12 United States Patent

US010592524B2

(10) Patent No.:

US 10,592,524 B2

Carr et al 45) Date of Patent: Mar. 17, 2020
(54) SYSTEMS AND METHODS FOR SHARING (56) References Cited
CONTEXT AMONG STANDALONE |
APPLICATIONS U.S. PATENT DOCUMENTS
| 6,519,571 B1* 2/2003 Guheen GO6Q 30/02
(71) Applicant: HYLAND SWITZERLAND SARL, 705/14.66
Geneva (CH) 9,292,482 B1* 3/2016 Thiesen GO6F 16/93
2002/0147880 Al* 10/2002 Wang Baldonado
(72) Inventors: Brian Christopher Carr, Shawnee, KS GO6E 17/30864
US); Cynthia Diane Anschutz T
(, Y ’ 2004/0093323 Al* 5/2004 Bluhm GO6F 17/30011
Overland Park, KS (US); Shane Evan 2008/0028366 Al* 1/2008 Wengcocovvvvvevee.. GOG6F 8/20
Blazek, Shawnee, KS (US); Kristopher 717/106
John Andrew Haneyj Olathe, KS (US)j 2009/0049053 Al* 2/2009 Barker GO6F 16/93
Donald Emmett Lampert, Roeland 2009/0248476 AL* 10/2009 Trinhccooooerree.. GO6Q 10/107
s 705/7.19
Park, KS (US); Dylan Christopher
’ ’ 2011/0053672 Al* 3/2011 Gagner GO7F 17/32
Smith, Overland Park, KS (US) e PP
‘ 2011/0055912 Al* 3/2011 Fusart GO6F 17/30893
(73) Assignee: HYLAND SWITZERLAND SARL, 726/8
Geneva (CH) 2012/0179707 Al* 7/2012 Hobbscccovvvvvrene.. GOGF 9/445
707/769
| | o | 2012/0330924 Al* 12/2012 Rajan GOG6F 16/24542
(*) Notice: Subject to any disclaimer, the term of this 707/7 14
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 624 days. Primary Examiner — Moustala M Meky
Assistant Examiner — Elizabeth Kassa
(21) Appl. No.: 15/133,058 (74) Attorney, Agent, or Firm — Medley, Behrens &
Lewis, LLC
(22) Filed: Apr. 19, 2016 (57) ABSTRACT
_ L A system and methods for sharing data among multiple
(65) Prior Publication Data standalone applications include: recerving, by a framework
S 2017/0302725 Al Oct. 19, 2017 executing on a computing device, at least one keyword
based upon a user input on a display of one of a plurality of
standalone applications loaded via the framework; and stor-
(1) Int. Cl. ing the at least one 1n a context object, wherein the context
GO6E 16/25 (2019.01) object 1s accessible by each of the plurality of standalone
(52) U.S. CL applications for sharing the at least one keyword. One or
CPC .o, GO6F 16/256 (2019.01) more operations may be further performed based on the
(58) Field of Classification Search shared context object and results including content related or
@) S GO6F 17/30566 ~ matching with the context object may be gathered from
USPC 709/203 multiple standalone applications loaded 1n the framework.

See application file for complete search history. 20 Claims, 6 Drawing Sheets

RECEIVE DATA FROM FIRST APP IN FRAMEWORK 605
STORE DATA IN CONTEXT OBJECT 610
RAISE EVENT INDICATING CONTEXT OBJECT STATUS TO OTHER APPS 615
PERFORM OPERATIONS BY OTHER APPS 620
r——— " "~~~ -~ " /- -0 |
|
I GATHER OPERATION RESULTS '_/525

US 10,592,524 B2
Page 2

(56)

2013/0117376
2013/0325891
2014/0101117
2014/0281870
2015/0142850
2015/0370769
2016/0132608
2016/0134583

2017/0076046

References Cited

U.S. PATENT DOCUM]
Al* 5/2013 Filman
Al* 12/2013 Masood
Al* 4/2014 Uzzaman
Al* 9/2014 Vogel
Al* 5/2015 Hakusui ..
Al* 12/2015 Pereira Filho
Al* 5/2016 Rathod
Al* 5/2016 Kumar
Al* 3/2017 Barnes

* cited by examiner

iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiii

tttttttttttttt

iiiiiiiiiiiiiiiiiiii

iiiiiiiiii

ttttttttttttttt

tttttttttttttttttttt

tttttttttttttttttt

tttttttttt

GOO6F 17/2288

709/205

G06Q 10/10

707/769

GO6F 16/122

707/694

GO6F 17/246

715/220

GOOF 17/30867

707/777

GOOF 16/93

726/28

GOO6F 16/9535

707/722

HO4L 51/36

709/206

GO6F 19/321

[oI

US 10,592,524 B2

-
-
~

qot L e0v |

SIrAl

ddy
\&
-~
=
o
'
b
W
7> A
72
— _ 0l
) qocl e0cg |
- orT =T
M. AOWaN 108[qQO 1X81U0D
>

[T YJomdwe.

0| SOIASP 1USI[D)

001

U.S. Patent

US 10,592,524 B2

Sheet 2 of 6

Mar. 17, 2020

U.S. Patent

¢ Il

0cc
eaJe Ae|dsip uoneoldde

1eoljddy sa||
uonedddy sjuawnoao(]

olledlddy [eaoiddy 9210AU|

(wayl 10919S)

abedawouy/ -] .@ “« >

lasmolg YJomawie.

