12 United States Patent

Gururao et al.

US010574544B2

US 10,574,544 B2
Feb. 25, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(1)

(52)

(58)

METHOD OF CERTIFYING RESILIENCY
AND RECOVERABILITY LEVEL OF
SERVICES BASED ON GAMING MODE
CHAOSING

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Indumathy Gururao, Bangalore (IN);
Sudheesh Sivadasan Kairali, Kerala

(IN); Rohit Shetty, Cary, NC (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 476 days.

Appl. No.: 15/398,563

Filed: Jan. 4, 2017

Prior Publication Data

US 2018/0191579 Al Jul. 5, 2018

Int. CIL.

HO4L 12/00 (2006.01)

HO4L 12/24 (2006.01)

GO6F 11/36 (2006.01)

U.S. CL

CPC HO4L 41/5038 (2013.01); HO4L 41/5009

(2013.01); GO6F 11/3668 (2013.01)
Field of Classification Search

CPC HO4L 41/5038; HO4L 41/5009; GO6F
11/3668
USPC 709/223, 224; 717/103

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,012,152 A * 1/2000 Douwk GO6F 11/0709
714/26
6,148410 A * 11/2000 Baskey HO4L 41/0654
714/4.11
6,553,568 B1* 4/2003 Fyolek HO4L 29/06
348/E7.071
6,556,659 B1* 4/2003 Bowman-Amuah ... HO4L 12/14
370/252
6,681,232 B1* 1/2004 Sistanizadeh HO4L 41/0213
6,779,135 B1* 82004 Urccooevvinnnnn, GO6F 11/3676
714/37
6,857,020 B1* 2/2005 Chaar G06Q 10/10
709/223
7,020,797 B2* 3/2006 Patil GO6F 11/3672
709/223
7,730,172 B1* 6/2010 Lewiscccoeeeinn, G06Q) 10/04
709/224
7,937,685 B2* 5/2011 Weill ..., GOO6F 8/71
717/103
7,991,850 B2* 8§/2011 Lavin GO6F 11/1417
707/640

(Continued)

Primary Examiner — Frantz Coby

(74) Attorney, Agent, or Firm — Patterson + Sheridan,
LLP

(57) ABSTRACT

Embodiments of the present disclosure provide a method,
system, and computer program product for certifying resil-
iency and recoverability level of services. The method,
system and computer program product include receiving a
level of testing for a target service used by an application 1n
an ordinary course of operation. The monitoring system
disrupts expected behavior of the application by adjusting
one or more parameters of the application. The monitoring
system determines whether the service 1s able to recover
based on the application behavior. Upon determining that
the service 1s able to recover based on the application
behavior, reporting the level of testing as the level of testing
received.

20 Claims, 6 Drawing Sheets

300 < Begin)
Receive leve! of fosting for a targetsenvice |7 N\ 302
Set starting lsvsl of chaos testing to level 1 ' _ 304
Disrupt application behavicr in a way that crashes the "\ 306
application -
| 316
¥
Monifor execution of the service N\ 307 (

Current level ™

of testing==1
| ’ |

Satisfy chaos
parameaters
’,

Increase ¢haos level
+ 1

1

No

312

Report RR level of testing
as {current Chaos Level -
1}

Report BR level of testing
as L

N\ 214

310'(

US 10,574,544 B2
Page 2

(56)

8,510,592
8,688,500
9,934,385
2002/0076056
2003/0191590
2004/0158766
2007/0156919
2010/0149965
2011/0126168

2013/0185667
2016/0034838
2016/0314066
2017/0123961
2017/0168907

References Cited

U.S. PATENT DOCUMENTS

Bl* 82013 Chan
Bl 4/2014 Hart et al.

B2* 4/2018 Chestna
Al* 6/2002 Pavlakos
Al* 10/2003 Narayan
Al* 8/2004 Liccione
Al* 7/2007 Pottr
Al* 6/2010 Jung
Al* 5/2011 Ilyayev
Al 7/2013 Harper et al.
Al 2/2016 Gembicki

