,
Consistent when Necessary”, Proceedings of the 10th USENIX

US 10,594,784 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Conference on Operating Systems Design and Implementation

(OSDI ’12), Oct. 8-10, 2012, pp. 265-278, USENIX Association,
Hollywood, California.

Liebeherr, et al., “A System Theoretic Approach to Bandwidth
Estimation™, Institute of Electrical and Electronics Engineers
(IEEE) / Association for Computing Machinery (ACM) Transac-
tions on Networking (TON), Feb. 26, 2010, pp. 14, vol. 18 Issue 4,
IEEE Press, Piscataway, New Jersey.

Ling, et al., “Session State: Beyond Soft State”, Proceedings of the
1st Conference on Symposium on Networked Systems Design and
Implementation (NSDI ’04), Mar. 29-31, 2004, pp. 14, USENIX
Association, San Francisco, California.

Lloyd, et al., “Don’t Settle for Eventual: Scalable Causal Consis-
tency for Wide-Area Storage with COPS”, Proceedings of the 23rd
Association for Computing Machmery (ACM) Symposium on
Operating Systems Principles (SOSP *11), Oct. 23-26, 2011, pp.
1-16, ACM, Cascais, Portugal.

Microsofit Corporation, “Delta Compression Application Program-
ming Interfaces”, Oct. 2009, pp. 1-57, Microsoft Corporation,
retrieved at <<http://msdn.microsoft.com/en-us/library/bb417345.
aspx-~-~.

Mogul, et al., “Delta encoding in HTTP”, Proposed Standard,
Network Working Group, Request for Comments: 3229, Jan. 2002,
pp. 1-50, Internet Engineering Task Force (IETF), retrieved at
<<http://tools.1etf.org/html/rfc3229>>,

Neil, “Details of the Dec. 28, 2012 Windows Azure Storage
Disruption in US South”, MSDN Blogs > Windows Azure, Jan. 16,
2013, pp. 1-5, Microsoft Corporation, retrieved at <<http://blogs.
msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-
december-28th-2012-windows-azure-storage-disruption-in-us-south.
aspx-~>-.

Rajagopalan, et al., “SecondSite: Disaster Tolerance as a Service”,
Proceedings of the 8th Association for Computing Machinery
(ACM) SIGPLAN/SIGOPS Conference on Virtual Execution Envi-
ronments (VEE ’12), Mar. 3-4, 2012, pp. 11, ACM, London,
England.

Schneider, “Implementing Fault-Tolerant Services Using The State
Machine Approach: A Tutorial”, Association for Computing Machin-
ery (ACM) Computing Surveys, Dec. 1990, pp. 299-319, vol. 22,
No. 4, ACM, New York, New York.

Shankaranarayanan, et al., “D-Tunes: Self Tuning Datastores for
Geo-distributed Interactive Applications”, Proceedings of the Asso-
ciation for Computing Machinery (ACM) Special Interest Group on
Data Communication (SIGCOMM) 2013 Conference (SIGCOMM
"13), Aug. 12-16, 2013, pp. 483-484, ACM, Hong Kong, China.
Siewert, “Big data in the cloud”, IBM developerWorks, Jul. 9, 2013,
pp. 1-13, IBM Corporation, Armonk, New York.

Sommers, et al., “Cell vs. WiF1: On the Performance of Metro Area
Mobile Connections™, Proceedings of the 2012 Association for

Computing Machinery (ACM) Conference on Internet Measure-
ment Conference (IMC ’12), Nov. 14-16, 2012, pp. 14, ACM,

Boston, Massachusetts.

Vulimuri, et al., “More 1s Less: Reducing Latency via Redundancy”,
Proceedings of the 1lth Association for Computing Machinery
(ACM) Workshop on Hot Topics in Networks (Hotnets *12), Oct.
29-30, 2012, pp. 1-6, ACM, Seattle, Washington.

W3C, “Web Storage”, W3C Recommendation, Jul. 30, 2013, pp.
1-21, W3C (World Wide Web Consortium), retrieved at <<http://
www.w3.0rg/ TR/webstorage/>>.

Wang, et al., “Cloud Mobile Gaming: Modeling and Measuring
User Experience 1n Mobile Wireless Networks”, Association for
Computing Machinery (ACM) SIGMOBILE Mobile Computing
and Communications Review, Jan. 2012, pp. 12, vol. 16 Issue 1,
ACM, New York, New York.

Wang, et al., “Demystifying Page L.oad Performance with WProf”,
Proceedings of the 10th USENIX Conference on Networked Sys-
tems Design and Implementation (NSDI *13), Apr. 2-5, 2013, pp.
1-13, USENIX Association, .ombard, Illinozis.

Weatherspoon, et al., “Smoke and Mirrors: Reflecting Files at a
Geographically Remote Location Without Loss of Performance”,
7th USENIX Conference on File and Storage Technologies (FAST
"09), Feb. 24-27, 2009, pp. 211-224, USENIX Association.

Wel, et al., “Classification of Access Network Types: LAN, Wireless
LAN, ADSL, Cable or Dialup?”’, Computer Networks: The Inter-
national Journal of Computer and Telecommunications Networking,
Dec. 2008, pp. 3205-3217, vol. 52 Issue 17, Elsevier North-Holland,
Inc. New York, New York.

Willinger, et al., “A Pragmatic Approach to Dealing with High-
Variability 1n Network Measurements”, Proceedings of the 4th
Association for Computing Machinery (ACM) SIGCOMM Confer-
ence on Internet Measurement (IMC *04), Oct. 25-27, 2004, pp. 13,
ACM, Taormina, Sicily, Italy.

Wood, et al., “Disaster Recovery as a Cloud Service: Economic
Benefits & Deployment Challenges™, Proceedings of the 2nd USENIX
Conference on Hot Topics mn Cloud Computing (HotCloud ’10),
Jun. 22, 2010, pp. 7, USENIX Association, Boston, Massachusetts.
Wood, et al., “PipeCloud: Using Causality to Overcome Speed-of-
Light Delays 1n Cloud-Based Disaster Recovery”, Proceedings of
the 2nd Association for Computing Machinery (ACM) Symposium
on Cloud Computing (SOCC ’11), Oct. 27-28, 2011, pp. 13, Article
No. 17, ACM, Cascais, Portugal.

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2014/063614”, dated Feb. 25, 2015, 10
Pages.

“First Oflice Action Issued in Chinese Patent Application No.
201480061769.2”, dated Jul. 4, 2018, 16 Pages.

“Second Oflice Action Issued 1n Chinese Patent Application No.
201480061769.2”, dated Mar. 5, 2019, 07 Pages.

“Oflice Action Issued 1n European Patent Application No. 14805405.
97, dated Nov. 5, 2018, 05 Pages.

* cited by examiner

U.S. Patent Mar. 17, 2020 Sheet 1 of 6 US 10,594,784 B2

100

N\

Current Data Center 104

Application B
114

Client Computing Device 102

Application Client R
110

|
!
|
Client State Store |
|
|

Decision Engine o
120 T 126
Faillure Detector Current State Store
122 128
Current
Server Resource Probe -

130

Bup Data Cnter '

 Application (Copy)
132

Client 108
Computing \. Network

Device
116

Backup

Server Resource Probe
134

FIG. 1

U.S. Patent Mar. 17, 2020 Sheet 2 of 6 US 10,594,784 B2

Option Performance &
No. | Session State Data Replication Option ggf:m“::rg"s‘

Session State Data Is Stored On Client |
Computing Device. Session State Data Is

Added To Each Application Response Message
Application Transmits To Client. Session State

TC1, BC1, BATCH

Data |s Added To Each Client Request Message
Client Transmits To Application.

Session State Data Is Synchronously Stored In
One Or More Backup Data Centers Whenever
Session State Changes. Application Waits To
Respond To Client Request Message Until
Current Data Center Receives Confirmation

Message Indicating Session State Data Was
Successfully Stored In At Least One Backup

Data Center.
Encoded Version Of Session State Data s

TGC2, BD2, SD2

Stored On Client Computing Device. Encoded
Version Can Be Just User-Entered Data, Or
Compressed Version Of All Session State Data.

TC3, BC3, BATCS,
CD3

Session State Data Is Stored On Client
Computing Device. Session State Data Is
Added To Each Application Response Message
Application Transmits To Client. Client Detects
Failure Of Current Data Center To Serve
Session, And Then Transmits Session State
Data To Backup Data Center.

Session State Data Is Asynchronously Stored In
One Or More Backup Data Centers Whenever
Session State Changes. Application Responds
To Client Reguest Message Before Current Data
Center Receives Confirmation Message TC5, BATC5, BD5,
Indicating Session State Data Was Successfully | SD5
Stored In At Least One Backup Data Center.
Client Waits For Confirmation From At Least
One Backup Data Center Before Exposing
Application Response To User.

Encrypted Version Of Session State Datals | TC6, BC6, BATCS,
Stored On Client Computing Device. CD6
L , Various Combinations
! >ombination 7 Above ptions Of Above Parameters

TC4, BC4, BATC4

FIG. 2

U.S. Patent Mar. 17, 2020 Sheet 3 of 6 US 10,594,784 B2

300

__ Estimate Latency Cost To Client Computing Device Associated With Each Of
The Different Session State Data Replication Options

39\2_ Select Option Having Smallest Latency Cost As The Option To Be Used For
Replicating Session State Data For Interactive Session Between Application
And Client Computing Device

FIG. 3 =ne

- Input Performance Constraints Specified By Application, Where The
Performance Constraints Include A Maximum Allowable Latency Cost To
Client Computing Device Associated With Replicating Session State Data For
Interactive Session

Estimate Latency Cost To Client Computing Device Associated With Each Of
The Different Session State Data Replication Options

- ldentify Session State Data Replication Options Whose Estimated Latency
Cost To Client Computing Device Is Less Than Or Equal To Maximum
Allowable Latency Cost To Client Computing Device

4(\)3 Select One Of The Identified Options That Meets The Resourcé Cost
Constraints As The Option To Be Used For Replicating Session State Data
For Interactive Session Between Application And Client Computing Device

FIG. 4 e

U.S. Patent Mar. 17, 2020 Sheet 4 of 6 US 10,594,784 B2

500

_ Input Resource Cost Ccnstraints Specified By Application

506_ Estimate Latency Cost To Client Computing Device Associated With Each Of

The Different Session State Data Replication Options

5(@__ Identify Session State Data Replication Options That Meet Resource Cost

Constraints

50@_ Select The One Of The Identified Options That Has The Smallest Estimated
Latency Cost To Client Computing Device As The Option To Be Used For
Replicating Session State Data For Interactive Session Between Application
And Client Computing Device

FIG. 5 Fnd

U.S. Patent Mar. 17, 2020 Sheet 5 of 6 US 10,594,784 B2

600

- Select An Option For Replicating Session State Data For Application

Implement Selected Option

602

FIG. 6

70@_ Receive Message From Current Data Center Specifying An Option For
Replicating Session State Data For Application Selected For Client
Computing Device

FIG. 7 End

80\0_ Deterinnt Of Spare Server Capacit To Be Added To Each Of The '
Data Centers In The Cloud In Order For The Cloud To Be Able To Take Over
Current Application Load Of Any One Of The Data Centers If It Fails

80@_’ Direct That Determined Amount Of Spare Server Capacity Be Added To Each
Of The Data Centers

80(4__ Whenever Any One Of The Data Centers Fails, Distribute Current Application

L.oad Of The Failed Data Center Across Spare Server Capacity Added To
Each Of The Remaining Data Centers

FIG. 8 =

U.S. Patent Mar. 17, 2020 Sheet 6 of 6 US 10,594,784 B2

SIMPLIFIED COMPUTING DEVICE

910
" afndedabeiatiett . ST emeeeesesessnne. :
PROCESSING i DISPLAY {970~ ;
i PRI, TSR ——
UNIT(S) » DEVICE(S) | { { REMOVABLE | |
- « 1+ STORAGE | 1
! yecemccomcemooay
pemmmmmemmeeemeaeas R P i NON- 44
920 : \ 1 REMOVABLE | i
- ' + STORAGE |
: mﬂnnﬂQ ﬂﬂﬂﬂﬂﬂ w :
SYSTEM : 980 ;
'
MEMORY \ STORAGE DEVICES
- 960
! ' :
: fecccscncncnaccana 1 ;
=g : : 930
'
liIIIII ! ----- ‘I l'-----x ----- ﬁl : -------- y ------- .:
s INPUT § ¢ OUTPUT § ! COMMUNICATIONS
E DEVICE(S) E E DEVICE(S) E ' INTERFACE !}
' :
i........_..‘ ““““ 4 | Jpp— l “““““ ’ B r ““““““ »
: L9«40 : L950 :
: : : ,
’ ' '
v v v 900

US 10,594,784 B2

1

GEO-DISTRIBUTED DISASTER RECOVERY
FOR INTERACTIVE CLOUD APPLICATIONS

BACKGROUND

The Internet 1s a global data communications system that
serves billions of users worldwide. The Internet provides
users access to a vast array of online information resources
and services, including those provided by the World Wide
Web, intranet-based enterprises, and the like. Thanks to the
ubiquity of the various types of personal computing devices
that exist today (such as personal computers, laptop/note-
book computers, smart phones and tablet computers) and the
ubiquity of the Internet, an ever-growing number of users in
an 1increasing number of geographic regions routinely use an
ever-growing number of web applications in their everyday
lives. For examples, users rely on web applications for
emailing, texting, video conierencing, listeming to music,
watching movies, searching for online information, storing,
and accessing online information, and online shopping and
banking. Web applications are commonly hosted on data
centers.

SUMMARY

This Summary 1s provided to mtroduce a selection of
concepts, 1 a simplified form, that are further described
hereafter in the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

Geo-distributed disaster recovery technique embodiments

described herein are generally applicable to ensuring the
availability of an application that is being hosted on a current
data center. In other words, the geo-distributed disaster
recovery technique embodiments provide disaster recovery
tor the application. In one exemplary embodiment an option
for replicating session state data for the application 1is
selected, where this selection 1s made from a set of different
session state data replication options each of which has
different performance and resource cost trade-oils, and the
selected option determines how the session state data for the
application 1s to be replicated. The selected option 1s then
implemented, where the implementation results in the ses-
s1on state data for the application being replicated outside of
the current data center, thus ensuring that this data remains
available 1n the event that the current data center goes
oflline.
In another exemplary embodiment a client computer
receives a message from the current data center specilying,
an option for replicating session state data for the application
that has been selected for the client computer, where this
selection has been made from a set of diflerent session state
data replication options each of which has diflerent pertor-
mance and resource cost trade-oils, and the specified option
determines how the session state data for the application 1s
to be replicated. The specified option 1s then implemented,
where the implementation results 1n the session state data for
the application being replicated outside of the current data
center, thus ensuring that this data remains available to the
client computer 1n the event that the current data center goes
oilline.

Yet another exemplary embodiment 1mvolves provision-
ing and using spare data center capacity 1n a network of data
centers. A determination 1s made as to an amount of spare
server capacity that 1s to be added to each of the data centers
in the network of data centers 1n order for this network to be

10

15

20

25

30

35

40

45

50

55

60

65

2

able to take over the current application load of any one of
the data centers 1f 1t fails. This determination 1s made by
taking into account different factors that include one or more
of: the total number of data centers, or the current server
capacity ol each of the data centers, or the geographic
location of each of the data centers. It 1s then directed that
the determined amount of spare server capacity be added to
cach of the data centers. Then, whenever any one of the data
centers fails, the current application load of the failed data
center 1s distributed across the spare server capacity that was
added to each of the remaining data centers.

DESCRIPTION OF THE DRAWINGS

The specific features, aspects, and advantages ol the
geo-distributed disaster recovery technique embodiments
described herein will become better understood with regard
to the following description, appended claims, and accom-
panying drawings where:

FIG. 1 1s a diagram 1illustrating an exemplary embodi-
ment, 1n simplified form, of an architectural framework for
implementing the geo-distributed disaster recovery tech-
nique embodiments described herein.