592,524 B2

2

US 10

Sheet 3 of 6

Mar. 17, 2020

U.S. Patent

=0 Ws HEL et

pgasn Gy

§L02 ‘08 Ty

adsn L1 +#8S

S48 We HY L Ay

zd3sn gy’

SLOZ ‘v) ARW

asn 184l

G102 ‘Pl e
31%0 30I0AN

RS 8016¢€

b MEREN HOIOAN

3Al{ JOPUSA

GLOZ 1 BN

219 A0I0ANI

20¢ cellce

H SN S DI0AN

INO- JOPUBA

S08 W HE L Qe

SiE Ws HiPL dUE

L HES0 %

5102 ‘22 gy

asn 00 ¢Sy

=2 Ws HEL de

S|IE]le(] 2910AU|

iraivetstyniririnkihivaesreetririririntmhleeeesrrmirtetririrrink et et bt riirinin- ket e iy
™

 © U HE|dsnere:s
@ EEE
®

[]

1=

G102 b2 1e
31¥C1 30I0AN

aﬂ St Lvs

H Jdi s A 310AN

93l | JOPUIA

GL0Z "i2 e
31¥330I0AN

u._wqd.m a0l

H A SN JOI0AN

OM] JOPUSA

GLOZ vE BN
31¥0 30I0AN

= oove | () pejooley
b SBNON B0IOAN] e POACIACY

3UQ 10PpUdA | © Buipuag

15

00€ _ -

dde|enoiddaslonuysbedswoy; ﬂ_ @ &~ >

J9SMO.g MIOMBWE.

US 10,592,524 B2

Sheet 4 of 6

Mar. 17, 2020

ot © 0 B
(O] I[®@[=:]=] |
%) @

U.S. Patent

00°0F

000

0G°Ob

0089 LG 1LP-¥-0004

Hols |l
- gasuadx Joniniy

b0 Letd

811S-1:0
Lo 10et0ig

e
0G°09
00°Ql
000G

00 LO-FEC 1-X-0008

Hels | o
- sasuadx 3 108lnig

OFC 1L 2P9

BUS-U0
210311 128D

g

e

2-008 1 PEXD
SPOOLy PAYSILY
000EY8L

I

B0 QU
X | U
1WNOWY sUi7

JuSa|] SEM

Uodizosan H
JIN0O3Y 0

u0oIdI0sar]
"ON BUT
[E10] &ui
Xe | sl
Ny 8UiT

aliaig SHM

UORdI0Ss] 1D
1020 5

HoNdINsag
0N SUIT

€10] 8UIT

XE | &l
JLNOWIY BT
80U LUN
Alend

‘ON HEd
vondinse o
NI 15

‘ON SUIT

S|iBla(] SOI0AU]

X [@]—]

GOV

v Ol

L18G1 § [BIOL 9VI0AU]

L1790 XE] J2U10

GO0'8G1L] IR0 QNG

E .l- . l

E . Il
00°8b ¢
-008LT1XD

Buljooloy

- 8H00

{BARI |
-sasuadxy

108i0ud

AGE"
-sasuadxg
19aiay

SPOon

paysIuL

= o

aul aulT

SOE WE Hii (dF

2 wasn &

ASN L1851

00V

S0E WG HFl ik

zuasn g

- Sie iz 1.) ()

S 00058

S0E NS HiL GOE

1 H3SN

5107 ‘e ady

dsn 00°c4y

GrOLEPY

) A gt

- OL0L208

GooErBl

JUNEIY
| 19

s

U0 WIO2UN
19i0ad

apg

-tIO UIO2IUN
13901034

uadiosaq)

GLOZ ‘P11 BN
31V 2010AN

ct0icd
H3EWON IDI0ANI

N0 IOPUBA

G1OZ ‘v¢ BN
310 20IDANI

GLvS
HIVINN 3DIDAN!

99I1] | JOPUDA

GLOZ L2 Iei
31V0 3DI0ANI

QG101

e FHNNN 2 310AN!

1IN0 JOPUIA

A3V 2010ANE

©OO

pajoslsy
paAoIddy
bBuipuad

ddejenciddeasioaui/abedawioy;/ . .@, Cm —>

JasSMOoIg MJOMBUIBI

Q00F

00'C

00°0F

0083145 L-9-0004

Halelce
- sasuadx] oaloid

GRG1IEYS

US 10,592,524 B2

8118-U0
U300IUN 1281054

& N0 HOANAA,

&
0009
004Gl
ATER LY
\& 0010-bEZ £-X-000€
S He sy
-] - sesuacx 1080 g
\f
N
W
=
= G1S
—
L
—
g
I~ UoLg
\ o
S
=
qoLG

U.S. Patent

HO4 SNOILNAN m

G102z ‘2

MIOAL 10 JUSWISIE]S

MHOM JO INJWELVIS

21O | 8ul

XE| 8u

1LNOWIY BulT

BB SHM

uonduosseq 1o
009V "0

voiduosan
ON 2U17

1210 | 8L
Xe] aur]
UNOWY 28U

lslus|3 SHM

tonduosac

NOILOFTIOO 8V JdO1S

| Joy
(d19383

Hd Al

o .
@EE DO

LE'BE1 | |FIO] B3I0AUY

Xe | B

00°8¢1 | IB10L gng

GOk

-dely

00 24v

G Ol

Buljooiay
- 8000

B
~sasuadys
1nalorg
A0QE™
-gasuadxy

yoslorg

ST alalely
paysiuly

aweg | e uonduosag
SEM Hioid 15

DLOLLGS

L A 0

Ov0LZYo

000E$81

UNOIDY
18

CTE:
~U0 LLIOSIN
paloig

-

s
U0 IO
afoid

O

uonduoasag SUHY

S102 ¥1 el
310 30I0AN:

ct0ic

H = ANNEN = 3 IOAN

INO- JOPUDA

S1L0T vE el
31 %0 3OIOAN:

GPLiv
H AN 3DI0AM!

991 | JOPUDA

G102 L2 BN
3140 3DI0AN:

G40

H FHRCGN O 0AN

OM] JOpUDA

LW FO0AN:

pajosley

0,
O panocuddy
©

Buipuag

JOSMOUE] YIOMBLLIE]

US 10,592,524 B2

Sheet 6 of 6

Mar. 17, 2020

U.S. Patent

0¢9

G119

019

G09

SddV HdH10 A9 SNOILVHIdO INHOJdd3d

SddV HdH10 O1 SNL1VLS 103rdO LXdLNOD DNILVOIANI LNJAF JSIvY

103rd0O LX3dLNOO NI V1VA JHOLS

AHOMIINVHA NI ddV 1SHId WOHH V1vA JAIFO03Y

US 10,592,524 B2

1

SYSTEMS AND METHODS FOR SHARING
CONTEXT AMONG STANDALONE
APPLICATIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

None.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

None.