Al* 10/2016 Mirza
Al* 5/2017 Cemy
Al* 6/2017 Harper

* cited by examiner

GOO6F 11/0751
714/5.1

GOo6F 21/577

********* A61B 5/12

381/60

******** HO4L 41/22

702/68
GOO6F 11/2023

714/4.11

........ GOO6F 8/656

709/238

........ HO4L 69/40

370/216
GO6F 9/5072

717/103

GOO6F 11/3692
GOO6F 11/3668

******* GO6F 11/14

Ol

Gl
WBSAS DULIOHUOI

US 10,574,544 B2

\&
-~
&
o
'
W
)= s
N .
. - };_\\J | NJ;,.MJ;
o I
als.__h ;,,,
: |
- Y
— HL, | m
l !
S P 0G| SOMIBN s
2-.; \ E ..,Hﬂ /
* S N
;))
b.. ,,/,r% I h
L / o A N\
F \ T e AL T /
/ S

U4 / N
(S}uoneoiddy N\,

.. NGO WeISAS BN
011 J8PIACId PRoID

U.S. Patent

US 10,574,544 B2

Sheet 2 of 6

¢ Ol

S L A L A A, L

T P T R PO P RO T TS T TR I AP LT UTS T TN ML P A T PR T FTST T A U T R TR U RA TS RS T P AR TS TR T TS TR LT 1A ML F T T ML L P S T T T AT T TA TR ST LA

¥17 1usby
DULICHUOW S0BYND

A LA

S AL T A A AL A R A R T S

AN
wely soeyn

C11 WalSAS BUUOHUO

I L ——

707 (SHALA

Feb. 25, 2020

e I L R L bR d [FEFLryeT) Bt Lkt Bl o i e o e Y R e T M MRl (e ey

G07 Josmolg Qep 071 (sjuoneoddy

U.S. Patent

902 Idv 1S3

R

L
- -l.l .r.r.rrJ.
Jl.l.lln‘......,. km. b -
o T fr.,,.u..s.......h
A

—— —

017 (5)20iA18S N

LR L EE e Rt

707 (3)eseqeie(

lmmaimmrr R rrrrrArr P T A A AT A M AT A TR R T IR I T R A AR ToAr T Ar T T T T

4
_—— e Bl b e ———

T T T T T T AR A AR L

U.S. Patent Feb. 25, 2020 Sheet 3 of 6 US 10,574,544 B2

300

Recaive level of testing for a target service N 302

et starting level of chaos testing to level | T\ 304

++
+

- Disrupt application behavior in a way that crashes the | - 306
| applicaon =
316
Monitor execution of the service N U7

Increase chaos level

+

” Current level
of {esting == L

‘Satisfy chaos
narameters

? Yes ? No
312
NO Yes
| Report RR level of testing ~eport RR level of testing L 214

 as (current Chaos Level -

as b

310 -G, 3

U.S. Patent Feb. 25, 2020 Sheet 4 of 6 US 10,574,544 B2

-G, 4

U.S. Patent Feb. 25, 2020 Sheet 5 of 6 US 10,574,544 B2

500

.f’ff ? H\‘g
. Begin

\ ;
- ____.-f"

dentity the current chaos level policy in the chaos level
definition table

Selectively kill services of the application based on the L

}dentitied current chaos level policy SUZ

select light sources to direct photons {o the area

exterior to the region of interast o4

++

F1G. S

U.S. Patent Feb. 25, 2020 Sheet 6 of 6 US 10,574,544 B2

Computing System 600

Hrocessor b4

|+t 9 F I It 31T

Chaos Level Definition Table

Storage 608 |

................................. . . Network
Network Interface 10 7 f 1071
/O Devicels) 620

F1G. 6

UsS 10,574,544 B2

1

METHOD OF CERTIFYING RESILIENCY
AND RECOVERABILITY LEVEL OF
SERVICES BASED ON GAMING MODLE
CHAOSING

BACKGROUND

The present application generally relates to computer

networks, and more particularly, to techniques of certifying,
resiliency and recoverability level of services.

DESCRIPTION OF THE RELATED ART

A cloud infrastructure, which may be used as a service
delivery model, abstracts the complete setup and manage-
ment of IT resources, as well as allows users to explore the
compute environments 1n seli-service mode. These services
form an inherent part of computing. The resiliency and
recoverability of these services 1s of great importance to the
success of the businesses 1n the cloud.

There are several tools available to test the stability of the
services. Such tools inject “chaos™ into the system, and then
take care of the aftermath caused from the chaos. Injecting
such chaos into the system helps to strengthen the applica-
tion or service by identifying vulnerabilities found, or errors
caused, from the chaos. However, due to the amount of
chaos introduced into the system, conventional tools have
dificulty narrowing down the exact problem, and revival
thereot, of the application 1tself. This result often credits the
application to a pass or a fail based on the success of the
chaos tests.