FIG. 2 1s a table summarizing different session state data
replication options that can be used by the geo-distributed
disaster recovery technique embodiments described herein
and the performance and resource cost parameters that are
associated with each of the replication options.

FIG. 3 1s a tlow diagram 1llustrating one embodiment, 1n
simplified form, of a process for selecting an appropriate
option for replicating the session state data for a cloud
application that 1s being hosted on a data center.

FIG. 4 1s a flow diagram 1illustrating another embodiment,
in simplified form, of a process for selecting an appropriate
option for replicating the session state data for the cloud
application.

FIG. § 1s a flow diagram 1illustrating yet another embodi-
ment, 1n simplified form, of a process for selecting an
appropriate option for replicating the session state data for
the cloud application.

FIG. 6 1s a flow diagram illustrating an exemplary
embodiment, 1n simplified form, of the server side of a
process for ensuring the availability of the cloud application.

FIG. 7 1s a flow diagram illustrating an exemplary
embodiment, i sumplified form, of the client side of a
process for providing disaster recovery for the cloud appli-
cation.

FIG. 8 1s a flow diagram illustrating an exemplary
embodiment, in simplified form, of a process for provision-
ing and using spare data center capacity in the cloud.

FIG. 9 1s a diagram 1llustrating a simplified example of a
general-purpose computer system on which various embodi-
ments and elements of the geo-distributed disaster recovery
technique, as described herein, may be implemented.

DETAILED DESCRIPTION

In the following description of geo-distributed disaster
recovery technique embodiments (hereafter simply referred
to as disaster recovery technique embodiments) reference 1s
made to the accompanying drawings which form a part
hereof, and 1n which are shown, by way of illustration,
specific embodiments in which the disaster recovery tech-
nique can be practiced. It 1s understood that other embodi-
ments can be utilized and structural changes can be made
without departing from the scope of the disaster recovery
technique embodiments.

US 10,594,784 B2

3

It 1s also noted that for the sake of clarity specific
terminology will be resorted to in describing the disaster
recovery technique embodiments described herein and 1t 1s
not intended for these embodiments to be limited to the
specific terms so chosen. Furthermore, it 1s to be understood
that each specific term 1ncludes all its technical equivalents
that operate in a broadly similar manner to achieve a similar
purpose. Reference herein to “one embodiment”, or “another
embodiment”, or an “exemplary embodiment™, or an “alter-
nate embodiment”, or “one implementation”, or “another
implementation”, or an “exemplary implementation™, or an
“alternate implementation” means that a particular feature, a
particular structure, or particular characteristics described in
connection with the embodiment or implementation can be
included 1n at least one embodiment of the disaster recovery
technique. The appearances of the phrases “in one embodi-

ment”, “in another embodiment™, “in an exemplary embodi-
- R Y

ment”, “in an alternate embodiment”, “in one 1mplementa-
tion”, “in another implementation”, “in an exemplary
implementation”, and “in an alternate implementation™ 1n
various places 1n the specification are not necessarily all
referring to the same embodiment or implementation, nor
are separate or alternative embodiments/implementations
mutually exclusive of other embodiments/implementations.
Yet furthermore, the order of process flow representing one
or more embodiments or implementations of the disaster
recovery technique does not inherently indicate any particu-
lar order not imply any limitations of the disaster recovery
technique.

The term “cloud application” 1s used herein to refer to a
web application that operates in the cloud and can be hosted
on (e.g., deployed at) a plurality of data centers that can be
located 1n different geographic regions (e.g., different
regions ol the world) and can be concurrently used by a
plurality of remote end users (hereafter stmply referred to as
users). In other words, a cloud application 1s a web appli-
cation that 1s geographically distributed. The term “client
computing device” 1s used herein to refer to a computing
device that a user uses to establish an interactive session
with a given a given interactive cloud application.

1.0 Geo-Distributed Disaster Recovery for Interactive Cloud
Applications

As 1s appreciated 1n the art of cloud computing, there 1s
an emerging class of interactive cloud applications that are
being rapidly developed and hosted on popular cloud plat-
forms. Generally speaking, the disaster recovery technique
embodiments described heremn provide geo-distributed
disaster recovery for such applications, while at the same
time minimizing the performance costs (e.g., minimizing,
client latencies) and minimizing the resource costs (e.g.,
network bandwidth costs and data storage costs, among,
others) associated with providing this disaster recovery. In
other words, the disaster recovery technique embodiments
generally mvolve ensuring (e.g., maximizing) the availabil-
ity of interactive cloud applications so that the applications
and their most recent (e.g., freshest) state data remain
available to users even 11 one or more of the data centers that
host the applications go ofiline for whatever reason.

Generally speaking and as 1s appreciated 1n the art of web
applications, there are two types of data that are associated
with the overall state of a given interactive cloud applica-
tion, namely session state data and persistent state data.
Session state data 1s associated with an interactive session
that one or more users establish with the application. It waill
be appreciated that the session state can change incremen-
tally each time a user interacts with the application. Persis-
tent state data has two properties that the session state data

10

15

20

25

30

35

40

45

50

55

60

65

4

does not have namely durability and concurrency. The
durability property of persistent state data refers to the fact
that the persistent state data persists after all of the users
have left the interactive session, and after the interactive
session ends. In contrast, the session state data persists just
for the life of the interactive session, and can be discarded
once all of the users have left the interactive session. The
concurrency property of persistent state data refers to the
fact that a plurality of users and a plurality of interactive
sessions can use the persistent state data at the same time.
Many of the user’s interactions with the application aflect
the session state data but do not aflect the persistent state
data.

As will be appreciated from the more detailed description
that follows, all of the disaster recovery technique embodi-
ments described herein focus specifically on replicating the
session state data for an interactive session that takes place
over a network between a given interactive cloud application
and one or more client computing devices. However, some
of the disaster recovery technique embodiments can also be
used to replicate persistent state data for the application. The
disaster recovery technique embodiments ensure that the
most recent session state data will remain available to the
client computing devices in the event that the data center that
1s currently hosting the application and serving the session
goes oflline and thus becomes unable to continue serving the
session. As 1s appreciated in the art of cloud computing,
various techniques exist for protecting the persistent state
data 1n the event of a data center failure, one example of
which 1s the conventional Paxos family of protocols. The
fact that the disaster recovery techmque embodiments treat
the session state data separately from the persistent state data
does not require significant modifications to existing web
applications because such applications already preserve the
session state explicitly between successive client requests by
using a session state application programming interface
(API) that 1s provided by the development platiform for the
web applications. The disaster recovery technique embodi-
ments maintain consistency between the session state data
and persistent state data since the embodiments store and
will recover the most recent session state data whenever the
data center that 1s currently serving the session goes ofiline
for whatever reason, and thus becomes unable to continue
serving the session.

As will be described 1in more detail hereafter, there are
various performance and resource cost (e.g., resource utili-
zation) trade-ofls that are associated with ensuring the
availability of interactive cloud applications. The disaster
recovery technique embodiments allow developers of a
grven interactive cloud application to ensure the availability
of the application to users by replicating the session state
data for the application. As such, the session state data for
interactive sessions with the application 1s protected against
data center failures. As will be appreciated from the more
detailed description that follows, the disaster recovery tech-
nique embodiments replicate the entire session state, includ-
ing both user-entered data and server-computed data.

As will also be described 1n more detail hereafter, the
disaster recovery technique embodiments provide a set of
different options for replicating the session state data for the
application, where each of the diflerent session state data
replication options has different performance and resource
cost trade-ofls. The disaster recovery technique embodi-
ments also provide various methods for automatically select-
ing an appropriate one of the session state data replication
options that increases (e.g., maximizes) the performance of
a given interactive session with the application (and hence

US 10,594,784 B2

S

the performance that the users of the application experience)
and/or decreases (e.g., minimizes) the resource costs (e.g.,
decreases the resources that are utilized) for the interactive
session. This automatic selection 1s based on various per-
formance constraints and resource cost constraints, and a
prioritization thereof, that can be specified by the applica-
tion. The disaster recovery technique embodiments can
automatically switch from a previously selected session state
data replication option to a newly selected session state data
replication option 1n the middle of the interactive session
based on changes 1n these constraints, or changes in their
prioritization, or changes in prescribed run-time conditions
in the computing and networking infrastructure that supports
the application.

In other words, the disaster recovery technique embodi-
ments automatically tune the performance and resource cost
trade-ofls that are associated with ensuring the availability
of interactive cloud applications, and dynamically adapt this
tuning (e.g., adapt the tuning on-the-fly) whenever the
just-described prescribed run-time conditions change. Gen-
erally speaking and as will also be described in more detail
hereafter, these run-time conditions can include, but are not
limited to, various performance and resource costs such as
network bandwidth costs, network latency experienced by
client computing devices, data storage costs, processing
costs, and battery energy drains costs, among others. The
run-time conditions can also include, but are not limited to,
various resource availabilities such as the current availabil-
ity (e.g., percent utilization) of computing device processors,
memory, and batteries, among others. Each of these run-time
conditions can be different for different client and server
computing devices in the infrastructure, and for different
portions of the network in the infrastructure. Each of the
run-time conditions can also change over time.

The disaster recovery technique embodiments described
herein are advantageous for various reasons including, but
not limited to, the following. As will be appreciated from the
more detailed description that follows, the disaster recovery
technique embodiments make 1nteractive cloud applications
resilient to data center failures by replicating the session
state data for the applications. The disaster recovery tech-
nique embodiments minimize the computing and network
transmission costs associated with this session state data
replication so that the performance of interactive sessions
with the applications 1s maximized, the user response times
tor the applications are mimmized, and the resource costs for
the data centers that host the applications are minimized.
The disaster recovery technique embodiments also allow
regional legal requirements to be met (e.g., current regula-
tions 1n some countries dictate that some of the data that 1s
served by a data center be located within national boundar-
ies). The disaster recovery techmique embodiments also
integrate easily with existing cloud applications, 1n some
cases without source code modifications. The disaster recov-
ery technique embodiments automatically adapt to network
bandwidth variations at the client computing devices (e.g.,
network bandwidth variations caused by either cellular or
WiF1 network signal strength fluctuations, or an Internet
service provider’s cable loop utilization, or DSL (digital
subscriber line) network wire length variations, or edge
network congestion (also known as last mile congestion), or
the fact that mobile proxies may compress data sent to the
client computing devices, or the like). The disaster recovery
technique embodiments also automatically adapt to variable
data center placements and transparently benefit cloud appli-
cations as new data centers are added to the cloud.

10

15

20

25

30

35

40

45

50

55

60

65

6

As described heretofore, an ever-growing number of users
in an mncreasing number of geographic regions routinely use
an ever-growing number of web applications 1n their every-
day lives. This situation presents the data centers that host
web applications with scalability challenges due to real
world limitations on the capacity (e.g., storage size, com-
puting power, network bandwidth, and power consumption)
of the data centers. The disaster recovery technique embodi-
ments described herein are further advantageous in that they
provide usage scalability for mteractive cloud applications
(e.g., the disaster recovery technique embodiments ensure
the availability of a given interactive cloud application even
i a large number of users 1s using the application at the same
time). The disaster recovery technique embodiments
described herein also allow interactive sessions that take
place over a network between 1nteractive cloud applications
and client computing devices to be served by nearby data
centers. In other words, the disaster recovery technique
embodiments ensure that the data center that 1s hosting a
given interactive cloud application and currently serving a
given 1nteractive session between the application and a
given client computing device will be close to the client
computing device regardless of which geographic region the
client computing device 1s 1. This close proximity of the
data center and client computing device reduces client
latency and user response times.

It will be appreciated that a user of a given interactive
cloud application 1s particularly sensitive to the performance
of the application during the interactive phases of a session
with the application. By way of example but not limitation,
a user ol an ecommerce website may want fast response time
when browsing for products on the website, but may accept
slower response times during the final stage of making a
product purchase mvolving credit card verification. Once a
user starts using the application (e.g., once the user enters a
search request for a desired product name on an ecommerce
website, or enters desired departure and destination cities
and desired dates for a tlight search on a travel website, or
invites a iriend to an online chat session, or the like), the
disaster recovery technique embodiments described herein
assume that an interactive session with the application has
begun. Data that 1s relevant to the interactive session can be
routinely generated by both the user and the application as
the session progresses. By way of example but not limita-
tion, once the tlight search on the travel website has been
completed, the website may have generated data about
which available thghts operate between the desired depar-
ture and destination cities on the desired dates. The user may
have also entered filters for the flight search (e.g., the user
may have requested to see just available tlights that depart
after 5:00 PM and have at most one stop, among other types
of filters). At this point in the interactive session the session
state data would include both the data that was entered by
the user (e.g., the desired departure and destination cities,
the desired dates, and the filters) and the data that was
generated by the website 1n response to this user-entered
data (e.g., which available flights operate between the
desired departure and destination cities on the desired dates
and comply with the filters).

The disaster recovery technique embodiments described
herein ensure that the most recent session state data remains
available to a given interactive cloud application even 1f the
data center that i1s hosting the application and currently
serving an interactive session over a network between the
application and one or more client computing devices goes
offline for any reason and another data center that 1s also
hosting the application takes over serving the session. In

US 10,594,784 B2

7

other words, 1n the just-described example where the user 1s
performing the flight search on the travel website, 11 the data
center that 1s hosting the application and currently serving
the interactive session with the user goes ofiline, the disaster
recovery technique embodiments ensure that the other data
center that takes over serving the session has access to the
most recent session state data. Accordingly, the user will not
have to re-enter any of data that they previously entered, and
the other data center will not have to re-compute any of the
data that was previously computed 1n response to the user-
entered data. If the user then enters another filter that
requests to see just the available flights that operate through
a particular connecting airport, this other filter will be routed
to the other data center, which will use the most recent
session state data to generate new data for the user indicating
which of the previously selected and filtered tlights comply
with this other filter.

1.1 Architectural Framework

FI1G. 1 illustrates an exemplary embodiment, 1n simplified
form, of an architectural framework for implementing the
disaster recovery techmque embodiments described herein.
As exemplified 1n FIG. 1, the architectural framework 100
includes one or more client computing devices 102/116, a
network 108, and the cloud 138. As 1s appreciated in the art
of cloud computing, the cloud 138 generally includes a
plurality of data centers (e.g., 104/106/118) that can be
located 1n different geographic regions. The network 108
allows the client computing devices 102/116 to communi-
cate with and exchange information with the data centers
104/106/118, and also allows the data centers to communi-
cate with and exchange information with each other. It will
be appreciated that the network 108 can employ a wide
variety of local and wide area networking technologies. By
way of example but not limitation, 1n an exemplary embodi-
ment of the disaster recovery technique the network 108 1s
the Internet. Each of the client computing devices 102/116
can be any type of computing device. By way of example but
not limitation, each of the client computing devices 102/116
can be either a mobile computing device (such as a smart-
phone, or a tablet computer, or a personal digital assistant,
or the like) or a non-mobile computing device (such as a
desktop personal computer (PC), or a laptop computer, or
the like).

As described heretofore and referring again to FIG. 1,
users (not shown) can use the client computing devices
102/116 to establish an interactive session 112 with a desired
interactive cloud application 114/132 (hereafter sometimes
simply referred to as a cloud application, or sometimes even
more simply referred to as an application) that can be hosted
on the data centers 104/106/118. More particularly, when a
grven user who 1s using a given client computing device 102
wants to use a desired cloud application 114/132, various
things happen including, but not limited to, the following.
An application client 110 that 1s associated with the appli-
cation 114/132 1s run on the client computing device 102.
One of the data centers 104 that 1s hosting the application
114 1s selected to serve an interactive session 112 between
the application and the application client 110. As exempli-
fied 1n FIG. 1, the data center that 1s currently selected to
serve the interactive session 112 1s herein referred to as the
current data center 104.