REFERENCE TO SEQUENTIAL LISTING, ETC.

None.

BACKGROUND

1. Technical Field

The present disclosure relates to data sharing among
multiple standalone applications, and more particularly, to
performing operations on the multiple standalone applica-
tions based on a common set of data without specific
know-how of each application’s storage mechanisms.

2. Description of the Related Art

A user may want to access related or complementary data
stored 1n multiple sources (e.g., databases), and access to
such data may be through applications having access to the
desired data. Typically, access to the desired data i1s being
limited to certain portions thereof.

For example, higher education systems utilize multiple
applications with corresponding databases to store or house
student data. A student’s application for admission may be
stored 1n an admission database and accessed through an
admission application or module, and a student’s financial
aid mmformation may be stored 1n a financial aid database and
accessed through a financial aid application or module. In
the course of evaluating a student for admission to a par-
ticular educational system, admissions’ personnel may want
to access a particular student’s application for admission,
essay responses, financial records and social media contri-
butions.

In the healthcare industry, medical information may be
stored 1n separate databases, depending upon the type of
service and/or where the services are performed. For
example, a patient’s medical records may be stored within a
doctor’s oflice medical database, his’her medical 1maging
records may be stored within a hospital’s radiology record
database, and his/her laboratory records may be stored
within a medical laboratory database. In the course of
diagnosing a patient, a medical provider, such as a doctor,
may need access to the various test reports and records from
different databases to get a complete picture of the patient’s
health and medical history.

In the above and other industries, some current systems
would perform separate searches on each of the appropnate
databases. For example, in higher education systems, sepa-
rate searches may be performed 1n the admissions database,
financial aid database, and each social media site of interest
for content relevant to a particular student or applicant. In
medical systems, a physician may perform separate searches
in a radiological database, laboratory database and medical

10

15

20

25

30

35

40

45

50

55

60

65

2

records database for files associated with a particular patient
name or identification number.

In other current systems, the databases are programmati-
cally tied together such that the precise storage location of
desired information relating to a particular mput 1s known
automatically. In such cases, only sources that are program-
matically tied together will contribute search results or other
outputs, thereby resulting in current systems needing pro-
grams which allow communications between unrelated data-
bases.

Accordingly, there 1s a need for a system for automatically
searching modules and applications for relevant and desired
data and information without having to programmatically
identify the specific sources or precise locations of the data
storage, or to perform separate searches on each of the
desired sources.

SUMMARY

A system and methods for sharing data among multiple
standalone applications are disclosed.

In one example embodiment, a method for sharing data
among multiple standalone applications 1includes receiving,
by a framework executing on a computing device, at least
one keyword based upon a user input on a display of one of
a plurality of standalone applications loaded via the frame-
work; and storing the at least one keyword and the 1dentifier
in a context object, wherein the context object 1s accessible
by each of the plurality of standalone applications for
sharing the at least one keyword.

In a second example embodiment, a method for gathering
related content from multiple standalone applications based
on a shared set of data includes receiving, by a framework
executing on a computing device, at least one keyword
based upon a user mput on a display of one of a plurality of
standalone applications loaded via the framework; and stor-
ing the at least one keyword 1n a context object. The method
further includes broadcasting an event to the other of the
plurality of standalone applications, the event indicative of
a status of the context object; and receiving a result of an
operation performed by at least one of the other of the
plurality of standalone applications, the result including one
or more assets associated with the other of the plurality of
standalone applications and related to the at least one
keyword.

Other embodiments, objects, features and advantages of
the disclosure will become apparent to those skilled 1n the art
from the detailed description, the accompanying drawings
and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages
ol the present disclosure, and the manner of attaining them,
will become more apparent and will be better understood by
reference to the following description of example embodi-
ments taken 1n conjunction with the accompanying draw-
ings. Like reference numerals are used to indicate the same
clement throughout the specification.

FIG. 1 1s a block diagram of one example embodiment of
communications within a system for establishing and shar-
ing a common set of data among multiple standalone appli-
cations loaded 1n a framework.

FIG. 2 shows a home page screenshot of the framework
based on FIG. 1 and according to an actual embodiment.

FIG. 3 shows a screenshot view of a selected standalone
application 1n FIG. 2.

US 10,592,524 B2

3

FIGS. 4-5 show screenshot views of example displays
when content has been identified to be selected by a user
from the selected standalone application in FIG. 3.

FIG. 6 shows one example flowchart of a method for
enabling sharing of data among multiple standalone appli-
cations in the framework.

DETAILED DESCRIPTION OF THE DRAWINGS

The {following description and drawings illustrate
example embodiments sufliciently to enable those skilled 1n
the art to practice the present disclosure. It 1s to be under-
stood that the disclosure 1s not limited to the details of
construction and the arrangement of components set forth 1n
the following description or 1llustrated in the drawings. The
disclosure 1s capable of other embodiments and of being
practiced or of being carried out in various ways. For
example, other embodiments may incorporate structural,
chronological, electrical, process, and other changes.
Examples merely typily possible variations. Individual com-
ponents and Ifunctions are optional unless explicitly
required, and the sequence of operations may vary. Portions
and features of some embodiments may be included 1n or
substituted for those of others. The scope of the application
encompasses the appended claims and all available equiva-
lents. The following description 1s, therefore, not to be taken
in a limited sense, and the scope of the present disclosure 1s
defined by the appended claims.

Also, 1t 1s to be understood that the phraseology and
terminology used herein 1s for the purpose of description and
should not be regarded as limiting. The use herein of
“including,” “comprising,” or “having” and variations
thereol 1s meant to encompass the 1tems listed thereaiter and
equivalents thereof as well as additional items. Unless
limited otherwise, the terms “connected,” “coupled,” and
“mounted,” and variations thereof herein are used broadly
and encompass direct and indirect connections, couplings,
and mountings. In addition, the terms “connected” and
“coupled” and variations thereof are not restricted to physi-
cal or mechanical connections or couplings. Further, the
terms “a” and “an” herein do not denote a limitation of
quantity, but rather denote the presence of at least one of the
referenced item.

