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MAGNETIC INDUCTION PLASMA SOURCE
FOR SEMICONDUCTOR PROCESSES AND

EQUIPMENT

TECHNICAL FIELD

The present technology relates to semiconductor pro-
cesses and equipment. More specifically, the present tech-
nology relates to magnetic induction plasma sources for
semiconductor processes and equipment.

BACKGROUND

Integrated circuits are made possible by processes which
produce intricately patterned material layers on substrate
surfaces. Producing patterned material on a substrate
requires controlled methods for removal of exposed mate-
rial. Chemical etching 1s used for a variety of purposes
including transferring a pattern in photoresist into underly-
ing layers, thinning layers, or thinning lateral dimensions of
teatures already present on the surface. Often it 1s desirable
to have an etch process that etches one matenal faster than
another, facilitating, for example, a pattern transfer process.
Such an etch process 1s said to be selective to the first
material. As a result of the diversity of matenials, circuits,
and processes, etch processes have been developed with a
selectivity towards a variety of materials.

Etch processes may be termed wet or dry based on the
materials used 1n the process. A wet HF etch preferentially
removes silicon oxide over other dielectrics and maternals.
However, wet processes may have difliculty penetrating
some constrained trenches and also may sometimes deform
the remaining material. Dry etches produced in local plas-
mas formed within the substrate processing region can
penetrate more constrained trenches and exhibit less defor-
mation of delicate remaining structures. However, local
plasmas may damage the substrate through the production of
clectric arcs as they discharge.

Thus, there 1s a need for improved systems and methods
that can be used to produce high quality devices and
structures. These and other needs are addressed by the
present technology.

SUMMARY

Exemplary systems for generating plasma products may
include magnetic induction plasma systems. The magnetic
induction plasma system may include a first plasma source.
The first plasma source may include one or more {irst
sections and one or more second sections. The one or more
first sections and the one or more second sections may be
fluidly coupled with each other such that at least a portion of
plasma products generated inside the first plasma source
may circulate through at least one of the one or more first
sections. At least a portion of the plasma products generated
inside the second plasma source may also circulate through
at least one of the one or more second sections inside the first
plasma source. Each of the one or more second sections may
include a dielectric material. The one or more first sections
and the one or more second sections may be arranged 1n an
alternating manner such that the one or more first sections
may be electrically insulated from each other at least 1n part
by the one or more second sections.

In some embodiments, the magnetic plasma induction
system may further include one or more first magnetic
clements. EFach of the one or more first magnetic elements
may define a closed loop and may be positioned around one
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of the one or more second sections. The first plasma source
may define a first toroidal shape. The first toroidal shape may
include a first toroidal extension and a first toroidal axis
perpendicular to the first toroidal extension. Each of the one
or more {irst sections may include a first dimension parallel
to the first toroidal axis. Each of the one or more second
sections may include a second dimension parallel to the first
toroidal axis. The first dimension may be greater than the
second dimension such that the one or more second sections
may define one or more recesses. Each of the one or more
recesses may be configured to receive at least a portion of
one of the one or more first magnetic elements.

In some embodiments, each of the one or more first
sections may include a first opening and a second opening.
Each of the one or more first sections and the corresponding
first and second openings may define a tlow passage parallel
to the first toroidal axis such that a precursor for generating
the plasma products inside the first plasma source may be
flowed into each first section through the first opening and
at least a portion of the plasma products generated may be
flowed out of each first section through the second opening.

In some embodiments, the magnetic induction plasma
system may further include one or more first dielectric ring
members and one or more second dielectric ring members.
The one or more first dielectric ring members may be
positioned above the first openings, and the one or more
second dielectric ring members may be positioned below the
second openings such that the one or more first sections may
be electrically insulated from each other when the magnetic
induction plasma system may be integrated nto a semicon-
ductor processing chamber and may be positioned between
metal components of the semiconductor processing chamber
along the first toroidal axis.

In some embodiments, the semiconductor processing
chamber may include a gas inlet assembly and a gas distri-
bution assembly. The gas inlet assembly may be positioned
upstream of the magnetic induction plasma system. The gas
distribution assembly may be positioned downstream of the
magnetic induction plasma system. The one or more first
dielectric ring members may define a first planar supporting
surface and may be configured to support the gas inlet
assembly. The one or more second dielectric ring members
may define a second planar supporting surface and may be
configured to be supported by the gas distribution assembly.

In some embodiments, each of the one or more first
sections may 1nclude an arcuate tubular body. In some
embodiments, each of the one or more second sections may
include a pair of tlanges configured at two opposite ends of
cach second section and may be configured to couple each
second section with two adjacent first sections. In some
embodiments, each of the one or more first sections may
include a first extension along the first toroidal extension.
Each of the one or more second sections may include a
second extension along the first toroidal extension. A ratio of
the first extension to the second extension may be between
about 10:1 and about 2:1 such that circulation of at least a
portion of plasma products inside the first plasma source
may be facilitated.

In some embodiments, the magnetic induction plasma
system may further include a second plasma source. The
second plasma source may define a second toroidal shape.
The second toroidal shape may include a second toroidal
extension and a second toroidal axis perpendicular to the
second toroidal extension. The second toroidal axis may be
aligned with the first toroidal axis. The second plasma
source may be positioned radially mward from the first
plasma source. The second plasma source may include a
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third section and a fourth section. At least one of the third
section or the fourth section may include a dielectric mate-
rial. The second plasma source may further include at least
one second magnetic element. The at least one second
magnetic element may define a closed loop and may be
positioned around at least one of the third section or the
fourth section. In some embodiments, the at least one second
magnetic element may be positioned at an azimuthal angle
different from an azimuthal angle of each of the one or more
first magnetic elements such that interference between an
clectric field generated by each of the one or more {first
magnetic elements and an electric field generated by the at
least one second magnetic element may be reduced.

In some embodiments, the first plasma source and the
second plasma source may be configured such that the
plasma products exiting the first plasma source may diffuse
onto a {first region of a substrate, and the plasma products
exiting the second plasma source may difluse onto a second
region of the substrate. The first region may define a
substantially annular shape. The second region may define a
substantially circular shape. The first region and the second
region may overlap.

In some embodiments, the magnetic induction plasma
system may further include one or more electrically coupled
first coils and a second coil. Each of the one or more
clectrically coupled first coils may be configured around at
least a portion of each of the one or more first magnetic
clements. The second coil may be configured around at least
a portion of the at least one second magnetic element. The
magnetic induction plasma system may be driven by an LLC
resonant half bridge circuit. The LLC resonant half bridge
circuit may be configured to supply a first current to the one
or more electrically coupled first coils at a first frequency.
The LLC resonant half bridge circuit may be configured to
supply a second current to the second coil at a second
frequency. The first frequency may match the second fre-
quency. In some embodiments, the LLC resonant half bridge
circuit may be configured to supply the first current and the
second current at a frequency between about 100 kHz and

about 20 MHz. In some embodiments, the LLC resonant half

bridge circuit may be configured to supply a first power to
the one or more electrically coupled first coils and to supply
a second power to the second coil. The first power may be
greater than the second power.

The present technology may also include methods of

generating plasma products. The methods may include tflow-
ing a precursor into a plasma source. The methods may
turther include forming a plasma from the precursor to
produce plasma products. The plasma source may define a
first toroidal shape. The first toroidal shape may include a
first toroidal extension and a first toroidal axis perpendicular
to the first toroidal extension. The plasma source may
include one or more first sections and one or more second
sections. The one or more first sections and the one or more
second sections may be fluidly coupled with each other

along the first toroidal extension such that a first portion of

the plasma products may circulate through at least one of the
one or more {irst sections substantially along the first toroi-

dal extension inside the plasma source. The first portion of

the plasma products may further circulate through at least
one of the one or more second sections substantially along

the one or more second sections may include a dielectric
material. The one or more first sections and the one or more

second sections may be arranged 1n an alternating manner

the first toroidal extension 1nside the plasma source. Each of
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such that the one or more first sections may be electrically
insulated from each other at least in part by the one or more
second sections.

In some embodiments, the plasma source may further
include one or more first magnetic elements. Each of the one
or more first magnetic elements may define a closed loop
and may be positioned around one of the one or more second
sections. Each of the one or more {irst sections may include
a first dimension parallel to the first toroidal axis. Each of the
one or more second sections may include a second dimen-
sion parallel to the first toroidal axis. The first dimension
may be greater than the second dimension such that the one
or more second sections may define one or more recesses.
Each of the one or more recesses may be configured to
receive at least a portion of one of the one or more first
magnetic elements.

In some embodiments, the method for generating plasma
products may further include maintaiming a pressure within
the plasma source between about 1 mTorr and about 500
Torr. In some embodiments, the plasma source may further
include one or more electrically coupled coils. Each of the
one or more ¢lectrically coupled coils may be configured
around at least a portion of each of the one or more first
magnetic elements. In some embodiments, the method may
further include supplying a current to the one or more
electrically coupled coils by an LLC resonant half bridge
circuit at a frequency between about 100 kHz and about 20
MHz. In some embodiments, the method may further
include supplying a power between about 100 W and about
1,000 W by the LLC resonant half bridge circuit to the one
or more electrically coupled coils for generating products
from the precursor inside the plasma source.

The present technology may also include a semiconductor
processing chamber including a magnetic induction plasma
system. The magnetic induction plasma system may include
a first plasma source having a first toroidal shape. The first
plasma source may define a first annular recess of the first
toroidal shape. The magnetic induction plasma system may
further 1include a first magnetic element. The first magnetic
clement may form a closed loop and may be positioned
around a portion of the first plasma source. At least a portion
of the first magnetic element may be recerved within the first
annular recess. In some embodiments, the first plasma
source may include a first inlet for a precursor for generating,
plasma products therefrom inside the first plasma source.
The first plasma source may further include a first outlet for
the plasma products generated. The first ilet, the first outlet,
and the first plasma source may include a common width
dimension measured along a radial direction of the first
toroidal shape.

