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FIG. 2
Remove noise from binocular disparity image ~——210
Acquire plurality of feature vectors by applying orthogonal analysis 211
to binocular disparity image
!
Calculate feature values from the feature vectors 213
!
Remove noise from binocular disparity image based on the feature values 215
Acquire features of plurality of pixels included in binocular disparity image 220
Acquire distribution of events 221
Y
Calculate shortest Euclidean distance between each of pixels included 1n 93
non-event portion and each of pixels included in event portion
!
Set Euclidean distance as feature of each of the pixels in the non-event portion 225
Calculate cost matrix of matching pixels between left eye 1mage and right eye 1image 230
Calculate feature matching cost of the matching pixels 231
,
Calculate polar matching cost of the matching pixels 233
!
Acquire the cost matrix 235
Determine disparity of each of the matching pixels based on the cost matrix 240
Filter the cost matrix 241
'
Determine disparity 243
Optimize the determined disparity ~——230
Acquire correlation between disparities of the plurality of pixels 251
i
Optimize determined disparities based on the correlation 253

End
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METHOD AND APPARATUS FOR
PROCESSING BINOCULAR DISPARITY
IMAGE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from Chinese Patent

Application No. 201610070550.X, filed on Feb. 1, 2016 1n
the State Intellectual Property Office of China, and from
Korean Patent Application No. 10-2016-0099085, filed on
Aug. 3, 2016 1n the Korean Intellectual Property Oflice, the
disclosure of each of which 1s incorporated herein by
reference in 1ts respective entirety.

BACKGROUND

1. Field

Methods and apparatuses consistent with exemplary
embodiments relate to processing a binocular disparity
1mage.
2. Description of the Related Art

In association with a technology for processing a binocu-
lar disparity image according to the related art, a dynamic
vision sensor (DVS) 1s a type of 1image sensor that includes
a complementary metal-oxide-semiconductor (CMOS). An
image acquired by the DVS may generate an event based on
an 1llumination variation. An event portion of the image
acquired by the DVS may be determined by comparing the
illumination variation to a threshold. However, since the
image acquired by the DVS 1s susceptible to external
influences, a relatively large amount of noise may occur 1n
the event portion, and as a result, a distribution of events and
a number of the events may not match.

SUMMARY

Exemplary embodiments may address at least the above
problems and/or disadvantages and other disadvantages not
described above. Also, the exemplary embodiments are not
required to overcome the disadvantages described above,
and an exemplary embodiment may not overcome any of the
problems described above.

According to an aspect of an exemplary embodiment,
there 1s provided a method for determining a disparity of a
binocular disparity image, the method including acquiring a
respective feature of each of a plurality of pixels in the
binocular disparity 1image based on an event distribution of
the binocular disparity image, the binocular disparity image
including a left eye image and a right eye image, calculating
a cost matrix ol matching respective pixels between the left
eye 1mage and the right eye 1mage based on the acquired
features, and determining a respective disparity of each
matched pair of pixels based on the calculated cost matrix.

The acquiring of the respective feature may include
acquiring a distribution of events by classifying the plurality
of pixels into pixels included 1n an event portion and pixels
included 1n a non-event portion, calculating a respective
shortest Euclidean distance between each respective one of
the pixels i the non-event portion and each respective one
of the pixels 1n the event portion, and setting the calculated
respective shortest Euclidean distance as the respective
teature for each respective one of the pixels in the non-event
portion.

The calculating of the respective shortest Euclidean dis-
tance may include acquiring a plurality of parabolas which
correspond to a function indicating a respective Euclidean
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2

distance between each respective one of the pixels in the
non-event portion and each respective one of the pixels in
the event portion, acquiring intersections between the
acquired parabolas; and calculating the respective shortest
Euclidean distance based on a lower envelope of the
acquired intersections.

The calculating of the cost matrix may include calculating
a respective feature matching cost of each matched pair of
pixels based on the at least one feature of the pixels,
calculating a respective polar matching cost of each matched
pair of pixels based on a respective polarity of each of the
pixels, and acquiring the cost matrix based on the calculated
teature matching cost and the calculated polar matching cost
for each matched pair of pixels.

The determining of the respective disparnity may include
filtering the cost matrix.

The method may further include removing noise from the
binocular disparity image.

The removing of the noise may include acquiring a
plurality of feature vectors by applying an orthogonal analy-
s1s to the binocular disparity image, calculating at least one
respective feature value from each of the plurality of feature
vectors, and removing the noise from the binocular disparity
image based on the calculated feature values.

The method may further include optimizing each deter-
mined respective disparity.

The optimizing of the respective disparity may include
acquiring a correlation between the determined disparities,
and optimizing each respective disparity based on the
acquired correlation.

The acquiring of the correlation may include acquiring a
respective robustness value with respect to each respective
disparity by applying a cross-validation to the disparities,
and acquiring the correlation based on the acquired robust-
ness values.

The optimizing of each respective disparity based on the
correlation may include acquiring a dense conditional ran-
dom field based on the acquired robustness values and the
correlation, and optimizing each respective disparity based
on the acquired dense conditional random field.

The optimizing of each respective disparity based on the
dense conditional random field may include determining a
respective sub-pixel level disparity of each matched pair of
pixels based on the dense conditional random field, and
acquiring a respective depth value of each matched pair of
pixels based on the determined respective sub-pixel level
disparity and a focal length of a camera that captures the
binocular disparity image.

According to another aspect of an exemplary embodi-
ment, there 1s provided an apparatus for determining a
disparity of a binocular disparity image, the apparatus
including a feature acquirer configured to acquire a respec-
tive feature of each of a plurality of pixels in the binocular
disparity 1mage based on an event distribution of the bin-
ocular disparity image, the binocular disparity image includ-
ing a left eye image and a right eye image, a matrix
calculator configured to calculate a cost matrix of matching
respective pixels between the lelt eye image and the right
eye 1mage based on the acquired features, and a disparity
determiner configured to determine a respective disparity of

cach matched pair of pixels based on the calculated cost
matrix.