It will be further understood that each block of the
diagrams, and combinations of blocks 1n the diagrams,
respectively, may be mmplemented by computer program
instructions. These computer program instructions may be
loaded onto a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions which
execute on the computer or other programmable data pro-
cessing apparatus may create means for implementing the
functionality of each block of the diagrams or combinations
of blocks 1n the diagrams discussed 1n detail in the descrip-
tions below.

These computer program instructions may also be stored
in a non-transitory computer-readable memory that may
direct a computer or other programmable data processing
apparatus to function 1n a particular manner, such that the
instructions stored 1n the computer-readable memory pro-
duce an article of manufacture including an instruction
means that implements the function specified in the block or
blocks. The computer program instructions may also be
loaded onto a computer or other programmable data pro-
cessing apparatus to cause a series ol operational steps to be
performed on the computer or other programmable appara-
tus to produce a computer implemented process such that the

10

15

20

25

30

35

40

45

50

55

60

65

4

instructions that execute on the computer or other program-
mable apparatus implement the function specified in the
block or blocks.

Accordingly, the blocks of the diagrams support combi-
nations of means for performing the specified functions,
combinations of steps for performing the specified functions
and program instruction means for performing the specified
functions. It will also be understood that each block of the
diagrams, and combinations of blocks 1n the diagrams, can
be implemented by special purpose hardware-based com-
puter systems that perform the specified functions or steps or
combinations of special purpose hardware and computer
instructions.

Disclosed are example systems and methods for sharing a
common set of data among multiple standalone applications
bound 1n a single framework 1n the form of a context object
maintained 1n the framework.

As will be used herein, the term “context object” refers to
a storage feature associated with a framework of the present
application for storing a common set of data for sharing
among multiple standalone applications. The common set of
data may be based on a user-selected content from one of
multiple standalone applications loaded in the framework. A
context object includes a set of values (1.e., a set of key-
words) based on an asset associated with one standalone
application 1n the framework. An event indicating the con-
text object 1s communicated to the other standalone appli-
cations in the framework. The other standalone applications
in the framework may perform operations based on the
received event. How the use of a context object solves the
abovementioned problems will be discussed 1n greater detail
below.

FIG. 1 1s a block diagram of one example embodiment of
communications within a system 100 for establishing and
sharing a common set of data among multiple standalone
applications loaded in a framework. System 100 includes a
client device 105 having a memory 110 and a framework
115. Framework 1135 1ncludes at least two applications 120aq
and 12056; a context object 125; and a notification module
130. An application 1207 operating independently from the
framework may be loaded to or connected with framework
115 at a later instance. While applications 120aq and 1205
may be depicted as executing within framework 113, each of
applications 120a and 1206 may be standalone and can
execute remotely of framework 115. For purposes of dis-
cussion, applications 120a, 1205 and 1202 are collectively
referred herein as standalone applications. Each standalone
application may have a corresponding data source 140,
labeled data source 140a, 1405, and 140» for applications
120a, 12056, and 1202 respectively. FIG. 1 shows that each
application has a corresponding data source 140; however, 1t
may be apparent in the art that any of standalone applica-
tions 120a, 1205, and 1207 may not have a corresponding
data source.

Client device 105 may be any computing device. In one
example embodiment, client device 105 may be, for
example, a personal computer or a workstation computer.
Chient device 105 may include an input device (e.g., a
keyboard), a processor, and a memory 110. Memory 110
may be, for example, a random access memory (RAM), a
read-only memory (ROM), and/or a non-volatile random
access memory (NVRAM). Client device 105 may further
include a mass data storage device, such as a hard drive,
CD-ROM and/or DVD umnits. While memory 110 1s depicted
to be contained in client device 105, 1n another example
embodiment, memory 110 may be caching memory or a
session memory of the framework. In yet another aspect,

US 10,592,524 B2

S

memory 110 may be a storage mechanism remote to client
device 105, such as an application server. A location and
configuration ol memory 110 1s immaterial, provided 1t 1s
communicatively coupled to framework 115. In one aspect,
context object 125 1s disposed 1n memory 110.

Client device 105 includes at least one control unit such
as, for example, a processor (not shown) that controls its
operation(s). In some example aspects, client device 1035
may be any computing device that 1s portable, handheld or
pocket-sized such as, for example, a mobile device (e.g., a
cellular telephone or a smart phone); a handheld computer;
a personal digital assistant (PDA); a notebook computer; a
netbook; a tablet computer; or any other remote computing,
device, such as a special-purpose remote computing device
(e.g., an electronic or e-book reader).

Framework 115 1s an application in which a plurality of
standalone applications 120a, 1205, and 1202 1s executed.
Framework 115 includes one or more program instructions
for performing operations detailed below. In one example
embodiment, framework 115 may also include functional
units or modules launched upon execution of framework 115
on client device 105, such as notifications module 130. In
one aspect, at least one of standalone applications 120a,
12056, and 12072 may be a module of framework 115.

Framework 115 includes a module for recognizing or
interpreting web content such as a web browser (see FIG. 2).
Web content may be a web page, an 1mage, a video, and the
like. Accordingly, framework 115 may be able to commu-
nicate with a web server for the web content. Framework
115 may further include a module for recognizing or inter-
preting web code or program script. Said modules may be
executed once triggered or 1dentified for execution by one or
more program instructions on framework 115.

Framework 115 may be an application local to or for
native execution on client device 105. Alternatively, frame-
work 115 may be an application executed via client device
105. Functionalities that are native to client device 105 such
as local file system access may be extended to each of
standalone applications 120q, 1205, and 120z via frame-
work 115. Framework 115 provides a communication layer
common among standalone applications 120aq, 1205, and
12072. Framework 1135 includes one or more program
instructions thereon to send and receive data from any of
standalone applications 120a, 1205, and 120z.