Referring again to FIG. 1, one or more other data centers
106/118 that host a copy of the application 132 are selected
to serve the interactive session 112 in the event that the
current data center 104 becomes unable to do so for what-
ever reason. It will be appreciated that the current data center
104 can become unable to continue serving the interactive

10

15

20

25

30

35

40

45

50

55

60

65

8

session 112 for various reasons including, but not limited to,
the following. The current data center 104 can go ofiline due
to either a failure within the current data center or a failure
in the network 108, or the current data can become over-
loaded. As exemplified 1n FIG. 1, the other data centers that
are selected to serve the interactive session 112 in the event
that the current data center 104 becomes unable to do so are
herein referred to as backup data centers 106/118. The
disaster recovery technique embodiments described herein
assume that the copy of the application 132 that 1s hosted on
the backup data centers 106/118 can provide the same
functionality as the application 114 that 1s hosted on the
current data center 104.

As 1s appreciated 1n the art of cloud computing and
referring again to FIG. 1, each of the data centers 104/106/
118 1n the architectural framework 100 can include a plu-
rality of server computing devices (not shown) which com-
municate over an internal network (not shown) in the data
center. Generally speaking, large data centers include a large
number of server computing devices, and small data centers
include a small number of server computing devices. The
disaster recovery technique embodiments described herein
can be used in various framework 100 configurations rang-
ing from a configuration that includes a small number of
large data centers to a configuration that includes a large
number of small data centers. In an exemplary embodiment
of the disaster recovery technique the application 114 1s run
on one of the server computing devices 1n the current data
center 104. In other words, the interactive session 112 that
1s taking place over the network 108 between the application
114 and the application client 110 1s served by one of the
server computing devices 1n the current data center 104. The
server computing device in the current data center 104 that
runs the application 114 and serves the interactive session
112 1s hereafter simply referred to as an application server.

As 1s also appreciated in the art of cloud computing and
referring again to FIG. 1, the selection of which one of the
data centers 104/106/118 that hosts the application 114/132
will be the current data center 104, and which one or more
ol these data centers will be backup data centers 106/118,
can be made dynamically (e.g., on-the-fly) using various
conventional methods. By way of example but not limita-
tion, this selection can be made by either a network of edge
nodes (not shown) that 1s deployed for the application
114/132, or a content delivery network (also known as a
content distribution network or CDN for short) (not shown),
or by the application client 110 1tself (as 1s the case when
using a round robin Domain Name System). Regardless of
the specific method that 1s used to select the current data
center 104 and the backup data center(s) 106/118, the
disaster recovery technique embodiments described herein
assume that these selections have already been made. Once
the current data center 104 and the backup data center(s)
106/118 have been selected, an interactive session 112 can
be established over the network 108 between the application
client 110 and the application 114 that 1s running in the
current data center. The disaster recovery technique embodi-
ments assume that this pre-selection of the current data
center 104 and the backup data center(s) 106/118 1s known
for each interactive session 112.

Referring again to FIG. 1, if the current data center 104
goes oflline at a time when there are a plurality of backup
data centers 106/118 in operation, the determination of
which of the backup data centers will be selected to become
the new current data center for each existing and new
interactive session 112 can be made 1n various ways. By way
of example but not limitation, 1n one embodiment of the

US 10,594,784 B2

9

disaster recovery techmque described herein this selection
can be made based on static provisioning decisions (e.g., 1f
two backup data centers 106 and 118 are currently in
operation, one of these backup data centers 106 can take
over serving one half of the existing and new interactive
sessions 112, and the other of these backup data centers 118
can take over serving the other half of the existing and new
interactive sessions). In another embodiment of the disaster
recovery technique this selection can be made based on the
current load conditions 1n each of the backup data centers
106/118 when the interactive session 112 is first established.

Referring again to FIG. 1, it 1s noted that during the
interactive session 112, application-related messages are
exchanged over the network 108 just between the applica-
tion client 110 that 1s running on the client computing device
102 and the application 114 that 1s running in the current
data center 104. In other words, no application-related
messages are exchanged between the current data center 104
and the backup data centers 106/118. As will be appreciated
from the more detailed description that follows and as
exemplified 1n FIG. 1, 1n addition to the application-related
messages, the various additional program modules that are
described 1n more detail hereafter can exchange various
other types of information over the network 108 between the
client computing devices 102/116 and the current data center
104, and between the current data center and the backup data
centers 106/118. These particular information exchanges are
hereafter simply referred to as disaster recovery information
exchanges.

It will be appreciated that the just-described disaster
recovery information exchanges can be implemented in
vartous ways. By way of example but not limitation, in
instances where a given disaster recovery information
exchange 1s to take place between a given client computing
device (e.g., 102) and the current data center 104, the
disaster recovery information exchange can be piggybacked
on (e.g., included within) a given application-related mes-
sage that 1s to be exchanged over the network 108 between
the client computing device and the current data center. In
instances where a given disaster recovery information
exchange 1s to take place between the current data center 104
and a given backup data center (e.g., 106), the disaster
recovery mformation exchange can be implemented by the
additional program modules transmitting their own mes-
sages over the network 108 which are independent of the
application-related messages. It 1s also possible for disaster
recovery information exchanges between a given client
computing device (e.g., 102) and the current data center 104
to be mmplemented by the additional program modules
transmitting their own messages over the network 108 which
are 1ndependent of the application-related messages.

Referring again to FIG. 1, 1n addition to the application
client 110, various additional program modules can be run
on each of the client computing devices 102/116. As exem-
plified 1n FIG. 1, these additional program modules include,
but are not limited to, a client state store module 120, a
fallure detector module 122, and a client resource probe
module 124. Exemplary functions of each of these addi-
tional program modules 120/122/124 are described in more
detail hereafter. As will be appreciated from the more
detailed description of the different session state data repli-
cation options that also follows, some of these options
necessitate the use of all of the additional program modules
120/122/124, and others of these options necessitate the use
ol just a subset of the additional program modules. Hence,
some of the client computing devices 102/116 may be
running all of the additional program modules 120/122/124

10

15

20

25

30

35

40

45

50

55

60

65

10

while other client computing devices may be runmng just a
subset of the additional program modules. The particular
session state data replication option that 1s currently selected
and being implemented for a given client computing device
(e.g., 102) determines which of the additional program
modules 120/122/124 are running on the client computing
device at a given point 1n time.

Referring again to FIG. 1, the client state store module
120 stores session state data for the interactive session 112
on the client computing device 102 for the session state data
replication options that involve storing the session state data
on the client computing device. In other words, the client
state store module mputs a data object (not shown) that
includes the most recent session state data and stores 1t on
the client computing device 102. The client state store
module can also retrieve and output this stored data object
whenever the application client 110 requests 1t. The client
state store module thus ensures that the most recent session
state data remains available to the application client as long
as the client computing device 1s available (e.g., remains
functional).

Referring again to FIG. 1, the client state store module
120 can be mmplemented 1n various ways. By way of
example but not limitation, 1n one embodiment of the
disaster recovery technique described herein the client state
store module can use the cookie mechanism that 1s offered
by conventional web browsers to store data on the client
computing device 102. In another embodiment of the disas-
ter recovery technique the client state store module can use
a JavaScript program that stores the data object on the client
computing device 1n either volatile memory or various types
of non-volatile memory (e.g., persistent storage) that may be
available on the client computing device. Examples of such
non-volatile memory include, but are not limited to mag-
netic disk storage and flash memory. It will be appreciated
that storing the most recent session state data in volatile
memory on the client computing device 1s not problematic
since, as described heretofore, the session state data persists
just for the life of the interactive session, and can be
discarded once the application client 110 has left the inter-
active session. In yet another embodiment of the disaster
recovery technique the client state store module can use the
conventional web storage APIs that are supported by today’s
web browser applications to write the most recent session
state data to secondary storage such as a blob storage
clement in the cloud 138. This particular embodiment 1s
advantageous 1n that 1t minimizes memory overhead on the
client computing device.

Referring again to FIG. 1 and as will be described in more
detail hereafter, the failure detector module 122 operates
when the session state data for the interactive session 112 1s
being replicated using a fourth one of the different session
state data replication options. Generally speaking, the failure
detector module operates 1n two phases, namely a failure
detection phase and a subsequent recovery phase. As will be
appreciated from the more detailed description that follows,
the features of the failure detector module are advantageous
in that they minimize the time 1t takes to recover from the
current data center 104 going oflline. The disaster recovery
technique embodiments described herein assume a conven-
tional fail-stop failure model for the various data centers
104/106/118 1n the cloud 138. As 1s appreciated in the art of
distributed computing, due to the well-known Impossibility
of Distributed Consensus with One Faulty Process (also
known as the “FLP result” and the “FLP impossibility
prootl™), a distributed failure detector has to choose between
completeness (e.g., every failure 1s eventually detected) and

US 10,594,784 B2

11

accuracy (e.g., false positives). The disaster recovery tech-
nique embodiments described herein provide a failure detec-
tion solution that 1s fast and ensures completeness, but does
not necessarily ensure accuracy. It 1s noted that alternate
embodiments of the disaster recovery technique are possible
that are more complex but can ensure both completeness and
accuracy.

During the failure detection phase the failure detector
module 122 detects when the current data center 104 that 1s
serving the interactive session 112 goes oflline and thus
becomes unable to continue serving the session. The failure
detector module can be implemented 1n various ways. By
way of example but not limitation, 1n one embodiment of the
disaster recovery technique described herein the failure
detector module can use a timer to measure the time that has
clapsed since the application client 110 last submitted a
client request message over the network 108 to the appli-
cation 114. If the application client does not receive an
application response to the client request message within a
prescribed period of time, then the failure detector module
can assume that the current data center has failed and gone
oflline (although it will be appreciated that the actual failure
that resulted 1n the current data center’s 1nability to respond
could be somewhere 1n the network or elsewhere). In
another embodiment of the disaster recovery technique the
fallure detector module can periodically transmit a test
message over the network to the current data center and
receive a test response message therefrom that indicates the
current availability thereot (e.g., this test response message
may indicate that the current data center 1s either fully
available, or 1s currently getting overloaded and hence may
not be available in the near future, or 1s currently operating
from battery backup power and hence may fail 1n the near
tuture, among other things). In yet another embodiment of
the disaster recovery technique, whenever the failure detec-
tor module detects a failure of the current data center that
results 1n 1t being currently unable to serve the interactive
session, the failure detector module can periodically test the
availability of the network at the client computing device
102 using a mechanism that 1s independent of the current
data center, and the failure detector module can use this
network availability information to enhance its knowledge
about why the current data center 1s currently unable to serve
the 1nteractive session.

Referring again to FI1G. 1, once the failure detection phase
1s complete, the recovery phase 1s started by the application
client 110 transmitting a session resume request message
over the network 108 to a backup data center (e.g., 106) that
has been selected to take over serving the mteractive session
112, where this message includes the most recent session
state data for the interactive session that i1s stored on the
client computing device 102. When the selected backup data
center recerves this session resume request message from the
application client, the selected backup data center will
extract the most recent session state data from the message
and provide 1t to the copy of the application 132 so that the
interactive session 112 can be resumed.

It will be appreciated that after the current data center
goes oflline, the application 1s paused until the most recent
session state data has been recovered and the interactive
session has been resumed at the selected backup data center.
This pausing of the application can make the user think that
the application has frozen. In order to minimize the user’s
frustration and prevent them from thinking that the appli-
cation has frozen, after the failure detector module detects
that the current data center has gone ofiline the failure
detector module can optionally inform the application client

10

15

20

25

30

35

40

45

50

55

60

65

12

that the current data center has gone offline, and the appli-
cation client can optionally display a message to the user
telling them about this and that a wait 1s expected until the
interactive session 1s resumed. Once the recovery phase has
been successiully completed and the interactive session has
been resumed at a backup data center, the application client
can optionally display another message to the user telling
them that the application 1s once again available for use.

Generally speaking and referring again to FIG. 1, the
client resource probe module 124 operates cooperatively
with a current server resource probe module 130 that 1s
running on the current data center 104 to periodically
measure relevant network performance conditions and
resource availability conditions at the client computing
device 102. A decision engine module 126 that 1s also
running on the current data center 104 can use these mea-
sured conditions, along with other measured conditions
described herein, to select an appropriate session state data
replication option. More particularly and by way of example
but not limitation, 1n one embodiment of the disaster recov-
ery technique described herein the client resource probe
module 124 can receive server probe messages that are
periodically sent to the client resource probe module by the
current server resource probe module 130, and can 1mme-
diately respond to each of these messages. The current
server resource probe module 130 can measure the current
network latency associated with communicating with the
client computing device 102 (e.g., the current network round
trip time for the current data center 104 to reach the client
computing device) simply by measuring the time between
when the server resource probe module transmits each
server probe message over the network 108 to the client
resource probe module 124, and when the server resource
probe module receives a response to the server probe
message from the client resource probe module. This mea-
surement provides an estimate of the current network
latency at zero payload. It will be appreciated that since each
server probe message has a very tiny payload, the network
108 overhead associated with the server probe messages and
their associated responses 1s negligible.

Referring again to FIG. 1, 1n another embodiment of the
disaster recovery technmique described herein the client
resource probe module 124 can periodically measure the
current network latency associated with communicating
with the current data center 104 and transmit this network
latency measurement to the current data center. The client
resource probe module can also periodically measure the
current network bandwidth that 1s available to the client
computing device 102 and transmit this network bandwidth
measurement to the current data center. The client resource
probe module can also periodically measure the current
availability of one or more resources 1n the client computing
device (including, but not limited to, its current battery
availability (e.g., percent utilization), 1ts current processor
availability, and its current memory availability) and trans-
mit these resource availability measurements to the current
data center.

Referring again to FIG. 1, the client resource probe
module 124 can be mmplemented in various ways using
various mechanisms that are available on the client com-
puting device 102. By way of example but not limitation, in
one embodiment of the disaster recovery technique
described herein the client resource probe module can
periodically measure the current network latency associated
with communicating with the current data center 104, and
the current network bandwidth that 1s available to the client
computing device, simply by measuring the time between

US 10,594,784 B2

13

when the application client 110 transmits each client request
message over the network 108 to the application 114, and
when the application client receives an application response
to the client request message from the application. In another
embodiment of the disaster recovery technique the client
resource probe module can periodically transmit a client
probe message over the network to the current data center,
and then use a received probe response message from the
current data center to determine the current network latency
associated with communicating with the current data center,
and the current network bandwidth that 1s available to the
client computing device. In yet another embodiment of the
disaster recovery technique the client resource probe module
can use one or more APIs that may exist in the operating
system of the client computing device to determine the
current availability of the just-described resources in the
client computing device. It will be appreciated that there
may be times when 1t may not be possible to measure certain
resources in the client computing device (e.g., when the
application client 1s a webpage that 1s running in a web
browser, the application client may not be allowed to make
certain resource measurements).

Referring again to FIG. 1, 1n addition to the application
114, various additional program modules can be run in the
current data center 104. As exemplified 1n FIG. 1, these
additional program modules include, but are not limited to,
a decision engine module 126, a current state store module
128, and a current server resource probe module 130.
Exemplary functions of each of these additional program
modules 126/128/130 are described 1n more detail hereafter.
In an exemplary embodiment of the disaster recovery tech-
nique described herein, the decision engine and current state
store modules 126 and 128 can be run either on the appli-
cation server (not shown), or on another server computing
device 1 the current data center 104. The current server
resource probe module 130 is generally run on the applica-
tion server.

