12 United States Patent
Baird, ITI

US010572455B2

US 10,572,455 B2
*Feb. 25, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(63)

(1)

(52)

(58)

METHODS AND APPARATUS FOR A
DISTRIBUTED DATABASE WITHIN A
NETWORK

Applicant: Swirlds, Inc., College Station, TX (US)

Inventor: Leemon C. Baird, III, College Station,
TX (US)

Assignee: Swirlds, Inc., Richardson, TX (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 506 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/366,584

Filed: Dec. 1, 2016

Prior Publication Data

US 2017/0308548 Al Oct. 26, 2017

Related U.S. Application Data

Continuation of application No. 15/153,011, filed on
May 12, 2016, now Pat. No. 9,529,923, which 1s a

(Continued)

Int. CL

Gool’ 16/182 (2019.01)

HO4L 29/08 (2006.01)
(Continued)

U.S. CL

CPC Gool’ 167184 (2019.01); GO6L 9/542
(2013.01); GO6F 16/182 (2019.01);
(Continued)

Field of Classification Search

CPC ., GO6F 16/273; GO6F 16/1844

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5991414 A 11/1999 Garay et al.
6,446,092 Bl 9/2002 Sutter
(Continued)
FOREIGN PATENT DOCUMENTS
CA 2845306 Al 2/2013
JP 2010-225148 A 10/2010
(Continued)

OTHER PUBLICATTIONS

Final Office Action dated Oct. 26, 2017, from The United States
Patent and Trademark Oflice for U.S. Appl. No. 15/205,688, 12

pages.

(Continued)

Primary Examiner — William Spieler
(74) Attorney, Agent, or Firm — Cooley LLP

(57) ABSTRACT

In some embodiments, an apparatus includes an nstance of
a distributed database at a first compute device configured to
be 1included within a set of compute devices that implement
the distributed database. The apparatus also includes a
processor configured to define a first event linked to a first
set of events. The processor 1s configured to receive, from a
second compute device from the set of compute devices, a
signal representing a second event (1) defined by the second
compute device and (2) linked to a second set of events. The
processor 1s configured to i1dentily an order associated with
a third set of events based at least one a result of a protocol.

The processor 1s configured to store in the instance of the
distributed database the order associated with the third set of
events.

23 Claims, 17 Drawing Sheets

Compute Device 700 coripde Devce 80
 Distributed Database ! Distbuted Databaso
Instance 703 E ' Instance 803 '

.......... [\\-."
1. Compute Davic—e 700 saﬁﬁs to Com ! \\

pute Davice BOO the eveni:é sto_raal in "

[|) Disftributaﬁ Databass Instance 803

g ——

. 4 Compute Device | ¥
. 700 defines a new SO
\ event, containing the |

hash of the iast event ~J
. stored in Distributed
Database Instance

703and thelast |/
event in Distributed T
Database Instance

803

- ERETESEELEELERE EEENEFFELE LY NS
[
Ll

. 8. Compute Device 700 uses the hashDAG stored in
. Distributed Database Instance 703 to calculate a total
| order for the events stored in Distributed Database

! Instance 703 .

N | 2 Compute Device 5

——

o Cormput
s Instance 803) N -

T - —
— e

[] [—
= e —
———

e . _
—
e o |

r ,// . 800 defines anew |
N event, containing the |
_’,f hash of the last event :

———=1 | stored in Distributed |
Database Instance 703 |

;— D;me 700 tha avents stored in
and the fast eventin
Distributed Database ‘

Instance 803 |

7. Compute Device 800 uses the hashDAG
stored in Disfributed Database Instance 803 1o |
calculate a total order for the events storedin |

Distribufed Database Instance 803 . *

BT L 27 e ke e e e T e e S T L e R R T R R T T T e N ST T L e T S R T T P e b W T e s

US 10,572,455 B2

Page 2
Related U.S. Application Data 2012/0150802 Al 6/2012 Popov
_ o o 2012/0198450 Al 8/2012 Yang et al.
continuation-in-part ol application No. 14/988,873, 2012/0233134 A1 9/2012 Barton
filed on Jan. 6, 2016, now Pat. No. 9,390,154. 2012/0278293 Al 11/2012 Bulkowski et al.
2012/0303631 A1 11/2012 Bird et al.
.. . 2013/0110767 Al 5/2013 Tatemura
(60) Provisional appl}c.atlon No. §2/% 11,411, filed on Aug. 2013/0145426 A | 6/2013 Wright et al.
28, 2015, provisional application No. 62/211,411, 2014/0012812 Al 1/2014 Zunger
filed on Aug. 28, 2013. 2014/0108415 A1 4/2014 Bulkowski et al.
2014/0222829 Al 8/2014 Bird et al.
(1) Int. CI 20150067002 Al 32015 Shachko et a
1 1 1 vachko et al.
GOoF 16/27 (2019.01) 2015/0067819 Al 3/2015 Shribman et al.
GOoF 9/54 (2006.01) 2015/0200774 Al 7/2015 Le Saint
(52) U.S. CL 2015/0281344 Al 10/2015 Grootwassink et al.
CPC ... GO6F 16/1834 (2019.01); GO6F 16/1837 382?82?2;‘%;‘ i %82 Eolg et fﬂ't ;
(2019.01); GOGF 16/1844 (2019.01); GO6F 2016/0241392 Al 82016 Vandervort
16/27 (2019.01); GO6F 16/273 (2019.01); 2016/0342976 Al 11/2016 Davis
GOo6F 16/275 (2019.01), HO4L 67/1097 2017/0132257 Al 5/2017 Baird, III
(2013.01) 2017/0300550 A1 10/2017 Emberson et al.
2018/0018370 Al 1/2018 Feiks et al.
. 2018/0026782 Al 1/2018 Xiao et al.
(56) References Cited 2018/0173747 Al 6/2018 Baird, III
- 2019/0020629 Al 1/2019 Baird, III et al.
U.s. PATENT DOCUMENTS 2019/0042619 Al 2/2019 Baird, III
2019/0129893 Al 5/2019 Baird, III et al.
0,000,800 o) 1000 Rush et al 2019/0268147 Al 82019 Baird, IIT
40060 By 79007 A dYﬂ et ﬂl* 2019/0286623 Al 9/2019 Baird, III
1] ya ¢l al.
7,555,516 B2 6/2009 Lamport . -
7,590,632 Bl 9/2009 Caronni
7.797.457 B2 9/2010 Lamport JP 2012-027685 A 2/2012
7,844,745 Bl 11/2010 Darbyshire et al. WO WO 2017/198745 11/2017
7,849,223 B2 12/2010 Malkhi et al.
8,112,452 B2 2/2012 Adya et al.
8,423,678 B2 4/2013 Darbyshire et al. OTHER PUBLICATIONS
8,478,114 Bl 7/2013 Beach et al. . 3
8.533.169 Bl 9/2013 Bailey et al. Lamport, Leslie, Robert Shostak, and Marshall Pease. “The Byz-
8,571,519 B2 10/2013 Ginzboorg antine generals problem.” ACM Transactions on Programming
8,600,944 B2 12/2013 DBryant et al. Languages and Systems (TOPLAS) 4(3): 382-401 (1982).
8,612,386 B2 12/2013 'lien et al. Wikipedia, Copy-on-write, Jul. 31, 2015, accessed Oct. 20, 2017 at
8.713.038 B2 4/2014 Cohen et al P by
8,'73 2’1 10 B2 5 /ZOT 4 B?r delelt eala ' https://en.wikipedia.org/w/index.php?title=Copy-on- write&oldid=
§.775.464 B2 7/2014 Bulkowski et al. 673938951, 3 pages. | N
8,862,617 B2 10/2014 Kesselman International Search Report and Written Opinion dated Feb. 1, 2018
8,880,486 B2 11/2014 Driesen et al. for International Application No. PCT/US17/61135, 14 pages.
8,880,601 Bl 11/2014 Landau International Search Report and Written Opinion dated Mar. 8, 2018
8,914,333 B_2 12/ 2034 Bird et al. for International Application No. PT/US1767329, 13 pages.
g%gé’%gi E %//382 EI::; it et al. First Examination Report 1ssued by the Australian Patent Oflice for
ey . . - Patent Application No. 2016316777, dated Mar. 29, 2018 5 pages.
9,529,923 Bl 12/2016 Baird, III PP Pas
9:646:029 B1 5/9017 Bairc:: 00 Office Action issued by the Canadian Patent Office for Application
10,097,356 B2 10/2018 Zinder No. 2,996,714, dated Apr. 11, 2018, 7 pages.
10,318,505 B2 6/2019 Baird, III Non-Final Office Action 1ssued by The United States Patent and
y
10,375,037 B2 /2019 Baird, III et al. Trademark Office for U.S. Appl. No. 15/205,688, dated Apr. 13,
2001/0025351 Al 9/2001 Kursawe et al. 2018, 9 pages.
2002/0129087 A'_“ 9/2002 Cac_hm et al. Extended European Search Report issued by the European Patent
ggggfgiﬁgﬁgg ir légggg illllaa‘jl‘i NP Office for Application No. 16842700.3, dated May 14, 2018, 15
1 vahis et al.
_ . pages.
200470172421 A'f 02004 Saito Reed, “Bitcoin Cooperative Proof-of-Stake,” May 21, 2014 (May
2005/0038831 Al 2/2005 Souder et al. . .
2005/01072768 Al 5/2005 Adya et al. 21, 2014, Retrieved from the Internet: URL:https://arxiv.org/ftp/
2006/0136369 Al 6/2006 Douceur et al. arxiv/papers/ 140/1405.5741 .pdf [retrieved on May 2, 2018], 16
2006/0168011 Al 7/2006 Lamport pages.
2007/0050415 Al 3/2007 Amangau et al. Nakamoto: “Bitcoin: A Peer-to-Peer Electronic Cash System,” Jan.
2007/0165865 Al 7/2007 Talvitie 13, 2009 (Jan. 13, 2009), Retrieved from the Internet: URL:https://
2008/0220873 Al 9/2008 Lee et al. web.archive.org/web/2009013 1115053 /http://www.bitcoin.org/bitcoin.
2008/0298579 A-_~ 12/2008 Abu-A_mara pdf [retrieved on Jun. 30, 2017], 9 pages.
ggogf 8133233 i g; 38(1)3 hA/[lélﬂkhl tet lal‘ Office Action issued by the Japanese Patent Office for Application
| | en et al. : : :
_ _ No. 2018-5216235, dated Sep. 26, 2018, 11 pages including English
20100257198 AL 192010 Cobntal, vt
2011/0173455 Al 77011 Spallzil of al ' Invitation to Pay Additional Fees 1ssued by the International Search-
2011/0191251 Al 27011 Al-Herz et al. ing Authority for Application No. PCT/US18/41625, dated Sep. 18,
2011/0196834 Al 8/2011 Kesselman 2018, 3 pages. o |
2011/0196873 Al /2011 Kesselman Non-Final Office Action 1ssued by The United States Patent and
2011/0250974 Al 10/2011 Shuster Trademark Ofhice for U.S. Appl. No. 16/032,652, dated Oct. 12,
2012/0078847 Al 3/2012 Bryant et al. 2018, 32 pages.