The apparatus may further include a noise remover con-
figured to remove noise from the binocular disparity image.
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The apparatus may further include an optimizer config-
ured to optimize each determined respective disparity.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects of exemplary embodiments
will become apparent and more readily appreciated from the
following detailed description of certain exemplary embodi-
ments, taken 1n conjunction with the accompanying draw-
ings of which:

FIG. 1 1s a diagram illustrating an example in which a
binocular disparity image of an object 1s acquired by using
a plurality of cameras with different viewpoints, according
to an exemplary embodiment;

FI1G. 2 1s a flowchart illustrating a method for determining
a disparity of a binocular disparity image, according to an
exemplary embodiment;

FIG. 3 1s a flowchart 1llustrating an example of acquiring
teatures of pixels from a left eye image and a right eye
image, according to an exemplary embodiment;

FI1G. 4 1llustrates a result obtained by visualizing features
extracted by performance of a method for determining a
disparity of a binocular disparity image, according to an
exemplary embodiment;

FIG. 5 1llustrates a result obtained by visualizing dispari-
ties acquired by performance of a method for determining a
disparity of a binocular disparity image, according to an
exemplary embodiment;

FIG. 6 illustrates a result obtained by visualizing dispari-
ties optimized by an optimization method, according to an
exemplary embodiment;

FI1G. 7 1s a block diagram 1llustrating a configuration of an
apparatus for determining a disparity of a binocular disparity
image, according to an exemplary embodiment; and

FIG. 8 1s a flowchart of operations performed by compo-
nents of the disparity determination apparatus of FIG. 7.

DETAILED DESCRIPTION

Reference will now be made in detail to exemplary
embodiments, examples of which are illustrated in the
accompanying drawings, wherein like reference numerals
refer to the like elements throughout. Exemplary embodi-
ments are described below 1n order to explain the present
disclosure by referring to the figures.

Particular structural or functional descriptions ol exem-
plary embodiments are merely intended for the purpose of
describing exemplary embodiments and the exemplary
embodiments may be implemented in various forms. How-
ever, 1t should be understood that these exemplary embodi-
ments are not construed as limited to the illustrated forms
and 1nclude all changes, equivalents or alternatives within
the technical idea of the present disclosure.

Although terms of “first” or “second” are used to explain
various components, the components are not limited to the
terms. These terms should be used only to distinguish one
component from another component. For example, a “first”
component may be referred to as a “second” component, or
similarly, and the “second” component may be referred to as
the “first” component within the scope of the right, accord-
ing to the concept of the present disclosure.

It should be understood that when a component 1s referred
to as being “connected” or to another component, i1t can be
directly connected or coupled to the other component, or
intervening components may be present.

As used herein, the singular forms are intended to include
the plural forms as well, unless the context clearly indicates
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4

otherwise. It should be further understood that the terms
“comprises”’ and/or “comprising,” when used 1n this speci-
fication, specily the presence of stated features, integers,
steps, operations, elements, components or a combination
thereof, but do not preclude the presence or addition of one
or more other features, integers, steps, operations, elements,
components, and/or groups thereof.

Unless otherwise defined herein, all terms used herein
including technical or scientific terms have the same mean-
ings as those generally understood by persons of ordinary
skill 1n the art. Terms defined 1n dictionaries generally used
should be construed to have meanings matching with con-
textual meanings in the related art and are not to be con-
strued as an 1deal or excessively formal meaning unless
otherwise defined herein.

Hereinatter, exemplary embodiments will be described 1n
detail below with reference to the accompanying drawings,
and like reference numerals refer to the like elements
throughout.

In the following description, an 1mage acquired by a
dynamic vision sensor (DVS) may be referred to as a “DVS
image.” Also, a binocular disparity image may be referred to
as a “‘stereoscopic image.”

FIG. 1 1s a diagram 1llustrating an example 1n which a
binocular disparity image of an object 1s acquired by using
a plurality of cameras with different viewpoints, according
to an exemplary embodiment.

Each of camera 110 and camera 120 may include a DVS.
The cameras 110 and 120 are arranged with a phase difler-
ence equal to an angle 0 with respect to an object 100, and
may be configured to capture the object 100.

For example, an X mark may be displayed on a center of
the object 100 to facilitate an understanding of description.
An 1mage 111 acquired by the camera 110 and an 1mage 121
acquired by the camera 120 may represent the object 100 1n
different directions. The x mark 1n the image 111 1s displayed
on the center of the object 100, and the x mark 1n the image
121 leans to a left side of the object 100, because the
cameras 110 and 120 capture the object 100 with the phase
difference of the angle O.

To render a binocular disparity image, a disparity between
the 1images 111 and 121 representing the same object, that 1s,
the object 100, may need to be determined. In a DVS 1mage,
pixels may match based on an 1llumination variation and a
disparity may be determined.

A portion mncluding pixels with an i1llumination variation
that 1s greater than or equal to a predetermined threshold in
a DVS 1image may be referred to as an “event portion.” In the
DVS image, an event may typically occur around a frame or
a boundary of the object 100. The event 1n the DVS image
may indicate information about a structure of the object 100.
In the DVS 1mage, same objects may typically have similar
structures. For example, an event corresponding to a left eye
image and an event corresponding to a right eye 1mage may
have similar structures.

Since the DVS 1mage has, for example, a problem 1n that
a relatively large amount of noise may occur 1n an event
portion, or a problem 1n that a distribution of events may not
correspond to a number of events, predetermined processing
may be required. An apparatus (hereinafter, referred to as a
“disparity determination apparatus”) for determining a dis-
parity of a binocular disparity image according to an exem-
plary embodiment may quickly acquire features of pixels by
obtaining a correlation between pixels and events based on
a simple algorithm and by acquiring a distribution of events,
and thus 1t 1s possible to reduce an amount of time for
calculation.
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FIG. 2 1s a flowchart 1llustrating a method for determining,
a disparity of a binocular disparity image, according to an
exemplary embodiment.