Still on FIG. 1, at least one of standalone applications
120a, 1205, and 1207 may be an application local or for
native execution on client device 105 similar to framework
115. In an alternative example embodiment, at least one of
the standalone applications 120a, 1205, and 1207 may be an
application module created via framework 115 for execution
thereon. Framework 115 may be directed to a particular
industry and standalone applications 120a, 1205, and 120
may each perform one or more functions specific to that
particular industry. For example, framework 115 may be
programmed as a higher education system for accessing
standalone applications 120q, 1205, and 1207 which may
be, respectively, an mvoice application, a documents appli-
cation, and a social media profiles application (see FIG. 2).
As 1s apparent 1n the art, an invoice application, a documents
application, and a social media profiles application may be
executed solely or mcorporated to other industry systems or
frameworks 115. Framework 115 may also include stand-
alone generic applications such as, word processing appli-
cations, spreadsheet applications, and/or social media appli-
cations, such as Facebook® and Twitter®.

With reference back to FIG. 1, corresponding data sources
of the standalone applications may contain a plurality of

5

10

15

20

25

30

35

40

45

50

55

60

65

6

assets which may relate to a function of the application. An
application asset may be, for example, a text document, an
online form, a web page, a photo, and associated metadata
for use 1n the application. For example, an asset for invoice
approval application 120a may be a web-generated 1nvoice.

Respective programming languages of standalone appli-
cations 120a, 12056, and 120» may be based on an operating
system of client device 1035. For example, where the oper-
ating system of client device 1035 1s Microsoit Windows®,
application 120a may be written 1n a language recognizable
by Microsolt Windows®. In another example where frame-
work 115 1s for execution 1n a web browser, a standalone
application may be written 1n any programming language
particularly recognizable by a web browser, such as, for
example, HTML, Javascript, JSON format, or in any other
known programming language known for web application
development as of the time of filing this application.

In one example embodiment, application 120a may be
written 1n a programming language recognizable by an
operating system of client device 105, while application
1206 may be written 1n a programming language recogniz-
able 1n a web browser environment. As such, framework 115
may include a first component for recognizing and inter-
preting application programs written for client device 103
(e.g., application 120a) and a second component for recog-
nizing and interpreting web code associated with application
12056. The first component and the second component may
be 1n the form of plug-mns. In this way, any type of appli-
cation may be deployed or integrated to a code space
framework 115 without having to manually integrate and
configure application 120 into the framework. Framework
115 may also include other components or plug-ins, such as,
for example, a module creator.

Context object 125 may be stored 1n a portion of memory
110 of client device 105 accessible by framework 115. As
discussed above, memory 110 may be remote from client
device 105 (1.e., 1n an application server). In this scenario,
context object 125 may be accessible by framework 115 via
an application programming interface (API) call. The pre-
cise storage location of context object 125 1s immaterial,
provided that the standalone applications loaded or con-
nected to framework 115 1s communicatively coupled to
context object 125.

Context object 125 includes a mapping of data attributes
defining contextual information concerning an asset from
one of standalone applications 120a, 1205, 120%. The data
attributes may include a common set of data values based on
a user iput from one of the standalone applications. Data
stored 1 context object 125 may be updated, as will be
detailed below. In some example embodiments, context
object 125 may include at least one name-value pair each
representing a content attribute and a corresponding data
value. For example, a name-value pair may include an
identifier for a data field and a value corresponding to the
data field i1dentifier (1.e., “Name”, and “John Smith” for the
data field identifier and data value, respectively). In other
example embodiments, context object 125 may include at
least one keyword. The at least one keyword may be an
identifier associated with a select asset content and may be
as broad as 1dentitying general content of a file asset (1.e., a
file name) or as specilic as to being associated with a
particular piece of information indicated on the file asset
(1.e., a data field values). The at least one keyword may also
include an identifier of the source application. In the case for
example where standalone application 120q 1s an 1nvoice
approval application and where assets thereof are in the form
of 1mvoices, upon user selection of an mvoice number field

US 10,592,524 B2

7

on a particular invoice, the data field number and the
alphanumeric data indicated 1n the field are sent to frame-
work 115 for storage as context object 125. Each of the
standalone applications loaded to or connected with frame-
work 115 includes one or more program instructions for
sending the selected data to the framework.

The level of complexity of the data to be stored by one of
standalone applications 120a, 1205, and 1207 in context
object 125 may be preconfigured by a user or administrator
of the same application. Conversely the other standalone
applications loaded within framework 115 may use the data
contained within context object 125 for performing one or
more operations which may be predetermined 1n each appli-
cation.

As will be recognized 1n the art, client device 105 may
include a user interface display, such as a display monitor for
generating a graphical display. Still in FIG. 1, framework
115 may include a notifications module 130. Notifications
module 130 may include one or more program instructions
for generating displays for data received from each stand-
alone application loaded to the framework 1135. In other
aspects, notifications module 130 may be programmed to
send notifications associated with results of the operations
performed to other computing devices communicatively
connected to framework 115, such as application or database
Servers.

FIG. 2 shows a home page screenshot of framework 115
based on FIG. 1 and according to an actual embodiment. In
this example embodiment, framework 115 may be an
accounting system 200 for execution on client device 105.
Accounting system 200 1s depicted as a browser which,
when executed on client device 105, includes a display with
two portions. A first portion or application selector 205
listing links corresponding to the standalone applications 1n
framework 115 for selection, and a second portion or appli-
cation display area 220 generating content associated with
the selected standalone application to be displayed. Appli-
cation selector 205 indicates a link for executing 1nvoice
approval application 210a, a documents application 2105,
and a profiles application 120% on application display area
220. Application selector 205 may be depicted as a drop-
down combo box. However other types of user interface
clements for users to select items may be apparent in the art,
such as buttons or checkboxes. In this example embodiment,
different standalone applications may be directly accessed
on a single iterface, without the need to navigate through
different browsers or systems. Other types of system or
browser layout may be practiced and will be apparent 1n the
art. For example, two or more application displays may be
simultaneously generated on a single browser.