US 10,572,455 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Examination Report No. 2 1ssued by the Australian Patent Office for
Patent Application No. 2016316777, dated Oct. 30, 2018, 5 pages.
Notice of Eligibility for Grant and Supplementary Examination
Report 1ssued by the Intellectual Property Oflice of Singapore for
Application No. 11201801311T, dated Nov. 26, 2018, 5 pages.
International Search Report and Written Opinion issued by the
International Searching Authority for Application No. PCT/US18/
41625, dated Nov. 20, 2018, 18 pages.

Extended European Search Report 1ssued by the European Patent
Office for Application No. 18177122.1, dated Jul. 31, 2018, 12
pages.

Kwon, JI., “Tendermint: Consensus without Mining,” Mar. 19, 2015,
Retrieved from the Internet: URL:https://web.archive.org/web/
2015031903 53331t/http://tendermint.com:80/docs/tend ermint-:-
pdf [retrieved on Jul. 19, 2018], 11 pages.

Bonneau ¢ tal., SoK: Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies, International Association for CryptOl0gic
Research vol. 20150323:173252, 18 pages (2015), DOI: 10.1109/
SP.2015.14 [retrieved on Mar. 23, 2015].

Kwon, J., “Tendermint (capture)”, Mar. 19, 2015 (Mar. 19, 2015),
Retrieved from the Internet: URL:https://web.arch 1 ve.org/web/
201503190353331f /http://tendermint.com: 80/docs/tendermint.pdf
[retrieved on Jul. 19, 2018], 1 page.

Extended European Search Report 1ssued by the European Patent
Oflice for Application No. 18177124.7 , dated Jul. 31, 2018, 14

pages.
Extended European Search Report 1ssued by the European Patent
Oflice for Application No. 18177127.0, dated Jul. 31, 2018, 10

pages.
Extended European Search Report 1ssued by the European Patent
Office for Application No. 18177129.6, dated Aug. 31, 2018, 12
pages.

Oflice Action 1ssued by the Korean International Patent Otfhice for
Korean Patent Application No. 10-2018-7008784, dated Aug. 22,
2018, 4 pages.

Examination Report No. 3 1ssued by the Australian Patent Otflice for
Patent Application No. 2016316777, dated Dec. 20, 2018, 5 pages.
Alfred V. Aho, John E. Hoperoft, and Jeffrey Ullman. 1983. Data
Structures and Algorithms (1st ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 620 pages.

Notice of Preliminary Rejection 1ssued by the Korean Patent Office
for Application 10-2018-7008784, dated Dec. 28, 2018, 4 pages
including English translation.

Office Action i1ssued by the Canadian Patent Office for Application
No. 3,027,398, dated Jan. 7, 2019, 7 pages.

Invitation to Pay Additional Fees 1ssued by the International Search-
ing Authority for Application No. PCT/US2018/058432, dated Jan.
16, 2019, 2 pages.

Notice of eligibility for Grant and Supplementary Examination
Report 1ssued by the Intellectual Property Oflice of Singapore for
Application No. 102018054668, dated Jan. 28, 2019, 5 pages.
Notice of Acceptance 1ssued by the Australian Patent Office for
Patent Application No. 2016316777, dated Feb. 19, 2019, 3 pages.
Notification of the First Office Action 1ssued by the Chinese Patent
Office for Patent Application No. 201680061456.6, dated Feb. 1,
2019, 18 pages including English translation.
https://web.archive.org/web/20150811233709/https://en.wikipedia.
org/wiki/Paxos_(computer_science). Jun. 17, 2015,

Knutsson et al., “Peer-to-Peer Support for Massively Multiplayer
(GGames”, Department of Computer and Information Science, Uni-
versity of Pennsylvania, IEEE INFOCOM 2004,

GauthierDickey, Chris, et al. “Low latency and cheat-proof event
ordering for peer-to-peer games.” Proceedings of the 14” interna-
tional workshop on Network and operating systems support for
digital audio and video. ACM, 2004.

GauthierDickey, Chris, Virginia Lo, and Daniel Zappala. “Using
n-trees for scalable event ordering in peer-to-peer games.” Proceed-
ings of the international workshop on Network and operating
systems support for digital audio and video. ACM, 2005.
Lumezanu, Cristian, Neil Spring, and Bobby Bhattacharjee. “Decen-
tralized message ordering for publish/subscribe systems.” Proceed-
ings of the ACM/IFIP/USENIX 2006 International Conference on
Middleware. Springer-Verlag New York, Inc., 2006.

Moser, Louise E., and Peter M. Melliar-Smith. “Byzantine-resistant
total ordering algorithms.” Information and Computation 150.1
(1999). 75-111.

Defago, Xavier, Andre Schiper, and Peter Urban. “Total order
broadcast and multicast algorithms: Taxonomy and survey.” ACM
Computing Surveys (CSUR) 36.4 (2004): 372-421.

U.S. Ofhice Action dated Sep. 20, 2016 for U.S. Appl. No. 15/153,011.
Moser, Louise E., and Peter M. Melliar-Smith, “Total Ordering
Algorithms for Asynchronous Byzantine Systems,” International
Workshop on Distributed Algorithms, 1995.

International Search Report and Written Opinion dated Jan. 5, 2017
for International Application No. PCT/US2016/049067.

U.S. Ofhice Action dated May 30, 2017 for U.S. Appl. No. 15/205,688,
9 pages.

Sompolinsky, Yonatan and Zohar, Aviv, “Secure High-Rate Trans-
action Processing in Bitcoin,” International Conference on Finan-
cial Cryptography and Data Security (FC 2015), Springer,2015, 31
pages cited as 7(16):507-527,<DOI: 10.1007/978-3-662-47854-7
32>,

Supplementary Examination Report and Notice of Eligibility 1ssued
by the Singapore Patent Oflice for Application No. 102018054 58P,
dated Apr. 8, 2019, 5 pages.

Oflice Action 1ssued by the Russian Patent Oflice for Application
No. 2018110579, dated Apr. 4, 2019, 14 pages including English
translation.

Boneh, “Functional Encryption: A New Vision for Public-Key
Cryptography,”Communication of the ACM 55:56-64 (2012).
Oflice Action 1ssued by the Australian Patent Oflice for Application
No. 2019202138, dated May 15, 2019, 4 pages.

International Preliminary Report on Patentability dated Jun. 25,
2019 for International Application No. PCT/US1767329, 7 pages.

Oflice Action 1ssued by the European Patent Oflice for Application
No. 18177124.7 , dated Jul. 15, 2019, 9 pages.

Office Action 1ssued by the European Patent Oflice for Application
No. 18177127.0, dated Jul. 15, 2019, 7 pages.

Non-Final Office Action 1ssued by The United States Patent and
Trademark Oflice for U.S. Appl. No. 16/405,069, dated Aug. 6,
2019, 13 pages.

Office Action 1ssued by the Canadian Patent Office for Application
No. 3,027,398, dated Aug. 12, 2019, 4 pages.

Oflice Action 1ssued by the Japanese Patent Otflice for Application
No. 2019-081303, dated Oct. 23, 2019, 4 pages including English
translation.

Oflice Action 1ssued by the European Patent Oflice for Application
No. 16842700.3, dated Nov. 4, 2019, 10 pages.

Office Action issued by the European Patent Office for Application
No. 18177122.1, dated Nov. 4, 2019, 9 pages.

U.S. Patent Feb. 25, 2020 Sheet 1 of 17 US 10,572,455 B2

Compute Device

Processor FProcessor
111 121

 Distributed Database | | Distributed Database |
' Instance 114 Instance 124 ’

Memory 112 Memory 122

Display 113 Display 123

Compute Device 140 Compute Device 130

Frocessor FProcessor
141 151

Emfﬁgtribu’ted Databas

Memory 132

Display 143 Display 133

U.S. Patent Feb. 25, 2020 Sheet 2 of 17

Compute Device 200

US 10,572,455 B2

Database Convergence

Module 211

Communication Module

Processor 210

Distributed Database

Instance 221

Memory 220

FIG. 2

U.S. Patent Feb. 25, 2020 Sheet 3 of 17 US 10,572,455 B2

Alice Bob Carol Dave Ed

FIG. 3

U.S. Patent Feb. 25, 2020 Sheet 4 of 17 US 10,572,455 B2

Alice Bob Carol Dave Ed
A=

T ———
T ———
T ——_
“mng g "

Time

U.S. Patent Feb. 25, 2020 Sheet 5 of 17 US 10,572,455 B2

Alice Bob Carol Dave Ed

J

U.S. Patent Feb. 25, 2020 Sheet 6 of 17 US 10,572,455 B2

T
-
)
<
(D
-
Q.

il
Y
Q

-3
il

Alice Carol

US 10,572,455 B2

Sheet 7 of 17

Feb. 25, 2020

U.S. Patent

"¢08 2ouejsu| aseqele(paIngLasI(y
Ul PRi0]S SlUvAD o] JO) JopJ0 |E10] B slejnd|ed
01 £08 @ouejsu| aseqgele(paIngiasi ui palols

OYausey ay) sasn (g 29ineq anduwio) /

L 9l

"0/ 9oue)suj
aseqeleq paynquisi(] Ul paJiols SJudAD) 10§ Japio
[€]0] & 8je|nojed 0} €0/ aoueisu] eseqeleq paynquasi|
Ul palojs ©)\ysey sy} sesn)/ aoneq apndwion ‘g

\---
pa
\.\ | £08
\ - T 30UB)ISU| 9SBQRIR(]
- =¥ T
\. 1Snl1es o1 00g sommaq epndigen - || panausiguuens
N [TT—— 2 03 $PUsS 00, soineg eing || Iselay) pue €07
N T — o Ndwoey g aouBISU| aseqele(
NN T —————| | panqusiq u peioss
N JUSAD JSE| 3Y} JO ysey
I N au) Bulureuos usns
C08 aouesu I . MU B saulsp 007
osedele(painglisid — N 1si S 99191 aindwon
UlJusAo jse|syjpue | ¢0g eoueisul mm%rwwfwwﬂuwmmwwﬂo%w sineq Indwo) e ..h.\ Ath)V
TOZ 90UBISU| 3SBQEIRA | | |y pajoys SYURAS @UY Q0L SOINSQ SIT e
panquysiquipatgys | L————— /S
JUBAS JSB| 8L} JO ysey e d
ay) Buiuruod Jusna e
MaU B Saulsp 008 \u - ——
aoimeq andwo) 'z | €08 8duelsu| sseqeieq painquisir
N /E P8I0}s sluane ay 008 801Aa(] Sihdwion o) wUEMw Mmﬂn 82iA8(] aindwon
.,, |) - i R - - -]