Referring to FIG. 2, 1n operation 210, a disparity deter-
mination apparatus according to an exemplary embodiment
removes noise from a binocular disparity image. Operation
210 may be performed prior to operation 220. The binocular
disparity image may include a left eye image and a right eye
image.

In operation 211, the disparnity determination apparatus

acquires a plurality of feature vectors by applying an
orthogonal analysis to the binocular disparity image. An
event portion of a DVS 1mage may be generated based on an
illumination variation and may be typically distributed
around a boundary of an object. In the DVS 1mage, a portion
in which events are sparsely distributed may be determined
as noise, and a portion 1 which events are densely distrib-
uted may be determined as a source used to determine a
disparity. A degree to which events are densely distributed
may 1ndicate a strong correlation between the events. A
correlation between events may be acquired based on the
orthogonal analysis.
In operation 213, the disparity determination apparatus
calculates feature values from the plurality of feature vec-
tors. A correlation between events may be represented by a
feature vector. For example, a feature vector corresponding
to a distribution of events that are strongly correlated may
have a relatively high feature value, and a feature vector
corresponding to a distribution of events that are weakly
correlated may have a relatively low feature value. An event
portion corresponding to a feature vector with a relatively
low feature value may be determined as noise.

In operation 2135, the disparity determination apparatus
removes noise from the binocular disparity image based on
the calculated feature values. The disparity determination
apparatus may sort feature vectors in accordance with an
order of feature values. In an example, the disparity deter-
mination apparatus may sort feature vectors in accordance
with an ascending order of feature values, and may deter-
mine a preset number of feature vectors among the sorted
feature vectors as noise. In another example, the disparity
determination apparatus may sort feature vectors in accor-
dance with a descending order of feature values, and may
determine a preset number of feature vectors among the
sorted feature vectors as noise. The disparity determination
apparatus may combine feature vectors other than the fea-
ture vectors determined as the noise, 1 order to acquire a
DVS image from which noise 1s removed.

Since the binocular disparity 1image includes the leit eye
image and the right eye image, a noise removal process may
be performed on each of the left eye image and the right eye
image.

In an example, feature vectors may be acquired by apply-
ing an orthogonal analysis to the left eye image, and feature
values of the feature vectors may be removed. The feature
vectors may be sorted in accordance with either of an
ascending order or a descending order of the feature values.
A preset number of feature vectors among the feature
vectors sorted 1in accordance with the ascending order of the
feature values may be determined as noise. The disparity
determination apparatus may combine portions of the left
eye 1mage corresponding to feature vectors other than the
feature vectors determined as the noise, 1n order to acquire
a left eye image from which noise 1s removed.

In another example, feature vectors may be acquired by
applying an orthogonal analysis to the right eye image, and
teature values of the feature vectors may be removed. The
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feature vectors may be sorted 1n accordance with either of an
ascending order or a descending order of the feature values.
A preset number of feature vectors among the feature
vectors sorted 1n accordance with the ascending order of the
feature values may be determined as noise. The disparity
determination apparatus may combine portions of the right
eye 1mage corresponding to feature vectors other than the
feature vectors determined as the noise, 1n order to acquire
a right eye 1image from which noise i1s removed.

Hereinbelow, the noise removal process will be described
based on Equation 1 shown below.

[=l+e=2_ " duni: I=>_ "duvH

Al S 2

2 1 Oty

F A SR S

k<rre=

[Equation 1]

Equation 1 represents an example of a noise removal
formula. In Equation 1, I denotes an input binocular dispar-
ity 1mage, 1, denotes a binocular disparity image from which
noise 1s removed, and e denotes a portion determined as
noise 1n the binocular disparity 1image. k denotes a number
of feature vectors sorted 1n accordance with a descending
order of feature values. Also, r denotes a total number of
teature vectors, 0, denotes a feature value of an 1-th feature
vector, 1 denotes a feature vector number, u, and v, denote
1-th feature vectors that are orthogonal to each other, and H
denotes a substitution operation. The binocular disparity
image I, may be acquired by removing the noise ¢ from the
binocular disparity image 1.

In operation 220, the disparity determination apparatus
acquires one or more features of a plurality of pixels
included 1n the binocular disparity image based on a distri-
bution of events in the binocular disparity 1mage.

In operation 221, the disparity determination apparatus
acquires the distribution of the events by classitying the
plurality of pixels into respective pixels included 1n an event
portion and respective pixels included 1n a non-event por-
tion. Features of the pixels in the event portion may be
initialized. For example, the features of the pixels in the
event portion may be set to zero.

In operation 223, the disparity determination apparatus
calculates a respective shortest Euclidean distance between
cach respective one of the pixels 1n the non-event portion
and each respective one of the pixels 1n the event portion.
The calculated shortest Euclidean distance may correspond
to a feature of each respective one of the pixels 1n the
non-event portion.

To calculate the respective shortest Euclidean distance,
the disparity determination apparatus may acquire a plurality
of parabolas of a function indicating a respective Euclidean
distance between each respective one of the pixels in the
non-event portion and each respective one of the pixels in
the event portion. The disparity determination apparatus
may acquire intersections between the acquired parabolas.
The disparity determination apparatus may calculate the
respective shortest Euclidean distance based on a lower
envelope of the acquired intersections.

In operation 225, the disparity determination apparatus
sets each of the respective Euclidean distances as a respec-
tive feature of each of the pixels in the non-event portion.

As described above, the disparity determination apparatus
may substitute a calculation of a respective Fuclidean dis-
tance for a calculation of a respective feature of each of
pixels. A Fuclidean distance may be calculated using a
simple algorithm, and thus a calculation amount may be
remarkably reduced.