FIG. 3 shows a screenshot view of imvoice approval
application 210aq 1n FIG. 2. Framework 115 embodied by
accounting system 200 includes one or more program
instructions for generating a display on display area 220
associated with selected standalone application, 1nvoice
approval application 210a. In FIG. 3, the display includes a
list 300 associated with the selected 1nvoice approval appli-
cation 210qa. List 300 includes a plurality of entries 302, 304,
306, 308, and 310 indicating information relating to par-
ticular 1nvoices.

In this example embodiment, entries 302, 304, 306, 308,
and 310 may be invoices organized according to an asso-
ciation with a particular user account and/or one or more
particular characteristics therecon. For example, a user
“John” may have 3 mvoices tied up to his account in 1nvoice
approval application 210qa, such that upon John’s selection
of the mvoice approval application 1n FIG. 2, the 3 invoices

10

15

20

25

30

35

40

45

50

55

60

65

8

are generated on display area 220. In other example embodi-
ments, mnvoices may be organized based on their value range
or the dates to which they are 1ssued. Still on FIG. 3, entries
302,304, 306, 308, and 310 all indicate March 1n 1ts content.
Each of entries 302, 304, 306, 308, and 310 may be

selectable by a user on the display area via interfacing
gestures known 1n the art.

FIGS. 4-5 show example displays on display area 220
when entry 308 “Vendor Four” invoice has been i1dentified
by one or more program instructions of accounting system
200 as selected by the user. For purposes of 1llustration, each
of the entries may be programmed to expand 1n the display
area for showing other details associated with the user-
selected mvoice entries. For example, FIG. 4 shows Vendor
Four invoice entry 308, when selected, generating a table
400 for displaying more detailed information regarding the
invoice entry. FIG. 4 further includes a search results icon
405 programmed to be generated on system 200 when assets
related to the selected entry have been found, as will be
discussed 1n detail below. FIG. 5 shows one example
embodiment of a display on system 200 when search results
icon 405 has been selected for launching a notifications list
503 indicating assets of other standalone applications having
content relating to the selection 1n FIG. 4. Notifications list
505 includes notifications 5105 and 510# each providing a
link to an asset of another application and a notification 515
which provides a link to mitiating a file retrieval and
compilation process 1n system 100. In the present disclosure,
presence of search results icon 405 1ndicates that the process
for retrieving assets related with data 1n context object 125
has been executed. While FIG. 5 shows the assets from the
other applications being presented together with the invoice
approval application display on display area 220, notifica-
tions on framework 115 may be configured to be displayed
in other methods, such as, for example, individual automatic
pop-up messages on system 200 upon identification of a
related asset.

It may further be noted that selections made by a user on
FIGS. 3-5 may be 1n the form of a tap, a click, or other
interfacing gesture known in the art. Additionally one or
more program code instructions may be added to each
application when integrated onto framework 115 repre-
sented by accounting system 200 for communicating with
context object 125. For example, when a first standalone
application 1s integrated onto framework 115, program
instructions for the first application to send and to receive
data from the framework may be automatically added or
embedded onto program code thereof. The same 1s the case
when a second application 120 1s integrated or loaded into
the framework. It may be noted that multiple standalone
applications may be simultaneously loaded to framework
115.

FIG. 6 shows one example tlowchart of a method 600 for
enabling sharing of data among multiple standalone appli-
cations 1n the framework. Method 600 may be performed by
framework 115 on client device 105. Steps 605-625 of FIG.
6 will be discussed in conjunction with the system described
in FIG. 1 and as depicted by FIGS. 2-5.

At block 605, framework 115 (represented by accounting
system 200 1 FIG. 2) may receive data based on a user-
selected content from one of the multiple standalone appli-
cations loaded thereon. The user-selected content may be
associated with an asset actively displayed on accounting
system 200. In one aspect, a text input may be made by the
user on an application loaded 1n framework 1135. In one
example embodiment, one or more program instructions on

US 10,592,524 B2

9

application may include program instructions to send data
associated with a user-selected content to framework 115.

With reference back to FIG. 4, upon receipt of one or
more program instructions from invoice approval applica-
tion 210q indicating that one of the displayed invoice entries
has been selected by the user (1n this case the Vendor Four
invoice entry 308), one or more program instructions on the
invoice approval application may notily framework 115 of
the selection made. Notilying the framework of a user
selection on the application currently generated on display
area 220 includes sending data associated with the selection.
The data may be 1n the form of at least one keyword, a set
ol name-value pairs, and the like, as discussed above. An
identifier for the mnvoice selected (“Vendor Four™) 1s also
sent to framework 115. In this example, i1dentifiers of
selected mnvoice entries may be predefined to be sent to the
framework by the administrators of the invoice approval
application.

Sending data associated with the user selection further
includes sending an identifier of the source application to the
framework. Using the same example embodiment, one or
more program instructions of the invoice approval applica-
tion may send an identifier thereol (1n this case, “invoice-
approvalapp”) to framework 115.

At block 610, upon receipt of the set of data from the
active standalone applications 1n the framework, framework
115 may store the set of receirved data 1n context object 125.
Context object 125 includes: (1) at least one property
indicating data attributes describing the context of informa-
tion to be shared or the receirved information in block 605,
and (2) an 1dentifier of the source application or application
setting the context object or the source application identifier.
While 1n the present disclosure, the at least one property and
the source application 1dentifier are depicted as two separate
clements, both may be stored as a single keyword in context
object 125 for use 1n performing operations, such that, for
example, the at least one property includes the source
application identifier when being stored in the context
object.

In one example embodiment, the at least one property
may be predefined content on an application asset, such as
predefined data fields. In the same example 1n FIG. 4, the at
least one property and the source application 1dentifier, may
be the “Vendor Four” mvoice 1dentifier and the “invoiceap-
provalapp”, respectively, the source application being
invoice approval application 210a.