€08 eouejsy|
- eseqgejeq peinquisiq

008 20 aIndwion

——ﬂﬂ-——-————-'}

u €0/ eoue)suj _
- @seqejeq paingusiq

007 @21a3Q &&ES

US 10,572,455 B2

Sheet 8 of 17

Feb. 25, 2020

-
. o — o o
80U — _
N\ m:me - oomWMw _NMMQMMM_ :wMSn_EQD Ul p8ioss Jelewered ,@ i
N D : D O SPUBs 00y eoimaq einduwon ¢
\J e o
W//_
N
S — N
_ — et a0l JOW d a3 JO} >
m T si(] Ul peJois Jelpuiele . w
T\-;,., g0g Soueisul 28R mw”go_wﬂ.mﬁ%m oogeomeqendwodz
onjeA oy} 00F @ &I = PP e A
sttt /
m V%
/
v - o
A £0¢% mutmwm;mﬂmwmnwum U a— _
._,, U Peingiysi o -
BNjeA g {d Ui psiois ; _
/,,, ‘ I _ f@oMow?mD E:QEQO Wol sysenbg; O »° Slolieied e 404 |
\ T ~ 00¥ S3lreq einduiog -y \
L | N
w.u o :Wmm. -m-oﬁmﬁwpm) ..m mi UW::W.O:DWMWC— m
~ aseqgejeq painguisiq eseqeje(q paynquysiq |
00G 9@01ae(Q 8jndwiog 007 921A9 9ndwion)

U.S. Patent

U.S. Patent

Feb. 25, 2020

Sheet 9 of 17

US 10,572,455 B2

A N LEp. ELE M M N EEL N NN M, B, BELEEN BN NN RN L EEL EEN BN NN N L EEL EN BN NN M, N, N EE BN NN M R L EE BN N M, R WL B

| A AR A A A EEEE AN EEEE IEFLAEES I NS rANE NS RS EEE

s s e e r e S IS T TR I A AT I NI A STEI EEES IFTLESS S I EErTEEE .

i Al . 481l (i R RS A e . 3 i Y8 A i {8 L4 B A 48 L. L A8 i 3 Lo i o i A i Lo i R 8 i R i L LS LA R o o o YR A L 8 AR AR 8 i i A 8 R 0

T T T R R R R L R R R R L R S R L R

' : r mEmT FE EEIW WE EEIE WY NEIE EE TFLE EEN ETTE EE EITT EE -u.{

] T
E I § +
X I ' T
. 1 . bl
Py :
]] ¥ b
. H -
I . L] } :
Py :
] 1 . <
--:' RBala wrrh mm mrrw wh hiaw wu masm %% masm mr wirm mm kFrrm mm mx

Value 422

YES

Frrammm

L L AR AN A N A R AR EE N WA R Frye] FrEryTe N LA I A AN L LA L B B AR A S RS G Ry g b

FIG. 9a

e e i e e T e e e e e e e e

{AB,C,F}

Fad HA +4vA mm habld 44 Ahh— b ALh A ko Aanha ¢+ Frrra ha =444 AH

nn

Value 414

H..................IE-. M R N N LA N LN LR IR AL L LN L LN R RN A AR LR L GRS [N LA YA Y ey il

E B B A L R B B L LN R L B N SN W NN NN W, RN EL EN NN NN A, NN EEL N NN N M NN L E BN NN M R L EE NN N M R T WL

]

: ;
¥ ¥
¥ L]
+*]
z]
- '
> .
=]
-]
T]
.

: :
: : i 3 .
*]
z '
A '
r .
T]
I T

Wrm 44 AFFSY wm harvhk %% AWhA 4% 44t A mw wred Had +444 &

o iy R R R YRS R AR R R N R YL LY AN N N LN YR RN RS A bR AL R LAY AT LR R PR A A LA L e Ry . L e e

--,-,-.-.-.-———-,-.-—.-———-,-.-—.-———-,-.-—.-———-,-.-—.-———-,-.-—.-—-,-,-.-,-.-,-p-g—-,u.-ﬁ;

{AB,G,H} |

Am harw ws Ahh A =44 dst A 4+ Frah 4hA Friad dd drrdr 44 ALFF 1--‘

1

!
/

Vector of Values 420 —

FIG. 9b

1. Alice
2. Bob
3. Chuck

4. David

aaa

Value 431

..

2. Alice
3. Chuck

4. David

..

Value 432

A AL UL AU LA RS AL AL AL A AT N NN L LA AT A S SN N LA AT NN N NL LA ATE NN

2. Alice
3. Chuck
4. David

5. Frank

aaa

Value 433

1. Alice
2. Bob
3. Chuck
4. Ed

5. David

aaa

Value 434

1. Alice
2. Bob
3. Ed

4. Chuck

5. David

aaa

Value 435

1

/

Vector of Values 430 —

FIG. 9¢

U.S. Patent

Feb. 25, 2020

Sheet 10

of 17

US 10,572,455 B2

S TR A AL A A AR RAES Sl AERLE IS AT LA S A A TRAS AAAE ALy

YES

A F a2 ANEF FFAE EEEE T AN R IEFFATEE IEEITTTE I ETTTTEN EEETTEE

EEELrALpEIEERrLard R

Value 515

N A A I EE A AN TN AN AN EEALIE S EEEE LS EEEE I ErLE e,

YES

Ire s IR TTIE NN ETTT NI EEETTTII AEIETTETE INEI ETTTIEEIEEET TS A

Value 514

dh Y AR F AN MR 4RI H
- EELS EE mEEE mE EE

e R LN SN AN I SN EArA SN EEErCAN EEES SATLESES IESrLE S SEE]

YES

I EEEE T AN IETTTEEE IEETI T YT IS I AT T T ISEI EEET TTEI AEEETEETI EEEE

Value 513

AR AE LAY EE LA LLTY pa
S mssmslri s mmemlrnd .

e EE A RN SN AL AN S SR AN S AN AL ESES IEEr LA S SN R LR

YES

T EEEE I ETTTEEE IEETTTIE IE R ETTTISEI EEETTTAI AREETETTI EEEE IETT TSR

Value 512

[LLENRLLINLEENL ERE L LENI
EEEETrEEEEEEEELTEEEEE

WEALER LEELAEAL LARL AAAATARLAEREETALLEELE LAERT REERE LARLALER LERL RRELLE

. YES

AT TEEE IEET T T IEEI AT TN AN EEE LTSI EEEETTTIEEEE AR R EEE LERTTLEY

FEFrrriosarprerrraarar

Value 511

L&wwwww&r-ﬁwwwmﬂwwm»wwwwwww#wwwwwwl

Vector of Values 510

FIG. 10a

[(RLIINT T TR LLLEIIEN R RIS R NI I IN PR RLLLET IO N REE LLINE Y P FL L

NO

Hir d=dd ¥ WY dedd & WY HEdsd Wy HEFY WY R kFkH Sed & hh W Fdr d=ddd WY d&pdy

Value 516

Jem mm FirT Em EEErFr ==
A lamIEEEA JasEEEEmLraEm

e e vk e e uls el e ek e e el . e -

T EEEE IEETETrE S IEEE FTIEI EEEE YT EEEE IEFT FISAE IEEETTYY INEI EFTRLIEEE |

YES

Y Whhh drd kA E kdr il HH =S Rk E R W RL Y Rd i WY dedd 'ﬂ'

Value 515

P WY HEFFY WY YRR+ 44
EE mEIE EE mEEEN »W

LR RN R R L AL IEN LN NILIERLRNL [LELEERELELFELERENINLLLE]ENELL ALY TND Y]

YES

W WY kddr Y WMEkkd = AP ¥ WERHE HY W RN W ddqd

Value 514

A jAEEmAsAAEmUEENREEE
TramsmEsslTrEsIEEErLTTrTr.

Hu Rria WY oW

TEEI EEEE FTLIEEEE AT T IS IEEF T IS IEEIETTT IS EEWT TTEI EEEE FTTIEE

YES

g AN HERd kA kA d=d A H HY IR HE =AW MY EEd b AN WEEE W

Value 513

L]

FLENELERARELLELLLNLELEN]

E FTI I EEEE IFTLIEEE IEEFTTIE IEET EET T ISAI EET T TSI EEEW AT TrESAEE IWET W

. YES

FFhdr A AihF drd AW Y ki i Y BEE GREE Rl WA b WH W EEd Y WEFE

 JEEmEEEmEIFASmE EEEEEFREE

Value 512

W HY R R S o G T T R L LT B e A R T T AT T HE AR S o

Vector of Values 520

TTYTE EE EETT EE EEIT TE EIIE TF EEIE EW TIIE EE SFTIE EE mETTWT

YES

etk = A AA drdh AR ATiE AA AdTd A AAAF R AP A T hdr A AR Hrd

Value 518

EEm mEm FTIE Em Errm =m
I EEEE IAALAEEE EmNAZLAZZEE

o ES WS WS ES N EE BN B CESC CESC S EEE BN E ESE ESC WS e wer ws wh e .-

EEEE mET WEIE EE WTTTE EEEE TN EIIE &AW NFFIE EEN TTrE EE STTN EE

NO

ok A dmh ok AAAA S kAR kb kAl A hEEl ok AdA R kb RAAA bk Rdd A HY

Value 517

A4 ¥ WY Sy ¥y R EFE4 AW
EEEE mS mEEE Em WwEEE

U EATT FF EEIE THN EIIE AT NEIIE EW TTrE ES ETTN EE EEIET mE man

;;-,--p.;q.--r--;-
e mmmmrrws tmmm sl dum

¥ Ah =Svddh AA FFkd+E +=h YVEFF +=+ AfdrA hié S ddh A Fdds

Value 516

Ah Srdh AA

EE EEEE TN EEIE ST EEEE EE TTIE ESE ESTE ES EEET EE EEIIE WwE ER

YES

d4+ Al dFFkd 4h Adedt wm Afah =+ AFFA AF +=d7/h AA =Srvdd AA Arrd HdAA

Value 515

FLERELNR L LU REELLNLELELL]