US 10,582,179 B2

7

Since the binocular disparity 1image includes the left eye
image and the right eye image, an algorithm of calculating
a respective Fuclidean distance may be applied to each
1mage.

In an example, the disparity determination apparatus may 5
acquire a distribution of events by classitying a plurality of
pixels mcluded 1n the left eye image into respective pixels
included 1n an event portion and respective pixels included
in a non-event portion. Features of the pixels i the event
portion may be initialized. For example, the features of the 10
pixels 1n the event portion may be set to zero. The disparity
determination apparatus may calculate a respective shortest
Euclidean distance between each respective one of the pixels
in the non-event portion and each respective one of the
pixels 1n the event portion. The calculated respective short- 15
est Euclidean distance may correspond to a respective
feature of each of the pixels in the non-event portion of the
left eye 1mage.

In another example, the disparity determination apparatus
may acquire a distribution of events by classitying a plu- 20
rality of pixels imncluded in the right eye 1image nto respec-
tive pixels included 1 an event portion and respective pixels
included 1n a non-event portion. Features of the pixels 1n the
event portion may be mitialized. For example, the features
of the pixels 1n the event portion may be set to zero. The 25
disparity determination apparatus may calculate a respective
shortest Buclidean distance between each respective one of
the pixels 1n the non-event portion and each respective one
ol the pixels 1n the event portion. The calculated respective
shortest Euclidean distance may correspond to a respective 30
feature of each of the pixels in the non-event portion of the
right eye image.

Hereinafter, a process of obtaining a Fuclidean distance
will be described based on Equation 2 shown below.

35
D, (x,y)y=min,,((=x+(y-y Y +flx+y)); [Equation 2]

Equation 2 represents an example of a Euclidean distance
transform formula. In Equation 2, D, (x,y) denotes a shortest
Euclidean distance between a pixel (x, y) and an event
(x'.y'). 1(x",y') denotes a feature value of the event (X',y'). 40
Also, X and y denote an abscissa and an ordinate of the pixel
(X, v), respectively, X' and y' denote an abscissa and an
ordinate of the event (X', y'), respectively, and n denotes an
identification number of a pixel.

Since a quadratic equation needs to be obtained for each 45
pixel 1n order to directly obtain a Euclidean distance using,
Equation 2, a relatively long amount of time for calculation
may be required. Essentially, Equation 2 may be regarded as
a problem of finding a value of a parabola by using a
plurality of pairs of the event (X', y') and the feature value 50
1(x', y') as roots. The problem of finding a value of a parabola
may be understood as a problem of obtaining an intersection
between parabolas and obtaining an area within the inter-
section. A problem of obtaining a Euclidean distance may be
changed to a problem of obtaining a value of a lower 55
envelope of parabolas, and thus a problem of obtaining
values of all pixels may be changed to a problem of
obtaining a set of minimum parabola intersections.

Intersections between parabolas of a function indicating a
Euclidean distance function may be relatively simply deter- 60
mined. For example, intersections between parabolas using,

a pair of (x';, '), t(X';, ¥';) and a pair of (X', ¥')), {(x', ¥')) as
roots may be quickly determined based on Equation 3. Here,

1 and 1 denote 1dentification numbers of events. By using a
simple algorithm, the disparity determination apparatus may 65
reduce an amount of time for calculation and may obtain a
Euclidean distance in real time.

8

L D+ L YD - Y + (o, )P [Equation 3]

Si,j =

! ! ! !
2axi, Vi — 22X, ¥

In operation 230, the disparity determination apparatus
calculates a cost matrix of matching respective pixels
between the left eye image and the nght eye image based on
the features of the pixels. The cost matrix may include a
feature matching cost and a polar matching cost.

In operation 231, the disparity determination apparatus
calculates a respective {feature matching cost of each
matched pair of pixels based on the features of the pixels.
For example, the feature matching cost may be derived using
Equation 4 shown below.

CF (x,yv,d)=2, 0D, (x+d )-D (x,y), n=1, ... N; < [Equation 4]

In Equation 4, CF, (X, y, d) denotes a feature matching
cost ol a matched pair of pixels (X, y). W denotes a set of
portions 1n the binocular disparity image, o denotes identi-
fication numbers of the portions 1n the set W, d denotes a
current disparity, N denotes a total number of pixels, and n
denotes an identification number of a pixel.

In operation 233, the disparity determination apparatus
calculates a respective polar matching cost of each matched
pair of pixels based on a polarity of each of the pixels. For
example, the polar matching cost may be derived using
Equation 5 shown below.

CP(x,y,d)=|E(x+d y)-E(xy); « [Equation 5]

In Equation 5, CP(X, v, d) denotes a polar matching cost
of a matched pair of pixels (x, v). E(X, y) denotes a polarity
in a coordinate system of a pixel (X, y), and E(x+d, y)
denotes a polarity 1n the coordinate system of a pixel (x+d,
y)-

In operation 235, the disparity determination apparatus
acquires the cost matrix based on the feature matching cost
and the polar matching cost. For example, the cost matrix
may be derived using Equation 6 shown below.

C(x,ydy=aZ,_VCF,(x,y.d)+(1-a)-CP(x,y,d); [Equation 6]

In Equation 6, C(x, y, d) denotes a cost matrix of a
matched pair of pixels (X, v), and a denotes a linear weight.

The disparity determination apparatus may match densely
distributed pixels, mstead of sparsely distributed events, by
changing a process of matching events to a process of
matching pixels. Thus, the disparity determination apparatus
may be easily applicable to an application technology, for
example, three-dimensional (3D) scene modeling or image
rendering.