Generally speaking and referring again to FIG. 1, the
current server resource probe module 130 operates coopera-
tively with both the client resource probe module 124 and a
backup server resource probe module 134 that 1s running on
cach of the backup data centers 106/118 to periodically
measure relevant network performance conditions and
resource availability conditions at the application server in
the current data center 104. The current server resource
probe module 130 transmits these measurements to the
decision engine module 126. The decision engine module
126 can use these measured conditions, along with other
measured conditions described herein, to select an appro-
priate session state data replication option. More particularly
and by way of example but not limitation, the current server
resource probe module 130 can periodically measure the
current network latency associated with communicating
with the client computing device 102, and the current
network bandwidth that 1s available to the client computing,
device. In an exemplary embodiment of the disaster recov-
ery technique described herein these current network latency
and current network bandwidth measurements can be made
by the current server resource probe module 130 periodi-
cally transmitting a server probe message over the network
108 to the client computing device 102, and then using a
received probe response message from the client computing,
device to determine the current network latency associated
with communicating with the client computing device, and
the current network bandwidth that 1s available to the client
computing device. The current server resource probe mod-
ule 130 can also periodically measure the current network

10

15

20

25

30

35

40

45

50

55

60

65

14

latency associated with communicating with each of the
backup data centers 106/118, and the current network band-
width that 1s available to each of the backup data centers. In
an exemplary embodiment of the disaster recovery tech-
nique these current network latency and current network
bandwidth measurements can be made by the current server
resource probe module 130 periodically transmitting a
server probe message over the network 108 to each of the
backup data centers 106/118, and then using a recerved
probe response message from each of the backup data
centers to determine the current network latency associated
with communicating with each of the backup data centers,
and the current network bandwidth that 1s available to each
of the backup data centers.

Referring again to FIG. 1, the current server resource
probe module 130 can also periodically measure the current
availability of one or more resources in the application
server including, but not limited to, 1ts current processor
availability and its current memory availability. It will be
appreciated that the current server resource probe module
can make these resource availability measurements 1n vari-
ous ways using various mechanisms that are available on the
application server. By way of example but not limitation, the
current server resource probe module can use one or more
APIs that may exist 1 the operating system of the applica-
tion server to determine the current availability of the
just-described resources 1n the application server. The cur-
rent server resource probe module can also include func-
tionality that the client resource probe module 124 can use
to measure the current network bandwidth that 1s available
to the client computing device 102. By way of example but
not limitation, upon recerving the aforementioned client
probe message over the network 108 from the client
resource probe module, the current server resource probe
module can respond to the client probe message by trans-
mitting a data payload over the network to the client
resource probe module. The client resource probe module
can measure the time 1t take to receive the data payload, and
can then use this time and the size of the payload to calculate
the current network bandwidth that 1s available to the client
computing device.

Referring again to FIG. 1, the decision engine module 126
periodically receives information over the network 108 from
the client resource probe module 124, where this informa-
tion includes the most recent network performance and
resource availability measurements the client resource probe
module has made at the client computing device 102. The
decision engine module 126 also periodically recerves infor-
mation from the current server resource probe module 130,
where this information includes the most recent performance
and resource availability measurements the current server
resource probe module has made at the application server in
the current data center 104. The decision engine module 126
also receives the atorementioned various performance con-
straints and resource cost constraints, and a prioritization
thereof, that can be specified by the application 114. Exem-
plary performance constraints that can be specified by the
application include, but are not limited to, either a maximum
allowable latency cost to the client computing device 102
associated with replicating the session state data, or a
minimum allowable availability value for the application
114/132, or both this maximum allowable latency cost and
this mimimum allowable availability value. Exemplary
resource costs and related constraints that can be specified
by the application are described in more detail hereafter. The
decision engine module 126 then selects an approprate
option for replicating the session state data for the interac-

US 10,594,784 B2

15

tive session 112 with the application 114 that increases the
performance of the iteractive session and/or decreases the
resource costs for the interactive session. As will be
described 1n more detail hereafter, this selection 1s made
from a set of different session state data replication options
cach of which has different performance and resource cost
tradeolls, and can be based on the just-described constraints
and their prionities. In other words, the decision engine
module 126 determines how the session state data for the
application 114 will be stored and replicated 1n the frame-
work 100. The decision engine module 126 can use various
methods to make this selection, examples of which are
described in more detail hereatfter.

Referring again to FIG. 1, 1n an exemplary embodiment of
the disaster recovery technique described herein, after an
appropriate session state data replication option has been
selected by the decision engine module 126 and imple-
mented, the decision engine module can monitor the nfor-
mation 1t recerves from the client and current server resource
probe modules 124 and 130 on an ongoing basis. The
decision engine module 126 can also monitor the various
performance constraints and resource cost constraints, and
the prioritization thereot, that can be specified by the appli-
cation 114 on an ongoing basis. Whenever the decision
engine module 126 detects changes 1n this received infor-
mation, or in these constraints or their priorities, the decision
engine module can again select an appropriate one of the
session state data replication options that increases the
performance of the interactive session 112 with the appli-
cation 114 and/or decreases the resource costs for the
interactive session, where this newly selected option can be
cither the same as or different than the previously selected
option.

Referring again to FIG. 1, the current state store module
128 stores the session state data for the interactive session
112 1n the current data center 104 for the session state data
replication options that involve storing the session state data
in the current data center. In other words, the current state
store module 128 mnputs a data object (not shown) that
includes the most recent session state data and stores 1t 1n the
current data center 104. The current state store module 128
can also retrieve and output this stored data object whenever
the application 114 requests it. The current state store
module 128 thus ensures that the most recent session state
data remains available while the interactive session 112 is
active and as long as the current data center 104 1s available.
The current state store module 128 can store the data object
in the current data center 104 1n various ways. By way of
example but not limitation, 1 one embodiment of the
disaster recovery technique described herein the current
state store module 128 can store the data object in either
volatile memory or various types of non-volatile memory
(e.g., magnetic disk storage, or the like) that may be avail-
able 1n the current data center 104. The current state store
module 128 can also store the data object redundantly 1n the
current data center 104 to protect against server failures
there-within.

As exemplified in FIG. 1, each of the backup data centers
106/118 hosts a copy of the application 132. In the event that
the current data center 104 becomes unable to serve the
interactive session 112 for whatever reason, one of the
backup data centers (e.g., 106) will be automatically selected
to take-over serving the interactive session. When this
take-over occurs, 1n an exemplary embodiment of the disas-
ter recovery technique described herein the copy of the
application 132 will be run on one of the server computing
devices in the selected backup data center 106 and the

10

15

20

25

30

35

40

45

50

55

60

65

16

interactive session 112 will resume over the network 108
between this copy of the application and the application
client 110. It 1s noted that until such a take-over occurs, the
copy of the application 132 remains unused. The server
computing device in the selected backup data center 106 that
runs the copy of the application 132 and takes over serving
the interactive session 112 1s hereafter simply referred to as
a backup application server.

Referring again to FIG. 1, 1n addition to the copy of the
application 132, various additional program modules can be
run on each of the backup data centers 106/118. As exem-
plified 1n FIG. 1, these additional program modules include,
but not limited to, the aforementioned backup server
resource probe module 134 and a backup state store module
136. Exemplary functions of each of these additional pro-
gram modules 134/136 are described 1n more detail hereat-
ter. In an exemplary embodiment of the disaster recovery
technique described herein, the backup state store module
136 1s run either on the backup application server (not
shown), or on another server computing device in the
selected backup data center 106. The backup server resource
probe module 134 is generally run on the backup application
Server.

Referring again to FIG. 1, the backup state store module
136 receives the most recent session state data for the
interactive session 112 from the current data center 104 and
stores this received session state data in the backup data
center 106 for the session state data replication options that
involve storing the session state data in the backup data
center. In other words, the backup state store module 136
inputs a data object (not shown) that includes the received
session state data and stores 1t 1n the backup data center 106.
The backup state store module 136 can also retrieve and
output this stored data object whenever the copy of the
application 132 requests it. The backup state store module
136 thus ensures that the session state data remains available
while the interactive session 112 1s active and as long as the
backup data center 106 1s available. The backup state store
module 136 can store the data object in the backup data
center 106 1n various ways. By way of example but not
limitation, in one embodiment of the disaster recovery
technique described herein the backup state store module
136 can store the data object 1n either volatile memory or
various types of non-volatile memory that may be available
in the backup data center 106. In another embodiment of the
disaster recovery technique the backup state store module
136 can write the data object to secondary storage such as a
blob storage element which can be located either within the
backup data center 106 or elsewhere 1n the cloud 138. This
particular embodiment 1s advantageous in that 1t enhanced
scalability and minimizes memory overhead. The backup
state store module 136 can also store the data object redun-
dantly in the backup data center 106 to protect against server
failures there-within. It will be appreciated that the backup
state store module 136 can store session state data for a
plurality of interactive sessions that are served by the current
data center 104.

Generally speaking and referring again to FIG. 1, the
backup server resource probe module 134 1mplements
remote endpoint functionality that operates cooperatively
with the current server resource probe module 130 and
supports 1ts aforementioned periodic measurement of the
current network latency associated with communicating
with the backup data center 106, and the current network
bandwidth that 1s available to the backup data center 106.
More particularly and by way of example but not limitation,
the backup server resource probe module 134 can receive

US 10,594,784 B2

17

the server probe messages that are periodically sent by the
current server resource probe module 130, and can 1imme-
diately respond to each of these messages. Upon the current
server resource probe module 130 receiving a probe
response message from the backup server resource probe
module 134, the current server resource probe module can
determine the current network latency associated with com-
municating with the backup data center 106 by measuring
the time between when each of the server probe messages 1s
sent and when the corresponding probe response message 1s
received (e.g., by measuring the current round trip network
delay between the current data center 104 and the backup
data center 106).

Given the foregoing and referring again to FIG. 1, it will
be appreciated that the replication of session state data that
1s provided for by the disaster recovery technique embodi-
ments described herein ensures that the session state data for
the application 114/132 remains available to the application
client 110 (e.g., none of the session state data 1s lost) 1n the
cvent that the current data center 104 goes ofiline for
whatever reason, and thus becomes unable to continue
serving the interactive session 112. As described heretofore,
the disaster recovery technique embodiments replicate and
thus protect the entire session state, including both user-
entered data and server-computed data. Accordingly, the
disaster recovery technique embodiments allow the entire
state of the interactive session that 1s taking place between
the application client and the application to be maintained,
even 11 the current data center goes oflline and one of the
backup data centers 106/118 takes over serving the interac-
tive session. As such, if the current data center were to go
offline for whatever reason, none of the session state data
would have to be re-entered by the user or re-computed by
the backup data centers.

Although the disaster recovery technique embodiments
described herein are discussed 1n the context of an interac-
tive session being established between a given cloud appli-
cation and a single client computing device that 1s being
used by a single user, 1t 1s noted that the disaster recovery
technique embodiments also support interactive sessions
with cloud applications that include a plurality of users and
a plurality of client computing devices which are jointly
participating in the interactive session, and which may be
located 1n different geographic regions. In other words, the
disaster recovery technique embodiments support a situation
where just a single application client 1s participating in an
interactive session. The disaster recovery technique embodi-
ments also support a situation where a plurality of applica-
tion clients running on different client computing devices 1s
collaboratively participating in a common interactive ses-
sion at the same time (examples of such a situation include
a plurality of geographically distributed users collabora-
tively playing a multi-player online game, or collaboratively
participating 1n an online video teleconference, or collab-
oratively editing an online document, or collaboratively
using a given enterprise application, among others). As will
be appreciated from the more detailed description that
follows, 1n such a multi-client interactive session the disaster
recovery technique embodiments can select different session
state data replication options for different ones of the appli-
cation clients that are participating 1n the session depending
on the individual network performance conditions and
resource availability conditions at the client computing
devices. Additionally, 1n such a multi-client interactive ses-
s1on any one or more of the application clients can leave at
any time during the session, and the disaster recovery

10

15

20

25

30

35

40

45

50

55

60

65

18

technique embodiments will ensure that the session contin-
ues correctly for the remaining application clients.

Additionally, although the disaster recovery technique
embodiments are discussed herein in the context of a given
cloud application serving a single interactive session, 1t 1s
noted that the disaster recovery technique embodiments also
support a scenario where the application 1s serving a plu-
rality of interactive sessions at the same time. In such a
scenario the disaster recovery technique embodiments are
implemented independently for each of the interactive ses-
sions that 1s being served by the application.

1.2 Generic Libraries

Generally speaking, this section describes various
embodiments of the disaster recovery technique described
herein where the aforementioned additional program mod-
ules that can be run on the client computing devices, the
current data center, and the backup data centers can be
implemented as generic libraries (not shown). The disaster
recovery techmque embodiments described in this section
are herealter simply referred to as generic libraries embodi-
ments of the disaster recovery technique described herein.
The generic libraries embodiments of the disaster recovery
technique automatically resume an active mteractive session
with a cloud application at a backup data center and recover
the most recent session state data 1n the event that the current
data center goes oflline for whatever reason. The generic
libraries embodiments support both request-response based
Hyper Text Transter Protocol (HTTP) cloud applications
and continuous interaction based web-sockets cloud appli-
cations. The generic libraries embodiments override the
existing session state APIs in the cloud application and the
existing communication APIs 1n 1ts application client.

In an exemplary implementation of the generic libraries
embodiments of the disaster recovery technique described
herein, each of the generic libraries sits just below the
application layer in the network stack. Accordingly, inter-
actions with the application that would normally occur
through HT'TP or web-sockets will occur through the generic
libraries. In other words, the generic libraries intercept the
HTTP and web-socket methods that applications use to
communicate over the network, and add additional infor-
mation (that 1s used to support the disaster recovery tech-
nique embodiments described herein) to application mes-
sages belore they are transmitted over the network.
Examples of such additional information include backup
data center addresses and session state timestamps, among
other types of information. In an exemplary implementation
of the generic libraries embodiments this additional infor-
mation 1s added to the application messages using JSON
(JavaScript Object Notation) encoding. When the messages
are recerved on the other end of the network, the additional
information 1s removed by the generic libraries before the
messages are passed to the application.

As will be appreciated from the more detailed description
that follows, the generic libraries embodiments of the disas-
ter recovery technique are advantageous for various reasons
including, but not limited to, the following. The generic
libraries embodiments allow the additional program mod-
ules to be easily integrated with existing cloud applications
without having to make significant code modifications
thereto. The generic libraries embodiments also allow the
cloud application developers to benefit from the function-
ality of the additional program modules without having to
understand the details of their underlying implementation.
The generic libraries embodiments also allow each of the
additional program modules to operate 1 an application
independent manner such that a given additional program

US 10,594,784 B2

19

module can be shared by diflerent application clients or
different cloud applications. The generic libraries embodi-
ments thus eliminate the need for each different application
that 1s hosted on the current data center to separately
implement the decision engine module, the current state
store module, and the current server resource probe module.
The generic libraries embodiments also eliminate the need
for each different copy of the application that 1s hosted on
cach backup data center to separately implement the backup
server resource probe module and the backup state store
module. The generic libraries embodiments also eliminate
the need for each different application client that 1s run on
cach client computing device to separately implement the
client state store module, the failure detector module, and
the client resource probe module.

More particularly and referring again to FIG. 1, the
decision engine module 126 can be implemented as a
generic library that 1s run on the current data center 104 and
1s shared by all of the diflerent cloud applications (e.g., 114)
that are hosted on the current data center. This particular
generic library 1s hereafter simply referred to as a replication
option selection library. All of the applications that are
hosted on the current data center can input their performance
constraints and resource cost constraints, and their prioriti-
zations thereol, to the replication option selection library.
For each of the applications that 1s hosted on the current data
center, the replication option selection library can then use
the application’s constraints, and 1t’s priorities thereof, to
independently select the optimal session state data replica-
tion option for each of the interactive sessions (e.g., 112) that
either 1s currently taking place, or might take place in the
future, with the application. It will be appreciated that
implementing the decision engine module as a generic
library 1s particularly well-suited to cloud computing sce-
narios, virtualized server scenarios, and other scenarios
where a plurality of applications are being hosted on the
same data center. In these scenarios the current data center
can serve a large number of interactive sessions with a large
number of applications, and the replication option selection
library can be shared amongst all of the sessions and
applications.