4" TT EEIIE ST EEEE EE TTIE ESE ETTE EI EEFfT EE EEIEE TE mEIE ST om

. YES

vk dh Adre +=d AP A =S ke A AR FddA HH NEdd AA ArEd dA Aar+ A

mEmmsrAspEmmEEEEraEE

Value 514

-t
i
1 +
E
Wlr ok Wk W drdedp ok Aok b ek Ak A e e ek Ay Mk M e ek Mk W e dn ek ok W e I ek AN WAWY AR Aok b e dre Mk W ek Ak A AR e Ak QP Rk AR e AR W Rk A A Rk AR A ek R W M Rk A M L AR A R ek A W R R e A A A R AR R ek W R Rk A W e g PH Ak W W R ek R AR R ek Rk Rk bk R etk AR e W AW W Bk t
[i] 1 4 H 1 N 1 . :
1 = 1 H 3 = * . . u ¥
] [H] -] - .)
' 1 . ' ' .
] > " x
. . - [.] 1] u I
H] oy] .] b] H .
.] T . H 1 ¥] [i
i = I r r [] ¥ i ¥
=
F " t ' q k + H ! p 3
] i d 4 + ’
]] H . -y . M i i
] .]] .
] H 1 Y L H] . . L
. 1 = 1)]
H] oy [H] i] H . 3
. ' > - H ' T ' .
] . H -’ -] N . T
. " T] i] » 1 1
r y M q + + ’ ¥ i i
]] - L] r L] I]] L}]
] !] - L]] : i L u
s e e A E EmEE FAmE A EEEmlrAEmE i [o A R A R R LR L mmm ama M e A E s Am e EEEEAYES EE— e e . i
! 3
e P T T L) ke ek - p——— e e il - o e e ek ek H - - - - e - ek ek reprryey o [R——— - -l — r - e i e ik Ak ki - ia e — e i ke ek vt [uke sk ek Ak e ey - - x
J’f*
J'*
e
o ™
L] HE o B b] R W W o A W RS R] L A I LHE A R W ek B A R N W B A] R W bk R o Rk B By B AH ek W A A oh) o b YRS A YRS L A YA NRE A BT A R L N A NS A R L LAY I L L G G IR L L NS B R L R R L LN L L R B LA B LN R L L L A R L L R R R AL L R R WL AR R H A W B H] SH R W B G 0 W YRS R e Y LRI 4 o R A A A I Rk A A o B B LR A R o Y B L R S Nk R A A N A B LR L e e A A A e A N WS R WS L e] Y HE W R A A N L Y T A

Wb Y M A W WY CHE W W WY Y HEY R M W Y i e G B L R R Y R S T e

Vector of Values 540

FIG. 10d

U.S. Patent Feb. 25, 2020 Sheet 11 of 17 US 10,572,455 B2

10 —a

Compute Device 110 defines a vector of values for a parameter based
on a value of the parameter stored in Distributed Database Instance 113

11

Compute Device 110 chooses another compute device among Compute
Device 120, 130, 140, and requests from the chosen compute device
(e.g., Compute Device 120) a value for the parameter stored in the
distributed databased instance of the chosen compute device (e.g.,
Distributed Database Instance 123 of Compute Device 120)

it o Ak b e b ek e b b R e

12

Compute Device 110 (1) receives, from the chosen compute device
(e.g., Compute Device 120), the value for the parameter stored in the
distributed databased instance of the chosen compute device (e.g.,
Distributed Databased Instance 123 of Compute Device 120) and (2)
sends, to the chosen compute device (e.g., Compute Device 120}, a
value for the parameter stored in Distributed Databased Instance 113

Compute Device 110 stores the value for the parameter received from
the chosen compute device (e.g., Compute Device 120) in the vector of
values for the parameter

14

Compute Device 110 selects a value for the parameter based on the
vector of values for the parameter

15

FIG. 11

U.S. Patent Feb. 25, 2020 Sheet 12 of 17 US 10,572,455 B2

20

Compute Device 110 selects a value for the parameter based on the
vector of values for the parameter

21

Compute Device 110 (1) receives values for the parameter from other
compute devices (e.g., Compute Device 120, 130, 140) and (2) sends a
value for the parameter stored in Distributed Databased Instance 113 to

the other compute devices (e.g., Compute Device 120, 130, 140)

22

Compute Device 110 stores the values for the parameter received from
the other compute devices (e.g., Compute Device 120, 130, 140} in the
vector of values for the parameter

23
7 Compute Device 110 determines S~
<__ whether to reset the vector of values based on a predefined ~ >-——s
Hx"‘“--... L g
~_ probability of resetting the vector of values o NO
HR“‘*‘*HHR 2-4- f*__,,-w""'"' —
YES

Compute Device 110 resets each value in the vector of values for the
parameter to equal the value for the parameter stored in Distributed
Databased Instance 113

25

FIG. 12

U.S. Patent Feb. 25, 2020 Sheet 13 of 17 US 10,572,455 B2

from another compute device (e.g., Compute Device 120)
and (2) sends a value for the parameter stored in
Distributed Database Instance 113 to the other compute
device (e.g., Compute Device 120)

30

31

‘ Compute Device 110
Compute Device 110 stores the value for the parameter increments a confidence

received from the other compute device {(e.g., Compute value associated with
Device 120) in the vector of values for the parameter Distributed Database

Instance 113 by one

34

e \\‘\
fﬂffbompute Device 110 determines
_~~ whether the value for the parameter received YES

< from the other compute device (e.g., Compute >

H‘“‘x Device 120) is equal to the value for the ,,,.f"f
“~.__ parameter stored in Distributed "
“~_Databased Instance 113

""*-.LH\ P _,..-"f
s -~

3

NO

Compute Device 110 decrements a confidence value
associated with Distributed Database Instance 113 by one,
if the confidence value is greater than zero

Compute Device 110
selects a value for the

parameter basedon | |
the vector of values for |~
the parameter

e,

“““““ . Distributed Database Instance 113 e
S s equal o zero 7

37

US 10,572,455 B2

=
=
=
e L=Nd —
3 0=n("
~ C=ND\ ~
L =NS
~
A\
-
v
10V} Sounuapl Abuoss,
< Z = N
.S
L= 1Y
G =NO
- 2 =NS
= e
P
~
v
-
s p3
-

j0Je)

qog

IV

7l 9Ol

w1

-

0¥l

U.S. Patent Feb. 25, 2020 Sheet 15 of 17 US 10,572,455 B2

U.S. Patent Feb. 25, 2020 Sheet 16 of 17 US 10,572,455 B2

An ovent 1% & fuple ¢ = {d, &£, ¢, 8} where:

d == pladain) = fe Ypariuad” dats, whooh sy molade fransaciones.
ko= hashes{el = u st of hashes of the ovent™ parents, self-parest St

& = fmeie} = orentors clanmed dals and time of the svent's ersalion.
e = greaforie) = creator’s I} momber,
§ = afgdel 0 o= = ppaabor's digital sienature of {dhiel

wo o= ihe wmnber of members in the popuiation

mo o= 14 1303}

firal = the wugae ovend thad has no parsnts
& = fhe xet of afl weands
T = sotof ol possthie {fime, dadnl palis

B = {irue, falsel
N = im,,“}
ancestor ; B X K o H
saiflnesstor 0 A X E 8
e o Na il B
stromgiveoee @ K 8
vaveniifoand ¢ & ¢ B
winess ¢ & - B
routnd ¢ K - ?@
rongndi Bl F S O
yodwe 0 B X K
votedkrackion ,.f-f ol LN
wrbe 1 Moe B -
doctde 1 K x B ‘ﬁ-
alifsonons ¢ X § - V.
fomemas ¢ & -
o Beeostwd E -» N
ineRevesead 0 B~ T

FIG. 163

U.S. Patent Feb. 25, 2020 Sheet 17 of 17 US 10,572,455 B2

aapestor{T, ¥ = R PPy {3::-' Eparents{rl © sasestor{s, g
soff Ancestorfe gl = anveshw{s, 3;3 A {{xelfPavandin] = 1} ¥ sedf A noestor{zelfParent{x} g1
soefE, ¥ = yneestor{a, ¥l A {Ee, 8,0 € E
{mnesstori{y, & lancestoriy, 5 A o Sparonta{x} A ¢ Spnrenisi 518
%*ﬂ*ﬂtﬁr{ﬁ?g =ereaberd B} =vmaior{s)
stronglySes{e, ¢} = selryia 3822 ({ISi=mia{r €8 = {venle, r)twee{e i)
. {3 o= f‘iﬁ'?’ﬁf-"
parentBound{x; = 4 . . .
WX gromrentelyt TOUNE{Y] Olhorwie
witnesaix) = I {{F =m A
¥y & {mﬂmﬁgﬂ = parssiHound{e) A stronglySee{e, g3}
- parentRonndizl wilness{z}
rennead s = A O L
parsBonnd{s) othorwise
reand D », ¢} = poand e —rounad{y}
vobes{s, g, v = e € B seefz) Aorowdiiliz s} =1 A
%‘e‘;mn;%h‘ {3, g} A vobely, gl = u}
wibsFractionda, ¥} = wdesie, frue) Dodesin, fruel-bvotes{s, falzel)
soefE,) i roundlif{s, y) =
.h DroteFractionde, g > 152 F {romndBillx, gl m&tﬁii R Y
voteln, 3 == . L .
tendobrsetionde,) — 173 > 176
{1 =LBBOgormbare{ 0} 1 ciherwise
dexadeds, ¥) = ke, fﬁ & {roandlBfie, ¥} mod 5 8 11 A {volelractioniz,) > 243
alfFanunaie = {x € B | fonewasfad A roand{z} == 4}
fanouse) = witnessia} A Sy € K ¢ deoudaly, w0
roundRecervedis) = mwmeeniliy € B roundip) = ra i:\m‘imlﬂﬁf}ﬂ aoeiy, i
Wy o B mtmd@;\t = & Eamoous{; H}} HEY
tmeHecoivediz) = medianiitime] ?g}- ¥ & Elsesiy, ais
(32 & E rouand{ Y- --m‘zﬂﬁiﬁ.ea:fa?wﬁi-f..r}ww.%ﬁs mossbar{x, ¥ HA

—~{dwe g K ;}z@iaiﬁﬁ.zmmm-r{_g? wryAseee, ©1i}

FIG. 16D

US 10,572,455 B2

1

METHODS AND APPARATUS FOR A
DISTRIBUTED DATABASE WITHIN A
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/153,011, filed May 12, 2016, titled “Meth-
ods and Apparatus for a Distributed Database within a
Network,” now U.S. Pat. No. 9,529,923, which 1s a con-
tinuation-in-part of U.S. patent application Ser. No. 14/988,
873, filed Jan. 6, 2016 and titled “Methods and Apparatus for
a Distributed Database within a Network,” now U.S. Pat.
No. 9,390,154, which claims priority to and the benefit of
U.S. Provisional Patent Application No. 62/211,411, filed
Aug. 28, 2015 and titled “Methods and Apparatus for a
Distributed Database within a Network,” each of which 1s
incorporated herein by reference 1n 1ts entirety.

U.S. patent application Ser. No. 15/153,011, now U.S.
Pat. No. 9,529,923, also claims priority to and the benefit of
U.S. Provisional Patent Application No. 62/211,411, filed
Aug. 28, 2015 and titled “Methods and Apparatus for a
Distributed Database within a Network,” which has been
incorporated herein by reference 1n its entirety.

BACKGROUND

Embodiments described herein relate generally to a data-
base system and more particularly to methods and apparatus
for implementing a database system across multiple devices
in a network.

Some known distributed database systems attempt to
achieve consensus for values within the distributed database
systems (e.g., regarding the order in which transactions
occur). For example, an online multiplayer game might have
many computer servers that users can access to play the
game. I two users attempt to pick up a specific 1tem 1n the
game at the same time, then it 1s important that the servers
within the distributed database system eventually reach
agreement on which of the two users picked up the 1tem first.