In operation 240, the disparity determination apparatus
determines a respective disparity of each matched pair of
pixels based on the cost matrix. For example, the disparity
determination apparatus may use an algorithm, for example,
a winner-take-all algorithm, as a greedy strategy to deter-
mine a respective disparity of each matched pair of pixels.
The disparity determination apparatus may determine dis-
parities of the left eye image and the right eye 1image using
Equations 7 and 8 shown below.

d(x,y)=min, ' (x,y.k); [Equation 7]

In Equation 7, ¢/(x,y.k) denotes a cost matrix of the left
eye 1mage, and d,(x,y) denotes a disparity of a pixel (X, v)
in the left eye image.

d_(x,y)=min,c (x,1,k); + [Equation 8]

In Equation 8, ¢’(X, y, k) denotes a cost matrix of the right
eye 1mage, and d (x, v) denotes a disparity of a pixel (X, v)
in the right eye image.
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In a non-event portion of a DVS 1mage, an 1llumination
variation may be less than a preset threshold. Similar illu-
mination variations of pixels may indicate that viewpoints
corresponding to the pixels are close to each other. Neigh-
boring pixels included 1n the non-event portion may have
similar cost values. Cost values of neighboring pixels in the
non-event portion may be made to be similar by filtering the
cost matrix acquired 1n operation 235 using a smoothing
filtering scheme.

In operation 241, the disparity determination apparatus
filters the cost matrix using the smoothing filtering scheme.
The disparity determination apparatus may set a smoothing
tactor of the smoothing filtering scheme, and may filter the
cost matrix based on the smoothing factor using the smooth-
ing filtering scheme. In operation 243, the disparity deter-
mination apparatus determines a respective disparity of each
matched pair of pixels based on the filtered cost matrix.

For example, the disparity determination apparatus may
filter the cost matrix using the smoothing filtering scheme
based on Equation 9 shown below.

1 Eauation O
Culp.d) == D (Enlp. 4)Clg. d); < [Equation 9]

g=N(p)

In Equation 9, C (p, d) denotes the cost matrix filtered
using the smoothing filtering scheme. p denotes a p-th pixel,
d denotes a disparity corresponding to a pixel, and K denotes
a number of pixels included in a portion that 1s within
relatively close proximity to the p-th pixel p. Also, g denotes
a pixel icluded 1n the portion 1n relatively close proximity
to the p-th pixel p, and g(E,_(p, q)) denotes the smoothing
factor. The smoothing factor g(E, (p, q)) may be calculated
using Equation 10 shown below.

1

N exp(—

| En (P) —Em(fi’)l; i
pAY

|[Equation 10]

gEm(p, @) =

In Equation 10, E_(p) denotes a polarity of the p-th pixel
p, and v denotes a constant value. The constant value v may
be set 1n advance.

In operation 250, the disparity determination apparatus
optimizes the determined disparity. The disparity determi-
nation apparatus may optimize respective disparities of
non-robust pixels based on a correlation between the dis-
parities and the features of the pixels. Operation 250 may be
performed after operation 240.

In operation 251, the disparity determination apparatus
acquires a correlation between the respective disparities of
the plurality of pixels. The disparity determination apparatus
may determine a respective feature of each of the pixels and
may acquire a correlation between features of pixels 1n the
left eye 1image and features of pixels 1n the right eye image.
The disparity determination apparatus may acquire a respec-
tive robustness value with respect to each of the disparities
by applying a cross-validation to the disparities. The dis-
parity determination apparatus may acquire the correlation
between the disparities based on the robustness values.

The disparity determination apparatus may obtain the
teatures of the pixels 1n the binocular disparity image based
on sparsely distributed events, and may acquire the corre-
lation between the features of the pixels in the leit eye image
and the features of the pixels in the right eye image. Thus,
the disparity determination apparatus may ellectively
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increase a calculation speed by extracting a respective
feature of each of the pixels using a relatively simple
algorithm.

In operation 253, the disparity determination apparatus
optimizes each of the determined disparities based on the
correlation. The disparity determination apparatus may opti-
mize the disparities based on a dense conditional random
field. The disparity determination apparatus may determine
a respective sub-pixel level disparity of each matched pair of
pixels based on the dense conditional random field.

The disparity determination apparatus may acquire the
dense conditional random field based on the robustness
values and the correlation between the disparities. The
disparity determination apparatus may acquire the dense
conditional random field based on a disparity of a robust
pixel and may represent a correlation between events. The
disparity determination apparatus may effectively predict
and optimize disparities of pixels that do not match based on
the correlation between the events, may filter disparities of
neighboring pixels using the smoothing filtering scheme,
and may determine a respective sub-pixel level disparity.

The dispanity determination apparatus may acquire
respective depth values of the matched pairs of pixels based
on the respective sub-pixel level disparity and a focal length
of a camera that captures the binocular disparity image. The
disparity determination apparatus may optimize disparities
based on the depth values.

Since the binocular disparity image includes the left eye
image and the right eye image, depth values of pixels may
be applied to each image.

For example, depth values of pixels in a left eye DVS
image may be acquired based on a focal length of a camera
that captures the left eye DVS 1mage, a distance between a
lett eye DVS camera and a right eye DVS camera, and a
respective sub-pixel level disparity of each of the pixels in
the left eye DVS image.

Similarly, depth values of pixels 1n a right eye DVS 1mage
may be acquired based on a focal length of a camera that
captures the right eye DVS 1mage, a distance between a right
eye DVS camera and a left eye DVS camera, and a respec-
tive sub-pixel level disparity of each of the pixels 1n the right
eye DVS 1mage.

For example, the disparity determination apparatus may
acquire a respective robustness value with respect to each of
disparities by applying the cross-validation to the disparities
using Equation 11 shown below.

dl(-xa y)a it dl(-xa }’) — dr(-x-l_dla y)
_l,

|Equation 11]
d(x, y) = {

or

The disparity determination apparatus may determine
whether disparities d,(x, y) and d (x+d,, y) in Equation 11 are
the same. When the dispanties d(x, yv) and d (x+d,, v) are
determined to be the same, a pixel (X, y) may be determined
as a robust pixel. When the disparities d(x, v) and d (x+d,,
y) are determined to be different from each other, the pixel
(X, y) may be determined as a non-robust pixel.