SUMMARY

Embodiments of the present disclosure provide a method,
system, and computer program product for certifying resil-
iency and recoverability level of services. The method,
system and computer program product include receiving a
level of testing for a target service used by an application 1n
an ordinary course of operation. The monitoring system
disrupts expected behavior of the application by adjusting
one or more parameters of the application. The monitoring
system determines whether the service 1s able to recover
based on the application behavior. Upon determining that
the service 1s able to recover based on the application
behavior, reporting the level of testing as the level of testing,
received.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the present disclosure, brietly
summarized above, may be had by reference to the appended
drawings.

It 1s to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of its scope, for the
present disclosure may admit to other equally eflective
embodiments.

FIG. 1 1llustrates a computing environment, according to
one embodiment.

FI1G. 2 1llustrates a detailed view of the computing system,
according to one embodiment

FIG. 3 1s a flow diagram of a method for certifying
resiliency and recoverability level of services, according to
one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1llustrates a chaos level definition table, according
to one embodiment.

FIG. 5 15 a flow diagram 1llustrating in more detail step
from FIG. 3, discussed above.

FIG. 6 1llustrates a computing system, according to one
embodiment.

DETAILED DESCRIPTION

Cloud providers typically include the computing
resources required to support the execution of cloud-based
applications. The infrastructure for the cloud provider typi-
cally includes virtual and physical computing hardware,
along with application and system software. The cloud
provider 1s configured to host one or more applications. The
one or more applications are accessible to the client system
(s) over the network. The application includes one or more
services made accessible to one or more users via the cloud
provider. For example, the one or more services may include
a client-server communication protocol such as representa-
tional state transier (REST) application programming inter-
faces (APIs) or a web server.

Monitoring tools may be implemented to 1nject chaos into
the application to test the stability of the one or more
services. For example, such chaos may be i the form of
“killing off”” or ending processes running in the application
and then reviving the application. One of the major problems
with conventional monitoring tools 1s that conventional
monitoring tools only tell the user whether the application
has survived or failed revival from the chaos.

In addition to improving the way in which a service
resiliency or recoverability level can be certified, the present
disclosure discusses the increased transparency to the con-
sumer of any service on the resiliency or recoverability level
of the services they are paying for. Monitoring services are
already available (or upcoming) as billable services in public
clouds. By defining chaos levels, the cloud developers can
actually bill chaos services differently for each level. Addi-
tionally, special levels can have special billings associated
therewith. Each consumer would come to know the resil-
iency and recoverability level of service they are planning to
consume. Based off the resiliency level, services can be
billed and the consumer will receive what they pay for in
terms of resiliency and recoverability.

Additionally, the method described below will make 1t
simpler for services (development teams of services) to
adopt monitoring services. For example, 11 a development
team 1s building a service and the teams wants to ensure/
support a minimum level of resiliency in the 1nitial releases,
the present disclosure allows developers to select a desired
level of chaos. Similarly, advanced resiliency and recover-
ability levels can be ensured/certified at later releases of the
service based on business requirements.

Embodiments of the present disclosure provide a method,
system, and computer program product for certifying resil-
iency and recoverability level of services. The method,
system and computer program product include receiving
mput on a level of testing for a target service of an
application. The momitoring system introduces chaos on
various parameters of the application based on a policy
associated with the iputted level of recoverability and
resiliency. The monitoring system determines whether the
service 1s resilient and 1s able to recover based on the
introduced parameters. Upon determining that the service
passes the level of testing, the monitoring system reports the
level of testing as the mputted level.

UsS 10,574,544 B2

3

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or stmilar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality mnvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

Embodiments of the present disclosure may be provided
to end users through a cloud computing infrastructure.
Cloud computing generally refers to the provision of scal-
able computing resources as a service over a network. More
formally, cloud computing may be defined as a computing

UsS 10,574,544 B2

S

capability that provides an abstraction between the comput-
ing resource and its underlying technical architecture (e.g.,
servers, storage, networks), enabling convenient, on-de-
mand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management eflort or service pro-
vider interaction. Thus, cloud computing allows a user to
access virtual computing resources (e.g., storage, data,
applications, and even complete virtualized computing sys-
tems) 1n “the cloud,” without regard for the underlying
physical systems (or locations of those systems) used to
provide the computing resources.