Such distributed consensus can be handled by methods
and/or processes such as the Paxos algorithm or 1ts variants.
Under such methods and/or processes, one server of the
database system 1s set up as the “leader,” and the leader
decides the order of events. Events (e.g., within multiplayer
games) are forwarded to the leader, the leader chooses an
ordering for the events, and the leader broadcasts that
ordering to the other servers of the database system.

Such known approaches, however, use a server operated
by a party (e.g., central management server) trusted by users
of the database system (e.g., game players). Accordingly, a
need exists for methods and apparatus for a distributed
database system that does not require a leader or a trusted
third party to operate the database system.

Other distributed databases are designed to have no
leader, but are 1nethicient. For example, one such distributed
database 1s based on a “block chain” data structure, which
can achieve consensus. Such a system, however, can be
limited to a small number of transactions per second total,

for all of the participants put together (e.g., 7 transactions
per second), which 1s insuilicient for a large-scale game or
for many traditional applications of databases. Accordingly,
a need exists for a distributed database system that achueves
consensus without a leader, and which 1s eflicient.

SUMMARY

In some embodiments, an apparatus includes an instance
of a distributed database at a first compute device configured

10

15

20

25

30

35

40

45

50

55

60

65

2

to be included within a set of compute devices that imple-
ment the distributed database. The apparatus also includes a
processor configured to define a first event linked to a first
set of events. The processor 1s configured to receive, from a
second compute device from the set of compute devices, a
signal representing a second event (1) defined by the second
compute device and (2) linked to a second set of events. The
processor 1s configured to i1dentify an order associated with
a third set of events based at least one a result of a protocol.

The processor 1s configured to store in the instance of the
distributed database the order associated with the third set of
events.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a high level block diagram that illustrates a
distributed database system, according to an embodiment.

FIG. 2 1s a block diagram that 1llustrates a compute device
of a distributed database system, according to an embodi-
ment.

FIGS. 3-6 illustrate examples of a hashDAG, according to
an embodiment.

FIG. 7 1s a flow diagram that 1llustrates a communication
flow between a first compute device and a second compute
device, according to an embodiment.

FIG. 8 15 a flow diagram that 1llustrates a communication
flow between a first compute device and a second compute
device, according to an embodiment.

FIGS. 9a-9¢ are vector diagrams that 1llustrate examples
ol vectors of values.

FIGS. 10a-10d are vector diagrams that illustrate
examples of vectors of values being updated to include new
values.

FIG. 11 1s a flow chart that illustrates operation of a
distributed database system, according to an embodiment.

FIG. 12 1s a flow chart that illustrates operation of a
distributed database system, according to an embodiment.

FIG. 13 1s a tlow chart that illustrates operation of a
distributed database system, according to an embodiment.

FIG. 14 1s an example of a hashDAG, according to an
embodiment.

FIG. 15 1s an example of a hashDAG, according to an
embodiment.

FIGS. 16a-16b 1llustrate an example consensus method
for use with a hashDAG, according to an embodiment.

DETAILED DESCRIPTION

In some embodiments, an apparatus includes an instance
of a distributed database at a first compute device configured
to be included within a set of compute devices that imple-
ment the distributed database via a network operatively
coupled to the set of compute devices. The apparatus also
includes a processor operatively coupled to the memory
storing the 1nstance of the distributed database. The proces-
sor 1s configured to define, at a first time, a first event linked
to a first set of events. The processor 1s configured to receive,
at a second time after the first time and from a second
compute device from the set of compute devices, a signal
representing a second event (1) defined by the second
compute device and (2) linked to a second set of events. The
processor 1s configured to i1dentity an order associated with
a third set of events based at least one a result of a protocol.
Each event from the third set of events being from at least
one of the first set of events or the second set of events. The

US 10,572,455 B2

3

processor 1s configured to store in the instance of the
distributed database the order associated with the third set of
events.

In some 1nstances, each event from the third set of events
1s associated with a set of attributes (e.g., sequence number,
generation number, round number, recerved number, and/or
timestamp, etc.). The result of the protocol can include a
value for each attribute from the set of attributes for each
event from the third set of events. The value for a first
attribute from the set of attributes can include a first numeric
value and the value for a second attribute from the set of
attributes can include a binary value associated with the first
numeric value. The binary value for the second attribute
(e.g., around increment value) for an event from the third set
ol events can be based on whether a relationship between
that event and a fourth set of events linked to that event
satisiies a criterion (e.g., a number of events strongly 1den-
tified by that event). Each event from the fourth set of events
1s (1) an ancestor of the event from the third set of events and
(2) associated with a first common attribute as the remaining
events from the fourth set of events (e.g., a common round
number, an indication of being a round R {first event, etc.).
The first common attribute can be indicative of a first
instance that an event defined by each compute device from
the set of compute devices 1s associated with a first particular
value (e.g., an mdication of being a round R first event, etc.).

The value for a third attribute (e.g., a received round
number) from the set of attributes can include a second
numeric value based on a relationship between the event and
a fifth set of events linked to the event. Each event from the
fifth set of events 1s a descendant of the event and associated
with a second common attribute (e.g., 1s famous) as the
remaining events irom the fifth set of events. The second
common attribute can be associated with (1) a third common
attribute (e.g., being a round R first event or a witness)
indicative of a first instance a second event defined by each
compute device from the set of compute devices 1s associ-
ated with a second particular value different from the first
particular value and (2) a result based on a set of indications.
Each indication from the set of indications can be associated
with an event from a sixth set of events. Each event from the
sixth set of events can be associated with a fourth common
attribute indicative of a first instance a third event defined by
cach compute device from the set of compute devices is
associated with a third particular value different from the
first particular value and the second particular value. In some
instances, the first particular value 1s a first integer (e.g., a
first round number R), the second particular value 1s a
second 1nteger (e.g., a second round number, R+n) greater
than the first integer and the third particular value 1s a third
integer (e.g., a third round number, R+n+m) greater than the
second 1nteger.

In some embodiments, an apparatus includes a memory
and a processor. The memory includes an instance of a
distributed database at a first compute device configured to
be included within a set of compute devices that implements
the distributed database via a network operatively coupled to
the set of compute devices. The processor 1s operatively
coupled to the memory storing the mstance of the distributed
database and 1s configured to receive a signal representing
an event linked to a set of events. The processor 1s config-
ured to i1dentily an order associated with the set of events
based at least on a result of a protocol. The processor 1s
configured to store 1n the mstance of the distributed database
the order associated with the set of events.

In some embodiments, a non-transitory processor-read-
able medium stores code representing instructions to be

10

15

20

25

30

35

40

45

50

55

60

65

4

executed by a processor to receive a signal representing an
event linked to a set of events and 1dentify an order asso-
ciated with the set of events based on a round associated
with each event from the set of events and an indication of
when to increment the round associated with each event. The
code further includes code to cause the processor to store, 1n
an mstance of a distributed database at a first compute device
configured to be included within a set of compute devices
that implements the distributed database via a network
operatively coupled to the set of compute devices, the order
associated with the set of events. The instance of the
distributed database 1s operatively coupled to the processor

In some embodiments, an instance of a distributed data-
base at a first compute device can be configured to be
included within a set of compute devices that implements
the distributed database via a network operatively coupled to
the set of compute devices. The first compute device stores
multiple transactions in the instance of a distributed data-
base. A database convergence module can be implemented
in a memory or a processor of the first compute device. The
database convergence module can be operatively coupled
with the instance of the distributed database. The database
convergence module can be configured to define, at a first
time, a first event linked to a first set of events. Each event
from the first set of events 1s a sequence of bytes and 1s
associated with (1) a set of transactions from multiple sets of
transactions, and (b) an order associated with the set of
transactions. Each transaction from the set of transactions 1s
from the multiple transactions. The database convergence
module can be configured to receive, at a second time after
the first time and from a second compute device from the set
of compute devices, a second event (1) defined by the
second compute device and (2) linked to a second set of
events. The database convergence module can be configured
to define a third event linked to the first event and the second
event. The database convergence module can be configured
to 1dentily an order associated with a third set of events
based at least on the first set of events and the second set of
events. Fach event from the third set of events 1s from at
least one of the first set of events or the second set of events.
The database convergence module can be configured to
identify an order associated with the multiple transactions
based at least on (1) the order associated with the third set
of events and (2) the order associated with each set of
transactions from the multiple sets of transactions. The
database convergence module can be configured to store 1n
the 1instance of the distributed database the order associated
with the multiple transactions stored in the first compute
device.

In some embodiments, an instance of a distributed data-
base at a first compute device can be configured to be
included within a set of compute devices that implements
the distributed database via a network operatively coupled to
the set of compute devices. A database convergence module
can be implemented 1n a memory or a processor of the first
compute device. The database convergence module can be
configured to define, at a first time, a first event linked to a
first set of events. Each event from the first set of events 1s
a sequence ol bytes. The database convergence module can
be configured to recerve, at a second time after the first time
and from a second compute device from the set of compute
devices, a second event (1) defined by the second compute
device and (2) linked to a second set of events. Each event
from the second set of events 1s a sequence of bytes. The
database convergence module can be configured to define a
third event linked to the first event and the second event. The
database convergence module can be configured to 1dentity

US 10,572,455 B2

S

an order associated with a third set of events based at least
on the first set of events and the second set of events. Each
event from the third set of events 1s from at least one of the
first set of events or the second set of events. The database
convergence module can be configured to store in the
instance of the distributed database the order associated with
the third set of events.

In some embodiments, data associated with a first trans-
action can be received at a first compute device from a set
of compute devices that implement a distributed database
via a network operatively coupled to the set of compute
devices. Each compute device from the set of compute
devices has a separate instance of the distributed database.
A first transaction order value associated with the first
transaction can be defined at a first time. Data associated
with a second transaction can be received from a second
compute device from the set of compute devices. A set of
transactions can be stored in the instance of the distributed
database at the first compute device. The set of transactions
can include at least the first transaction and the second
transaction. A set of transaction order values including at
least the first transaction order value and a second transac-
tion order value can be selected at a second time after the
first time. The second transaction order value can be asso-
ciated with the second transaction. A database state variable
can be defined based on at least the set of transactions and
the set of transaction order values.

As used herein, a module can be, for example, any
assembly and/or set of operatively-coupled electrical com-
ponents associated with performing a specific function, and
can include, for example, a memory, a processor, electrical
traces, optical connectors, software (executing in hardware)
and/or the like.

As used 1n this specification, the singular forms “a,” “an”
and “the” include plural referents unless the context clearly
dictates otherwise. Thus, for example, the term “module” 1s
intended to mean a single module or a combination of
modules. For instance, a “network” 1s intended to mean a
single network or a combination of networks.