Referring again to FIG. 1, the current state store and
current server resource probe modules 128 and 130 can be
implemented as another generic library that 1s run on the
current data center 104 and is shared by the various cloud
applications (e.g., 114) that are hosted on the current data
center. The backup state store and backup server resource
probe modules 136 and 134 can be implemented as yet
another generic library that 1s run on each of the backup data
centers 106/118 and 1s shared by the various cloud applica-
tions.

Referring again to FIG. 1, the client state store, failure
detector and client resource probe modules 120/122/124 can
be implemented as yet another generic library that each
application client 110 can include n 1ts implementation. By
way ol example but not limitation, for web-browser-based
applications that run as webpages on the client computing
devices 102/116 this library can be implemented in the form
of a JavaScript program (which 1s advantageous since
JavaScript programs are supported by most web browsers).
For other types of applications, this library can be imple-
mented 1 various platform-specific forms (e.g., on client
computing devices that run a Windows® (a registered trade-
mark of Microsolt Corporation) operating system, this
library might be implemented 1n the form of a .NET DLL
(dynamic link library). It will be appreciated that both of
these generic library implementations are advantageous in

10

15

20

25

30

35

40

45

50

55

60

65

20

that they produce a generic library that 1s portable across a
wide variety of client platforms.
1.3 Session State Data Replication Options

Referring again to FIG. 1, this section provides a more
detailed description of the different session state data repli-
cation options that can be used by the disaster recovery
technique embodiments described herein. In other words,
this section provides a more detailed description of diflerent
options for replicating the session state data for the interac-
tive session 112 that i1s taking place over the network 108
between the application 114 and the application client 110.
As stated heretofore and as will be further appreciated from
the more detailed description that follows, each of the
different session state data replication options has difierent
performance and resource cost trade-ofls. Generally speak-
ing and as will be described in more detail hereafter, TCn 1s
a cost parameter denoting a latency cost to the client
computing device that 1s associated with a given replication
option n. BCn 1s another cost parameter denoting a network
bandwidth cost to the client computing device that 1s asso-
ciated with the replication option n. BATCn i1s yet another
cost parameter denoting a battery energy drain cost to the
client computing device that 1s associated with the replica-
tion option n. BDn 1s yet another cost parameter denoting a
network bandwidth cost to the current data center that 1s
associated with the replication option n. As 1s appreciated 1n
the art of cloud computing, cloud service providers often
charge a given cloud application that they are hosting when
data that 1s associated with the application leaves the data
center that 1s hosting the application (such as when the
current data center transmits session state data to a client
computing device, or to a backup data center). SDn 15 yet
another cost parameter denoting a data storage cost to the
current data center that 1s associated with the replication
option n. CDn 1s yet another cost parameter denoting a
processing cost to the current data center that 1s associated
with the replication option n.

FIG. 2 summarizes the different session state data repli-
cation options that can be used by the disaster recovery
technique embodiments described herein and the perior-
mance and resource cost parameters (hereafter simply
referred to as cost parameters) that are associated with each
of the replication options. Each of the session state data
replication options and 1ts associated cost parameters are
described 1n more detail hereafter.

The first of the session state data replication options
exemplified 1n FIG. 2 ivolves storing the most recent
session state data for the interactive session on the client
computing device. This particular option 1s hereafter simply
referred to as replication option 1. Generally speaking and as
will now be described 1n more detail, in replication option 1
the most recent session state data for the interactive session
1s added to each application response message that the
application transmits over the network to the application
client. Upon the application client receiving a given appli-
cation response message, the application client will extract
the most recent session state data from the application
response message, and the client state store module will
store this extracted data on the client computing device as
described heretofore. The most recent session state data for
the interactive session 1s also added to each of the client
request messages that the application client transmits over
the network to the application.

In one embodiment of replication option 1 the application
will add the entire set of most recent session state data to
cach application response message that the application trans-
mits over the network to the application client. As such each

US 10,594,784 B2

21

application response message that the application client
receives Irom the application will include the entire set of
most recent session state data. The application client waill
also add the entire set of most recent session state data to
cach client request message that the application client trans-
mits over the network to the application. As such, each client
request message that the application receives from the
application client will include the entire set of most recent
session state data. Accordingly, 1n the event that the current
data center goes oflline and a given client request message
from the application client 1s diverted to the backup data
center, the copy of the application that receives the client
request message will have the entire set of most recent
session state data since it 1s mncluded 1n the client request
message.

In another embodiment of replication option 1, rather than
the entire set of most recent session state data being added
to each application response message that the application
transmits to the application client, the application will add
the entire set of most recent session state data to the first
application response message that the application 1t trans-
mits to the application client, and to every Nth application
response message thereafter that the application transmits to
the application client (N being a first prescribed number
greater than one). Stmilarly, rather than the entire set of most
recent session state data being added to each client request
message that the application client transmits to the applica-
tion, the application client will add the entire set of most
recent session state data to the first client request message
that the application client transmits to the application, and to
every Mth client request message thereaiter that the appli-
cation client transmits to the application (M being a second
prescribed number greater than one). It will be appreciated
that either N can be equal to M, or N can be greater than M,
or N can be less than M. By way of example but not
limitation, when N=M=3, the entire set of session state data
will be added to the first application response message that
the application transmits to the application client and every
third application response message thereafter. Similarly, the
entire set of session state data will be added to the first client
request message that the application client transmits to the
application and every third client request message thereafter.

In yet another embodiment of replication option 1, rather
than the entire set of most recent session state data being

added to each application response message that the appli-
cation transmits to the application client, the application will
add the entire set of most recent session state data to the first
application response message that the application transmits
to the application client, and the application will add just the
delta 1n (e.g., just the modified portions of) the session state
data to each application response message thereafter that the
application transmits to the application client (e.g., the
application will add to each application response message
after the first response message just the changes in the
session state data since 1t was last transmitted to the appli-
cation client). Similarly, rather than the entire set of most
recent session state data being added to each client request
message that the application client transmits to the applica-
tion, the application client will add the entire set of most
recent session state data to the first client request message
that the application client transmits to the application, and
the application client will add just the delta 1n the session
state data to each client request message thereafter that the
application client transmits to the application (e.g., the
application client will add to each client request message

10

15

20

25

30

35

40

45

50

55

60

65

22

after the first client request message just the changes 1n the
session state data since 1t was last transmitted to the appli-
cation).

In yet another embodiment of replication option 1, rather
than the entire set ol most recent session state data being
added to each application response message that the appli-
cation transmits to the application client, the application will
add the entire set ol most recent session state data to the first
application response message that the application transmits
to the application client, and the application will add just the
delta 1n the session state data to every Nth application
response message therealiter that the application transmuits to
the application client. Similarly, rather than the entire set of
most recent session state data being added to each client
request message that the application client transmits to the
application, the application client will add the entire set of
most recent session state data to the first client request
message that the application client transmits to the applica-
tion, and the application client will add just the delta in the
session state data to every Mth client request message
thereafter that the application client transmits to the appli-
cation. By way of example but not limitation, when N=M=3,
the entire set of session state data will be added to the first
application response message that the application transmits
to the application client, and just the delta in the session state
data will be added to every third application response
message thereafter that the application transmits to the
application client. Similarly, the entire set of session state
data will be added to the first client request message that the
application client transmits to the application, and just the
delta 1n the session state data will be added to every third
client request message thereaiter that the application client
transmits to the application.

It will be appreciated that the most recent session state
data can be added to the client request messages that the
application client transmits over the network to the appli-
cation, and the application response messages that the appli-
cation transmits over the network to the application client, 1n
various ways. By way of example but not limitation, 1n one
embodiment of the disaster recovery technique described
herein the most recent session state data can be added 1n the
form of a cookie. In another embodiment of the disaster
recovery technique the most recent session state data can be
added 1nto the body of each client request message and each
application response message. An alternate embodiment of
the disaster recovery technique 1s also possible where, rather
than adding the most recent session state data to the client
request and application response messages, the application
client can transmit hidden messages that include the most
recent session state data to the application, and the applica-
tion can transmit similar hidden messages to the application
client.

Generally speaking, replication option 1 has certain per-
formance and resource costs that 1n certain circumstances
can make 1t undesirable compared to others of the session
state data replication options exemplified in FIG. 2. More
particularly, if the session state data 1s large (e.g., in the
alforementioned example where a user 1s performing a flight
search on a travel website, the session state data may include
all of the available flights that meet the search criteria
entered by the user thus far), then including the sessions
state data 1n each request message that the application client
transmits over the network to the application will slow down
the client (and thus negatively impact the client’s perfor-
mance) since the network upload bandwidth that 1s available
to most of the client computing devices will generally be
significantly smaller than the network download bandwidth

US 10,594,784 B2

23

that 1s available thereto. Furthermore, including the session
state data 1n each client request message that the application
client transmits to the application and 1n each application
response message that the application transmits to the appli-
cation client may increase the request-response latency for
the client (and thus negatively impact the client’s perfor-
mance).

It 1s noted that the cost parameters associated with a given
session state data replication option quantily the perfor-
mance and/or resource utilization overheads associated with
implementing the replication option compared to the per-
formance and resource utilization when the replication
option 1s not implemented (e.g., when the session state data
1s not replicated). For instance, it may be that the application
already transmits all the session state data to the application
client because the client can perform local processing on the
session state data to serve some ol the user’s requests
without having to contact the application. In this case the
increase 1n request-response latency for the client would
only be due to the client transmitting the session state data
to the application. Similar considerations are used when
numerical values are assigned to the various cost parameters
described in this section.

TC1 1s a cost parameter denoting the latency cost to the
client computing device associated with 1t receiving (e.g.,
downloading) the session state data from the application,
and transmitting (e.g., uploading) the session state data to
the application, in replication option 1. In other words, TC1
denotes an increase 1n application client delay associated
with this session state data reception and transmission. BC1
1s another cost parameter denoting the network bandwidth
cost to the client computing device associated with it recerv-
ing the session state data from the application, and trans-
mitting the session state data to the application, in replica-
tion option 1. In other words, BC1 denotes the amount the
application client has to pay for this session state data
reception and transmission. BC1 may be zero when the
client computing device 1s connected to the network via a
wired connection having unlimited data. Alternatively, BC1
may be very high when the client computing device 1s
connected to the network via a conventional cellular data
connection operating in roaming mode. BATC1 1s yet
another cost parameter denoting the battery energy drain
cost to the client computing device associated with the
application client receiving the session state data from the
application, and transmitting the session state data to the
application, in replication option 1. In other words, BATC
denotes how much battery energy in the client computing
device 1s used for this session state data reception and
transmission. While BATC1 may not be very relevant when
the client computing device 1s operating from an AC (alter-
nating current) power source, BATC1 1s quite relevant when
the client computing device 1s operating from battery power
(e.g., when the client computing device 1s either a smart-
phone, or a tablet computer, or the like).

The second of the session state data replication options
exemplified 1n FIG. 2 involves synchronously storing the
most recent session state data for the interactive session in
one or more ol the backup data centers. This particular
option 1s hereafter simply referred to as replication option 2.
In replication option 2 the current data center uploads (e.g.,
transmits) the most recent session state data over the net-
work to one or more of the backup data centers whenever the
session state changes, thus ensuring that the backup data
centers are storing the most recent session state data. The
backup state store module will store this most recent session
state data 1n the one or more backup data centers as

10

15

20

25

30

35

40

45

50

55

60

65

24

described heretofore, and will then transmit a confirmation
message to the current data center indicating that the most
recent session state data has been successiully stored in the
backup data centers. By way of example but not limitation,
whenever the application receives a client request message
from the application client, the current data center will
upload the most recent session state data over the network to
one or more of the backup data centers. The application will
then wait to respond to the client request message until the
current data center receives the confirmation message from
at least one of the backup data centers. In one embodiment
of replication option 2, the current data center will upload
the entire set of most recent session state data to one or more
of the backup data centers whenever the session state
changes. In another embodiment of replication option 2, the
current data center will upload the entire set of most recent
session state data to one or more of the backup data centers
the first time the session state changes, and the current data
center will upload just the delta 1n the session state data to
the backup data centers thereafter (e.g., the current data
center will upload just the changes 1n the session state data
since 1t was last uploaded to the backup data centers).

Replication option 2 has the following performance and
resource cost trade-ofls. Since replication option 2 does not
burden the client computing device, 1t avoids any network
bandwidth cost thereon. However, replication option 2 does
increase the time that the application client has to wait to
receive application response messages from the application,
which negatively impacts the client’s performance. TC2 1s a
cost parameter denoting the latency cost to the client com-
puting device associated with the application client having
to wait to recerve application response messages ifrom the
application in replication option 2. In other words, TC2
denotes an increase 1 application client delay associated
with this having to wait. Replication option 2 also increases
the cost to the current data center for hosting the application
since the current data center has to pay for the network
bandwidth 1t uses to upload the most recent session state data
to one or more of the backup data centers. BD2 1s another
cost parameter denoting the network bandwidth cost to the
current data center associated with 1t uploading the session
state data to one or more of the backup data centers in
replication option 2. In other words, BD2 denotes the
amount the current data center has to pay for this session
state data upload. Replication option 2 also presents the
current data center with the cost of storing the session state
data 1n one or more of the backup data centers. SD2 1s yet
another cost parameter denoting the data storage cost to the
current data center associated with it storing the session state
data in one or more of the backup data centers 1n replication
option 2.

The third of the session state data replication options
exemplified 1n FIG. 2 involves storing an encoded version of
the most recent session state data for the interactive session
on the client computing device, where the encoding reduces
the data size. This particular option 1s herealter simply
referred to as replication option 3. Generally speaking, in
replication option 3 an encoded version of the most recent
session state data for the interactive session 1s added to each
application response message that the application transmits
over the network to the application client, and an encoded
version ol the most recent session state data for the inter-
active session 1s added to each of the client request messages
that the application client transmits over the network to the
application. As such each of the application response mes-
sages that the application client receirves from the applica-
tion will include an encoded version of the most recent

US 10,594,784 B2

25

session state data. Upon the application client receiving a
given application response message, the application client
will extract the encoded version of the most recent session
state data from the application response message, and the
client state store module will store this extracted data on the
client computing device as described heretofore. Similarly,
cach client request message that the application receives
from the application client will include an encoded version
of the most recent session state data. Accordingly, in the
event that the current data center goes oflline and a given
client request message from the application client 1s diverted
to the backup data center, the copy of the application that
receives the client request message will have an encoded
version of the most recent session state data since 1t 1s
included 1n the client request message. It will be appreciated
that an encoded version of the most recent session state data
can be added to the client request messages and the appli-
cation response messages 1n various ways including, but not
limited to, the aforementioned various ways that were
described in relation to replication option 1.

As will now be described in more detail, the encoded
version of the session state data that 1s transmitted over the
network and stored on the client computing device in
replication option 3 1s smaller in size than the non-encoded
version of the session state data that i1s transmitted over the
network and stored on the client computing device in
replication option 1. In fact, for certain applications the
encoded version of the session state data may be substan-
tially smaller than the non-encoded version thereof. More
particularly and by way of example but not limitation, 1n one
embodiment of the disaster recovery technique described
herein the encoded version of the most recent session state
data includes just the data that the user most recently entered
into the client computing device (hereafter simply referred
to as most recent user-entered data). In the event that the
current data center goes oflline and a given client request
message from the application client 1s diverted to a backup
data center, the copy of the application that receives the
client request message can process the most recent user-
entered data and re-create the remainder of the most recent
session state data. In another embodiment of the disaster
recovery technique the encoded version of the session state
data 1s a compressed version of all of the session state data
that 1s transmitted and stored 1n replication option 1. . This
compression and the subsequent decompression of the ses-
s10n state data can be performed using any data compression
method. By way of example but not limitation, in an
exemplary embodiment of the disaster recovery technique a
conventional delta compression method 1s used for this
compression and decompression; this particular method 1s
advantageous since, as described heretofore, the session
state can change incrementally as user interactions with the
application progress.