To predict a disparity of a non-robust pixel, the disparity
determination apparatus may form a dense conditional ran-
dom field E(D) by calculating a correlation between an
arbitrary pixel and the other pixels, and may optimize a
disparity of a pixel based on the dense conditional random
field E(D). For example, the disparity determination appa-
ratus may optimize a disparity using Equation 12 shown
below.
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|Equation 12]

E(D)= ) guld)= ) ) ¢pldi. dj)s

HRGFY i j#i relationships

In Equation 12,

" — i —

as an energy formula, denotes a respective robustness value
with respect to a respective disparity for each pixel. When
the cross-validation 1s performed, a robust pixel may have a
robustness value of N, and a non-robust pixel may have a
robustness value of zero. For example, N may be “10.” Also,

(iap_(dfa dj? » .

relationships

as an energy formula, denotes a correlation between dis-
parities. For example, a correlation between disparities of
pixels may be defined as shown in Equation 13 below.

li — j |Equation 13]

| £ (8) — B () .
262

2
26
W Ei}ip( |I_ .)’l]] <
2 - .
262

In Equation 13, when d, does not equal d,, u(d,, d,) may
have a value 0t “1,” and when d, equals d, u(d,, d;) may have
a value of “0.” Also, 1 and 1 denote 1dentification numbers of
pixels, w, and w, denote weights, and 0, 05 and 6, denote
numerical parameters.

The disparity determination apparatus may obtain a sub-
pixel level disparity by optimizing disparities of non-robust
pixels based on a correlation between disparities of pixels.
An optimization formula may be simplified by applying a
gradient descent method. A simplified result may be a
respective sub-pixel level disparity of each pixel.

For example, the disparity determination apparatus may
calculate a respective depth value Z of each pixel based on
a focus 1 of a camera and a distance B of the camera. The
depth value Z may be obtained by “Z=1*B/d” in which d
denotes a respective sub-pixel level disparity of a pixel.

The method of FIG. 2 has been described above based on
Equations 1 through 13, however, the present disclosure 1s
not limited to Equations 1 through 13.

FIG. 3 1s a flowchart illustrating an example of acquiring,
features of pixels from a left eye image and a right eye
image, according to an exemplary embodiment.

Referring to FIG. 3, 1n operation 310, a disparity deter-
mination apparatus according to an exemplary embodiment
calibrates a DVS camera. Parameters, for example, a focal
length of a left eye DVS camera, a focal length of a right eye
DVS camera, or a distance between the left eye DVS camera
and the rnight eye DVS camera, may be calibrated.

In operation 320, the disparity determination apparatus
acquires one or more features of a plurality of pixels 1n a
binocular disparity image based on a distribution of events
in the binocular disparity image. Operation 320 may include

a process ol extracting features of pixels from the left eye

©p(d;, d;) = pld;, dj)[wl exp[—
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image and 1nclude a process of extracting features of pixels
from the right eye 1image. The processes may be simultane-
ously or sequentially performed.

The process of extracting features of pixels from the left
eye 1mage may include operation 321 of acquiring the left
eye 1mage from the binocular disparity image, operation 322
of removing a noise event by applying an orthogonal analy-
s1s to the left eye image, and operation 323 of extracting
features of pixels by performing a Fuclidean distance trans-

form on the left eye image from which the noise event is
removed.

The process of extracting features of pixels from the right
eye 1mage may include operation 324 of acquiring the right
eye 1mage from the binocular disparity image, operation 325
of removing a noise event by applying an orthogonal analy-
s1s to the right eye image, and operation 326 of extracting,
features of pixels by performing a Fuclidean distance trans-
form on the right eye image from which the noise event 1s
removed.

In operation 230, the disparity determination apparatus
calculates a cost matrix of matching respective pixels
between the left eye image and the right eye image based on
the features of the pixels.

The disparity determination apparatus determines a
respective disparity of each matched pair of pixels based on
the cost matrix. In operation 241, the disparity determination
apparatus filters the cost matrix using a smoothing filtering
scheme. In operation 243, the dispanty determination appa-
ratus determines a respective disparity of each matched pair
of pixels based on the filtered cost matrix. In operation 250,
the disparity determination apparatus optimizes each deter-
mined respective disparity.

FIG. 4 illustrates a result obtained by visualizing features
extracted by performance of a method for determining a
disparity of a binocular disparity image, according to an
exemplary embodiment.

In FIG. 4, extracted pixel point features are visualized. An
image 410 1s an input DVS image, and may be, for example,
a left eye 1mage or a right eye image. An image 420 1is
obtained by visualizing features extracted from pixels of the
image 410.

FIG. 5 1llustrates a result obtained by visualizing dispari-
ties acquired by performance of a method for determining a
disparity of a binocular disparity image, according to an
exemplary embodiment.

In FIG. 5, an image 3510 1s a binocular disparity image
captured by a DVS camera. In the image 510, a portion 1n
which an event occurs 1s represented by colors other than a
black portion. An 1mage 520 shows a respective disparity of
cach of pixels acquired from the image 510 based on a
brightness. When the brightness increases 1n the image 510,
cach respective disparity may increase and a distance to a
camera may decrease.

FIG. 6 1llustrates a result obtained by visualizing dispari-
ties optimized by an optimization method, according to an
exemplary embodiment.

An 1mage 610 1s obtained by visualizing a disparity
predicted before optimization, and an image 620 1s obtained
by visualizing a disparity predicted after optimization. In the
image 610, a shape of an object captured by a DVS camera
1s not maintained and 1s relatively greatly changed, because
disparities are not optimized. In the image 620, the shape of
the object 1s maintained and 1s relatively slightly changed,
because the disparities are optimized.