In some embodiments, the magnetic induction plasma
system may further include a second plasma source having
a second toroidal shape. The second plasma source and the
first plasma source may have a common toroidal axis. The
second plasma source may be positioned radially inward
from the first plasma source. The second plasma source may
define a second annular recess of the second toroidal shape.
The magnetic induction plasma system may further include
a second magnetic element. The second magnetic element
may form a closed loop and may be positioned around a
portion of the second plasma source. At least a portion of the
second magnetic element may be received within the second
annular recess. The second plasma source may include a
second 1nlet for the precursor for generating plasma products
therefrom inside the second plasma source and a second
outlet for the plasma products generated. The second inlet,
the second outlet, and the second plasma source may have
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a common width dimension measured along a radial direc-
tion of the second toroidal shape. The first magnetic element

may be positioned at a first azimuthal angle. The second
magnetic element may be positioned at a second azimuthal
angle. The first azimuthal angle may be different from the
second azimuthal angle.

Such technology may provide numerous benefits over
conventional systems and techniques. For example, the
magnetic imnduction plasma systems described herein may
allow for low dniving power, and may yield high power
transfer efficiency. Additionally, the driving power, Ire-
quency, and current may be fully adjustable to allow for
modulation of the composition and property of the plasma
generated. Moreover, the magnetic induction plasma sys-
tems may operate to generate a plasma at a wide operational
pressure ranging from several tens of mTorr to several
hundred Torr. These and other embodiments, along with
many of their advantages and features, are described 1n more
detail 1n conjunction with the below description and attached
figures.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of
the disclosed technology may be realized by reference to the
remaining portions of the specification and the drawings.

FIG. 1 shows a top plan view of one embodiment of an
exemplary processing system according to embodiments of
the present technology.

FIG. 2A shows a schematic cross-sectional view of an
exemplary processing chamber according to embodiments
of the present technology.

FIG. 2B shows a detailed view of a portion of the
processing chamber illustrated in FIG. 2A according to
embodiments of the present technology.

FIG. 3 shows schematic views of exemplary showerhead
configurations according to embodiments ol the present
technology.

FIGS. 4A-4F show schematic views ol an exemplary
plasma system according to embodiments of the present
technology.

FIGS. SA-5C show schematic views of an exemplary
plasma system according to embodiments of the present
technology.

FIGS. 6A-6C show schematic views of an exemplary
plasma system according to embodiments of the present
technology.

FIGS. 7A-7C show schematic views of an exemplary
plasma system 1n operation according to embodiments of the
present technology.

FIGS. 8A-8C show schematic views of an exemplary
plasma system 1n operation according to embodiments of the
present technology.

Several of the figures are included as schematics. It 1s to
be understood that the figures are for illustrative purposes,
and are not to be considered of scale unless specifically
stated to be of scale. Additionally, as schematics, the figures
are provided to aid comprehension and may not include all
aspects or information compared to realistic representations,
and may include exaggerated material for illustrative pur-
poses.

In the appended figures, similar components and/or fea-
tures may have the same reference label. Further, various
components of the same type may be distinguished by
tollowing the reference label by a letter that distinguishes
among the similar components. If only the first reference
label 1s used 1n the specification, the description 1s applicable
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to any one of the similar components having the same first
reference label 1rrespective of the letter.

DETAILED DESCRIPTION

Conventional plasma generating systems may typically
utilize a full bridge circuit driving scheme, which can
consume a large amount of power due to power loss 1n the
driving circuitry and can be very costly to operate. Addi-
tionally, conventional plasma generating systems driven by
a full bridge circuit may generally require high power of
10,000 W or higher to generate and sustain a plasma.

The various embodiments of the magnetic induction
plasma systems described herein may utilize a particularly
configured LLC resonant half bridge circuit driving scheme.
The LLC resonant half bridge circuit may generally be more
reliable and cost eflective as compared to the conventional
tull bridge circuit for plasma generation. The LLC resonant
half bridge circuit may also yield higher power transier
clliciency, as compared to a conventional plasma generating
system using a full bridge circuit driving scheme. In a
conventional plasma generating system using a full bridge
circuit driving scheme, energy loss on the driving circuit
may be significant. The magnetic induction plasma systems
described herein may yield greater energy transier efliciency
from the power source to the plasma given that the LLC
resonant half bridge circuit driving scheme may require
significantly lower power to 1gnite and/or sustain the plasma
while yielding similar dissociation of the precursor gases.
Further, the magnetic induction plasma systems described
herein may allow for power adjustment from 0 W to about
1,000 W or higher. By adjusting the power output, the
dissociation rate of the precursor gases may be modulated to
achieve a desired composition of the plasma products. The
magnetic induction plasma systems described herein may
turther allow for a wide operational frequency range from
several ten kHz to several dozen MHz or more, and a wide
operational pressure range from dozens of mTorr to several
hundred Torr or more, under which a stable plasma may be
generated and sustained.

FIG. 1 shows a top plan view of one embodiment of a
processing system 100 of deposition, etching, baking, and
curing chambers according to embodiments. In the figure, a
pair of front opening unified pods (FOUPs) 102 supply
substrates of a variety of sizes that are received by robotic
arms 104 and placed into a low pressure holding area 106
before being placed into one of the substrate processing
chambers 108a-/, positioned 1n tandem sections 109a-c. A
second robotic arm 110 may be used to transport the
substrate waters from the holding area 106 to the substrate
processing chambers 108a-f and back. Each substrate pro-
cessing chamber 108a-f, can be outfitted to perform a
number of substrate processing operations imncluding the dry
etch processes described herein 1n addition to cyclical layer
deposition (CLD), atomic layer deposition (ALD), chemical
vapor deposition (CVD), physical vapor deposition (PVD),
etch, pre-clean, degas, orientation, and other substrate pro-
CEeSSes.

The substrate processing chambers 108a-f may include
one or more system components for depositing, annealing,
curing and/or etching a dielectric or metallic film on the
substrate waler. In one configuration, two pairs of the
processing chambers, e¢.g., 108¢-d and 108e-f, may be used
to deposit material on the substrate, and the third pair of
processing chambers, e¢.g., 108a-b, may be used to etch the
deposited material. In another configuration, all three pairs
of chambers, e.g., 108a-f, may be configured to etch a
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dielectric or metallic film on the substrate. Any one or more
of the processes described may be carried out in chamber(s)
separated from the fabrication system shown in different
embodiments. It will be appreciated that additional configu-
rations of deposition, etching, annealing, and curing cham-
bers for dielectric films are contemplated by system 100.

FIG. 2A shows a cross-sectional view of an exemplary
process chamber system 200 with partitioned plasma gen-
eration regions within the processing chamber. During film
ctching, e.g., titantum nitride, tantalum nitride, tungsten,
copper, cobalt, silicon, polysilicon, silicon oxide, silicon
nitride, silicon oxynitride, silicon oxycarbide, etc., a process
gas may be flowed into the first plasma region 215 through
a gas inlet assembly 205. A remote plasma system (RPS) 201
may optionally be included 1n the system, and may process
a first gas which then travels through gas inlet assembly 205.
The 1nlet assembly 205 may include two or more distinct gas
supply channels where the second channel (not shown) may
bypass the RPS 201, 11 included.

A cooling plate 203, faceplate 217, 10n suppressor 223,
showerhead 225, and a substrate support 265, having a
substrate 255 disposed thereon, are shown and may each be
included according to embodiments. The pedestal 265 may
have a heat exchange channel through which a heat
exchange fluid flows to control the temperature of the
substrate, which may be operated to heat and/or cool the
substrate or wafer during processing operations. The waler
support platter of the pedestal 265, which may comprise
aluminum, ceramic, or a combination thereof, may also be
resistively heated in order to achieve relatively high tem-
peratures, such as from up to or about 100° C. to above or
about 600° C., using an embedded resistive heater element.

The faceplate 217 may be pyramidal, conical, or of
another similar structure with a narrow top portion expand-
ing to a wide bottom portion. The faceplate 217 may
additionally be flat as shown and include a plurality of
through-channels used to distribute process gases. Plasma
generating gases and/or plasma excited species, depending
on use of the RPS 201, may pass through a plurality of holes,
shown in FIG. 2B, 1 faceplate 217 for a more uniform
delivery into the first plasma region 215.

Exemplary configurations may include having the gas
inlet assembly 205 open into a gas supply region 258
partitioned from the first plasma region 215 by faceplate 217
so that the gases/species flow through the holes 1n the
taceplate 217 into the first plasma region 2135. Structural and
operational features may be selected to prevent significant
backiflow of plasma from the first plasma region 215 back
into the supply region 258, gas ilet assembly 203, and fluid
supply system 210. The faceplate 217, or a conductive top
portion of the chamber, and showerhead 225 are shown with
an 1sulating ring 220 located between the features, which
allows an AC potential to be apphed to the faceplate 217
relative to showerhead 225 and/or 1on suppressor 223. The
insulating ring 220 may be positioned between the faceplate
217 and the showerhead 225 and/or 1on suppressor 223
enabhng a Capacmvely coupled plasma (CCP) to be formed
in the first plasma reglon A batlle (not shown) may addi-
tionally be located 1n the first plasma region 215, or other-
wise coupled with gas inlet assembly 203, to aff'ect the flow
of flmd into the region through gas ilet assembly 205.

The 10on suppressor 223 may comprise a plate or other
geometry that defines a plurality of apertures throughout the
structure that are configured to suppress the migration of
ionically-charged species out of the first plasma region 213
while allowing uncharged neutral or radical species to pass
through the 10n suppressor 223 1nto an activated gas delivery
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region between the suppressor and the showerhead. In
embodiments, the 10n suppressor 223 may comprise a per-
forated plate with a variety of aperture configurations. These
uncharged species may include highly reactive species that
are transported with less reactive carrier gas through the
apertures. As noted above, the migration of 1onic species
through the holes may be reduced, and 1n some instances
completely suppressed. Controlling the amount of 1onic
species passing through the 1on suppressor 223 may advan-
tageously provide increased control over the gas mixture
brought 1nto contact with the underlying waiter substrate,
which 1n turn may increase control of the deposition and/or
etch characteristics of the gas mixture. For example, adjust-
ments 1n the 1on concentration of the gas mixture can
significantly alter its etch selectivity, e.g., SINx:S10x etch
ratios, S1:S510x etch ratios, etc. In alternative embodiments
in which deposition 1s performed, it can also shift the
balance of conformal-to-flowable style depositions for
dielectric materials.