Typically, cloud computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
the computing resources actually used (e.g. an amount of
storage space consumed by a user or a number of virtualized
systems instantiated by the user). A user can access any of
the resources that reside 1n the cloud at any time, and from
anywhere across the Internet. In context of the present
invention, a user may access applications (e.g., the moni-
toring system) available 1n the cloud. For example, the
monitoring system could execute on a computing system in
the cloud and receive user requests (e.g., queries) to certily
resiliency and recoverability level of services. In such a
case, the monitoring system receives mput on a level of
testing for a target service of an application. The monitoring,
system 1ntroduces chaos on various parameters of the appli-
cation based on a policy associated with the inputted level of
recoverability and resiliency. The monitoring system deter-
mines whether the service 1s resilient and 1s able to recover
based on the introduced parameters. Upon determining that
the service passes the level of testing, the monitoring system
reports the level of testing as the nputted level.

FIG. 1 illustrates a computing environment 100, accord-
ing to one embodiment. The computing environment 100 1s
configured to provide a networked application to one or
more client systems. The computing environment 100
includes client system(s) 103, a monitoring system 115, and
a cloud provider 110 all connected by a network 150. Cloud
providers typically include the computing resources
required to support the execution of cloud-based applica-
tions. Thus, the infrastructure for the cloud provider typi-
cally includes virtual and physical computing hardware,
along with application and system software. The cloud
provider 110 1s configured to host one or more applications
120. The one or more applications 120 are accessible to the
client system(s) 105 over the network 150.

The monitoring system 115 1s configured to test the
stability of one or more services of the application 120. The
monitoring system 113 tests the stability of one or more
services ol the application 120 by injecting chaos into the
system and reacting to the aftermath caused by the chaos.
There are several tools available to test the stability of the
services by injecting chaos into the system, such as Chaos
Monkey, commercially available from Netflix. Injecting
chaos and reacting to the aftermath aids in strengthening the
application or service. Conventional monitoring systems
have difliculty, however, narrowing down the exact problem,
and the revival thereof, when a large amount of chaos is
introduced in the system. The result often credits the appli-
cation to a pass or a fail based on the success of the chaos
tests.

The chaos monitoring system 115 improves upon the
existing tools for testing the stability of services, as well as
expands their functionalities. The chaos monitoring system
115 takes a gaming approach to the chaos tests. The chaos
monitoring system 115 1s configured to test the stability of

10

15

20

25

30

35

40

45

50

55

60

65

6

one or more services ol the application 120 as applied to
various policy levels. Each policy level 1s defined as the
level of chaos induced 1n a target service by challenging
various parameters to the range or level that 1s expected. As
cach policy level is cleared, the service can be certified
against that. For example, when the services has cleared four
levels of chaos testing, the service can be credit level 4
certified 1n resiliency and recoverability. This expands func-
tionality of existing tools by allowing development teams to
adopt the chaos services for resiliency testing. Additionally,
it ensures the resiliency level of any service to be clearly
visible to the end customer.

FIG. 2 1llustrates a detailed view of the computing system
100, according to one embodiment. As depicted, the cloud
provider 110 includes one or more virtual machines 202. The
one or more virtual machines 202 may be used for the
development, testing, staging, and production of one or
more applications 120. In other embodiments, the cloud
provider 110 may include one or more deployment environ-
ments (not shown). Each of the one or more deployment
environments mclude on or more virtual machines. Collec-
tively, the one or more virtual machines, across multiple
deployment environments, may be used for the develop-
ment, testing, staging and production of one or more appli-
cations 120.

The application 120 includes one or more services 210
made accessible to one or more users via the cloud provider
110. For example, the one or more services may include a
client-server communication protocol such as representa-
tional state transier (REST) application programming inter-
faces (APIs) 206, web services 208, databases 204, and the
like. The monitoring system 105 1s configured to test and
monitor the stability of the services 210 by 1njecting chaos
into the application 120. Testing the stability of the services
210 by 1njecting chaos into the application 120 strengthens
the application 120 and the services 210.

The monitoring system 105 includes a chaos injection
agent 212 and a chaos monitoring agent 214. The chaos
injection agent 212 1s configured to inject various levels of
chaos into the application 120. Injecting various levels of
chaos into the application 120 allows for accurate certifica-
tion of the resilience/recoverability levels of service. For
example, the chaos 1njection agent 212 may 1nject chaos for
a variety of parameters based on the level of chaos as defined
by 1ts policy 1n the chaos definition table. The chaos moni-
toring agent 214 1s configured to monitor the application 120
as 1t runs with the chaos injected therein. For example, the
chaos monitoring agent 214 monitors the application 120 to
determine if 1t 1s able to recover and 1s resilient to the
random failures as defined by the parameters.