FIG. 7 1s a block diagram 1llustrating a configuration of a
disparity determination apparatus 700, according to an
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exemplary embodiment. FIG. 8 1s a tlowchart of operations
performed by components of the disparity determination
apparatus 700 of FIG. 7.

Referring to FIG. 7, the disparity determination apparatus
700 includes a feature acquirer 720, a matrix calculator 730
and a disparity determiner 750. The disparity determination
apparatus 700 further includes a noise remover 710, a filter
740 and an optimizer 760.

The noise remover 710 may remove noise from an input
binocular disparity image. The noise remover 710 may
acquire a correlation between events based on a degree to
which events are densely distributed, by using an orthogonal
analysis. The noise remover 710 may represent the correla-
tion as a feature vector and may determine an event portion
corresponding to a relatively low feature value of a feature
vector as noise, 1n order to remove noise from the binocular
disparity image.

The feature acquirer 720 may acquire one or more fea-
tures of a plurality of pixels included in the binocular
disparity 1mage based on a distribution of events in the
binocular disparity image. Also, the feature acquirer 720
may acquire the features of the plurality of pixels in the
binocular disparity image based on a distribution of events
in the binocular disparity image from which noise 1is
removed.

The feature acquirer 720 may acquire respective features
of pixels based on a Euclidean distance transform. The
teature acquirer 720 may apply a Euclidean distance trans-
form to each of a horizontal direction and a vertical direc-
tion, and may acquire features of pixels by combimng
respective Fuclidean distances acquired for each of the
honizontal direction and the vertical direction.

The matrix calculator 730 may calculate a cost matrix of
matching respective pixels between a left eye image and a
right eye image based on the acquired features of the pixels.
The matrnix calculator 730 may obtain a respective feature
matching cost of each matched pair of pixels based on
teature matching. Also, the matrix calculator 730 may obtain
a respective polar matching cost of each matched pair of
pixels based on polar matching. The matrix calculator 730
may calculate the cost matrix based on the obtained feature
matching costs and the obtained polar matching costs.

The filter 740 may filter the cost matrix. The filter 740
may set a smoothing factor of a smoothing filtering scheme,
and may filter the cost matrix based on the smoothing factor
using the smoothing filtering scheme. Also, the filter 740
may perform filtering using a Gaussian filtering scheme.

The disparity determiner 750 may determine a respective
disparity of each matched pair of pixels based on the filtered
cost matrix. For example, the disparity determiner 750 may
use an algorithm, for example, a winner-take-all algorithm,
as a greedy strategy to determine a respective disparity of
cach matched pair of pixels.

The optimizer 760 may optimize each determined respec-
tive disparity. The optimizer 760 may acquire a respective
robustness value with respect to each respective disparity by
applying a cross-validation to the disparities. To predict a
disparity of a non-robust pixel, the optimizer 760 may form
a dense conditional random field by calculating a correlation
between an arbitrary pixel and the other pixels, and may
optimize a disparity of a pixel based on the dense conditional
random field.

The elements or components described herein may be
implemented using hardware components, software compo-
nents, or a combination thereof. For example, the hardware
components may include microphones, amplifiers, band-
pass filters, audio to digital convertors, non-transitory com-
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puter memory and processing devices. A processing device
may be implemented using one or more general-purpose or
special purpose computers, such as, for example, a proces-
sor, a controller and an arithmetic logic unit (ALU), a digital
signal processor (DSP), a microcomputer, a field program-
mable array (FPGA), a programmable logic unit (PLU), a
microprocessor or any other device capable of responding to
and executing instructions 1 a defined manner. The pro-
cessing device may run an operating system (OS) and one or
more software applications that run on the OS. The process-
ing device also may access, store, manipulate, process, and
create data in response to execution of the software. For
purpose of simplicity, the description of a processing device
1s used as singular; however, a person having ordinary skill
in the art will appreciate that a processing device may
include multiple processing elements and multiple types of
processing elements. For example, a processing device may
include multiple processors or a processor and a controller.
In addition, diflerent processing configurations are possible,
such a parallel processors.

The software may include a computer program, a piece of
code, an 1nstruction, or some combination thereof, to inde-
pendently or collectively istruct or configure the processing
device to operate as desired. Software and data may be
embodied permanently or temporarily i any type of
machine, component, physical or virtual equipment, com-
puter storage medium or device, or 1n a propagated signal
wave capable of providing instructions or data to or being
interpreted by the processing device. The software also may
be distributed over network coupled computer systems so
that the software 1s stored and executed in a distributed
fashion. The software and data may be stored by one or more
non-transitory computer readable recording mediums.

The method according to the above-described exemplary
embodiments may be recorded in non-transitory computer-
readable media including program instructions to implement
various operations which may be performed by a computer.
The media may also include, alone or in combination with
the program 1nstructions, data files, data structures, and the
like. The program instructions recorded on the media may be
those specially designed and constructed for the purposes of
the exemplary embodiments, or they may be of the well-
known kind and available to those having skill in the
computer software arts. Examples of non-transitory com-
puter-readable media 1include magnetic media such as hard
disks, tloppy disks, and magnetic tape; optical media such as
compact disc-read-only memory (CD ROM) discs and digi-
tal versatile discs (DVDs); magneto-optical media such as
optical discs; and hardware devices that are specially con-
figured to store and perform program instructions, such as
read-only memory (ROM), random access memory (RAM),
flash memory, and the like. Examples of program instruc-
tions include both machine code, such as code produced by
a compiler, and files containing higher level code that may
be executed by the computer using an interpreter. The
described hardware devices may be configured to act as one
or more software modules 1n order to perform the operations
of the above-described exemplary embodiments, or vice
versa.