The plurality of apertures 1n the 1ion suppressor 223 may
be configured to control the passage of the activated gas, 1.¢.,
the 1onic, radical, and/or neutral species, through the 1on
suppressor 223. For example, the aspect ratio of the holes,
or the hole diameter to length, and/or the geometry of the
holes may be controlled so that the flow of 10onically-charged
species 1n the activated gas passing through the ion sup-
pressor 223 1s reduced. The holes 1n the 1on suppressor 223
may 1nclude a tapered portion that faces the plasma excita-
tion region 215, and a cylindrical portion that faces the
showerhead 225. The cylindrical portion may be shaped and
dimensioned to control the flow of 10nic species passing to
the showerhead 225. An adjustable electrical bias may also
be applied to the 1on suppressor 223 as an additional means
to control the flow of 1onic species through the suppressor.

The 10n suppressor 223 may function to reduce or elimi-
nate the amount of 1onically charged species traveling from
the plasma generation region to the substrate. Uncharged
neutral and radical species may still pass through the open-
ings 1n the ion suppressor to react with the substrate. It
should be noted that the complete elimination of ionically
charged species i1n the reaction region surrounding the
substrate may not be performed 1n embodiments. In certain
instances, 1onic species are mtended to reach the substrate 1n
order to perform the etch and/or deposition process. In these
instances, the 1on suppressor may help to control the con-
centration of 1onic species in the reaction region at a level
that assists the process.

Showerhead 225 in combination with 10n suppressor 223
may allow a plasma present 1n first plasma region 215 to
avold directly exciting gases 1n substrate processing region
233, while still allowing excited species to travel from
chamber plasma region 215 1nto substrate processing region
233. In this way, the chamber may be configured to prevent
the plasma from contacting a substrate 255 being etched.
This may advantageously protect a variety ol intricate
structures and films patterned on the substrate, which may be
damaged, dislocated, or otherwise warped it directly con-
tacted by a generated plasma. Additionally, when plasma 1s
allowed to contact the substrate or approach the substrate
level, the rate at which oxide species etch may increase.
Accordingly, 1 an exposed region of maternial 1s oxide, this
material may be further protected by maintaining the plasma
remotely from the substrate.

The processing system may further include a power
supply 240 electrically coupled with the processing chamber
to provide electric power to the faceplate 217, 1on suppressor
223, showerhead 225, and/or pedestal 265 to generate a
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plasma 1n the first plasma region 215 or processing region
233. The power supply may be configured to deliver an
adjustable amount of power to the chamber depending on
the process performed. Such a configuration may allow for
a tunable plasma to be used in the processes being per-
formed. Unlike a remote plasma unit, which 1s often pre-
sented with on or off functionality, a tunable plasma may be
configured to deliver a specific amount of power to the
plasma region 215. This 1n turn may allow development of
particular plasma characteristics such that precursors may be
dissociated 1n specific ways to enhance the etching profiles
produced by these precursors.

A plasma may be 1gmited either in chamber plasma region
215 above showerhead 225 or substrate processing region
233 below showerhead 225. Plasma may be present 1n
chamber plasma region 215 to produce the radical precur-
sors from an inflow of, for example, a fluorine-containing
precursor or other precursor. An AC voltage typically in the
radio frequency (RF) range may be applied between the
conductive top portion of the processing chamber, such as
taceplate 217, and showerhead 225 and/or 1ion suppressor
223 to 1gnite a plasma in chamber plasma region 215 during
deposition. An RF power supply may generate a high RF
frequency of 13.56 MHz but may also generate other fre-
quencies alone or i combination with the 13.56 MHz
frequency.

FIG. 2B shows a detailed view 253 of the features
allecting the processing gas distribution through faceplate
217. As shown 1n FIGS. 2A and 2B, faceplate 217, cooling
plate 203, and gas inlet assembly 205 intersect to define a
gas supply region 258 into which process gases may be
delivered from gas inlet 205. The gases may fill the gas
supply region 238 and flow to first plasma region 215
through apertures 259 in faceplate 217. The apertures 2359
may be configured to direct flow 1n a substantially unidi-
rectional manner such that process gases may flow 1nto
processing region 233, but may be partially or fully pre-
vented from backiflow into the gas supply region 238 after
traversing the faceplate 217.

The gas distribution assemblies such as showerhead 225
for use 1n the processing chamber section 200 may be
referred to as dual channel showerheads (DCSH) and are
additionally detailed 1n the embodiments described 1n FIG.
3. The dual channel showerhead may provide for etching
processes that allow for separation of etchants outside of the
processing region 233 to provide limited interaction with
chamber components and each other prior to being delivered
into the processing region.

The showerhead 225 may comprise an upper plate 214
and a lower plate 216. The plates may be coupled with one
another to define a volume 218 between the plates. The
coupling of the plates may be so as to provide first fluid
channels 219 through the upper and lower plates, and second
fluid channels 221 through the lower plate 216. The formed
channels may be configured to provide fluid access from the
volume 218 through the lower plate 216 via second fluid
channels 221 alone, and the first fluid channels 219 may be
fluidly 1solated from the volume 218 between the plates and
the second fluid channels 221. The volume 218 may be
fluidly accessible through a side of the gas distribution
assembly 225.

FI1G. 3 1s a bottom view of a showerhead 325 for use with
a processing chamber according to embodiments. Shower-
head 325 may correspond with the showerhead 225 shown
in FIG. 2A. Through-holes 365, which show a view of {first
fluid channels 219, may have a plurality of shapes and
configurations 1 order to control and affect the flow of
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precursors through the showerhead 225. Small holes 375,
which show a view of second fluid channels 221, may be
distributed substantially evenly over the surface of the
showerhead, even amongst the through-holes 365, and may
help to provide more even mixing of the precursors as they
exit the showerhead than other configurations.

FIGS. 4A-4C 1llustrate schematic top plan views of one
embodiment of a magnetic induction plasma system 400
which may be used or integrated in the processing chamber
200 described above. FIG. 4 A illustrates the magnetic induc-
tion plasma system 400 before a plasma may be generated
or ignited; FIG. 4B illustrates the magnetic induction plasma
system 400 during plasma 1gnition; and FIG. 4C 1illustrates
the magnetic induction plasma system 400 when a plasma
may be sustained by the magnetic induction plasma system
400. With reference to FIG. 4A, the magnetic induction
plasma system 400 may include a plasma source or dis-
charge tube 410 characterized by an annular cross-section,
and one or more magnetic elements 420a, 42056, 420¢, 4204
positioned around the plasma source 410. The plasma source
410 may be characterized by an annular shape, and may be
characterized by a substantially toroidal shape having a
toroidal axis 1 (shown as a dot in FIG. 4A) at the center of
the toroidal shape and extending normal to the plane shown
as FIG. 4A. As also shown in FIG. 4A, additional useful
references for ease of description may include a radial
direction 2 perpendicular to the toroidal axis 1, denoting a
direction extending radially outward from a central axis of
the plasma source 410, and an azimuthal direction 3, denot-
ing a rotational direction about the toroidal axis 1. A toroidal
extension or toroidal direction 4 may be defined as the
extension or direction of the plasma source 410 along which
a plasma current may be formed inside the plasma source
410 (as will be described 1n more detail below).

As shown 1n FIGS. 4D-4F, which schematically 1llustrate
side views of the magnetic element 420 before plasma
ignition, during plasma 1gmition, and during plasma main-
tenance, respectively. The magnetic elements 420 may each
form a closed loop. The magnetic element 420 may define a
hollow center 422 through which a portion of the plasma
source 410 may extend therethrough. The magnetic element
420 may include a magnetic body 424 that may define the
closed loop. The magnetic body 424 may be formed of
ferrite or other magnetizable materials. As also shown 1n
FIGS. 4D-4F, the magnetic induction plasma system 400
may further include a coil 430 (not shown 1n FIGS. 4A-4C)
wrapped around at least a portion of the magnetic body 424
of each magnetic element 420. Electrical energy may be
supplied to each coil 430 for generating a plasma 1nside the
plasma source 410. Specifically, the electrical energy sup-
plied to the coils 430 may generate a magnetic field mside
cach magnetic element 420, which may in turn induce an
clectric field E as shown in FIGS. 4A and 4D.

The plasma source 410 may be formed of non-conductive
materials or materials with very low or little conductivity,
such as dielectric materials, including, but not limited to,
ceramic, quartz, sapphire, etc. In some embodiments, the
plasma source 410 may be formed of conductive materials,
such as metals, including, but not limited to, aluminum,
stainless steel, etc., and the magnetic induction plasma
system 400 may further include one or more dielectric
sections or dielectric breaks 440 forming a section or
sections of the plasma source 410. With either configuration,
the plasma source 410 may not form a closed conductive
body, and the induced electric field E may increase to a
threshold value to 1gnite or 10nize a gas or gas mixture that
may be supplied into the plasma source 410, as shown 1n
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FIGS. 4B and 4E, to form a plasma. Once the plasma may
be 1gnited, at least a portion of the 1onized or charged plasma
products may circulate inside the plasma source 410 forming
a close-looped current 450, as shown in FIGS. 4C and 4F.
The coils 430 and the plasma current 450 may then operate
in a manner similar to how a primary coil and a secondary
coil of a transformer may operate. As electrical energy may
be supplied to the coils 430 continuously, the supplied
clectric energy may be transierred to the plasma current 450,
and a stable plasma may be sustained.

With reference to FIG. 4D, the magnetic body 424 may
include an outer surface 426 and an inner surface 428 each
of which may include a square shaped cross section. In some
embodiments, the outer surface 426 and the inner surface
428 may include other polygonal shaped cross sections,
circular, or oval cross sections, etc. Magnetic bodies 424
with circular or oval cross sections may contain substantially
all the magnetic flux generated 1nside the magnetic body 424
and limit or prevent leakage flux, thereby improving the
ciliciency of the magnetic induction plasma system 400,
whereas the magnetic flux generated by the coils 430 may
escape or leak at the corners of the magnetic bodies 424 with
polygonal cross sections. Nevertheless, the magnetic bodies
424 forming closed loops may generally offer higher eth-
ciency for the magnetic induction plasma system 400 as
compared to open magnetic bodies that do not form closed
loops because magnetic flux may not form a closed loop and
may escape without inducing an electrical field for gener-
ating plasma.