FIG. 3 1s a flow diagram of a method 300 for certifying
resiliency and recoverability level of services, according to
one embodiment. The monitoring agent 115 receives a level
of testing for a target service used by an application 1n an
ordinary course of operation (step 302). The level of testing
can be defined as the level of “chaos” induced 1n a target
service by challenging various parameters to the range/level
that 1s expected/defined. A service 1s declared as acquired the
level of recoverability or resiliency 1f 1t 1s able to success-
tully withstand the induced chaos 1n that level. A particular
level of chaos may include one or more chaos parameters.
For example, the chaos parameters may include challenging
or burning the available CPU to a particular percentage,
challenging or burning the available I/O devices to a par-
ticular percentage, filling or disrupting available disk to a
particular percentage, disrupting dependent processes or
services to a particular percentage, challenging the network

UsS 10,574,544 B2

7

by inducing corruption, latency, or loss to a particular
percentage, and the like. The chaos level policy 1s the
construct, which defines the chaos level of the testing.
Referring to FIG. 4, one or more chaos level policies may
be stored 1n a chaos level definition table. Each row 1n the
chaos level definition table 1s defined as a chaos level policy.
For example, referring to row 2, at Level 1 the CPU 1s
burned to 10%, the I/O 1s challenged to 10%, the disk 1s
randomly filled to 10%, the dependent processes or services
are disrupted to 105 (e.g., one out of ten services or process
will be disrupted), and the network 1s challenged to 10%.
The chaos levels and associated policies, however, may not

need to define all parameters. For example, Level 0 (row 1
of the table) only has the disk randomly filled up to 10%; all
other parameters are not chaosed.

The chaos level defimition table can also have specialized
levels of testing for particular services. For example, 1n a
gaming service, the CPU should be chaosed much more,
even 1n the imnitial levels of testing. For example, such a
service should have policies with a minmimum of 75% of
CPU usage. As illustrated, such policies are to be defined
based on custom and special requirements, and would by
tightly coupled to the nature or business of the service that
1s getting chaosed.

Referring back to FIG. 3, the monitoring system 113 starts
the level of chaos testing at level 1 (step 304). For example,
referring to the chaos level definition table, the monitoring
system 115 sets the level of testing to the chaos level policy
associated with level 1. The monitoring system 1135 then
disrupts expected behavior of the application by adjusting
one or more parameters ol the application (step 306). For
example, the monitoring system 115 disrupts expected
behavior by introducing chaos on various parameters based
on the chaos level definition table for the current level of
chaos testing. The process of introducing chaos on various
parameters 1s discussed in more detail below in conjunction
with FIG. 5.

The monitoring system 115 monitors execution of the
service used by the application 1in the ordinary course of
operation (step 307). The monitoring system 115 determines
whether the service 1s able to recover based on the applica-
tion behavior (step 308). For example, referring to level 1 of
the chaos level definition table, the monitoring system 115
determines whether the application 1s able to recover when
the disk 1s randomly filled up to 3%. If the monitoring
system 115 determines that the chaos parameters are not
satisiied (step 310), the momtoring system 1135 reports the
level of testing as:

Current Chaos Level—1

The monitoring system 115 reports the level of chaos as
(current chaos level-—1) because the application did not
“pass’ resiliency/recoverability testing for the current level
of chaos. Thus, at best, the application has a recoverability/
resiliency level of (current level of chaos—1). Using the
example of level 1, the application has a recoverability/
resiliency level of Level O.

If the monitoring system 1135 determines that service 1s
able to recover, the momtoring system 115 determines the
current level of testing (step 312). For example, referring to
level 1 of the chaos level definition table, the monitoring
system 1135 has determined that the application 1s able to
recover and 1s resilient when the disk randomly filled up to
5%. If the monitoring system 1135 determines that the current
level of testing equals L, where L 1s the input from step 202,
then the monitoring system 1135 reports the level of testing

as L (step 314).