In other example embodiments, a predefined content 1n an
application asset may be changed or updated. For example,
values entered on a form field indicating the “Vendor Four”
identifier may be changed by an administrator of the invoice
approval application a week later. For purposes of discus-
sion, mvoice identifier “Vendor Four” may have already
been stored in context object 125. In this aspect, imvoice
approval application may send a notification to framework
115 mdicating the update or change i1n the at least one
property of the set context object, which 1n this case 1s the
“Vendor Four” invoice i1dentifier. The new value may be
accordingly sent to the framework for updating the stored
context object. Updating the stored context object may
include overwriting the data stored therein or appending the
new data to the existing data.

Information stored in context object 125 may include at
least one keyword and/or a source identifier and may be
organized 1 one or more data structures, such as, for
example, a string, an array, a linked list, a hash and/or a
combination of other known data structures. For example,
first row information on the displayed invoice may be

10

15

20

25

30

35

40

45

50

55

60

65

10

organized 1n a single data structure and stored as the at least
one property for the context object. Each keyword and/or
source 1dentifier may be one or more data structures, such as,
for example, a string, an array, a linked list, a hash and/or a
combination of other known data structures.

At block 615, framework 115 may notily the other appli-
cations on the framework besides the source application.
The other applications may be idenftified relative to the
identifier of the source application 1dentifier indicated 1n the
context object. Notifying the other applications of the con-
text object may include raising an event indicating that a
context object has been set. Raising the event may include
sending by the framework the identifier of the source
application to the other standalone applications. In an
example where an update for any data contained in context
object 125 1s received from the source application, the event
raised may indicate that the context object comprises an
update. One or more program instructions on framework 1135
may be operative to raise the event to inform the other
standalone applications that the context object has been set.
Raising the event to other standalone applications within the
same framework may include triggering the event on an
event aggregator on the framework and broadcasting the
event to all the other subscribers which may be functions on
other standalone applications, as detailed 1 U.S. patent
application Ser. No. 14/526,173 incorporated herein.

In response to the raised event, each of the other stand-
alone applications may have an option either to get or
retrieve at least a portion of the context object, to 1ignore the
context object, or to perform other actions predetermined to
be performed by the other application. For example, one or
more of the standalone applications 1n the framework other
than the source application may request for the context
object 1n response to the event. Framework 115 may then
send the data stored on the context object to the requesting
application/s based upon the request.

Using the same example embodiment 1n FIG. 4, upon
setting of the context object (“Vendor Four” keyword and
“invoiceapprovalapp” source application identifier) by
invoice approval application 210a, one or more program
instructions of framework 115 may send an event indicating
setting or updated of context object 125 to the other stand-
alone documents application 2105 and profiles application
2107. Accordingly, applications 2105 and profiles applica-
tion 210z may opt to request for the context object from
framework 115 or not.

At block 620, each of the other standalone applications
loaded 1n framework 115 may perform at least one operation
based on the received context object or a portion thereof
(presuming, for purposes ol discussion, the other standalone
applications requested to retrieve the context object). The at
least one operation may be predetermined for the applica-
tion, since applications may vary in function in framework
115. Additionally, operations may be performed automati-
cally upon receipt of the event or the context object or may
be performed at a later instance.

An operation may be 1n the form of search and/or retriev-
ing assets having data matching with at least a portion of the
context object or related to the context object. Alternatively,
an operation may be the realization of a workflow step or
process, which may be, for example, creating a new asset for
an application. The at least one operation to be performed on
cach of the standalone applications may be based on a
function or business logic thereof. In one aspect, at least one
of the other standalone application may i1gnore the event
raised 1n block 615. In FIG. 4, documents application 21056
and profiles application 210# are programmed to request for

US 10,592,524 B2

11

the context object and retrieve assets related with the context
object from their respective databases based on the received
context object. Alternatively, for purposes of discussion,
profiles application 2107 may be programmed to not provide
any output or result to framework 115 1n response to the
event.

In one example embodiment, searching and/or retrieving,
assets having data matching with at least a portion of the
context object may include determining whether one or
more assets of an application 120 besides the source appli-
cation includes the at least one property stored in context
object 125, and 11 so, notifying framework 115 of said one
or more assets. Determining whether any asset of another
standalone application 120 includes any of those properties
stored 1n context object 125 may include comparing each of
those properties with metadata properties of each asset
associated with said application.

At optional block 625, framework 115 may receive results
of the one or more operations performed on each of the other
applications 2105 and 210%. In one aspect, the results may
be shown simultaneously with the display generated on area
220. To this end, when a user selection has been determined
by framework 1135 to have been made by one of applications
loaded thereon, assets from the other standalone applications
may be retrieved 1n the background and be shown easily to
a user of the invoice approval application via a notifications
module (see example list 505 1n FIG. §). In one example
embodiment, framework 115 may receive at least one asset
identifier from the other standalone applications indicating
the at least one property 1n the context object. With reference
back to FIG. 5, notifications 5105 and 5102 each provides a
link to an asset of applications 1205 and 120#, respectively.
Each of the assets indicated include, 1in their respective
metadata values or data fields, the “Vendor Four” identifier
stored 1n context object 125.

In another aspect, an application 120z loaded into the
framework may be operative to activate a worktflow process
based on the user selection on another application in the
framework. For example, application 1207 may be operative
to collect assets from the other application loaded in the
framework and store these related assets as one batch file. As
shown, notifications list 505 includes a notification 515
being a link to activating an operation where related assets
are collected from applications 2105, and 210 and stored 1n
the framework as a “collection”.

In yet another aspect, notifications module 130 of the
framework may be set up differently. In a scenario for
example where a new asset 1s 1dentified to be related to the
stored context object, an e-mail message may be preconfig-
ured to be automatically sent to the administrator of the
source application indicating the newly i1dentified asset.
Other notification methods may be apparent 1n the art.

In providing framework 115 which includes context
object 120 communicatively coupled to each standalone
application (120a, 1205, and 120#2), each of the standalone
application may be able to: (1) send and update a common
set of data for accessing and transmitting to other applica-
tions via the framework and (2) share that common set of
data to another without one knowing specific configurations,
much less storage parameters, about the other. Further, in
loading any of standalone applications 120a, 1205, and 120
to framework 115, each of the standalone applications 1s able
to 1dentily or search related assets from other standalone
application without programmatically tying the applications.