FIG. 1 1s a high level block diagram that illustrates a
distributed database system 100, according to an embodi-
ment. FIG. 1 illustrates a distributed database 100 imple-

mented across four compute devices (compute device 110,
compute device 120, compute device 130, and compute
device 140), but 1t should be understood that the distributed
database 100 can use a set of any number of compute
devices, including compute devices not shown i FIG. 1.
The network 105 can be any type of network (e.g., a local
area network (LAN), a wide area network (WAN), a virtual
network, a telecommunications network) implemented as a
wired network and/or wireless network and used to opera-
tively couple compute devices 110, 120, 130, 140. As
described 1n further detail herein, 1n some embodiments, for
example, the compute devices are personal computers con-
nected to each other via an Internet Service Provider (ISP)
and the Internet (e.g., network 105). In some embodiments,
a connection can be defined, via network 1035, between any
two compute devices 110, 120, 130, 140. As shown 1n FIG.
1, for example, a connection can be defined between com-
pute device 110 and any one of compute device 120,
compute device 130, or compute device 140.

In some embodiments, the compute devices 110, 120,
130, 140 can commumnicate with each other (e.g., send data
to and/or recerve data from) and with the network wia
intermediate networks and/or alternate networks (not shown

10

15

20

25

30

35

40

45

50

55

60

65

6

in FIG. 1). Such intermediate networks and/or alternate
networks can be of a same type and/or a different type of
network as network 105.

Each compute device 110, 120, 130, 140 can be any type
of device configured to send data over the network 105 to
send and/or receive data from one or more ol the other
compute devices. Examples of compute devices are shown
in FIG. 1. Compute device 110 includes a memory 112, a
processor 111, and an output device 113. The memory 112
can be, for example, a random access memory (RAM), a
memory bufler, a hard drive, a database, an erasable pro-
grammable read-only memory (EPROM), an electrically
crasable read-only memory (EEPROM), a read-only
memory (ROM) and/or so forth. In some embodiments, the
memory 112 of the compute device 110 includes data
associated with an instance of a distributed database (e.g.,
distributed database instance 114). In some embodiments,
the memory 112 stores mstructions to cause the processor to
execute modules, processes and/or functions associated with
sending to and/or receiving from another instance of a
distributed database (e.g., distributed database instance 124
at compute device 120) a record of a synchronization event,
a record of prior synchronization events with other compute
devices, an order of synchronization events, a value for a
parameter (e.g., a database field quantifying a transaction, a
database field quantifying an order in which events occur,
and/or any other suitable field for which a value can be
stored 1n a database).

Distributed database instance 114 can, for example, be
configured to manipulate data, including storing, moditying,
and/or deleting data. In some embodiments, distributed
database instance 114 can be a relational database, object
database, post-relational database, and/or any other suitable
type of database. For example, the distributed database
instance 114 can store data related to any specific function
and/or industry. For example, the distributed database
instance 114 can store financial transactions (of the user of
the compute device 110, for example), including a value
and/or a vector of values related to the history of ownership
ol a particular financial instrument. In general, a vector can
be any set of values for a parameter, and a parameter can be
any data object and/or database field capable of taking on
different values. Thus, a distributed database instance 114
can have a number of parameters and/or fields, each of
which 1s associated with a vector of values. The vector of
values 1s used to determine the actual value for the parameter
and/or field within that database mstance 114.

In some 1instances, the distributed database instance 114
can also be used to implement other data structures, such as
a set of (key, value) pairs. A transaction recorded by the
distributed database instance 114 can be, for example,
adding, deleting, or modifying a (key, value) pair in a set of
(key, value) pairs.

In some 1nstances, the distributed database system 100 or
any of the distributed database instances 114, 124, 134, 144
can be queried. For example, a query can consist of a key,
and the returned result from the distributed database system
100 or distributed database instances 114, 124, 134, 144 can
be a value associated with the key. In some instances, the
distributed database system 100 or any of the distributed
database instances 114, 124, 134, 144 can also be modified
through a transaction. For example, a transaction to modify
the database can contain a digital signature by the party
authorizing the modification transaction.

The distributed database system 100 can be used for many
purposes, such as, for example, storing attributes associated
with various users 1 a distributed identity system. For

US 10,572,455 B2

7

example, such a system can use a user’s identity as the
“key,” and the list of attributes associated with the users as
the “value.” In some 1nstances, the 1dentity can be a cryp-
tographic public key with a corresponding private key
known to that user. Each attribute can, for example, be
digitally signed by an authority having the right to assert that
attribute. Each attribute can also, for example, be encrypted
with the public key associated with an individual or group of
individuals that have the right to read the attribute. Some
keys or values can also have attached to them a list of public
keys of parties that are authorized to modily or delete the
keys or values.

In another example, the distributed database instance 114
can store data related to Massively Multiplayer Games
(MMGs), such as the current status and ownership of
gameplay 1tems. In some instances, distributed database
istance 114 can be implemented within the compute device
110, as shown 1n FIG. 1. In other instances, the instance of
the distributed database 1s accessible by the compute device
(e.g., via a network), but 1s not implemented 1n the compute
device (not shown 1n FIG. 1).

The processor 111 of the compute device 110 can be any
suitable processing device configured to run and/or execute
distributed database instance 114. For example, the proces-
sor 111 can be configured to update distributed database
instance 114 1n response to receiving a signal from compute
device 120, and/or cause a signal to be sent to compute
device 120, as described in further detail herein. More
specifically, as described in further detail herein, the pro-
cessor 111 can be configured to execute modules, functions
and/or processes to update the distributed database instance
114 1n response to receiving a synchronization event asso-
ciated with a transaction from another compute device, a
record associated with an order of synchronization events,
and/or the like. In other embodiments, the processor 111 can
be configured to execute modules, functions and/or pro-
cesses to update the distributed database instance 114 1n
response to receiving a value for a parameter stored in
another 1nstance of the distributed database (e.g., distributed
database 1nstance 124 at compute device 120), and/or cause
a value for a parameter stored in the distributed database
instance 114 at compute device 110 to be sent to compute
device 120. In some embodiments, the processor 111 can be
a general purpose processor, a Field Programmable Gate
Array (FPGA), an Application Specific Integrated Circuit
(ASIC), a Dagital Signal Processor (DSP), and/or the like.

The display 113 can be any suitable display, such as, for
example, a liquid crystal display (LCD), a cathode ray tube
display (CRT) or the like. In other embodiments, any of
compute devices 110, 120, 130, 140 includes another output
device mstead of or 1n addition to the displays 113, 123, 133,
143. For example, any one of the compute devices 110, 120,
130, 140 can include an audio output device (e.g., a
speaker), a tactile output device, and/or the like. In still other
embodiments, any of compute devices 110, 120, 130, 140
includes an input device instead of or i1n addition to the
displays 113, 123, 133, 143. For example, any one of the
compute devices 110, 120, 130, 140 can include a keyboard,
a mouse, and/or the like.

The compute device 120 has a processor 121, a memory
122, and a display 123, which can be structurally and/or
tfunctionally similar to the processor 111, the memory 112,
and the display 113, respectively. Also, distributed database
instance 124 can be structurally and/or functionally similar
to distributed database instance 114.

The compute device 130 has a processor 131, a memory
132, and a display 133, which can be structurally and/or

10

15

20

25

30

35

40

45

50

55

60

65

8

functionally similar to the processor 111, the memory 112,
and the display 113, respectively. Also, distributed database
instance 134 can be structurally and/or functionally similar
to distributed database 1nstance 114.

The compute device 140 has a processor 141, a memory
142, and a display 143, which can be structurally and/or
functionally similar to the processor 111, the memory 112,
and the display 113, respectively. Also, distributed database
instance 144 can be structurally and/or functionally similar
to distributed database instance 114.

Even though compute devices 110, 120, 130, 140 are

shown as being similar to each other, each compute device
of the distributed database system 100 can be different from
the other compute devices. Each compute device 110, 120,
130, 140 of the distributed database system 100 can be any
one of, for example, a computing entity (e.g., a personal
computing device such as a desktop computer, a laptop
computer, etc.), a mobile phone, a personal digital assistant
(PDA), and so forth. For example, compute device 110 can
be a desktop computer, compute device 120 can be a
smartphone, and compute device 130 can be a server.

In some embodiments, one or more portions of the
compute devices 110, 120, 130, 140 can include a hardware-
based module (e.g., a digital signal processor (DSP), a field
programmable gate array (FPGA)) and/or a software-based
module (e.g., a module of computer code stored 1n memory
and/or executed at a processor). In some embodiments, one

or more of the functions associated with the compute
devices 110, 120, 130, 140 (e.g., the functions associated

with the processors 111, 121, 131, 141) can be included n
one or more modules (see, e.g., FIG. 2).

The properties of the distributed database system 100,
including the properties of the compute devices (e.g., the
compute devices 110, 120, 130, 140), the number of com-
pute devices, and the network 105, can be selected 1n any
number of ways. In some 1nstances, the properties of the
distributed database system 100 can be selected by an
administrator of distributed database system 100. In other
instances, the properties of the distributed database system
100 can be collectively selected by the users of the distrib-
uted database system 100.

Because a distributed database system 100 1s used, no
leader 1s appointed among the compute devices 110, 120,
130, and 140. Specifically, none of the compute devices 110,
120, 130, or 140 are 1dentified and/or selected as a leader to
settle disputes between values stored in the distributed
database instances 111, 12, 131, 141 of the compute devices
110, 120, 130, 140. Instead, using the event synchronization
processes, the voting processes and/or methods described
herein, the compute devices 110, 120, 130, 140 can collec-
tively converge on a value for a parameter.

Not having a leader in a distributed database system
increases the security of the distributed database system.
Specifically, with a leader there 1s a single point of attack
and/or failure. If malicious software infects the leader and/or
a value for a parameter at the leader’s distributed database
instance 1s maliciously altered, the failure and/or 1ncorrect
value 1s propagated throughout the other distributed data-
base istances. In a leaderless system, however, there 1s not
a single point of attack and/or failure. Specifically, if a
parameter 1n a distributed database 1nstance of a leaderless
system contains a value, the value will change after that
distributed database instance exchanges values with the
other distributed database instances in the system, as
described 1n further detail herein. Additionally, the leader-
less distributed database systems described herein increase