10

15

20

25

30

35

40

45

50

55

60

65

8

If the monitoring system 1135 determines that the current
level of testing does not equal L, then the monitoring system
115 increases the level of testing by 1 (step 316). The
method 300 then reverts to step 306 for continued testing.
For example, assume that at step 202, the monitoring system
115 received an mput of Level 3 recoverability/resiliency
testing. The monitoring system 1135 begins monitoring the
service by introducing Chaos level policy 1. If the momitor-
ing system 115 determines that the service i1s not able to
recover, then it reports the recoverability/resiliency level of
service as 0. If, however, the monitoring system 115 deter-
mines that the service 1s able to recover, then the monitoring
system 115 determines whether the current level of testing
(Level 1) 1s equal to the input (Level 3). Because the current
level of testing 1s not equal to the input, the monitoring
system 115 increases the chaos level from Level 1 to Level
2. The monitoring system 115 then continues the process of
disrupting expected application behavior by adjusting one or
more parameters based on the chaos level definition table.

FIG. 5 15 a flow diagram 1llustrating in more detail step
306 from FIG. 3, discussed above. Referring back to FIG. 3,
at step 306, the monitoring system 115 introduces chaos on
various parameters based on the chaos level definition table
for the current level of chaos testing. To introduce chaos on
the various parameters, the monitoring system 1135 defines a
first environment in which chaos 1s to be introduced (step
502). For example, referring to Chaos Level Policy 2 1n the
chaos level definition table, the monitoring system 115
defines as the first environment the CPU. In another
example, the monitoring system 115 may define as the first
environment, the I/O devices, the network, the disk drive,
and the like.

The monitoring system 1135 then defines the one or more
processes that will be killed when chaos 1s introduced (step
504). Continuing with the above example, the monitoring
system 115 locates an entry for the CPU environment on the
chaos level definition table. As illustrated in the chaos level
definition table, the monitoring system 1135 defines one or
more processes that will killed to challenge or burn the
available CPU to 10%.

The monitoring system 115 kills the one or more defined
processes (step 506). Killing the one or more defined pro-
cesses results 1in challenging or burning the available CPU to
the desired amount. Referring to the above example, the
monitoring system 115 kills the one or more processes that
result in challenging or burning the available CPU to 10%.
After the monitoring system 115 kills the one or more
defined processes, the monitoring system 115 determines
whether there are any additional environments in the chaos
level policy (step 508). Continuing with the above example,
after the CPU environment, the 10, disk, network, and
processes/services environments remain. If additional envi-
ronments remain, the method reverts to step 502 for con-
tinued introduction of chaos. If no additional environments
remain, the method continues to step 308.

FIG. 6 1llustrates a computer system 600, such as client
system 105, according to one embodiment. The computer
system 600 1ncludes a processor 604, a memory 606, storage
608, and network interface 610. The processor 604 may be
any processor capable of performing the functions described
herein. The computer system 600 may connect to the net-
work 101 using the network interface 610. Furthermore, as
will be understood by one of ordinary skill in the art, any
computer system capable of performing the functions
described herein may be used.

The processor 604 includes the chaos monitoring system
115. The chaos momitoring system 115 1s configured to test

UsS 10,574,544 B2

9

the stability of one or more services of the application 120
as applied to various policy levels. Each policy level 1s
defined as the level of chaos induced 1n a target service by
challenging various parameters to the range or level that 1s
expected. The chaos monitoring system 115 access the
policy levels from a chaos level definition table 618 con-
tained 1n storage 608. For example, the chaos level definition
table 618 1s substantially similar to the chaos level definition
table 400 discussed above 1n conjunction with FIG. 4.

In the pictured embodiment, the memory 606 contains an
operating system 614 and program code 616. Although
memory 606 1s shown as a single entity, memory 606 may
include one or more memory devices having blocks of
memory associated with physical addresses, such as random
access memory (RAM), read only memory (ROM), flash
memory, or other types of volatile and/or non-volatile
memory. The program code 616 1s generally configured to
carry out the monitoring methods discussed 1n conjunction
with FIGS. 3-5 above. The memory 606 1s an example of
tangible media configured to store data such as chaos testing
history, level certification, and the like. Other types of
tangible media include floppy disks, removable hard disks,
optical storage media, such as CD-ROMs and DVDs, and
bar codes, and the like.

While the foregoing 1s directed to embodiments of the
present invention, other and further embodiments of the
present disclosure may be devised without departing from
the basic scope thereot, and the scope thereot 1s determined
by the claims that follow.

What 1s claimed 1s:

1. A method, comprising:

receiving a level of testing for a service used by an
application 1n an ordinary course ol operation;

disrupting expected behavior of the application by adjust-
ing one or more parameters ol the application;

monitoring first application behavior during execution of
the service used by the application in the ordinary
course of operation;

determining whether the service 1s able to recover based
on the first application behavior; and

upon determining that the service 1s able to recover based
on the first application behavior, reporting the level of
testing as the level of testing received.