Many modifications and other embodiments of the dis-
closure set forth herein will come to mind to one skilled 1n
the art to which these disclosure pertain having the benefit

10

15

20

25

30

35

40

45

50

55

60

65

12

of the teachings presented in the foregoing descriptions and
the associated drawings. Therefore, it 1s to be understood
that the disclosure 1s not to be limited to the specific
embodiments disclosed and that modifications and other
embodiments are intended to be included within the scope of
the appended claims. Although specific terms are employed
herein, they are used 1n a generic and descriptive sense only
and not for purposes ol limitation.

What 1s claimed 1s:

1. A method executed by a computing device for sharing
data among a plurality of standalone applications executing
on the computing device, comprising:

receiving, by a framework executing on the computing

device, a keyword based upon a user mput to a first
standalone application 1n the plurality of standalone
applications, the first standalone application 1s loaded
via the framework, wherein the keyword 1s associated
with an asset of the first standalone application,
wherein the asset 1s stored in a first data source asso-
ciated with the first standalone application; and
storing, by the framework, the keyword in a context
object, wherein the context object comprises:
a mapping between the keyword and the asset stored 1n
the first data source; and
an 1dentifier for the first standalone application,
wherein the context object 1s accessible by each of the
plurality of standalone applications in the framework; and
performing, by a second standalone application in the
plurality of standalone applications loaded wvia the
framework, an operation based upon the context object,
wherein a second data source i1s associated with the
second standalone application.

2. The method of claim 1, further comprising connecting,
the second standalone application to the framework based
upon a request thereby to access the context object.

3. The method of claim 1, further comprising broadcast-
ing, by the framework, an event to the second standalone
application, the event indicative of a status of the context
object.

4. The method of claim 1, wherein performing the opera-
tion based upon the context object comprises executing a
search for a second asset having content related to the
keyword, the second asset 1s stored in the second data
source, the method further comprising:

broadcasting, by the framework, an event to the second

standalone application, the event indicative of a status
of the context object;

retrieving, by the second standalone application, the key-

word 1n the context object;

recerving a result of the one or more operation on the

framework, the result including the second asset; and
notitying a user of the second standalone application of
the result.

5. The method of claim 1, further comprising receiving an
updated keyword from the first standalone application or the
second standalone application and updating, by the frame-
work, the keyword 1n the context object.

6. The method of claim 1, wherein the keyword 1s a
complex data structure.

7. The method of claim 1, wherein the identifier for the
first standalone application indicates that the first standalone
application 1s a source of the keyword.

8. The method of claim 1, wherein the first standalone
application 1s a higher educational admissions application,
wherein the second standalone application 1s a social media
application.

US 10,592,524 B2

13

9. The method of claim 1, further comprising providing,
by the framework, the context object to the second stand-
alone application.

10. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a computing
device, cause the computing device to perform acts com-
prising:

receiving, by a framework executing on a computing

device, a keyword based upon a user mput to a first
standalone application 1n a plurality of standalone
applications executing on the computing device, the
first standalone application 1s loaded via the frame-
work, wherein the keyword 1s associated with an asset
of the first standalone application, wherein the asset 1s
stored 1n a first data source associated with the first
standalone application; and

storing, by the framework, the keyword 1 a context

object, wherein the context object comprises:

a mapping between the keyword and the asset stored 1n
the first data source; and

an 1dentifier for the first standalone application,
wherein the context object 1s accessible by each of
the plurality of standalone applications in the frame-
work; and

performing, by a second standalone application in the

plurality of standalone applications loaded wvia the
framework, an operation based upon the context object,
wherein a second data source 1s associated with the
second standalone application.

11. The non-transitory computer-readable storage
medium of claim 10, wherein each of the plurality of
standalone applications 1s one of a module of the framework
or an independent application connected to the framework.

12. The non-transitory computer-readable storage
medium of claim 10, wherein the first standalone application
1s preconfigured by an administrator of the framework to be
a source ol the context object.

13. The non-transitory computer-readable storage
medium of claim 10, the acts further comprising broadcast-
ing, by the framework, an event to the second standalone
application, the event indicative of a status of the context
object.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the status of the context object
1s at least one of an 1nitialization status or an update status.

15. The non-transitory computer-readable storage
medium of claim 10, wherein the context object 1s main-
tained 1n a memory associated with the framework, the
memory being one of a memory on the computing device or
a browser memory.

10

15

20

25

30

35

40

45

14

16. The non-transitory computer-readable storage
medium of claim 10, wherein each of the plurality of
standalone applications 1s accessible via a browser interface
of the framework.

17. A method executed by a computing device for gath-
ering related content from a plurality of standalone appli-
cations executing on the computing device based on a shared
set of data, comprising:

receiving, by a framework executing on the computing
device, a keyword based upon a user mput to a first
standalone application in the plurality of standalone
applications, the first standalone application 1s loaded
via the framework, wherein the keyword 1s associated
with an asset of the first standalone application,
wherein the asset 1s stored in a first data source asso-
ciated with the first standalone application;

storing, by the framework, the keyword in a context
object, wherein the context object comprises:

a mapping between the keyword and the asset stored 1n
the first data source; and

an identifier for the first standalone application;

broadcasting, by the framework, an event to a second
standalone application in the plurality of standalone
applications, the event indicative of a status of the
context object, wherein a second data source 1s asso-
ciated with the second standalone application; and

recerving, by the framework, a result of an operation
performed by the second standalone application, the
result including a second asset associated with the
second standalone application and related to the key-
word.

18. The method of claim 17, further comprising notifying,
by the framework, a user of the one of the first standalone
application or the second standalone application of the
received result.

19. The method of claim 17, wherein the receiving the
keyword 1s based on a user selection on the first standalone
application while the first standalone application 1s being
displayed on the computing device via the framework, and
the receiving the result includes displaying the result simul-
taneously with a display of the second standalone applica-
tion on the computing device, wherein the keyword 1s a
complex data structure.

20. The method of claim 17, wherein the receiving the
result includes recerving a link to the second asset as stored
in the second data source.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