Although not shown 1n FIGS. 4A-4F, the plasma source
410 may include cross-sectional shapes similar to or difler-
ent from those of the magnetic eclement 420. In some
embodiments, the plasma source 410 may include inner and
outer surfaces that may include square or other polygonal
cross sections. In some embodiments, the plasma source 410
may 1include inner and outer surfaces that may include
circular or oval cross sections, and the plasma source 410
may be formed as a circular tube.

The magnetic elements 420 may be positioned around the
plasma source 410 at various locations or azimuthal angles.
FIGS. 4A-4C illustrate that the magnetic induction plasma
system 400 may include four magnetic elements 420. The
magnetic induction plasma system 400 may include more or
less than four magnetic elements 420, but may include at
least one magnetic element 420. The magnetic elements 420
may be positioned along the toroidal extension of the plasma
source 410 at an equal distance from each other such that the
azimuthal angle between any two adjacent magnetic ele-
ments 420 may be the same. For example, 1n the embodi-
ment shown 1n FIGS. 4A-4C, the magnetic induction plasma
system 400 may include four magnetic elements 420, and
any two adjacent magnetic elements 420 may be positioned
apart from each other by an azimuthal angle of about 90
degrees or by a distance of about a quarter of the toroidal
extension of the plasma source 410.

Depending on the number of magnetic elements 420 the
magnetic mduction plasma system 400 may include, the
azimuthal angle between any two adjacent magnetic ele-
ments 420 may be greater or less than 90 degrees, and the
distance between any two adjacent magnetic elements 420
may be greater or less than a quarter of the toroidal extension
of the plasma source 410. Although FIGS. 4A-4C illustrates
that the magnetic elements 420 may be spaced apart at an
equal distance or equal azimuthal angle, 1n some embodi-
ments, the magnetic elements 420 may be spaced apart at a
non-equal distance or non-equal azimuthal angle. In other
words, the distance between two adjacent magnetic elements
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420 along the toroidal extension of the plasma source 410 or
the azimuthal angle between the two adjacent magnetic
clements 420 may be different from the distance or azi-
muthal angle between another two adjacent magnetic ele-
ments 420. However, positioning the magnetic elements 420
at an equal distance or azimuthal angle may improve the
uniformity of the plasma products generated inside the
plasma source 410. Accordingly, in some embodiments,
regardless of the number of magnetic elements 420
included, the magnetic elements may be equidistantly
spaced about the plasma source 410.

Although only one dielectric section 440 1s shown 1n
FIGS. 4A-4C, the magnetic induction plasma system 400
may include more than one dielectric section 440. In some
embodiments, the magnetic induction plasma system 400
may 1nclude the same number of dielectric sections 440 as
magnetic elements 420. The multiple dielectric sections 440
may be positioned at an equal distance or non-equal dis-
tances along the toroidal extension of the plasma source 410.
In some embodiments, the magnetic induction plasma sys-
tem 400 may include more dielectric sections 440 than
magnetic elements 420. In the embodiment shown 1n FIGS.
4A-4C, each of the magnetic elements 420 may be posi-
tioned at a different azimuthal angle from the dielectric
section 440. In some embodiments, at least one of the
magnetic elements 420 may be positioned at the same
azimuthal angle, or aligned, with the dielectric section 440.
In the embodiments where the magnetic induction plasma
system 400 may include an equal number of magnetic
clements 420 and dielectric sections 440, each magnetic
clement 420 may be aligned with a dielectric section 440.

FIG. SA schematically illustrates a perspective view of an
embodiment of a magnetic induction plasma system 500
which may be used or integrated in the processing chamber
200 described above. The magnetic induction plasma system
500 may include a plasma source 510 defining a substan-
tially toroidal shape. Although not shown 1n FIG. SA, similar
references including toroidal axis, radial direction, azi-
muthal direction, and toroidal extension or direction as
shown 1 FIG. 4A, may be used for description of the
embodiment shown in FIG. 5A. Diflerent from the plasma
source 410 shown in FIGS. 4A-4C, which may include a
umiform or consistent width dimension along the toroidal
extension with the width dimension being measured along
the radial direction and a uniform and consistent height
dimension measured parallel to the toroidal axis, the plasma
source 510 may include varying width dimensions and/or
varying height dimensions along the toroidal extension.
Specifically, the plasma source 510 may include one or more
first sections 515 which may be or include metal sections
and one or more second sections 540 which may be or may
include dielectric sections or dielectric breaks. The first
sections 513 and the second sections 540 may be arranged
in an alternating manner such that the first sections 515 may
be electrically 1solated or insulated from each other by the
second sections 540. The first sections 5135 and the second
sections 540 may include different width and height dimen-
sions from each other.

As shown in FIG. SA, the first sections 515 may each
include a first width dimension, and the second sections 540
may each include a second width dimension that may be less
than the first width dimension. The first sections 515 may
cach further include a first height dimension, and the second
section 340 may each further include a second height
dimension that may be less than the first height dimension.
Accordingly, the second sections 540 may define one or
more annular recesses, each of which may be configured to
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receive therein at least a portion of a magnetic element 520,
as shown 1n FIG. 5B, which illustrates a cross sectional view
of the second section 540 viewed along line SB-5B of FIG.
5A. Each second section 540 may further include a pair of
flanges 542a, 5425 (shown in FIG. 5SA) at opposite ends of
cach second section 540. The flanges 542 may be configured
to couple each second section 540 with two adjacent first
sections 515. For example, each of the first sections 515 may
be configured with inward lips or flanges at the opposite
ends. The flanges 542 of the second sections 540 and the
inward lips or tlanges of the first sections 515 may be
coupled with each other via bolts, screws, glue, adhesive,
welding, brazing, and any suitable bonding or coupling
mechanism.

As shown 1n FIGS. 5A and 5B, the second sections 540
may each be formed as a cylindrical body. The magnetic
clements 520 may also each be formed as a cylindrical body,
which may be positioned concentrically with the second
section 540. In some embodiments, the second sections 540
and/or the magnetic elements 320 may be formed with
cross-sectional shapes that may be polygonal. As discussed
above, circular or oval shaped magnetic elements 520 may
limit magnetic flux leakage, thereby improving the eth-
ciency of the magnetic induction plasma system 500.
Accordingly, the magnetic elements may be characterized
by elliptical cross-sections 1n some embodiments.

FIG. 5C illustrates a cross sectional view of the first
section 515 viewed along line 5C-5C of FIG. 5A. As shown
in FIG. 5C, the first sections 515 may each include a
rectangular or square cross section. The first sections 515
may each include a first wall or inner wall 512, a second wall
or outer wall 514, a third wall or upper wall 516, and a fourth
wall or lower wall 518. The width dimension of each first
section 515 may be defined by the distance between the
outer surfaces of the inner and outer walls 512, 514. The
height dimension of each first section 5135 may be defined by
the distance between the outer surfaces of the upper and
lower walls 516, 518.

In some embodiments, at least the height dimension of
cach first section 515 may be configured to be greater than
or about the outer diameter of each magnetic element 520
such that when the magnetic elements 520 may be posi-
tioned around the second sections 540 and at least partially
received within the annular recesses defined by the second
sections 540, the magnetic element 520 may not extend
above the upper wall 516 or below the lower wall 518 of the
first section 515. With this configuration, when the magnetic
induction plasma system 500 may be integrated in the
chamber system 200, the upper walls 516 and the lower
walls 518 of the first sections 515 may provide support or
load-bearing surfaces for supporting other chamber compo-
nents and/or the magnetic induction plasma system 500,
while the magnetic elements 520 may not contact or bear the
weight of adjacent or nearby chamber components of the
chamber system 200. Further, because the magnetic ele-
ments 520 may not extend beyond the upper and lower walls
516, 518, the upper-most and the lower-most surface profiles
of the magnetic induction plasma system 500 may be
substantially defined by the upper and lower walls 516, 518,
respectively, which may be substantially flat. This profile
may improve the compatibility of the magnetic induction
plasma system 500 with the chamber system 200 given that
several components may include a plate-like structure or
planar surface, such as the faceplate 217, the 1on suppressor
223, the showerhead 225, and so on.

Although not shown 1n FIG. SA, the first sections 315 may
include apertures formed in the upper walls 516 for intro-
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ducing or flowing one or more precursors into the plasma
source 510 for generating a plasma therein. The first sections
515 may further include apertures formed 1n the lower walls
518 for releasing at least portions of the plasma products
generated inside the plasma source 510. In some embodi-
ments, the first sections 515 may not include the upper and
lower walls 516, 518. The plasma source 510 may be formed
in part by the mner and outer walls 512, 514 and 1n part by
the adjacent plates or surfaces of the chamber components of
the chamber system 200.

As can be seen from the description of the embodiments
shown 1n FIGS. 4A-4F and FIGS. 5A-5C, the term toroidal
or toroidal shape used herein 1s not limited to a torus or
toroidal shape with uniform or consistent width and/or
height dimensions along the extension of the toroidal shape.
Further, 1n some embodiments, the toroidal shape may
include consistent or similar cross sections along the exten-
sion of the toroidal shape, such as the embodiments shown
in FIGS. 4A-4F, while 1n some embodiments, the toroidal
shape may include varying cross sections along the exten-
sion of the toroidal shape, such as the embodiments shown
in FIGS. 5A-5C. Moreover, in some embodiments, the
toroidal extension may define a substantially circular shape,
such as the toroidal extension of the embodiment shown 1n
FI1G. 4A, while 1n some embodiments, the toroidal extension
may define a multi-sided shape which may include one or
more arcs and one or more substantially straight segments.
For example, the first sections 515 of the embodiments
shown 1n FIGS. 5A-5C may be or include arcuate extensions
while the second sections 540 may be or include substan-
tially straight extensions. Furthermore, in some embodi-
ments, the plasma source may not include arcuate sections
and both the first and/or second sections may be or include
substantially straight extensions. Accordingly, the plasma
source may include all arcuate sections, all substantially
straight sections, or a combination thereof.