2. The method of claim 1, further comprising;:

receiving a second level of testing for the service used by
the application 1n ordinary course of operation;

disrupting expected behavior of the application by adjust-
ing one or more parameters ol the application;

monitoring second application behavior during execution
of the service used by the application in the ordinary
course of operation;

determining whether the service 1s able to recover based
on the second application behavior; and

upon determining that the service 1s not able to recover,
reporting the level of testing as one less than the level
ol testing received.

3. The method of claim 1, further comprising:

receiving a second level of testing for the service used by
the application 1 ordinary course of operation;

setting a starting level at a first level of testing;

disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;

monitoring second application behavior during execution
of the service used by the application in the ordinary
course of operation;

10

15

20

25

30

35

40

45

50

55

60

65

10

determiming whether the service 1s able to recover based

on the second application behavior; and

upon determining that the service i1s not able to recover,

reporting the level of testing as one less than the
starting level.

4. The method of claim 1, further comprising:

recerving a second level of testing for the service used by

the application 1n ordinary course of operation;
setting a starting level at a first level of testing;
disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;

monitoring execution of the service used by the applica-

tion 1n the ordinary course of operation;

upon determining that the service 1s able to recover,

determining whether a current level of testing 1s equal
to the second level of testing received; and

upon determining that the current level of testing 1s equal

to the second level of testing received, reporting the
level of testing as the second level of testing received.

5. The method of claim 1, further comprising:

recerving a second level of testing for the service used by

the application 1 ordinary course of operation;
setting a starting level at a first level of testing;
disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;

monitoring execution of the service used by the applica-

tion 1n the ordinary course of operation;

upon determining that the service 1s able to recover,

determining whether a current level of testing 1s equal
to the second level of testing received; and

upon determining that the current level of testing 1s not

equal to the second level of testing recerved:

increasing the current level of testing to an increased
level of testing,

disrupting expected behavior of the application by
adjusting one or more parameters of the application
based on the increased level of testing, and

determining whether the service i1s able to recover
based on the adjusted one or more parameters asso-
ciated with increased level of testing.

6. The method of claim 1, wherein disrupting expected
behavior of the application by adjusting one or more param-
cters of the application, comprises:

defining a first environment 1 which the one or more

parameters will be adjusted;

defining one or more processes to be terminated based on

a policy; and

terminating the defined one or more processes.

7. The method of claim 1, wherein reporting the level of
testing as the level of testing received comprises:

certifying to an end customer that the application has

passed a level of testing equal to the recerved level.

8. A system, comprising:

a computer processor; and

a memory containing a program that, when executed on

the computer processor, performs an operation com-

prising:

receiving a level of testing for a service used by an
application 1n an ordinary course ol operation;

disrupting expected behavior of the application by
adjusting one or more parameters of the application;

monitoring first application behavior during execution
of the service used by the application 1n the ordinary
course ol operation;

UsS 10,574,544 B2

11

determining whether the service i1s able to recover
based on the first application behavior; and
upon determining that the service 1s able to recover
based on the first application behavior, reporting the
level of testing as the level of testing received.
9. The system of claim 8, further comprising:
receiving a second level of testing for the service used by
the application 1n ordinary course of operation;
disrupting expected behavior of the application by adjust-
ing one or more parameters ol the application;
monitoring second application behavior during execution
of the service used by the application in the ordinary
course ol operation;
determining whether the service 1s able to recover based
on the second application behavior; and
upon determining that the service 1s not able to recover,
reporting the level of testing as one less than the level
of testing received.
10. The system of claim 8, further comprising:
receiving a second level of testing for the service used by
the application 1 ordinary course of operation;
setting a starting level at a first level of testing;
disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;
monitoring second application behavior during execution
of the service used by the application in the ordinary
course ol operation;
determining whether the service 1s able to recover based
on the second application behavior; and
upon determining that the service 1s not able to recover,
reporting the level of testing as one less than the
starting level.
11. The system of claim 8, further comprising:
receiving a second level of testing for the service used by
the application 1 ordinary course of operation;
setting a starting level at a first level of testing;
disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;
monitoring execution of the service used by the applica-
tion 1n the ordinary course of operation;
upon determining that the service 1s able to recover,
determining whether a current level of testing 1s equal
to the second level of testing received; and
upon determining that the current level of testing 1s equal
to the second level of testing received, reporting the
level of testing as the second level of testing received.
12. The system of claim 8, further comprising:
receiving a second level of testing for the service used by
the application 1 ordinary course of operation;
setting a starting level at a first level of testing;
disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;
monitoring execution of the service used by the applica-
tion 1n the ordinary course of operation;
upon determining that the service 1s able to recover,
determining whether a current level of testing 1s equal
to the second level of testing received; and
upon determining that the current level of testing 1s not
equal to the second level of testing recerved:
increasing the current level of testing to an increased
level of testing,
disrupting expected behavior of the application by
adjusting one or more parameters of the application
based on the increased level of testing, and