TC3 1s a cost parameter denoting the latency cost to the
client computing device associated with 1t receiving the
encoded session state data from the application, and trans-
mitting the encoded session state data to the application, in
replication option 3. In other words, TC3 denotes an increase
in application client delay associated with this encoded
session state data reception and transmission. BC3 1s another
cost parameter denoting the network bandwidth cost to the
client computing device associated with 1t recerving the
encoded session state data from the application, and trans-
mitting the encoded session state data to the application, in
replication option 3. In other words, BC3 denotes the
amount the application client has to pay for this encoded
session state data reception and transmission. BC3 may be

10

15

20

25

30

35

40

45

50

55

60

65

26

zero when the client computing device 1s connected to the
network via a wired connection having unlimited data.
Alternatively, BC3 may be very high when the client com-
puting device 1s connected to the network via a cellular data
connection operating in roaming mode. BATC3 1s yet
another cost parameter denoting the battery energy drain
cost to the client computing device associated with the
application client receiving the encoded session state data
from the application, and transmitting the encoded session
state data to the application, 1n replication option 3. In other
words, BATC3 denotes how much battery energy in the
client computing device 1s used for this encoded session
state data reception and transmission. While BATC3 may
not be very relevant when the client computing device 1s
operating from an AC power source, BATC3 1s quite rel-
evant when the client computing device 1s operating from
battery power.

Since replication option 3reduces the size of the session
state data that 1s transmitted over the network and stored on
the client computing device, TC3 will be less than TC1, BC3
will be less than BC1, and BATC3 will be less than BATC1.
In fact, for certain applications TC3, BC3 and BATC3 may
be substantially less than TC1, BC1 and BATC1 respec-
tively. CD3 1s yet another cost parameter denoting the
processing cost to the current data center associated with the
application decoding the encoded session state data 1in
replication option 3. It will be appreciated that the applica-
tion 1n the current data center has to decode the encoded
session state data in each client request message 1t receives
from the client (e.g., either process the user-entered data and
re-create the remainder of the most recent session state data,
or decompress the compressed session state data to produce
the most recent session state data) in order to be able to
respond to the client request message. This decoding opera-
tion will increase the processor overhead 1n the current data
center, and will also slightly increase the request-response
latency for the client.

The fourth of the session state data replication options
exemplified in FIG. 2, hereafter simply referred to as rep-
lication option 4, also involves storing the most recent
session state data for the interactive session on the client
computing device. Replication option 4 1s similar to repli-
cation option 1 1n that the most recent session state data for
the 1interactive session 1s added to each application response
message that the application transmits over the network to
the application client. Upon the application client receiving
a given application response message, the application client
will extract the most recent session state data from the
application response message, and the client state store
module will store this extracted data on the client computing
device as described heretofore. It 1s noted that the most
recent session state data can be added to the application
response messages 1n various ways including, but not lim-
ited to, the aforementioned various ways that were described
in relation to replication option 1.

Replication option 4 differs from replication option 1 1n
the following ways. In replication option 4, rather than the
most recent session state data for the interactive session
being added to each of the client request messages that the
application client transmits over the network to the appli-
cation, failure detection software on the client computing
device (e.g., the alorementioned failure detector module) 1s
responsible for detecting when the current data center that 1s
serving the interactive session has gone offline and thus has
become unable to continue serving the session. Whenever
this failure detection software detects that the current data
center has gone oflline and become unable to continue serve

US 10,594,784 B2

27

the interactive session, the application client will upload the
most recent session state data for the interactive session to
a backup data center that has been selected to take over
serving the interactive session. The most recent session state
data for the interactive session will then be added to each
application response message that the copy of the applica-
tion transmits over the network to the application client.
Upon the application client receiving a given application
response message from the copy of the application, the
application client will extract the most recent session state
data from the application response message, and the client
state store module will store this extracted data on the client
computing device as described heretofore.

TC4 1s a cost parameter denoting the latency cost to the
client computing device associated with 1t receiving the
session state data from the application, and transmitting the
session state data to a backup data center whenever the
current data center becomes unable to continue serving the
interactive session, in replication option 4. In other words,
TC4 denotes an increase 1n application client delay associ-
ated with this session state data reception and transmission.
B(C4 i1s another cost parameter denoting the network band-
width cost to the client computing device associated with it
receiving the session state data from the application, and
transmitting the session state data to a backup data center
whenever the current data center becomes unable to con-
tinue serving the interactive session, 1n replication option 4.
In other words, BC4 denotes the amount the application
client has to pay for this session state data reception and
transmission. BC4 may be zero when the client computing
device 1s connected to the network via a wired connection
having unlimited data. Alternatively, BC4 may be very high
when the client computing device 1s connected to the
network via a cellular data connection operating 1n roaming,
mode. BATC4 1s yet another cost parameter denoting the
battery energy drain cost to the client computing device
associated with the application client receiving the session
state data from the application, and the client transmitting
the session state data to a backup data center whenever the
current data center becomes unable to continue serving the
interactive session, 1n replication option 4. In other words,
BATC4 denotes how much battery energy in the client
computing device 1s used for this session state data reception
and transmission. While BATC4 may not be very relevant
when the client computing device 1s operating from an AC
power source, BATC4 1s quite relevant when the client
computing device 1s operating from battery power. Since
replication option 4 does not involve the application client
adding the session state data to each client request message
the application client transmits over the network to the

application (as 1s done 1n replication option 1.), TC4 will be
less than TC1, BC4 will be less than BC1, and BATC4 will

be less than BATCI.

The fifth of the session state data replication options
exemplified 1n FIG. 2 involves asynchronously storing the
most recent session state data for the interactive session in
one or more of the backup data centers. This particular
option 1s hereatter simply referred to as replication option 5.
In replication option 5 the current data center uploads the
most recent session state data (either the entire set thereof,
or just the delta therein, as described 1n relation to replica-
tion option 2) over the network to one or more of the backup
data centers whenever the session state changes, thus ensur-
ing that the backup data centers are storing the most recent
session state data. The backup state store module will store
this most recent session state data in the one or more backup
data centers as described heretofore, and will then transmait

10

15

20

25

30

35

40

45

50

55

60

65

28

a confirmation message to the current data center indicating
that the most recent session state data has been successtully
stored 1n the backup data centers. By way of example but not
limitation, whenever the application receives a client request
message from the application client, the current data center
will upload the most recent session state data over the
network to one or more of the backup data centers.

However, rather than the application waiting to respond to
the client request message until the current data center
receives the confirmation message from at least one of the
backup data centers (as 1s done 1n replication option 2), in
replication option 3 the application will respond to the client
request message belore the current data center receives this
confirmation message from at least one of the backup data
centers, but the application client will wait to expose the
application response to the user of the client computing
device until the confirmation message 1s received from at
least one of the backup data centers. Accordingly, 1n repli-
cation option 5, during the time that the most recent session
state data 1s being uploaded to the backup data centers the
client computing device 1s already downloading the appli-
cation response, thus hiding some of the network round trip
time between the current and backup data centers. It will be
appreciated that doing this introduces a risk that if the
current data center were to fail after the most recent session
state data 1s transmitted to the backup data centers, and the
backup data centers fail to receive the most recent session
state data due to a network data transmission error, then the
most recent session state data will not be available to the
copies ol the application when one of the backup data
centers 1s selected to take over serving the interactive
SESS101.

Replication option 5 can address this risk (e.g., prevent a
failure of the current data center from causing the most
recent session state data to be lost) 1n various ways. By way
of example but not limitation, 1n one embodiment of the
disaster recovery technique described herein, the application
can wait a prescribed period of time after the most recent
session state data for the interactive session 1s uploaded to
one or more backup data centers before the application
responds to the client request message, where this period of
time 1s made large enough to ensure that the most recent
session state data has left the current data center (e.g., has
left the current data center’s internal network (not shown)
and has been transmitted onto the external network). In
another embodiment of the disaster recovery technique the
current data center can add forward error correction (FEC)
codes to the most recent session state data before it 1s
uploaded to the backup data centers. As 1s appreciated 1n the
art of data communication, i1 just some of the uploaded data
1s successiully recerved by a given backup data center and
the rest of the uploaded data 1s lost by the etther the current
data center’s internal network or the external network, the
FEC codes allow the backup data center to reconstruct the
data that was lost.

Replication option 5 has the following performance and
resource cost trade-oils. Since replication option 3 does not
burden the client computing device, 1t avoids any network
bandwidth cost thereon. However, replication option 3 does
very slightly increase the time that the application client has
to wait to receive application response messages irom the
application, which has a very small negative impact on the
client’s performance. TCS5 1s a cost parameter denoting the
latency cost to the client computing device associated with
the application client having to wait to receive application
response messages from the application 1n replication option
5. In other words, TC5 denotes an increase 1n application

US 10,594,784 B2

29

client delay associated with the extra amount of time that the
application client has to wait to receive application response
messages from the application 1 replication option 5.
BATCS 1s another cost parameter denoting the battery
energy drain cost to the client computing device associated
with the application client having to wait this extra amount
of time. Given the foregoing, it will be appreciated that TCS
will generally be less than TC2.

Replication option 5 increases the cost to the current data
center for hosting the application since the current data
center has to pay for the network bandwidth 1t uses to upload
the most recent session state data to one or more of the
backup data centers. BDS 1s yet another cost parameter
denoting the network bandwidth cost to the current data
center associated with 1t uploading the session state data and
FEC codes to one or more of the backup data centers 1n
replication option 5. In other words, BD5 denotes the
amount the current data center has to pay for this session
state data and FEC codes upload. Due to the addition of the
FEC codes to the data that 1s transmitted, BDS will be
greater than BD2. Replication option 5 also presents the
current data center with the cost of storing the session state
data in one or more of the backup data centers. SD35 1s yet
another cost parameter denoting the data storage cost to the
current data center associated with 1t storing the session state
data in one or more of the backup data centers 1n replication
option 5. It will be appreciated that SD5 will be the same as
SD2.

The sixth of the session state data replication options
exemplified i FIG. 2 1s a variant of replication option 3 that
involves storing an encrypted version of the most recent
session state data for the interactive session on the client
computing device. This particular option 1s hereafter simply
referred to as replication option 6. Replication option 6 1s
applicable to a situation where the session state data that 1s
computed by the application i1s to be stored on the client
computing device but 1s not to be disclosed to the user of the
client computing device. One example of such a situation 1s
an online card game application where the session state data
that 1s computed by the application includes the hand of
cards that 1s generated for all of the users that are currently
playing the game. Encrypting this session state data prevents
the hand of cards for users other than the client computing
device’s user, and the hand of cards for the computerized
player, from being disclosed to the client computing
device’s user. The session state data can be encrypted using
any conventional data encryption method.

TC6 1s a cost parameter denoting the latency cost to the
client computing device associated with 1t recerving the
encrypted session state data from the application 1n replica-
tion option 6. In other words, TC6 denotes an increase in
application client delay associated with this encrypted ses-
sion state data reception. BC6 1s another cost parameter
denoting the network bandwidth cost to the client computing
device associated with 1t receiving the encrypted session
state data from the application i replication option 6. In
other words, BC6 denotes the amount the application client
has to pay for this encrypted session state data reception.
BC6 may be zero when the client computing device 1is
connected to the network via a wired connection having
unlimited data. Alternatively, BC6 may be very high when
the client computing device 1s connected to the network via
a cellular data connection operating in roaming mode.
BATC®6 1s yet another cost parameter denoting the battery
energy drain cost to the client computing device associated
with the application client receiving the encrypted session
state data from the application in replication option 6. In

10

15

20

25

30

35

40

45

50

55

60

65

30

other words, BATC6 denotes how much battery energy 1n
the client computing device 1s used for this encrypted
session state data reception. While BATC6 may not be very
relevant when the client computing device 1s operating from
an AC power source, BATC6 1s quite relevant when the
client computing device 1s operating from battery power.
CD6 15 yet another cost parameter denoting the processing
cost to the current data center associated with the application
encrypting the encoded session state data in replication
option 6. This encryption operation will increase the pro-
cessor overhead in the current data center, and will also
slightly 1ncrease the request-response latency for the client.

The seventh of the session state data replication options
exemplified 1n FIG. 2, hereafter simply referred to as rep-
lication option 7, 1s a hybrid option that can include any
combination of replication options 1-6. By way of example
but not limitation, 1n the atorementioned situation where a
plurality of application clients running on different client
computing devices 1s jointly participating 1n an interactive
session at the same time, a session state data replication
option can be imdependently selected for each of the client
computing devices. In other words and referring again to
FIG. 1, the decision engine module may decide to store the
session state data on all of the client computing devices. The
decision engine module may also decide to store the session
state data on just some of the client computing devices and
in one or more of the backup data centers. The decision
engine module may also decide to store the session state data
on just one or more of the backup data centers.

Additionally, replication option 2 can be used to store the
session state data for the interactive session 1n a backup data
center that 1s near the current data center, and replication
option 5 can be used to store the session state data 1n another
backup data center that i1s not near (e.g., 1s far away from)
the current data center. This combined utilization of repli-
cation options 2 and 5 1s advantageous since the backup data
center that 1s near the current data center 1s not likely to fail
at the same time as the backup data center that 1s not near the
current data center (especially in the situation where the
failure 1s triggered by an earthquake, or fire, or lightning
strike, or other type of natural disaster). Replication option
3 can also be combined with either replication option 2 or
replication option 5 so that an encoded version of the session
state data for the interactive session 1s either synchronously
or asynchronously stored in each of the backup data centers.
As indicated 1n FIG. 2, various combinations of the different
performance and resource cost parameters that are associ-
ated with replication options 1-6 become relevant 1n repli-
cation option 7.

The different performance and resource cost parameters
that are associated with replication options 1-7 might not be
static and their values might not be known upiront when a
given cloud application 1s being developed or deployed. By
way of example but not limitation, for an interactive session
involving a user who 1s using a client computing device that
1s operating from battery power and 1s connected to the
network via a wireless connection such as a conventional
cellular data connection, or WiF1 connection, or the like
(e.g., when the client computing device 1s either a smart-
phone, or a tablet computer, or the like), the client’s network
bandwidth cost (e.g., BC1) and battery energy drain cost
(e.g., BATC1) may be very high. On the other hand, for an
interactive session involving a user who 1s using a client
computing device that 1s operating from AC power and 1s
connected to the network via a wired connection, the client’s
network bandwidth cost and battery energy drain cost may
be negligible. Furthermore, the current data center’s network

US 10,594,784 B2

31

bandwidth cost (e.g., BD2) and data storage cost (e.g., SD2)
may change over time depending on various factors such as
changes in the load on the current and backup data centers.
Yet furthermore, 1t will be appreciated that the time the
application client has to wait to recerve application response
messages from the application (e.g., TC2) depends on how
tar the backup data centers are from the current data center.
When a given cloud application 1s first deployed, this client
wait time may be high since the application may initially be
hosted on just two data centers that are located far apart from
one another. As the usage of the application grows, the
application may be deployed in additional data centers 1n
different locations, or the application may start to rent data
center capacity offered by cloud service providers in difler-
ent locations, either of which may decrease the distance
between the current data center and one or more of the
backup data centers, thus decreasing the client wait time
(e.g., decreasing TC2).

It will thus be appreciated that the values of the diflerent
performance and resource cost parameters that are associ-
ated with replication options 1-7 can be diflerent for difler-
ent interactive sessions with a given cloud application, and
can change over time. The disaster recovery technique
embodiments described herein can select an appropriate
session state data replication option when the application 1s
first deployed since some of the performance and resource
cost parameters become known at this time (e.g., the mitial
number of data centers hosting the application becomes
known, the physical locations and thus the distances
between the various pairs of the data centers becomes
known, and the network bandwidth and data storage costs
for each of the data centers become known). The disaster
recovery technique embodiments can also select an appro-
priate session state data replication option whenever there
are configuration changes 1n the computing and networking
inirastructure that supports the application (e.g., whenever
the number and/or physical locations of data centers hosting,
the application changes, or whenever the network bandwidth
and data storage costs for one or more of the data centers
changes).