FIG. 6A 1illustrates select components of an exemplary
process chamber system 600, which may include a magnetic
induction plasma system 610. The process chamber system
600 may further include a gas mlet assembly 605 and a
faceplate 617 positioned upstream of the magnetic induction
plasma system 610 and a gas distribution component 615
positioned downstream of the magnetic induction plasma
system 610. The process chamber system 600 may include
additional components downstream of the gas distribution
component 615 similar to those described with reference to
FIG. 2A, such as one or more gas distribution components,
various components defining a substrate processing region,
a substrate support, and so on, which are not 1llustrated 1n
FIG. 6A, but will be readily appreciated to be encompassed
within a chamber imncorporating the components 1llustrated.

During film etching, deposition, and/or other semicon-
ductor processes, one or more precursors may be tlowed
through the gas inlet assembly 603 1nto a gas supply region
658. The precursors may include any gas or fluid that may
be useful for semiconductor processing, including, but not
limited to, process gases, treatment gases, carrier gases, or
any suitable gas or gas mixtures for semiconductor process-
ing. The faceplate 617 may facilitate uniform distribution of
the precursors from the gas supply region 6358 into the
magnetic induction plasma system 610. Similar to the face-
plate 217 described above with reference to FIGS. 2A and
2B, the faceplate 617 may include apertures 6359 configured
to direct tlow 1n a substantially umidirectional manner such
that the precursors may flow ito the magnetic induction
plasma system 610, but may be partially or fully prevented
from backtlow into the gas supply region 658 after travers-
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ing the faceplate 617. As shown 1 FIG. 6A, the magnetic
induction plasma system 610 may define one or more tlow
passages 612 that may be aligned with or intersect only
portions or select areas or regions ol the faceplate 617.
Accordingly, in some embodiments, the apertures 659 may
be formed only 1n select areas of the faceplate 617 corre-
sponding to the defined tlow passages 612, as shown 1n FIG.
6A.

In some embodiments, the apertures 639 may be formed
outside the select areas, such as across or throughout a
central area or substantially the entire surface area of the
taceplate 617. To direct the flow of the precursors nto the
magnetic induction plasma system 610 or to limit or prevent
the flow of the precursors outside the magnetic induction
plasma system 610, the process chamber 600 may optionally
include an intermediate plate 614. The intermediate plate
614 may be positioned 1n an abutting relationship with the
taceplate 617 downstream of the faceplate 617 to prevent or
block the flow of the precursors through the apertures 6359
formed outside the select areas. The intermediate plate 614
may include one or more cutouts 616 that may be aligned
with the openings of the flow passages 612 defined by the
magnetic induction plasma system 610 to allow the precur-
sors to flow 1nto the magnetic induction plasma system 610.
In some embodiments, intermediate plate 614 may facilitate
retrofit operations with faceplate designs that define a more
uniform distribution of apertures across the component,
although intermediate plate 614 may be omitted 1n some
embodiments.

Although a single plate 1s 1llustrated 1n FIG. 6 A, the gas
distribution component 615 may include one or more plates
that may control distribution of the plasma products gener-
ated inside the magnetic induction plasma system 610
downstream into the substrate processing region. In some
embodiments, the gas distribution component 615 may
include an 10n suppressor, similar to the 1on suppressor 223
described above with reference to FIG. 2, configured to
control the passage of the activated gas from the magnetic
induction plasma system 610. The activated gas may include
ionic, radical, and/or neutral species, which may also be
collectively referred to as plasma products. Similar to the 10n
suppressor 223, the 1on suppressor of the gas distribution
component 615 may include a perforated plate with a variety
ol aperture configurations to control or suppress the migra-
tion of charged particles or species out of the magnetic
induction plasma system 610 while allowing uncharged
neutral or radical species to pass through the ion suppressor.
In some embodiments, the gas distribution component 6135
may further include a gas distribution assembly or shower-
head, similar to the gas distribution assembly or dual chan-
nel showerhead 225 described above with reference to FIG.
2. The showerhead of the gas distribution component 6135
may allow for separation of various precursors outside of the
substrate processing region prior to being delivered into the
processing region while facilitating even mixing of the
precursors as they exit the showerhead.

Although both an 10on suppressor and a showerhead are
described herein as exemplary parts that the gas distribution
component 615 may include, 1n some embodiments, the gas
distribution component 615 may include only one of the 10n
suppressor or the showerhead but not the other, or may not
include either of the ion suppressor or the showerhead. In
some embodiments, the gas distribution component 615 may
include other suitable plates or gas distribution control
mechanisms. In some embodiments, the gas distribution
component 615 may not include any gas distribution control
mechanism. In some embodiments, the process chamber
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system 600 may not include the gas distribution component
615 at all. In other words, the plasma generated 1nside the
magnetic induction plasma system 610 may be distributed
directly into the substrate processing region without passing
through any distribution control or filtering mechanism.
With reference to FIGS. 6B and 6C, the magnetic mnduc-
tion plasma system 610 will be described 1n more detail.
FIG. 6B shows a top perspective view ol the magnetic
induction plasma system 610, and FIG. 6C shows a cross
sectional view of the magnetic induction plasma system 610
viewed along line 6C-6C 1n FIG. 6B. Although not shown in
FIGS. 6B and 6C, similar references including toroidal axis,
radial direction, azimuthal direction, and toroidal extension
or direction as shown 1n FIG. 4A, may be used for descrip-
tion of the embodiment shown 1n FIGS. 6B and 6C. One
difference between the embodiments shown 1n FIGS. 6B and
6C and the embodiments shown in FIGS. 4A-5C may
include that the magnetic induction plasma system 610 may
include two plasma sources: a first plasma source 620 and a
second plasma source 630. In some embodiments, first
plasma source 620 may be, or include any of the character-
istics of, the previously described sources, and may incor-
porate second plasma source 630 within an mner annular
radius of the first plasma source 620. The first plasma source
620 and the second plasma source 630 may define two
toroidal shapes having a common center and a common
toroidal axis. The second plasma source 630 may be posi-
tioned radially inward from the first plasma source 620.
Accordingly, the first plasma source 620 may also be
he outer plasma source 620, and the second

referred to as t
plasma source 630 may also be referred to as the inner
plasma source 630.

With reference to FIG. 6B, each of the first and second
plasma sources 620, 630 may include multiple sections. The
first plasma source 620 may include one or more first section
622, which may be or include conductive sections, and one
or more second sections 624, which may be or may include
dielectric sections or dielectric breaks, arranged 1n an alter-
nating manner such that the first sections 622 may be
clectrically i1solated or insulated from each other by the
second sections 624. The first sections 622 and the second
sections 624 may be fluidly coupled with each other to
define a first plasma circulation channel. At least a portion
of 1onized or charged species of the plasma products may
circulate inside the first plasma circulation channel and may
pass through at least a portion or portions of the first sections
622 and/or a portion or portions of the second section 624
along the toroidal extension of the first plasma source 620.

Similarly, the second plasma source 630 may include one
or more third sections 632, which may be or may include
conductive sections, and one or more fourth sections 634,
which may be or may include dielectric sections or dielectric
breaks, arranged 1n an alternating manner such that the third
sections 632 may be electrically 1solated or msulated from
cach other by the fourth sections 634. The third sections 632
and the fourth sections 634 may be fluidly coupled with each
other to define a second plasma circulation channel. At least
a portion of the 1onized or other charged species of the
plasma products generated 1nside the second plasma source
630 may circulate through at least a portion or portions of
the third sections 632 and/or a portion or portions of the
fourth section 634 along the toroidal extension of the second
plasma source 630.

In the embodiments shown 1n FIG. 6B, the first plasma
source 620 may 1nclude four first sections 622 and four
second sections 624, and the second plasma source 630 may
include two third sections 632 and two fourth sections 634.
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Although four first sections 622 and four second sections
624 are shown for the first plasma source 620, the first
plasma source 620 may include more or fewer of the first
sections 622 and/or the second sections 624. Similarly,
although two third sections 632 and two fourth sections 634
are shown for the second plasma source 630, the second
plasma source 630 may include more or fewer of the third
sections 632 and/or the fourth sections 634.

The four second sections 624 of the first plasma source
620 may be positioned at an equal distance from each other
along the toroidal extension of the first plasma source 620
and may be positioned apart from each other by an azimuthal
angle of about 90 degrees. The two fourth sections 634 of the
second plasma source 630 may also be positioned at an equal
distance from each other along the toroidal extension of the
second plasma source 630 and may be positioned apart from
cach other by an azimuthal angle of about 180 degrees.
Additionally, each of the fourth sections 634 of the second
plasma source 630 may be positioned at an azimuthal angle
different from each of the second sections 624 of the first
plasma source 620. The fourth sections 634 of the second
plasma source 630 may be positioned at an azimuthal angle
different from the azimuthal angles of the two nearby second
sections 624 of the first plasma source 620 by about 45
degrees, or any other suitable angle. Positioning the second
sections 624 of the first plasma source 620 and the fourth
sections 634 of the second plasma source 630 at different
azimuthal angles may limit interference or arcing issues
between the first sections 622 of the first plasma source 620
and the third sections 632 of the second plasma source 630,
especially when high voltages may be applied during the
plasma 1gmition period.

The extension of each first section 622 and the extension
of each third section 632 along the toroidal extension of the
respective first and second plasma sources 620, 630 may be
characterized by an arcuate shape, while the extension of
cach second section 624 and the extension of each fourth
section 634 may be substantially straight. With respect to the
first plasma source 620, a ratio of the extension of each first
section 622 to the extension of each second section 624 may
be greater than or about 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1,
4.5:1, 5:1, 6:1,7:1, 8:1, 9:1, 10:1, or greater. With respect to
the second plasma source 630, a ratio of the extension of
cach third section 632 to the extension of each fourth section
634 may be greater than or about 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1,
4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, or greater. The greater the
ratio of the extension of the arcuate first sections 622 to the
substantially straight second sections 624, or the greater the
rat1o of the extension of the arcuate third sections 632 to the
substantially straight fourth sections 634, the closer the
circulation channel inside the first and second plasma
sources 620, 630 for the plasma current may resemble a
circle to facilitate the circulation of the plasma current, and
the more stable and uniform the plasma generated therein
may be. However, the extension of the second and/or fourth
sections 624, 634 may be maintained above at least a
threshold value such that potential arc faults between the
first and/or third sections 622, 632 coupled with either side
of a second or fourth section 624, 634 or other arcing 1ssues
that may be caused by the high voltage especially during
plasma igmition may be limited or eliminated.