US 10,572,455 B2

9

the speed of convergence while reducing the amount of data
sent between devices as described 1n further detail herein.
FIG. 2 illustrates a compute device 200 of a distributed
database system (e.g., distributed database system 100),
according to an embodiment. In some embodiments, com- 5
pute device 200 can be similar to compute devices 110, 120,
130, 140 shown and described with respect to FIG. 1.
Compute device 200 includes a processor 210 and a memory
220. The processor 210 and memory 220 are operatively
coupled to each other. In some embodiments, the processor 10
210 and memory 220 can be similar to the processor 111 and
memory 112, respectively, described 1n detail with respect to
FIG. 1. As shown in FIG. 2, the processor 210 includes a
database convergence module 211 and communication mod-
ule 210, and the memory 220 includes a distributed database 15
instance 221. The communication module 212 enables com-
pute device 200 to communicate with (e.g., send data to
and/or recerve data from) other compute devices. In some
embodiments, the communication module 212 (not shown 1n
FIG. 1) enables compute device 110 to communicate with 20
compute devices 120, 130, 140. Communication module
210 can include and/or enable, for example, a network
interface controller (NIC), wireless connection, a wired port,
and/or the like. As such, the communication module 210 can
establish and/or maintain a communication session between 25
the compute device 200 and another device (e.g., via a
network such as network 105 of FIG. 1 or the Internet (not
shown)). Similarly stated, the communication module 210
can enable the compute device 200 to send data to and/or
receive data from another device. 30
In some 1nstances, the database convergence module 211
can exchange events and/or transactions with other comput-
ing devices, store events and/or transactions that the data-
base convergence module 211 receives, and calculate an
ordering of the events and/or transactions based on the 35
partial order defined by the pattern of references between the
events. Fach event can be a record containing a crypto-
graphic hash of two earlier events (linking that event to the
two earlier events and their ancestor events, and vice versa),
payload data (such as transactions that are to be recorded), 40
other information such as the current time, a timestamp (e.g.,
date and UTC time) that 1ts creator asserts 1s the time the
event was first defined, and/or the like. In some 1nstances,
the first event defined by a member only includes a hash of
a single event defined by another member. In such nstances, 45
the member does not yet have a prior self-hash (e.g., a hash
of an event previously defined by that member). In some
instances, the first event 1n a distributed database does not
include a hash of any prior event (since there 1s no prior
event for that distributed database). 50
In some embodiments, such a cryptographic hash of the
two earlier events can be a hash value defined based on a
cryptographic hash function using an event as an input.
Specifically, in such embodiments, the event includes a
particular sequence or string of bytes (that represent the 55
information of that event). The hash of an event can be a
value returned from a hash function using the sequence of
bytes for that event as an input. In other embodiments, any
other suitable data associated with the event (e.g., an 1den-
tifier, serial number, the bytes representing a specific portion 60
of the event, etc.) can be used as an mput to the hash function
to calculate the hash of that event. Any suitable hash
function can be used to define the hash. In some embodi-
ments, each member uses the same hash function such that
the same hash 1s generated at each member for a given event. 65
The event can then be digitally signed by the member
defining and/or creating the event.

10

In some 1nstances, the set of events and their intercon-
nections can form a Directed Acyclic Graph (DAG). In some
instances, each event in a DAG references two earlier events
(linking that event to the two earlier events and their
ancestor events and vice versa), and each reference 1s strictly
to earlier ones, so that there are no loops. In some embodi-
ments, the DAG 1s based on cryptographic hashes, so the
data structure can be called a hashDAG. The hashDAG
directly encodes a partial order, meaning that event X 1s
known to come before event Y 1 Y contains a hash of X, or
11 Y contains a hash of an event that contains a hash of X,
or for such paths of arbitrary length. If, however, there 1s no
path from X to Y or from Y to X, then the partial order does
not define which event came first. Therefore, the database
convergence module can calculate a total order from the
partial order. This can be done by any suitable deterministic
function that 1s used by the compute devices, so that the
compute devices calculate the same order. In some embodi-
ments, each member can recalculate this order after each
sync, and eventually these orders can converge so that a
consensus emerges.

A consensus algorithm can be used to determine the order
of events 1n a hashDAG and/or the order of transactions
stored within the events. The order of transactions 1n turn
can define a state of a database as a result of performing
those transactions according to the order. The defined state
ol the database can be stored as a database state variable.

In some 1nstances, the database convergence module can
use the following function to calculate a total order from the
partial order 1n the hashDAG. For each of the other compute
devices (called “members™), the database convergence mod-
ule can examine the hashDAG to discover an order in which
the events (and/or indications of those events) were recerved

by that member. The database convergence module can then
calculate as 1f that member assigned a numeric “rank” to
cach event, with the rank being 1 for the first event that
member received, 2 for the second event that member
received, and so on. The database convergence module can
do this for each member 1n the hashDAG. Then, for each
event, the database convergence module can calculate the
median of the assigned ranks, and can sort the events by their
medians. The sort can break ties 1n a deterministic mannetr,
such as sorting two tied events by a numeric order of their
hashes, or by some other method, in which the database
convergence module of each member uses the same method.
The result of this sort 1s the total order.

FIG. 6 1llustrates a hashDAG 640 of one example for
determining a total order. HashDAG 640 illustrates two
events (the lowest striped circle and lowest dotted circle)
and the first time each member receives an indication of
those events (the other striped and dotted circles). Each
member’s name at the top 1s colored by which event 1s first
in their slow order. There are more striped 1nitial votes than
dotted, therefore consensus votes for each of the members
are striped. In other words, the members eventually con-
verge to an agreement that the striped event occurred before
the dotted event.

In this example, the members (compute devices labeled
Alice, Bob, Carol, Dave and Ed) will work to define a
consensus of whether event 642 or event 644 occurred first.
Each striped circle indicates the event at which a member
first rece1ved an event 644 (and/or an indication of that event
644). Similarly, each dotted circle indicates the event at
which a member first received an event 642 (and/or an
indication of that event 642). As shown 1n the hashDAG 640,
Alice, Bob and Carol each received event 644 (and/or an
indication of event 644) prior to event 642. Dave and Ed

US 10,572,455 B2

11

both received event 642 (and/or an indication of event 642)
prior to event 644 (and/or an imndication of event 644). Thus,
because a greater number of members received event 644
prior to event 642, the total order can be determined by each
member to indicate that event 644 occurred prior to event

642.

In other instances, the database convergence module can
use a different function to calculate the total order from the
partial order 1n the hashDAG. In such embodiments, for
example, the database convergence module can use the
following functions to calculate the total order, where a
positive mteger Q 1s a parameter shared by the members.

creator(x)=the member who created event x

anc(x)=the set of events that are ancestors of x, including

X 1tself

other(x)=the event created by the member who synced

just before x was created

self(x)=the last event before x with the same creator

11(x, 0)=seli(x)

S€.

seli(x, n)=seli(seli(x), n-1)

order(x, yv)=k, where y 1s the kth event that creator(x)
learned of

last(x)={ylyEanc(x) A = dz€anc(x), (yEanc(z)A creator

(y)=creator(z))}

slow(x, v) =
(00 if v & anc(x)
order(x, V) 1f v € anc(x) Ay & anc(self(x))
)
fast(x, v) it Viell, ..., O}, tast(x, v) = fast(selt(x, i), y)
| slow(self(x), v) otherwise

fast(x, v) = the position of y in a sorted list,

with element z € anc(x)sorted by median slow(w,)
W= fast(X)

and with ties broken by the hash of each event

In this embodiment, fast(x,y) gives the position of v in the
total order of the events, in the opinion of creator(x),
substantially immediately after x 1s created and/or defined.
I Q 1s infinity, then the above calculates the same total order
as 1n the previously described embodiment. If Q 1s finite, and
all members are online, then the above calculates the same
total order as 1n the previously described embodiment. If Q
1s fimite and a minority of the members are online at a given
time, then this function allows the online members to reach
a consensus among themselves that will remain unchanged
as new members come online slowly, one by one. If,
however, there 1s a partition of the network, then the
members of each partition can come to their own consensus.
Then, when the partition i1s healed, the members of the
smaller partition will adopt the consensus of the larger
partition.

In still other 1nstances, as described with respect to FIGS.
14-165, the database convergence module can use yet a
different function to calculate the total order from the partial
order 1n the hashDAG. As shown in FIGS. 14-15, each
member (Alice, Bob, Carol, Dave and Ed) creates and/or
defines events (1401-1413 as shown 1n FIG. 14; 1501-1506
shown 1n FIG. 15). Using the function and sub-functions
described with respect to FIGS. 14-165b, the total order for
the events can be calculated by sorting the events by their
received round, breaking ties by their received timestamp,
and breaking those ties by their signatures, as described 1n
further detail herein. In other instances, the total order for the

10

15

20

25

30

35

40

45

50

55

60

65

12

events can be calculated by sorting the events by their
received round, breaking ties by their received generation
(1nstead of their recerved timestamp), and breaking those ties
by their signatures. The following paragraphs specily func-
tions used to calculate and/or define an event’s received
round and received generation to determine an order for the
events. The following terms are used and illustrated 1n
connection with FIGS. 14-165.

“Parent”: an event X 1s a parent of event Y 11 Y contains
a hash of X. For example, in FIG. 14, the parents of
event 1412 include event 1406 and event 1408.

“Ancestor”: the ancestors of an event X are X, 1ts parents,
its parents’ parents, and so on. For example, in FIG. 14,
the ancestors of event 1412 are events 1401, 1402,
1403, 1406, 1408, and 1412. Ancestors of an event can
be said to be linked to that event and vice versa.

“Descendant”: the descendants of an event X are X, 1ts
children, its children’s children, and so on. For
example, 1n FIG. 14, the descendants of event 1401 are
every event shown 1n the figure. For another example,
the descendants of event 1403 are events 1403, 1404,
1406, 1407, 1409, 1410, 1411, 1412 and 1413. Descen-
dants of an event can be said to be linked to that event
and vice versa.

“N”: the total number of members 1n the population. For
example, 1n FIG. 14, the members are compute devices
labeled Alice, Bob, Carol, Dave and Ed, and N 1s equal
to five.

“M”: the least integer that 1s more than a certain percent-
age of N (e.g., more than 24 of N). For example, in FIG.
14, if the percentage 1s defined to be 24, then M 1s equal
to four. In other instances, M could be defined, for
example, to be a diflerent percentage of N (e.g., 15, 1A,
etc.), a specific predefined number, and/or 1n any other
suitable manner.

“Self-parent”: the seli-parent of an event X 1s 1ts parent
event Y created and/or defined by the same member.
For example, 1n FIG. 14, the self-parent of event 1405
1s 1401.

“Self-ancestor’”: the self-ancestors of an event X are X, its
self-parent, 1ts self-parent’s self-parent, and so on.

“Sequence Number” (or “SN”): an integer attribute of an
event, defined as the Sequence Number of the event’s
self-parent, plus one. For example, in FIG. 14, the
self-parent of event 1405 1s 1401. Since the Sequence
Number of event 1401 1s one, the Sequence Number of
cvent 1405 1s two (1.e., one plus one).

“Generation Number” (or “GN”): an iteger attribute of
an event, defined as the maximum of the Generation
Numbers of the event’s parents, plus one. For example,
in FIG. 14, event 1412 has two parents, events 1406
and 1408, having Generation Numbers four and two,
respectively. Thus, the Generation Number of event
1412 1s five (1.e., four plus one).

“Round Increment™ (or “RI”’): an attribute of an event that
can be either zero or one.