12

determining whether the service i1s able to recover

based on the adjusted one or more parameters asso-
ciated with increased level of testing.

13. The system of claim 8, wherein disrupting expected

5 behavior of the application by adjusting one or more param-

10

15

20

25

30

35

40

45

50

55

60

65

cters of the application, comprises:

defining a first environment 1 which the one or more
parameters will be adjusted;

defining one or more processes to be terminated based on
a policy; and

terminating the defined one or more processes.

14. The system of claim 8, wherein reporting the level of

testing as the level of testing received comprises:

certifying to an end customer that the application has
passed a level of testing equal to the recerved level.
15. A computer program product, comprising;
a computer-readable storage medium having computer
readable program code embodied therewith, the com-
puter readable program code comprising:
receiving a level of testing for a service used by an
application 1n an ordinary course ol operation;

computer readable program code to disrupt expected
behavior of the application by adjusting one or more
parameters ol the application;

computer readable program code to monitor first appli-
cation behavior during execution of the service used
by the application in the ordinary course of opera-
tion;

computer readable program code to determine whether
the service 1s able to recover based on the first
application behavior; and

computer readable program code to report the level of
testing as the level of testing received, upon deter-
mimng that the service 1s able to recover based on the
first application behavior.

16. The computer program product of claim 15, further

comprising;

recerving a second level of testing for the service used by
the application 1 ordinary course of operation;

disrupting expected behavior of the application by adjust-
ing one or more parameters of the application;

monitoring second application behavior during execution
of the service used by the application in the ordinary
course ol operation;

determining whether the service 1s able to recover based
on the second application behavior; and

upon determining that the service is not able to recover,
reporting the level of testing as one less than the level
of testing received.

17. The computer program product of claim 15, further

comprising;

recerving a second level of testing for the service used by
the application 1 ordinary course of operation;

setting a starting level at a first level of testing;

disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;

monitoring second application behavior during execution
of the service used by the application in the ordinary
course of operation;

determining whether the service 1s able to recover based
on the second application behavior; and

upon determining that the service i1s not able to recover,
reporting the level of testing as one less than the
starting level.

18. The computer program product of claim 15, further

comprising;

UsS 10,574,544 B2

13

receiving a second level of testing for the service used by
the application 1n ordinary course of operation;

setting a starting level at a first level of testing;

disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;

monitoring execution of the service used by the applica-
tion in the ordinary course of operation;

upon determining that the service 1s able to recover,
determining whether a current level of testing 1s equal
to the second level of testing received; and

upon determining that the current level of testing 1s equal
to the second level of testing received, reporting the
level of testing as the second level of testing received.

19. The computer program product of claim 135, further

comprising;

receiving a second level of testing for the service used by
the application 1 ordinary course of operation;

setting a starting level at a first level of testing;

disrupting expected behavior of the application by adjust-
ing one or more parameters of the application based on
the first level of testing;

monitoring execution of the service used by the applica-
tion in the ordinary course of operation;

10

15

20

14

upon determining that the service 1s able to recover,
determining whether a current level of testing 1s equal
to the second level of testing received; and

upon determining that the current level of testing 1s not

equal to the second level of testing received:

increasing the current level of testing to an increased
level of testing,

disrupting expected behavior of the application by
adjusting one or more parameters of the application
based on the increased level of testing, and

determining whether the service i1s able to recover
based on the adjusted one or more parameters asso-
ciated with increased level of testing.

20. The computer program product of claim 15, wherein
disrupting expected behavior of the application by adjusting
one or more parameters of the application, comprises:

defining a first environment 1 which the one or more

parameters will be adjusted;

defining one or more processes to be terminated based on

a policy; and
terminating the defined one or more processes.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