Similar to the second sections 340 of the plasma source
510 shown 1n FIGS. 5A and 5B, each of the second and/or
fourth sections 624, 634 may define an annular recess for
receiving therein at least a portion of a magnetic element
(not shown 1n FIGS. 6B and 6C). As discussed above, the
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magnetic elements may be received therein, the magnetic
clements may not contact the upper and lower chamber
components when the magnetic induction plasma system
610 may be integrated 1n the chamber system 600. Coils may
be wrapped around at least a portion of each magnetic
clement. Flectrical energy may be supplied to the coils for
generating a plasma inside each of the first plasma source
620 and the second plasma source 630. Once the plasma
may be generated 1nside the first and second plasma sources
620, 630, at least a portion of the 1onized or charged species
of the plasma products may circulate inside the first and
second plasma channels under the induced electric field
along the toroidal extension of the first and second plasma
sources 620, 630, while the neutral or radicals species of the
products, as well as a portion of the 1omized or charged
species, may flow through the flow passages 612 into the
substrate processing region.

With reference to FIG. 6B and using the first sections 622
and the second sections 624 of the first plasma source 620
as an example, the coupling between the first sections 622
and the second sections 624 and the coupling between the
third sections 632 and the fourth sections 634 will be
described 1n more detail. Each of the second sections 624
may include a hollow cylindrical body 640 oriented along
the toroidal extension of the first plasma source 620 and two
flanges 642a, 642b configured at the opposite ends of the
hollow cylindrical body 640. Each of the first sections 622
may include an arcuate tubular body 644 extending parallel
to the toroidal axis of the first plasma source 620. The
arcuate tubular body 644 may define one or more of the tlow
passages 612 described above with reference to FIG. 6A.
The flow passages 612 may include a substantially consis-
tent width dimension. Accordingly, the opening of each first
section 622 for the precursors to flow into the first plasma
source 620 and the opeming of each first section 622 for
releasing the plasma products generated may include sub-
stantially the same width dimensions as the arcuate tubular
body 644, with the width dimensions measured along the
radial direction.

The first section 622 may include an arcuate first or inner
wall 646, an arcuate second or outer wall 648, and two
sidewalls 6350 (only one labeled in FIG. 6B) connecting the
ends of the imnner wall 646 and the outer wall 648. The 1nner
wall 646, outer wall 648, and sidewalls 650 together may
form the tubular body 644. Each of the sidewalls 650 may
include an aperture 652 formed therethrough that may be
aligned with the hollow centers of the cylindrical bodies 640
of the adjacent second sections 624 such that fluid commu-
nication between the first sections 622 and the second
sections 624 may be established. In some embodiments, the
sidewalls 630 of the first section 622 may include flanged or
outwardly tapered portions 654 to provide suflicient surface
area for coupling with the flanges 642 of the second sections
624. The sidewalls 650 of the first section 622 and the
flanges 642 of the second sections 624 may be coupled with
cach other via bolts, screws, glue, adhesive, welding, braz-
ing, and any suitable bonding or coupling mechanism. To
prevent gas leakage, the exterior surface of each sidewall
650 may be formed with an annular recess 656 (shown 1n
FIG. 6C) for receiving a sealing ring, such as an O-ring or
any other suitable sealing elements, which may be pressed
against the flanges 642 to create a seal therebetween when
the first sections 622 and the second sections 624 may be
coupled with each other.

With reference to FIG. 6C, each of the first sections 622
may include an imner width dimension which may be defined
as the distance between the 1mnner surfaces of the inner wall
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646 and the outer wall 648 along the radial direction. Each
ol the second sections 624 may include an iner diameter
which may be defined as the inner diameter of the cylindrical
body 640. The inner width dimension of each first section
622 may be substantially the same or similar to the inner
diameter of each second section 624 such that the flow of the
ionized or charged species of the plasma products inside the
first plasma source 620 may be facilitated to maintain the
plasma generated therein. Each of the first sections 622 may
include a height dimension which may be defined as the
extension of the first sections 622 parallel to the toroidal
axis. The height dimension of each first section 622 may be
similar to or greater than the mnner width dimension of each
first section 622 or the imner diameter of each second
sections 624. A ratio of the height dimension of each first
section 622 to the mner width dimension thereof or to the
mner diameter of each second section 624 may be greater
than or about 1:1, 1.5:1, 2:1, 2.5:1 3:1, or greater. Each of the
third sections 632 of the second plasma source 630 may be
configured with an mner width dimension and a height
dimension the same as or similar to those of the first sections
622 of the first plasma source 620, and the fourth sections
634 of the second plasma source 630 may be configured with
an mner diameter the same as or similar to the inner diameter
of the second sections 624 of the first plasma source 620.
Consequently, the height dimension of each third section
632 may be similar to or greater than the inner width
dimension of each third section 632 or the inner diameter of
cach fourth sections 634 of the second plasma source 630.
A ratio of the height dimension of each third section 632 to
the inner width dimension thereot or to the mner diameter of
cach fourth section 634 may be greater than or about 1:1,
1.5:1, 2:1, 2.5:1 3:1, or greater.

Configuring the height dimension of each first and/or third
sections 622, 632 greater than the mner width dimension
thereol, and thus greater than the mner diameter of each
second and/or fourth sections 624, 634, may not only create
the annular recesses around the second and/or fourth sec-
tions 624, 634 for receiving the magnetic elements therein,
but may also help to sustain the plasma current circulating
through the cylindrical bodies 640 and the first and third
sections 622, 632 along the toroidal extension of the first and
second plasma sources 620, 630. This may be partly because
the plasma current, as well as the electrical field driving the
current, may be maintained at a distance away from the
taceplate 617 above, and at a distance away from the gas
distribution component 615 below, each of which may be
constructed of metals and may affect the plasma current tlow
or the electrical field.

In some embodiments, the magnetic induction plasma
system 610 may further include dielectric ring members
660a, 660b (see FIG. 6B) coupled to the opposite, e.g., top
and bottom, rims of the arcuate tubular bodies 644. The
dielectric ring members 660a, 66056 may electrically 1solate
or 1insulate the first and third sections 622, 632 {from other
metal chamber components adjacent the magnetic induction
plasma system 610 when the magnetic induction plasma
system 610 may be incorporated to the chamber system 600.
The dielectric ing members 660a, 6606 may further elec-
trically 1solate or insulate the first sections 622 from each
other and may 1nsulate the third sections 632 from each other
when the magnetic imduction plasma system 610 may be
incorporated to the chamber system 600 and may contact the
other metal components of the chamber system 600. The
dielectric ring members 660a coupled to the top of the
arcuate tubular bodies 644 may define a first planar sup-
porting surface and may be configured to support at least one
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of the gas 1nlet assembly 605 or the faceplate 617 at the first
planar supporting surface when the magnetic induction
plasma system 610 may be incorporated into the chamber
system 600. The dielectric ring members 6605 coupled to
the bottom of the arcuate tubular bodies 644 may define a
second planar supporting surface, and the magnetic mnduc-
tion plasma system 610 may be supported by the gas
distribution component 6135 at the second planar supporting
surface.

With further reference to FIGS. 6B and 6C, the first
plasma source 620 may include one or more monitoring
windows or apertures 662 configured at the outer walls 648
of the first sections 622. Although not shown, the second
plasma source 630 may also include one or more monitoring
windows or apertures configured at the walls of the third
sections 632. Optical, electrical, chemical, or other suitable
probes or monitoring mechanisms may be coupled to the
monitoring window 662 for monitoring the properties of the
plasma generated 1nside the first and second plasma sources
620, 630. The data collected by the monitoring mechanism
may be utilized to set up a closed-loop or feedback control
for adjusting automatically the power, current, etc., supplied
to the coils to generate a stable plasma with desired prop-
erties and/or composition of the plasma products generated.

FIGS. 7TA-7TC show schematic views of an exemplary
plasma system in operation according to embodiments of the
present technology. FIG. 7A schematically illustrates a top
view ol a process chamber system 700 incorporating a
magnetic induction plasma system 710 similar to that
described above with reference to FIG. 5. FIG. 7B sche-
matically illustrates a cross sectional view of a process
chamber system 7006 incorporating a magnetic induction
plasma system 7106 as a direct plasma source. FIG. 7C
schematically illustrates a cross sectional view of a process
chamber system 700c¢ incorporating a magnetic imnduction
plasma system 710 as a remote plasma source.

With reference to FIG. 7B, the magnetic induction plasma
system 7106 may be positioned directly above the substrate
processing region 720 within which a substrate may be
supported by a pedestal 730. One or more precursors may be
flowed 1nto the magnetic induction plasma system 7105 via
a gas 1nlet assembly 705. A power source 715 may be
coupled with the magnetic induction plasma system 7105 for
supplying electrical energy to the magnetic induction plasma
system 7106 for generating a plasma from the precursors.
The magnetic induction plasma system 7106 may include a
plasma source that may be configured with an open bottom
such that the plasma products, including ionic, radical,
and/or neutral species, as well as any carrier gases, may be
flowed directly onto the substrate to be processed. The
plasma products exiting the magnetic induction plasma
system 7105 may diffuse mnto a cone shaped volume such
that by the time the plasma products may reach the pedestal
730, the plasma products may be diffused onto the entire
surface area of the substrate to be processed.

Depending on the distance between the magnetic induc-
tion plasma system 7105 and the pedestal 730, the size of the
substrate to be processed, and other factors, the magnetic
induction plasma system 71056 may be configured with a
proper width dimension such that full coverage of the
substrate to be processed by the plasma products may be
ensured and waste of precursors for generating the plasma
products may be minimized. As discussed above, the width
dimension may be defined as the distance between the inner
surfaces of the inner and outer walls, denoted as W 1n FIG.
7A. In some embodiments, the width dimension may be
greater than or about 10% of the radius of the process
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chamber 700, denoted as R 1n FIG. 7A. In some embodi-
ments, the width dimension may be greater than or about
20%, 30%, 40%, 50%, 60%, 70%, 80%, or more of the
radius R of the process chamber 700.