The disaster recovery technique embodiments described
herein can also select an appropriate session state data
replication option whenever a new interactive session 1S
established between a given cloud application that 1s running
on a given data center and an application client that is
running on a given client computing device that 1s being
used by a given user (1n this case, all of the performance and
resource cost parameters that are associated with replication
options 1-7 can be considered). After the interactive session
1s established and an appropriate session state data replica-
tion option has been selected, the disaster recovery tech-
nique embodiments can also monitor all of the performance
and resource cost parameters and again select an appropriate
session state data replication option whenever there are
changes in these parameters, where this newly selected
option can be either the same as or different than the
previously selected option.

1.4 Selecting an Option for Replicating Session State Data

This section provides a more detailed description of the
alorementioned various methods that the decision engine
module can use to select an appropriate option for replicat-
ing the session state data for the interactive cloud application
that 1s being hosted on the current data center. This selection
1s made from a set of different session state data replication
options that includes, but 1s not limited to, the aforemen-
tioned replication options 1-7. As described heretofore, each
of these replication options has different performance and

10

15

20

25

30

35

40

45

50

55

60

65

32

resource cost trade-ofls. As also described heretofore and
will now be described 1n more detail, this selection can be
based on various network performance conditions and
resource availability conditions that can be measured by the
client resource probe module, current server resource probe
module, and backup server resource probe module. This
selection can also be based on various performance con-
straints and resource cost constraints, and a prioritization
thereof, that can be specified by the application.

FIG. 3 illustrates one embodiment, in simplified form, of
a process for selecting an appropriate option for replicating
the session state data for the cloud application that 1s being
hosted on the current data center. As exemplified in FIG. 3,
the process starts 1 block 300 with estimating the latency
cost to a client computing device associated with each of the
session state data replication options 1n the set of different
session state data replication options. In other words, and by
way of example but not limitation, TC1, TC2, TC3, TC4,
TC5 and TC6 can be estimated using the various measure-
ment techniques described heretofore. The session state data
replication option having the smallest estimated latency cost
to the client computing device 1s then selected as the option
to be used for replicating the session state data for an
interactive session between the application and the client
(block 302). It will thus be appreciated that the process
embodiment exemplified 1in FIG. 3 minimizes the latency
cost to the client computing device associated with repli-
cating the session state data, and thus minimizes the delay
overhead that a user will experience due to the session state
data replication.

FIG. 4 illustrates another embodiment, 1n simplified form,
of a process for selecting an appropriate option for replicat-
ing the session state data for the cloud application that is
being hosted on the current data center. As exemplified in
FIG. 4, the process starts in block 400 with inputting one or
more performance constraints that are specified by the
application. These performance constraints include a maxi-
mum allowable latency cost to a client computing device
associated with replicating the session state data for the
interactive session (e.g., a constraint on TC1, TC2, TC3,
TC4, TC5 and TC6). The performance constraints can
optionally also include a minimum allowable availability for
the application. One or more resource cost constraints that
are specified by the application are then input (block 402).
These resource cost constraints can include one or more of
client resource cost constraints or data center resource cost
constraints. Exemplary client resource cost constraints
include, but are not limited to, one or more of a constraint
on the network bandwidth cost to the client computing
device associated with replicating the session state data for
the interactive session (e.g., a constraint on BC1, BC3, BC4
and BC6), or a constraint on the battery energy drain cost to
the client computing device associated with replicating this
session state data (e.g., a constraint on BATC1, BATC3,
BATC4, BATCS and BATC6), or a constraint on the pro-
cessing cost to (e.g., a processor utilization budget for) the
client computing device associated with replicating this
session state data, or a constraint on the memory cost to
(e.g., a memory utilization budget for) the client computing
device associated with replicating this session state data.
Exemplary data center resource cost constraints include, but
are not limited to, one or more of a constraint on the network
bandwidth cost to the current data center associated with
replicating the session state data for the interactive session
(e.g., a constraint on BD2 and BDS3), or a constraint on the
data storage cost to the current data center associated with
replicating this session state data (e.g., a constraint on SD2

US 10,594,784 B2

33

and SDS5), or a constraint on the processing cost to the
current data center associated with replicating this session
state data.

Referring again to FIG. 4, after the performance and
resource cost constraints have been iput (blocks 400 and
402), the latency cost to the client computing device asso-
ciated with each of the session state data replication options
in the set of diflerent session state data replication options 1s
estimated (block 404) as described heretofore. The session
state data replication options whose estimated latency cost to
the client computing device 1s less than or equal to the
just-described maximum allowable latency cost to the client
computing device are then identified (block 406). One of
these identified options that meets the resource cost con-
straints 1s then selected as the option to be used for repli-
cating the session state data for the interactive session (block
408). It will thus be appreciated that the process embodiment
exemplified 1n FIG. 4 can joimntly minimize both the latency
cost to the client computing device associated with repli-
cating the session state data, and one or more prescribed
resource costs that are associated with replicating the session
state data.

FIG. 5 1llustrates yet another embodiment, 1n simplified
form, of a process for selecting an appropriate option for
replicating the session state data for the cloud application
that 1s being hosted on the current data center. As exempli-
fied m FIG. 5, the process starts in block 500 with mputting
one or more resource cost constraints that are specified by
the application. The latency cost to a client computing
device associated with each of the session state data repli-
cation options in the set of different session state data
replication options 1s then estimated (block 502). The ses-
s10n state data replication options that meet the resource cost
constraints are then 1dentified (block 504). The one of these
identified options that has the smallest estimated latency cost
to the client computing device 1s then selected as the option
to be used for replicating the session state data for the
interactive session (block 506). It will thus be appreciated
that the process embodiment exemplified 1n FIG. 5 can also
jointly minimize both the latency cost to the client comput-
ing device associated with replicating the session state data,
and one or more prescribed resource costs that are associated
with replicating the session state data.

It 1s noted that the resource cost constraints can be
specified by the application in various ways. By way of
example but not limitation, the resource cost constraints can
be specified for individual interactive sessions with the
application. The resource cost constraints can also be speci-
fied as a total resource cost budget that 1s to be allocated
across a plurality of interactive sessions with the application.
In this case, the decision engine module can allocate the total
resource cost budget 1n various ways including, but not
limited to, the following. The decision engine module can
allocate the total resource cost budget on the fly to individual
interactive sessions having a current network latency that 1s
higher than a prescribed threshold (e.g., additional resources
can be used to reduce the network latency and thus reduce
the user response times). The decision engine module can
also allocate the total resource cost budget over a prescribed
period of time. More particularly and by way of example but
not limitation, specific amounts of the budget can be allo-
cated to specific days of the week. The budget can be
allocated 1n proportion to the application load (e.g., the user
demand for the application) that 1s expected over the period
of time. In other words, different portions of the budget can

10

15

20

25

30

35

40

45

50

55

60

65

34

be allocated to different segments of the period of time based
on the application load that 1s expected during each of the
segments.

An alternate embodiment of the disaster recovery tech-
nique described herein 1s also possible where the one or
more performance constraints that are specified by the
application, and the one or more resource cost constraints
that are specified by the application, can be combined nto
a unified constraint by applying a weight to each of the
performance constraints and each of the resource cost con-
straints. It will be appreciated that the weights that are
applied to the different performance and resource cost
constraints serve to prioritize these constraints. By way of
example but not limitation, these weights can be used to
specily the relative importance to the application of the
latency cost to the client computing device as compared to
the network bandwidth cost to the client computing device.
The weights can be determined in various ways. By way of
example but not limitation, 1n an exemplary implementation
of this alternate embodiment the weights are pre-determined
by the application.

1.5 Process Framework

FIG. 6 illustrates an exemplary embodiment, 1n simplified
form, of the server side of a process for ensuring the
availability of a cloud application that 1s being hosted on a
current data center. As exemplified 1n FIG. 6, the process
starts 1n block 600 with selecting an option for replicating
session state data for the application. As described hereto-
fore, this selection 1s made from a set of diflerent session
state data replication options each of which has different
performance and resource cost trade-ofls, and the selected
option determines how the session state data for the appli-
cation 1s to be replicated. The selected option 1s then
implemented (block 602), where the implementation results
in the session state data for the application being replicated
outside of the current data center, thus ensuring that this data
remains available 1n the event that that current data center
goes oflline.

FIG. 7 illustrates an exemplary embodiment, 1n simplified
form, of the client side of a process for providing disaster
recovery for the cloud application that 1s being hosted on the
current data center. As exemplified 1n FIG. 7, the process
starts 1n block 700 with receiving a message from the current
data center specitying an option for replicating session state
data for the application that has been selected for a given
client computing device. The specified option 1s then 1mple-
mented (block 702), where the implementation results in the
session state data for the application being replicated outside
of the current data center.

2.0 Provisioning and Using Spare Data Center Capacity

Referring again to FIG. 1, the disaster recovery technique
embodiments described heretofore assume that a plurality of
data centers (e.g., 104/106/118) exist in the cloud 138, and
also assume that this plurality of data centers includes one or
more backup data centers 106/118 which have suilicient
spare (e.g., 1dle) capacity (e.g., sullicient spare/idle process-
ing capacity and suilicient spare/idle data storage capacity)
to take over the current application load of the current data
center 104 11 1t fails. In other words, the disaster recovery
technique embodiments described heretolore assume that
the backup data centers have suflicient spare capacity to take
over serving the interactive sessions 112 that are currently
taking place with the cloud applications 114 that are cur-
rently being hosted by the current data center in the event
that 1t fails.

This section describes an exemplary embodiment of the
disaster recovery technique described herein that adds spare

US 10,594,784 B2

35

capacity to each of the data centers in the cloud, where this
spare capacity 1s suflicient to allow a failure of any one of
the data centers to be accommodated by the remaining data
centers. In other words, 11 any one of the data centers 1n the
cloud fails, the spare capacity that 1s added to each of the
remaining data centers by the disaster recovery technique
embodiment described in this section allows the current
application load of the failed data center to be distributed
across the remaining data centers (e.g., the remaining data
centers can collectively take over serving the interactive
sessions that were being served by the failed data center).

FI1G. 8 illustrates an exemplary embodiment, 1n simplified
form, of a process for provisioning and using spare data
center capacity in the cloud. As exemplified in FIG. 8, the
process starts 1 block 800 with determining an amount of
spare server capacity (e.g., the number of additional servers)
that has to be added to each of the data centers 1n the cloud
in order for the cloud to be able to take over the current
application load of any one of the data centers if 1t fails. This
determination 1s made by taking into account different
factors which include, but are not limited to, one or more of
the following: the total number of data centers in the cloud,
the current server capacity of (e.g., the current number of
servers 1) each of the data centers, and the geographic
location of each of the data centers. After the amount of
spare server capacity to be added to each of the data centers
has been determined (block 800), 1t 1s then directed that this
determined amount of spare server capacity be added to each
of the data centers (block 802). Then, whenever any one of
the data centers fails, the current application load of the
talled data center will be distributed across the spare server
capacity that was added to each of the remaining data centers
(804).

It 1s noted that the process embodiment exemplified in
FIG. 8 1s applicable to situations where either the current
server capacity of each of the data centers in the cloud 1n the
cloud 1s either the same, or the current server capacity of one
or more of the data centers 1s different than the current server
capacity of others of the data centers. The process embodi-
ment exemplified 1n FIG. 8 1s also applicable to situations
where etther all of the data centers are located in the same
geographic region, or the data centers are located in two or
more different geographic regions, where these different
geographic regions may be in either the same time zone or
different time zones. It 1s also noted that depending on the
particular factors that are taken into account when the
just-described determination of spare server capacity 1s
made, either the same amount of spare server capacity can
be added to each of the data centers, or different amounts of
spare server capacity can be added to different ones of the
data centers.

(Given the foregoing, 1t will be appreciated that the process
embodiment exemplified 1n FIG. 8 1s advantageous in that 1t
can mimmize the amount of spare capacity that has to be
added to each of the data centers 1n the cloud in order for the
cloud to be able to take over the current application load of
any one ol the data centers 1f 1t fails. Accordingly, the
process embodiment exemplified 1in FIG. 8 can mimimize the
expense associated with provisioning spare data center
capacity.

3.0 Additional Embodiments

While the disaster recovery technique has been described
by specific reference to embodiments thereof, 1t 1s under-
stood that variations and modifications thereol can be made
without departing from the true spirit and scope of the
disaster recovery technique. By way of example but not
limitation, an embodiment of the disaster recovery technique

10

15

20

25

30

35

40

45

50

55

60

65

36

described herein 1s possible where the session state data for
a given interactive session between a given cloud applica-
tion and a given application client includes one or more data
items that cannot be stored on just the client computing
device that 1s running the application client. By way of
example but not limitation, when the interactive session 1s a
Hyper Text Transter Protocol Secure (HT'TPS) session (such
as when a user makes ecommerce transactions on a secure
banking website), the cryptographic keys associated with the
HTTPS session have to be stored on both the application
server and the client computing device, and the application
and application client already take care of this. In such a
s1tuation, just session state data replication options that store
the most recent session state data on one or more backup
data centers (e.g., either the aforementioned replication
option 2 or replication option 5) will be used since the
backup data centers have to have the private (e.g., secret)
key to even decrypt any client request messages the backup
data centers may receive from the application client in the
event that the current data center goes oflline.

Another embodiment of the disaster recovery technique
described herein 1s also possible where the most recent
session state data that 1s stored on a given client computing,
device during a given interactive session 1s encrypted by the
client state store module. More particularly, after the appli-
cation client has extracted the most recent session state data
for the mteractive session from a given application response
message, the client state store module will encrypt this
extracted data using any conventional data encryption
method, and will then store this encrypted data and an
associated encryption key on the client computing device.
Additionally, 1n replication option 4, whenever the failure
detector module detects that the current data center has gone
oflline, the session resume request message that the appli-
cation client transmits to the backup data center that has
been selected to take over serving the interactive session will
include both the encrypted most recent session state data for
the interactive session and the associated encryption key that
are stored on the client computing device. This allows the
backup data center to decrypt the encrypted most recent
session state data before 1t resumes the interactive session
with the client computing device. This particular embodi-
ment 1s applicable 1n situations where the session state data
includes proprietary information that may not be appropriate
to expose to a user. Examples of such proprietary informa-
tion include customer profiling data 1n an customer database,
a selection of advertisements to be shown or discount codes
to be offered during the session, certain types of information
generated by an ecommerce application, and the like. Addi-
tionally, in an online card game application the session state
data may 1nclude the hand of cards that 1s generated for all
of the users that are currently playing the game. Storing such
proprictary nformation i encrypted form on the client
computing device 1s advantageous since the information 1s
kept secure.

It 1s also noted that any or all of the aforementioned
embodiments can be used 1n any combination desired to
form additional hybrid embodiments. Although the disaster
recovery technique embodiments have been described in
language specific to structural features and/or methodologi-
cal acts, it 1s to be understood that the subject matter defined
in the appended claims 1s not necessarily limited to the
specific features or acts described heretofore. Rather, the
specific features and acts described heretofore are disclosed
as example forms of implementing the claims.

US 10,594,784 B2

37

4.0 Exemplary Operating Environments

The disaster recovery technique embodiments described
herein are operational within numerous types of general
purpose or special purpose computing system environments

or configurations. FIG. 9 1illustrates a simplified example of 5

a general-purpose computer system on which various
embodiments and elements of the disaster recovery tech-
nique, as described herein, may be implemented. It 1s noted
that any boxes that are represented by broken or dashed lines
in the simplified computing device 900 shown in FIG. 9
represent alternate embodiments of the simplified comput-
ing device. As described below, any or all of these alternate
embodiments may be used 1n combination with other alter-
nate embodiments that are described throughout this docu-
ment. The sumplified computing device 900 1s typically
found 1n devices having at least some minimum computa-
tional capability such as personal computers (PCs), server
computers, handheld computing devices, laptop or mobile
computers, communications devices such as cell phones and
personal digital assistants (PDAs), multiprocessor systems,
microprocessor-based systems, set top boxes, programmable
consumer e¢lectronics, network PCs, minicomputers, main-
frame computers, and audio or video media players.