While the present disclosure includes specific exemplary
embodiments, 1t will be apparent to one of ordinary skill 1n
the art that various changes 1n form and details may be made
in these exemplary embodiments without departing from the
spirit and scope of the claims and their equivalents. The
exemplary embodiments described herein are to be consid-
ered 1 a descriptive sense only, and not for purposes of
limitation. Descriptions of features or aspects 1n each exem-
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plary embodiment are to be considered as being applicable
to similar features or aspects in other exemplary embodi-
ments. Suitable results may be achieved if the described
techniques are performed i1n a different order, and/or it
components in a described system, architecture, device, or
circuit are combined 1n a different manner and/or replaced or
supplemented by other components or their equivalents.
Therefore, the scope of the present disclosure 1s defined not
by the detailed description, but by the claims and their
equivalents, and all variations within the scope of the claims
and their equivalents are to be construed as being included
in the present disclosure.

What 1s claimed 1s:
1. A method for determining a disparity of a binocular
disparity 1mage, the method comprising:
acquiring a distribution of events by classifying a plurality
of pixels i the binocular disparity image into pixels
included 1n an event portion and pixels included 1n a
non-event portion, the event portion comprising pixels
with an 1llumination varnation that 1s greater than or
equal to a predetermined threshold and the non-event
portion comprising pixels having an illumination varia-
tion that 1s less than the predetermined threshold;
acquiring a respective feature of each of the plurality of
pixels 1n the binocular disparity image based on the
distribution of events
calculating a cost matrix of matching respective pixels
between a left eye 1image and a right eye image based
on the acquired respective feature; and
determining a respective disparity of each matched pair of
pixels based on the calculated cost matrix,
wherein the acquiring the respective feature comprises:
acquiring a plurality of feature vectors each represent-
ing a correlation between events based on a degree of
density by which the events are distributed;
removing a noise from the binocular disparity image by
removing an event portion corresponding to a feature
vector having a relatively low feature value, the
relatively low feature value representing a sparse
distribution of events; and
acquiring the respective feature from the binocular
disparity 1image from which the noise 1s removed.
2. The method of claim 1, wherein the acquiring the
respective feature comprises:
calculating a respective shortest Fuclidean distance
between each respective one of the pixels 1n the non-
event portion and each respective one of the pixels 1n
the event portion; and
for each respective one of the pixels in the non-event
portion, setting the calculated respective shortest
Euclidean distance as the respective feature.
3. The method of claim 2, wherein the calculating the
respective shortest Buclidean distance comprises:
acquiring a plurality of parabolas which correspond to a
function indicating a respective Euclidean distance
between each respective one of the pixels 1n the non-
event portion and each respective one of the pixels 1n
the event portion;
acquiring intersections between the acquired parabolas;
and
calculating the respective shortest Fuclidean distance
based on a lower envelope of the acquired intersec-
tions.
4. The method of claim 1, wherein the calculating the cost
matrix comprises:
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calculating a respective feature matching cost of each
matched pair of pixels based on the respective feature
of each of the pixels;
calculating a respective polar matching cost of each
matched pair of pixels based on a respective polarity of
cach of the pixels; and
acquiring the cost matrix based on the calculated feature
matching cost and the calculated polar matching cost
for each matched pair of pixels.
5. The method of claim 1, wherein the determining the
respective disparity comprises filtering the cost matrix.
6. The method of claim 1, wherein the acquiring the
plurality of feature vectors comprises:
acquiring the plurality of feature vectors by applying an
orthogonal analysis to the binocular disparity image.
7. The method of claim 1, further comprising:
optimizing each of the determined respective disparity.
8. The method of claim 7, wherein the optimizing each of
the respective disparity comprises:
acquiring a correlation between the respective disparity;
and
optimizing each of the respective disparity based on the
acquired correlation.
9. The method of claim 8, wherein the acquiring the
correlation comprises:
acquiring a respective robustness value with respect to
cach of the respective disparity by applying a cross-
validation to the respective disparity; and
acquiring the correlation based on the acquired robustness
values.
10. The method of claim 8, wherein the optimizing each
respective disparity based on the correlation comprises:

acquiring a dense conditional random field based on the
acquired robustness values and the correlation; and

optimizing each respective disparity based on the
acquired dense conditional random field.

11. The method of claim 10, wherein the optimizing each
respective disparity based on the dense conditional random
field comprises:

determiming a respective sub-pixel level disparity of each
matched pair of pixels based on the dense conditional
random field; and

acquiring a respective depth value of each matched pair of
pixels based on the determined respective sub-pixel
level disparity and a focal length of a camera that
captures the binocular disparity image.

12. A non-transitory computer-readable storage medium
storing instructions which, when executed by a computer,
implement the method of claim 1.

13. An apparatus for determining a disparity of a binocu-
lar disparity image, the apparatus comprising:

a feature acquirer configured to acquire a distribution of
events by classilying a plurality of pixels in the bin-
ocular disparity image nto pixels included in an event
portion and pixels included 1n a non-event portion, the
event portion comprising pixels with an 1llumination
variation that 1s greater than or equal to a predeter-
mined threshold and the non-event portion comprising
pixels having an 1llumination variation that 1s less than
the predetermined threshold, and acquire a respective

feature of each of the plurality of pixels based on the
distribution of

a matrix calculator configured to calculate a cost matrix of
matching respective pixels between a left eye image
and a right eye 1image based on the acquired respective
feature; and
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a disparity determiner configured to determine a respec-
tive disparity of each matched pair of pixels based on
the calculated cost matrix,
wherein the apparatus further comprises a noise remover
configured to remove a noise from the binocular dis- 5
parity 1image, by performing:
acquiring a plurality of feature vectors each represent-
ing a correlation between events based on a degree of
density by which the events are distributed; and

removing the noise from the binocular disparity image 10
by removing an event portion corresponding to a
feature vector having a relatively low feature value,
the relatively low feature value representing a sparse
distribution of events,

wherein the feature acquirer 1s configured to acquire the 15
respective feature from the binocular disparity image
from which the noise 1s removed.

14. The apparatus of claim 13, further comprising:

an optimizer configured to optimize each determined
respective disparity. 20
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