With reference to FI1G. 7C, the magnetic induction plasma
system 710c¢ may be integrated into the chamber system
700¢ as a remote plasma source. The chamber system 700c¢
may include an 10n suppressor 740 configured to control the
passage of the plasma products generated. Similar to the ion
suppressor 223 discussed above with reference to FIG. 2, the
ion suppressor 740 may include a perforated plate with a
variety of aperture configurations to control or suppress the
migration of charged particles or species out of the magnetic
induction plasma system 710c¢ while allowing uncharged
neutral or radical species to pass through the 1on suppressor
740. The chamber system 700 may further include a gas
distribution assembly or showerhead 750, similar to the gas
distribution assembly or dual channel showerhead 2235
described above with reference to FIG. 2. The showerhead
750 may facilitate even distribution of the neutral or radical
species 1nto the processing region 720 and onto the substrate
to be processed. In some embodiments, the showerhead 750
may further allow for separation of various precursors
outside of the substrate processing region 720 prior to being
delivered into the processing region while facilitating even
mixing ol the precursors as they exit the showerhead 750.
Given that the 1on suppressor 740 and/or the showerhead
750 may facilitate even distribution of select plasma prod-
ucts 1into the processing region 720 and onto the substrate,
the magnetic induction plasma system 710¢ may include a
width dimension that may be similar to or less than the width
dimension of the magnetic induction plasma system 71056
when configured as a direct plasma source. In various
embodiments, the width dimension of the magnetic induc-
tion plasma system 710¢ may be greater than or about 20%,
30%, 40%, 50%, 60%, 70%, 80%, or more of the radius R
of the process chamber 700.

FIGS. 8A-8C show schematic views of an exemplary
plasma system 1n operation according to embodiments of the
present technology. FIG. 8A schematically illustrates a top
view ol a process chamber system 800 incorporating a
magnetic induction plasma system 810 similar to the mag-
netic induction plasma system 610 described above with
reference to FIG. 6. FIG. 8B schematically illustrates a cross
sectional view of a process chamber system 8006 incorpo-
rating a magnetic induction plasma system 81056 as a direct
plasma source. FIG. 8C schematically illustrates a cross
sectional view of a process chamber system 800¢ incorpo-
rating a magnetic induction plasma system 810c¢ as a remote
plasma source.

The configuration of the process chamber systems 8005,
800c may be similar to those of the process chamber systems
7000, 700c, respectively, except that the magnetic induction
plasma system 8105, 810c may each include two toroidal
shaped plasma sources: an inner plasma source 812 and an
outer plasma source 814. The plasma products generated by
the 1nner plasma sources 8125, 812¢ may be flowed onto a
circular central region of the substrate to be processed, and
the plasma products generated by the outer plasma sources
814H, 814¢ may be flowed onto an annular or outer region
of the substrate surrounding and overlapping with at least a
peripheral portion of the central region.

To ensure full coverage of the substrate by the plasma
products released from the mner and outer plasma sources
812, 814, the width dimensions of the inner and outer plasma
sources 812, 814 may each be greater than or about 5%,
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the radius of the process chamber 800. In the embodiment of
FIG. 8C, because the 1on suppressor 840 and/or the show-
erhead 850 may facilitate even distribution of the plasma
products onto the substrate, the width dimensions of the
inner and outer plasma sources 812¢, 814¢ may be less than
the width dimensions of the inner and outer plasma sources
812bH, 814b of the embodiment of FIG. 8B. While the plasma
sources 812, 814 may be configured with greater width
dimensions to ensure full coverage of the substrate by the
plasma products, the width dimensions may be kept under
certain values such that the interference between the mag-
netic fields generated by the plasma currents inside the inner
and outer plasma sources 812, 814 may be mimmized. To
further limit such interference, a sutlicient distance between
the 1nner and outer plasma sources 812, 814 may also be
maintained. In some embodiments, the inner and outer
plasma sources 812, 814 may each be configured with a
width dimension between about 10% and about 30% of the
radius of the process chamber 800. The distance between the
inner and outer plasma sources 812, 814 may be maintained
at about 50% or more of the width dimension of the plasma
sources 812, 814. Although the inner and outer plasma
sources 812, 814 are 1llustrated to have substantially similar
width dimensions, the mner and outer plasma sources 812,
814 may have dissimilar or different width dimensions.
The various embodiments of the magnetic induction
plasma systems described above may utilize an LLC reso-
nant half bridge circuit drniving scheme. Conventional
plasma generating systems may typically utilize a full bridge
circuit driving scheme. The LLC resonant half bridge circuit
may generally be more reliable and cost effective as com-
pared to the conventional full bridge circuit for plasma
generation. The LLC resonant half bridge circuit may yield
higher power transfer efliciency for the magnetic induction
plasma systems described herein. Compared to a conven-
tional plasma generating system using full bridge circuit
driving scheme, the LLC resonant half bridge circuit driving
scheme for the magnetic induction plasma systems may
require significantly lower power to 1gnite and/or sustain the
plasma while vyield similar dissociation of the precursor
gases. For example, the magnetic induction plasma system
as described herein may require a plasma 1gnition power of
about 1,000 W, 800 W, 600 W, 400 W, 200 W, or less, and
may require a plasma sustaining power of only Y2, 14, or less
of the 1gnition power. In contrast, a plasma generating
system utilizing full bridge circuit driving scheme may
require 10,000 W or more for plasma 1gnition and/or sus-
taining partly due to energy loss on the driving circuitry.
Further, conventional plasma generating systems utilizing
a full bridge circuit driving scheme may allow for limited
power adjustment. The magnetic induction plasma systems
utilizing an LLC resonant half bridge circuit driving scheme
may allow for power adjustment from 0 W to about 1,000 W
or higher. For example, the power may be modulated by
adjusting the driving voltage, current, and/or frequency.
Increasing the driving voltage and/or the current may
increase the power output, while decreasing the driving
frequency may increase the power output. Generally, higher
power output may vield a higher dissociation rate of the
precursor gases. By adjusting the power output, the disso-
ciation rate of the precursor gases may be modulated to
achieve desired composition of the plasma products.
Moreover, 1n the embodiments where the magnetic induc-
tion plasma system may include an inner toroidal plasma
source and an outer toroidal plasma source, different levels
of power may be supplied to the mmner and outer toroidal
plasma sources. For example, a relatively higher power,
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such as about 300 W to about 1,000 W may be supplied to
the outer toroidal plasma source, whereas a relatively lower
power, such as about 100 W to about 600 W may be supplied
to the inner toroidal plasma source. Although diflerent levels
of power may be supplied to the mner and outer toroidal
plasma sources, the driving frequencies for the inner and
outer toroidal plasma sources may match such that the
induced electrical fields 1n or near the mner and outer
toroidal plasma sources may not cancel each other out.
The magnetic induction plasma systems described herein
may operate to generate a plasma at a wide frequency range
from about 50 kHz to about 500 MHz. However, a lower
frequency may vyield higher power transier efliciency
because high frequency may lead to power loss in the
magnetic elements. In some embodiments, the LLC resonant
half bridge circuit may supply a current to the plurality of
coils at a frequency between about 100 kHz and about 20
MHz, between about 200 kHz and about 10 MHz, between
about 400 kHz and about 1 MHz, or any suitable range. The
magnetic induction plasma systems may also operate at a
very wide pressure range. The operational pressure inside
the toroidal plasma sources may be maintained between
about 1 mTorr and about 500 Torr, or even higher pressure.
The precursor may be flowed at various tlow rates 1nto the
plasma source such that a pressure within the plasma source
may be maintained between about 1 mTorr and about 500
Torr, or between about 10 mTorr and about 300 Torr, or
between about 15 mTorr and about 200 Torr, or any suitable
range. Very stable plasmas may be generated and maintained
by the magnetic induction plasma systems described herein
at the various power levels, frequency ranges, and/or the
pressure ranges. This may be in part because once the
plasma may be 1gnited, the coil and the plasma current may

operate 1n a manner similar to the primary and secondary
coils of a transformer to sustain the plasma generated 1n a
stable state.

In the preceding description, for the purposes ol expla-
nation, numerous details have been set forth in order to
provide an understanding of various embodiments of the
present technology. It will be apparent to one skilled 1n the
art, however, that certain embodiments may be practiced
without some of these details, or with additional details.

Having disclosed several embodiments, it will be recog-
nized by those of skill 1n the art that various modifications,
alternative constructions, and equivalents may be used with-
out departing from the spirit of the embodiments. Addition-
ally, a number of well-known processes and elements have
not been described 1n order to avoid unnecessarily obscuring,
the present technology. Accordingly, the above description
should not be taken as limiting the scope of the technology.
Additionally, methods or processes may be described as
sequential or 1 steps, but it 1s to be understood that the
operations may be performed concurrently, or in different
orders than listed.

Where a range of values 1s provided, 1t 1s understood that
cach mtervening value, to the smallest fraction of the unit of
the lower limit, unless the context clearly dictates otherwise,
between the upper and lower limits of that range 1s also
specifically disclosed. Any narrower range between any
stated values or unstated intervening values 1n a stated range
and any other stated or intervening value 1n that stated range
1s encompassed. The upper and lower limits of those smaller
ranges may independently be included or excluded in the
range, and each range where either, neither, or both limaits are
included 1n the smaller ranges 1s also encompassed within
the technology, subject to any specifically excluded limait in
the stated range. Where the stated range includes one or both
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of the limits, ranges excluding either or both of those
included limits are also included.

As used herein and in the appended claims, the singular
forms “a”, “an”, and “the” include plural references unless
the context clearly dictates otherwise. Thus, for example,
reference to “‘a precursor” includes a plurality of such
precursors, and reference to “the layer” includes reference to
one or more layers and equivalents thereof known to those
skilled 1n the art, and so forth.