To allow a device to implement the disaster recovery
technique embodiments described herein, the device should
have a suflicient computational capability and system
memory to enable basic computational operations. In par-
ticular, the computational capability of the simplified com-
puting device 900 shown 1n FI1G. 9 1s generally illustrated by
one or more processing unit(s) 910, and may also include
one or more graphics processing units (GPUs) 9135, erther or
both 1n communication with system memory 920. Note that
that the processing unit(s) 910 of the simplified computing,
device 900 may be specialized microprocessors (such as a
digital signal processor (DSP), a very long instruction word
(VLIW) processor, a field-programmable gate array
(FPGA), or other micro-controller) or can be conventional
central processing units (CPUs) having one or more pro-
cessing cores.

In addition, the simplified computing device 900 shown 1n
FIG. 9 may also include other components such as a
communications interface 930. The simplified computing
device 900 may also include one or more conventional
computer mput devices 940 (e.g., pointing devices, key-
boards, audio (e.g., voice) mput devices, video input
devices, haptic mput devices, gesture recognition devices,
devices for recerving wired or wireless data transmissions,
and the like). The simplified computing device 900 may also
include other optional components such as one or more
conventional computer output devices 950 (e.g., display
device(s) 955, audio output devices, video output devices,
devices for transmitting wired or wireless data transmis-
sions, and the like). Note that typical communications
interfaces 930, input devices 940, output devices 950, and
storage devices 960 for general-purpose computers are well
known to those skilled 1n the art, and will not be described
in detail herein.

The simplified computing device 900 shown in FIG. 9
may also include a variety of computer-readable media.
Computer-readable media can be any available media that
can be accessed by the computer 900 via storage devices
960, and can include both volatile and nonvolatile media that
1s either removable 970 and/or non-removable 980, for
storage of information such as computer-readable or com-
puter-executable instructions, data structures, program mod-
ules, or other data. Computer-readable media includes com-
puter storage media and communication media. Computer

10

15

20

25

30

35

40

45

50

55

60

65

38

storage media refers to tangible computer-readable or
machine-readable media or storage devices such as digital
versatile disks (DVDs), compact discs (CDs), tloppy disks,
tape drives, hard drives, optical drives, solid state memory
devices, random access memory (RAM), read-only memory
(ROM), celectrically erasable programmable read-only

memory (EEPROM), flash memory or other memory tech-
nology, magnetic cassettes, magnetic tapes, magnetic disk
storage, or other magnetic storage devices.

Retention of information such as computer-readable or
computer-executable instructions, data structures, program
modules, and the like, can also be accomplished by using
any of a variety of the aforementioned communication
media (as opposed to computer storage media) to encode
one or more modulated data signals or carrier waves, or
other transport mechanisms or communications protocols,
and can 1nclude any wired or wireless information delivery
mechanism. Note that the terms “modulated data signal™ or
“carrier wave” generally refer to a signal that has one or
more of 1ts characteristics set or changed i such a manner
as to encode information in the signal. For example, com-
munication media can include wired media such as a wired
network or direct-wired connection carrying one or more
modulated data signals, and wireless media such as acoustic,
radio frequency (RF), infrared, laser, and other wireless
media for transmitting and/or receiving one or more modu-
lated data signals or carrier waves.

Furthermore, soiftware, programs, and/or computer pro-
gram products embodying some or all of the various disaster
recovery technique embodiments described herein, or por-
tions thereof, may be stored, received, transmitted, or read
from any desired combination of computer-readable or
machine-readable media or storage devices and communi-
cation media 1n the form of computer-executable instruc-
tions or other data structures.

Finally, the disaster recovery technique embodiments
described herein may be further described in the general
context of computer-executable instructions, such as pro-
gram modules, being executed by a computing device.
Generally, program modules include routines, programs,
objects, components, data structures, and the like, that
perform particular tasks or implement particular abstract
data types. The disaster recovery technique embodiments
may also be practiced in distributed computing environ-
ments where tasks are performed by one or more remote
processing devices, or within a cloud of one or more devices,
that are linked through one or more communications net-
works. In a distributed computing environment, program
modules may be located 1n both local and remote computer
storage media including media storage devices. Addition-
ally, the aforementioned instructions may be implemented,
in part or 1n whole, as hardware logic circuits, which may or
may not include a processor.

Wheretore, what 1s claimed 1s:

1. A computer-implemented process for ensuring the
availability of an application being hosted on a current data
center, comprising:

using one or more server computers in the current data

center to perform the following process actions:
detecting a change in run-time conditions of a client
computer;

selecting an option for replicating session state data

associated with an interactive session established
between a user of the client computer and the applica-
tion executing on the one or more server computers,

US 10,594,784 B2

39

said selection being based on performance constraints and
resource cost constraints, and a prioritization thereot,
that are specified by the application,

said selection being made from a set of different session
state data replication options,

cach of said options having different performance and

e

resource cost trade-ofls,
said selected option determining how, including where,
said data 1s to be replicated; and

implementing said selected option, the implementation

resulting 1n said data being replicated outside of the
current data center, thus ensuring that said data remains
available 1n the event that the current data center goes
offline, and wherein

said selected option comprises storing the most recent

session state data for the interactive session on the
client computer, and the action of implementing said
selected option comprises,

transmitting a message to the client computer specifying

said selected option,

receiving client request messages from the client com-

puter, each of the client request messages comprising,
the most recent session state data for the interactive
session, and

adding the most recent session state data for the interac-

tive session to each application response message that
the application transmits to the client computer.

2. The process of claim 1, wherein the action of adding the
most recent session state data for the interactive session to
cach application response message that the application trans-
mits to the client computer comprises an action of either:
adding the entire set of most recent session state data to each
application response message that the application transmits
to the client computer; or adding the entire set of most recent
session state data to a first application response message that
the application transmits to the client computer, and adding,
the entire set of most recent session state data to every Nth
application response message thereafter that the application
transmits to the client computer, N being a prescribed
number greater than one; or adding the entire set of most
recent session state data to the first application response
message that the application transmits to the client com-
puter, and adding just the delta in the session state data to
cach application response message thereaiter that the appli-
cation transmits to the client computer; or adding the entire
set of most recent session state data to the first application
response message that the application transmits to the client
computer, and adding just the delta 1n the session state data
to every Nth application response message thereafter that the
application transmits to the client computer.

3. The process of claim 1, wherein said selected option
comprises storing an encoded version of the most recent
session state data for the interactive session on the client
computer, said encoding reducing the data size, and the
action ol implementing said selected option comprises the
actions of:

transmitting a message to the client computer specifying

said selected option;

receiving client request messages from the client com-

puter, each of the client request messages comprising
an encoded version of the most recent session state data
for the interactive session; and

adding an encoded version of the most recent session state

data for the interactive session to each application
response message that the application transmits to the
client computer.

10

15

20

25

30

35

40

45

50

55

60

65

40

4. The process of claim 3, wherein either,

the encoded version of the most recent session state data
in each of the client request messages comprises just
the data that a user most recently entered into the client
computer, or

the encoded version of the most recent session state data

in each of the client request messages comprises a
compressed version ol said data, and the encoded
version of the most recent session state data in each
application response message comprises a compressed
version of said data.

5. A computer-implemented process for ensuring the
availability of an application being hosted on a current data
center, comprising:

using one or more server computers 1n the current data

center to perform the following process actions:
detecting a change in run-time conditions of a client
computer;

selecting an option for replicating session state data
associated with an interactive session established

between a user of the client computer and the applica-
tion executing on the one or more server computers,

said selection being based on performance constraints and
resource cost constraints, and a prioritization thereof,
that are specified by the application,

said selection being made from a set of di
state data replication options,

cach of said options having different performance and
resource cost trade-ofls,

said selected option determining how, including where,
said data 1s to be replicated; and

implementing said selected option, the implementation
resulting in said data being replicated outside of the
current data center, thus ensuring that said data remains
available 1n the event that the current data center goes

!

offline, and wherein
said selected option comprises asynchronously storing the
most recent session state data for the interactive session
in one or more backup data centers, and the action of
implementing said selected option comprises the
actions of,
uploading the most recent session state data for the
interactive session to the backup data centers whenever
the session state changes, and

responding to a client request message received from the

client computer before a confirmation message 1s
received from at least one of the backup data centers
indicating that 1t has successiully stored the most recent
session state data, the client computer waiting to
expose said response to a user until said confirmation
message 1s recerved from at least one of the backup data
centers.

6. The process of claim 5, wherein the action of uploading
the most recent session state data for the interactive session
to the backup data centers whenever the session state
changes comprises an action of adding forward error cor-
rection codes to said state data before 1t 1s uploaded to the
backup data centers.

7. The process of claim 1, wherein the current data center
1s serving an interactive session between the application and
a plurality of client computers that are jointly participating
in the interactive session, and the action of selecting an
option for replicating session state data for the application
comprises an action of independently selecting a session
state data replication option for each of the client computers.

8. The process of claim 1, wherein the action of selecting,
an option for replicating session state data for the application
comprises the actions of:

e

‘erent session

US 10,594,784 B2

41

estimating the latency cost to the client computer associ-
ated with each of the different session state data repli-
cation options; and

selecting a one of said options having the smallest esti-
mated latency cost to the client computer as the option
to be used for replicating the session state data for the
interactive session.

9. The process of claim 1, wherein the action of selecting,
an option for replicating session state data for the application
comprises the actions of:

inputting one or more of the performance constraints that
are specified by the application, the inputted perfor-
mance constraints comprising a maximum allowable
latency cost to the client computer associated with
replicating the session state data for the interactive
session;

inputting one or more of the resource cost constraints that
are specified by the application;

estimating the latency cost to the client computer associ-
ated with each of the different session state data repli-
cation options;

identifying ones of said options whose estimated latency
cost to the client computer 1s less than or equal to said
maximum allowable latency cost;

selecting a one of said identified options that meets the
inputted resource cost constraints as the option to be
used for replicating the session state data for the
interactive session.

10. The process of claim 9, wherein, the inputted resource
cost constraints comprise one or more of client resource cost
constraints, or data center resource cost constraints,

the client resource cost constraints comprise one or more
of,

a constraint on the network bandwidth cost to the client
computer associated with replicating the session state
data for the interactive session, or

a constraint on the battery energy drain cost to the client
computer associated with replicating said session state
data, or

a constraint on the processing cost to the client computer
associated with replicating said session state data, or

a constraint on the memory cost to the client computer
associated with replicating said session state data, and

the data center resource cost constraints comprise one or
more of,

a constraint on the network bandwidth cost to the current
data center associated with replicating said session state
data, or

a constraint on the data storage cost to the current data
center associated with replicating said session state
data,

or a constraint on the processing cost to the current data
center associated with replicating said session state
data.

11. The process of claim 1, wherein the action of selecting
an option for replicating session state data for the application
comprises the actions of:

inputting one or more of the resource cost constraints that
are specified by the application;

estimating the latency cost to the client computer associ-
ated with each of the different session state data repli-
cation options;

identifying ones of said options that meet the inputted
resource cost constraints; and

selecting the one of said identified options having the
smallest estimated latency cost to the client computer

5

10

15

20

25

30

35

40

45

50

55

60

65

42

as the option to be used for replicating the session state
data for the interactive session.

12. A computer-implemented process for providing disas-
ter recovery for an application being hosted on a current data
center, comprising:

using a client computer to perform the following process

actions:

detecting a change in run-time conditions of the client

computer;
whenever the client computer detects change in 1ts run-
time conditions, providing notice of the change to the
one or more server computers in the current data center;

recerving a message irom the current data center speci-
ftying an option for replicating session state data asso-
ciated with an interactive session that has been selected
for the client computer based on said detected change,

said selection having been based on performance con-
straints and resource cost constraints, and a prioritiza-
tion thereof, that are specified by the application,

said selection having been made from a set of different
session state data replication options,
cach of said options having different performance and
resource cost trade-ofls,

said specified option including storing the most recent
session state data for the interactive session on the
client computer,

said specified option determining how, including where,

said data 1s to be replicated; and
implementing said specified option, including:
adding the most recent session state data for the interac-
tive session to each client request message that the
client computer transmits to the application;

recerving application response messages from the appli-
cation, each of the application response messages com-
prising the most recent session state data for the inter-
active session:

extracting the most recent session state data for the

interactive session from each of the application
response messages; and

storing said extracted data on the client computer,

the implementation resulting 1n said data being replicated

outside of the current data center, thus ensuring that
said data remains available to the client computer 1n the
cvent that the current data center goes oflline.

13. The process of claim 12, wherein said specified option
comprises storing an encoded version of the most recent
session state data for the interactive session on the client
computer, said encoding reducing the data size, and the
action ol implementing said specified option comprises the
actions of:

adding an encoded version of the most recent session state

data for the interactive session to each client request
message that the client computer transmits to the appli-
cation;

receiving application response messages from the appli-

cation, each of the application response messages com-
prising an encoded version of the most recent session
state data for the interactive session;

extracting the encoded version of the most recent session

state data for the mteractive session from each of the
application response messages; and

storing said extracted data on the client computer.

14. The process of claim 12, wherein said specified option
comprises storing the most recent session state data for the
interactive session on the client computer, and the action of
implementing said specified option comprises the actions of:

US 10,594,784 B2

43

receiving application response messages from the appli-
cation, each of the application response messages com-
prising the most recent session state data for the inter-
active session;

extracting the most recent session state data for the

interactive session from each of the application
response messages;

storing said extracted data on the client computer;

detecting when the current data center has gone oflline

and thus has become unable to continue serving the
interactive session; and
whenever 1t 1s detected that the current data center has
gone oflline, transmitting a session resume request
message to a backup data center that has been selected
to take over serving the interactive session, said mes-
sage comprising said stored data.
15. The process of claim 14, wherein,
the action of storing said extracted data on the client
computer comprises the actions of encrypting the
extracted most recent session state data for the inter-
active session, and storing said encrypted data and an
associated encryption key on the client computer, and

the session resume request message comprises both said
encrypted data and said key.

16. A computer-implemented process for ensuring the
availability of an application being hosted on a current data
center, comprising:

using one or more server computers i the current data

center to perform the following process actions:
detecting a change in run-time conditions of a client
computer;
selecting an option for replicating session state data
associated with an interactive session established
between a user of the client computer and the applica-
tion executing on the one or more server computers,

said selection being based on performance constraints and
resource cost constraints, and a prioritization thereof,
that are specified by the application,

10

15

20

25

30

35

44

said selection being made from a set of di
state data replication options,

‘erent session

cach of said options having different performance and

.

resource cost trade-ofls,

said selected option determining how, including where,
said data 1s to be replicated; and

implementing said selected option, the implementation
resulting in said data being replicated outside of the
current data center, thus ensuring that said data remains
available 1n the event that the current data center goes

[

offline, and wherein

said selected option comprises synchronously storing the
most recent session state data for the interactive session
in one or more backup data centers, and the action of
implementing said selected option comprises,

uploading the most recent session state data for the
interactive session to the backup data centers whenever
the session state changes, and

waiting to respond to a client request message received
from the client computer until a confirmation message
1s recerved from at least one of the backup data centers
indicating that 1t has successiully stored the most recent
session state data.

17. The process of claim 5, wherein the action of respond-
ing to a client request message received from the client
computer before a confirmation message 1s received from at
least one of the backup data centers indicating that it has
successiully stored the most recent session state data com-
prises an action of waiting a prescribed period of time after
the most recent session state data for the interactive session
1s uploaded to the backup data centers before responding to
the client request message, said period of time being made
large enough to ensure that said data has left the current data
center.

	Front Page
	Drawings
	Specification
	Claims