Also, the words “comprise(s)”’, “comprising’, “‘con-
tain(s)”, “containing’”’, “include(s)”, and “including”, when
used 1n this specification and in the following claims, are
intended to specily the presence of stated features, integers,
components, or operations, but they do not preclude the
presence or addition of one or more other features, integers,
components, operations, acts, or groups.

The mvention claimed 1s:

1. A magnetic induction plasma system, comprising:

a {irst plasma source including a plurality of first sections
and a plurality of second sections fluidly coupled with
cach other such that at least a portion of plasma
products generated inside the first plasma source cir-
culate through at least one of the plurality of first
sections and at least one of the plurality of second
sections 1nside the first plasma source, wherein each of
the plurality of second sections comprises a dielectric
material, wherein the plurality of first sections and the
plurality of second sections are arranged in an alter-
nating manner such that the plurality of first sections
are electrically insulated from each other at least 1n part
by the plurality of second sections;

a plurality of first magnetic elements, wherein each of the
plurality of first magnetic elements defines a closed
loop and 1s positioned around one of the plurality of
second sections; and

wherein the first plasma source defines a first toroidal
shape, the first toroidal shape having a first toroidal
extension and a first toroidal axis perpendicular to the

first toroidal extension, wherein each of the plurality of

first sections includes a first dimension parallel to the

first toroidal axis, wherein each of the plurality of
second sections includes a second dimension parallel to
the first toroidal axis, wherein the first dimension 1s
greater than the second dimension such that the plu-
rality of second sections defines a plurality of annular
recesses, wherein each of the plurality of annular
recesses 1s conligured to receive one of the plurality of
first magnetic elements such that the magnetic induc-
tion plasma system is integratable into a semiconductor
processing chamber having a gas inlet assembly dis-
posed upstream of the magnetic induction plasma sys-
tem, wherein the plurality of first sections 1s configured
to support a planar surface of the gas inlet assembly,
and wherein the plurality of annular recesses 1s con-
figured to allow the plurality of magnetic elements to
be disposed below the planar surface of the gas inlet
assembly without contacting the planar surface of the
gas 1nlet assembly.

2. The magnetic induction plasma system of claim 1,
wherein each of the plurality of first sections comprises a
first opening and a second opening, wherein each of the
plurality of first sections and the corresponding first and
second openings define a flow passage parallel to the first
toroidal axis, wherein the first opening of each of the
plurality of first sections 1s configured to receive a precursor
into the corresponding first section and generate the plasma

products inside the first plasma source, wherein the second
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opening of each of the plurality of first sections provides
access for the generated plasma products to flow from the
corresponding first section.

3. The magnetic induction plasma system of claim 1,
turther comprising a plurality of first dielectric ring mem-
bers each positioned at a top rim of one first section of the
plurality of first sections and a plurality of second dielectric
ring members each positioned at a bottom rim of one first
section of the plurality of first sections such that the plurality
of first sections are electrically insulated from each other
when the magnetic induction plasma system 1s integrated
into the semiconductor processing chamber and positioned
between metal components of the semiconductor processing,
chamber along the first toroidal axis.

4. The magnetic induction plasma system of claim 3,
wherein the semiconductor processing chamber further
comprises a gas distribution assembly, wherein the gas
distribution assembly 1s positioned downstream of the mag-
netic induction plasma system, wherein the plurality of first
dielectric ring members defines a first planar supporting
surface and 1s configured to support the planar surface of the
gas inlet assembly, and wherein the plurality of second
dielectric ring members defines a second planar supporting
surface and 1s configured to be supported by a planar surface
of the gas distribution assembly.

5. The magnetic induction plasma system of claim 1,
wherein each of the plurality of first sections includes an
arcuate tubular body.

6. The magnetic induction plasma system of claim 1,
wherein each of the plurality of second sections comprises
a pairr of flanges configured at two opposite ends of each
second section and configured to couple each second section
with two adjacent first sections.

7. The magnetic induction plasma system of claim 1,
wherein each of the plurality of first sections includes a first
extension along the first toroidal extension, wherein each of
the plurality of second sections includes a second extension
along the first toroidal extension, a ratio of the first extension
to the second extension 1s between about 10:1 and about 2:1
such that circulation of at least a portion of plasma products
inside the first plasma source 1s facilitated.

8. The magnetic induction plasma system of claim 1,
turther comprising:

a second plasma source defining a second toroidal shape,
the second toroidal shape having a second toroidal
extension and a second toroidal axis perpendicular to
the second toroidal extension, the second toroidal axis
aligned with the first toroidal axis, wherein the second
plasma source 1s positioned radially mward from the
first plasma source, the second plasma source com-
prises a third section and a fourth section, at least one
of the third section or the fourth section comprises a
dielectric material; and

at least one second magnetic element defining a closed
loop and positioned around at least one of the third
section or the fourth section.

9. The magnetic induction plasma system of claim 8,
wherein the at least one second magnetic element 1s posi-
tioned at an azimuthal angle different from an azimuthal
angle of each of the plurality of first magnetic elements such
that interference between an electric field generated by each
of the plurality of first magnetic elements and an electric
field generated by the at least one second magnetic element
1s reduced.

10. The magnetic induction plasma system of claim 8,
wherein the first plasma source and the second plasma
source are configured such that the plasma products exiting
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the first plasma source diffuses onto a first region of a
substrate, wherein the first region defines a substantially
annular shape, wherein the plasma products exiting the
second plasma source diffuses onto a second region of the
substrate, wherein the second region defines a substantially
circular shape, and the first region and the second region
overlap.

11. The magnetic induction plasma system of claim 8,
further comprising:

a plurality of electrically coupled first coils each being
configured around at least a portion of each of the
plurality of first magnetic elements; and

a second coil being configured around at least a portion of
the at least one second magnetic element, wherein the
magnetic mnduction plasma system 1s driven by an LLC
resonant half bridge circuit, wherein:

the LLC resonant half bridge circuit 1s configured to
supply a first current to the plurality of electrically
coupled first coils at a frequency that matches a fre-
quency at which the LLC resonant half bridge circuit 1s
configured to supply a second current to the second
coil.

12. The magnetic induction plasma system of claim 11,
wherein the LLC resonant half bridge circuit 1s configured to
supply the first current and the second current at a frequency
between about 100 kHz and about 20 MHz.

13. The magnetic induction plasma system of claim 11,
wherein the LLC resonant half bridge circuit 1s configured to
supply a first power to the plurality of electrically coupled
first coils and to supply a second power to the second coil,
the first power being greater than the second power.

14. A semiconductor processing chamber, comprising;:

a magnetic mduction plasma system, wherein the mag-

netic induction plasma system comprises:

a first plasma source having a first toroidal shape
having a first toroidal axis, the first plasma source
defining a first annular recess of the first toroidal
shape; and

a first magnetic element forming a closed loop and
positioned around a portion of the first plasma
source, at least a portion of the first magnetic element
being received within the first annular recess,
wherein:
the first plasma source includes a first wall and a

second wall at least 1n part defining a flow passage
parallel to the first toroidal axis, wherein a top rim
of the first wall and a top rim of the second wall
at least 1n part define a first opeming configured to
receive an unexcited precursor into the first
plasma source configured to generate plasma
products therefrom, wherein a bottom rim of the
first wall and a bottom rim of the second wall
further at least in part define a second opening
providing access for the generated plasma prod-
ucts to tlow from the first plasma source, wherein
the first and second walls define a width of the first
plasma source along a radial direction of the first
toroidal shape, wherein the top rims of the first and
second walls define a width of the first opening
along the radial direction of the first toroidal
shape, wherein the bottom rims of the first and
second walls define a width of the second opening
along the radial direction of the first toroidal
shape, and wherein the first opening, the second
opening, and the {first plasma source are charac-
terized by the same width along the radial direc-
tion of the first toroidal shape.
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15. The semiconductor processing chamber of claim 14,
wherein the magnetic induction plasma system further com-
Prises:

a second plasma source having a second toroidal shape
and coaxially aligned with the first plasma source, the
second plasma source positioned radially inward from
the first plasma source, the second plasma source
defining a second annular recess of the second toroidal
shape; and

a second magnetic element forming a closed loop and
positioned around a portion of the second plasma
source, at least a portion of the second magnetic
clement being recerved within the second annular
recess, wherein:

the second plasma source includes a third opening con-
figured to receive the unexcited precursor into the
second plasma source configured to generate plasma
products therefrom and a fourth opening providing
access for the generated plasma products to tlow from
the second plasma source, wherein the third opening,
the fourth opening, and the second plasma source are
characterized by the same width measured along a
radial direction of the second toroidal shape.

16. The semiconductor processing chamber of claim 15,
wherein the first magnetic element 1s positioned at a first
azimuthal angle, and the second magnetic element 1s posi-
tioned at a second azimuthal angle different from the first
azimuthal angle.

17. The semiconductor processing chamber of claim 14,
turther comprises a gas inlet assembly having a planar
surface and disposed upstream of the magnetic induction
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plasma system, wherein the magnetic induction plasma
system 1s configured to support the planar surface of the gas
inlet assembly.

18. The semiconductor processing chamber of claim 17,
wherein the gas inlet assembly comprises a first gas delivery
member and a second gas delivery member, wherein the
second gas delivery member defines the planar surface of the
gas inlet assembly to be supported by the magnetic induction
plasma system, wherein the first gas delivery member com-
prises a first flange surrounding a protruding portion of the
first gas delivery member, wherein the second gas delivery
member comprises a second flange surrounding a recess
defined by the second gas delivery member, wherein the
recess 1s configured to receive the protruding portion,
wherein the second flange 1s configured to support the first
flange to define a gas supply region between the first gas
delivery member and the second gas delivery member when
the protruding portion 1s received 1n the recess, and wherein
the gas supply region provides fluid access to the first plasma
source for the unexcited precursor.

19. The semiconductor processing chamber of claim 14,
further comprises a gas distribution assembly having a
planar surface and disposed downstream of the magnetic
induction plasma system, wherein the magnetic induction
plasma system 1s configured to be supported by the planar
surface of the gas distribution assembly.

20. The semiconductor processing chamber of claim 19,
turther comprises a dielectric ring member positioned at the
bottom rims of the first and second walls and contacting the
planar surface of the gas distribution assembly.
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