“Round Number” (or “RN”"): an integer attribute of an
event. In some 1nstances, Round Number can be
defined as the maximum of the Round Numbers of the
cvent’s parents, plus the event’s Round Increment. For
example, in FIG. 14, event 1412 has two parents,

events 1406 and 1408, both having a Round Number of
one. Event 1412 also has a Round Increment of one.
Thus, the Round Number of event 1412 1s two (1.€., one
plus one). In other 1nstances, an event can have a Round
Number R 1f R 1s the mimimum integer such that the
event can strongly see (as described herein) at least M

“Forking’

“Identification” of an event: an event X

“Strong,

US 10,572,455 B2

13

events defined and/or created by different members,
which all have a round number R-1. If there 1s no such
integer, the Round Number for an event can be a default
value (e.g., 0, 1, etc.). In such 1instances, the Round
Number for an event can be calculated without using a
Round Increment. For example, in FIG. 14, 1if M 1s
defined to be the least integer greater than 2 times N,
then M 1s three. Then event 1412 strongly sees the M
events 1401, 1402, and 1408, each of which was
defined by a different member and has a Round Number
of 1. The event 1412 cannot strongly see at least M
events with Round Number of 2 that were defined by
different members. Therefore, the Round Number for
event 1412 1s 2. In some instances, the first event 1n the
distributed database includes a Round Number of 1. In
other instances, the first event 1n the distributed data-
base can include a Round Number of 0 or any other
suitable number.

" an event X 1s a fork with event Y 1f they are
defined and/or created by the same member, and neither
1s a self-ancestor of the other. For example, 1n FIG. 15,
member Dave forks by creating and/or defining events
1503 and 1504, both having the same self-parent (1.e.,
event 1501), so that event 1503 1s not a self-ancestor of

event 1504, and event 1504 i1s not a self-ancestor of
event 1503.

“Identification” of forking: forking can be “identified” by

a third event created and/or defined after the two events
that are forks with each other, 1f those two events are
both ancestors of the third event. For example, 1n FIG.
15, member Dave forks by creating events 1503 and
1504, neither of which 1s a self-ancestor of the other.
This forking can be identified by later event 1506
because events 1503 and 1504 are both ancestors of
event 1506. In some 1nstances, 1dentification of forking
can indicate that a particular member (e.g., Dave) has
cheated.

“1dentifies™ or
“sees” an ancestor event Y 11 X has no ancestor event
/. that 1s a fork with Y. For example, in FIG. 14, event
1412 i1dentifies (also referred to as “sees”) event 1403
because event 1403 1s an ancestor of event 1412, and
event 1412 has no ancestor events that are forks with
cvent 1403. In some 1instances, event X can identily
event Y 1iI X does not identify forking prior to event Y.
In such instances, even if event X 1dentifies forking by
the member defining event Y subsequent to event Y,
event X can see event Y. Event X does not 1dentily
events by that member subsequent to forking. More-
over, 1 a member defines two difterent events that are
both that member’s first events 1n history, event X can
identily forking and does not 1dentily any event by that
member.

identification” (also referred to herein as
“strongly seeing”) of an event: an event X “strongly
identifies” (or “strongly sees”) an ancestor event Y
created and/or defined by the same member as X, 11 X
identifies Y. Event X “strongly 1dentifies” an ancestor
cevent Y that 1s not created and/or defined by the same
member as X, 1f there exists a set S of events that (1)
includes both X and Y and (2) are ancestors of event X
and (3) are descendants of ancestor event Y and (4) are
identified by X and (35) can each 1dentily Y and (6) are
created and/or defined by at least M diflerent members.
For example, in FIG. 14, 1f M 1s defined to be the least
integer that 1s more than 24 of N (1.e., M=1+floor(2N/
3), which would be four 1n this example), then event

10

15

20

25

30

35

40

45

50

55

60

65

14

1412 strongly i1dentifies ancestor event 1401 because
the set of events 1401, 1402, 1406, and 1412 1s a set of
at least four events that are ancestors of event 1412 and

descendants of event 1401, and they are created and/or
defined by the four members Dave, Carol, Bob, and Ed,

respectively, and event 1412 1dentifies each of events
1401, 1402, 1406, and 1412, and each of events 1401,
1402, 1406, and 1412 identifies event 1401. Similarly
stated, an event X (e.g., event 1412) can “strongly see”

event Y (e.g., event 1401) 11 X can see at least M events
(e.g., events 1401, 1402, 1406, and 1412) created or
defined by different members, each of which can see Y.

“Round R first” event (also referred to herein as a “wit-

ness”’): an event 1s a “round R {first” event (or a
“witness™) 1 the event (1) has Round Number R, and
(2) has a self-parent having a Round Number smaller
than R or has no self-parent. For example, 1n FIG. 14,
event 1412 1s a “round 2 first” event because 1t has a

Round Number of two, and 1ts self-parent 1s event
1408, which has a Round Number of one (1.e., smaller

than two).

In some 1nstances, the Round Increment for an event X
1s defined to be 1 1f and only if X “strongly 1denti-
fles” at least M “round R first” events, where R 1s the
maximum Round Number of 1its parents. For
example, in FIG. 14, if M 1s defined to be the least
integer greater than %2 times N, then M 1s three. Then
event 1412 strongly identifies the M events 1401,
1402, and 1408, all of which are round 1 firsts. Both
parents of 1412 are round 1, and 1412 strongly
identifies at least M round 1 firsts, therefore the
round increment for 1412 is one. The events 1 the
diagram marked with “RI=0" each fail to strongly
identify at least M round 1 firsts, therefore their
round increments are 0.

In some 1nstances, the following method can be used
for determining whether event X can strongly 1den-
tify ancestor event Y. For each round R first ancestor
event Y, maintain an array Al of integers, one per
member, giving the lowest sequence number of the
event X, where that member created and/or defined
event X, and X can identify Y. For each event Z,
maintain an array A2 of integers, one per member,
giving the highest sequence number of an event W
created and/or defined by that member, such that Z
can 1dentily W. To determine whether Z can strongly
identily ancestor event Y, count the number of ele-
ment positions E such that A1[E]<=A2[E]. Event Z
can strongly i1dentity Y i1f and only if this count 1s
greater than M. For example, 1n FIG. 14, members
Alice, Bob, Carol, Dave and Ed can each identily
event 1401, where the earliest event that can do so 1s
their events {1404, 1403, 1402, 1401, 1408}, respec-
tively. These events have sequence numbers A1=11,
1,1,131} Similarly, the latest event by each of them
that is identified by event 1412 is event {NONE,
1406, 1402, 1401, 1412}, where Alice is listed as
“NONE” because 1412 cannot 1dentify any events by
Alice. These events have sequence numbers of
A2={0,2,1,1,2}, respectively, where all events have
positive sequence numbers, so the O means that Alice
has no events that are identified by 1412. Comparing
the list Al to the list A2 gives the results {1<=0,
1<=2, 1<=1, 1<=1, 1<=2} which is equivalent to
{false, true, true, true, true} which has four values
that are true. Therefore, there exists a set S of four

US 10,572,455 B2

15

events that are ancestors of 1412 and descendants of
1401. Four 1s at least M, therefore 1412 strongly
identifies 1401.

Yet another variation on implementing the method for
determining, with Al and A2, whether event X can
strongly 1dentily ancestor event Y 1s as follows. If the
integer elements in both arrays are less than 128,
then 1t 1s possible to store each element 1n a single
byte, and pack 8 such elements mto a single 64-bit
word, and let Al and A2 be arrays of such words.
The most significant bit of each byte in Al can be set
to 0, and the most significant bit of each byte 1n A2
can be set to 1. Subtract the two corresponding
words, then perform a bitwise AND with a mask to
zero everything but the most significant bits, then
right shift by 7 bit positions, to get a value that 1s
expressed 1n the C programming language as: ((A2
[7]]-Al[i]) & 0x8080808080808080)>>7). This can

be added to a running accumulator S that was

imtialized to zero. After doing this multiple times,
convert the accumulator to a count by shifting and
adding the bytes, to get (S & OxID)+((5>>8) &

OxD)+((S>>16) & OxID)+((S>>24) & Oxi)+((S>>32)

& Oxih)+((S>>40) & OxiD)+((S>>48) & Oxi)+

((S>>56) & Oxil)). In some instances, these calcu-

lations can be performed 1n programming languages

such as C, Java, and/or the like. In other instances,
the calculations can be performed using processor-
specific instructions such as the Advanced Vector

Extensions (AVX) instructions provided by Intel and

AMD, or the equivalent 1n a graphics processing unit

(GPU) or general-purpose graphics processing unit

(GPGPU). On some architectures, the calculations

can be performed faster by using words larger than

64 bits, such as 128, 256, 512, or more bits.

“Famous™ event: a round R event X 1s “famous” 11 (1) the

event X 1s a “round R first” event (or “witness”) and (2)
a decision of “YES” 1s reached via execution of a
Byzantine agreement protocol, described below. In
some embodiments, the Byzantine agreement protocol
can be executed by an 1nstance of a distributed database
(e.g., distributed database instance 114) and/or a data-
base convergence module (e.g., database convergence
module 211). For example, in FIG. 14, there are five
round 1 firsts shown: 1401, 1402, 1403, 1404, and
1408. IT M 1s defined to be the least integer greater than
L5 times N, which 1s three, then 1412 1s a round 2 first.
If the protocol runs longer, then the hashDAG will
grow upward, and eventually the other four members
will also have round 2 firsts above the top of this figure.
Each round 2 first will have a “vote” on whether each
of the round 1 firsts 1s “famous”. Event 1412 would
vote YES for 1401, 1402, and 1403 being famous,
because those are round 1 firsts that 1t can 1dent1fy
Event 1412 would vote NO for 1404 being famous,
because 1412 cannot identily 1404. For a given round
1 first, such as 1402, its status of being “famous” or not
will be decided by calculating the votes of each round
2 first for whether i1t 1s famous or not. Those votes will
then propagate to round 3 firsts, then to round 4 firsts
and so on, until eventually agreement i1s reached on
whether 1402 was famous. The same process 1s
repeated for other firsts.
A Byzantine agreement protocol can collect and use the
votes and/or decisions of “round R first” events to
identily “famous events. For example, a “round R+1

first” Y will vote “YES” 1Y can “1dentily” event X,

10

15

20

25

30

35

40

45

50

55

60

65

16

otherwise 1t votes “NO.” Votes are then calculated
for each round G, for G=R+2, R+3, R+4, etc., until
a decision 1s reached by any member. Until a deci-
sion has been reached, a vote 1s calculated for each
round G. Some of those rounds can be “majority”
rounds, while some other rounds can be “coin”
rounds. In some 1nstances, for example, Round R+2
1s a majority round, and future rounds are designated
as either a majority or a coin round (e.g., according,
to a predefined schedule). For example, in some
instances, whether a future round 1s a majority round
or a coin round can be arbitrarily determined, subject
to the condition that there cannot be two consecutive
coin rounds. For example, 1t might be predefined that
there will be five majority rounds, then one coin
round, then five majonity rounds, then one coin
round, repeated for as long as it takes to reach
agreement.

In some 1nstances, 1f round G 1s a majority round, the
votes can be calculated as follows. If there exists a
round G event that strongly identifies at least M
round G-1 firsts voting V (where V 1s etther “YES”
or “NO”), then the consensus decision 1s V, and the
Byzantine agreement protocol ends. Otherwise, each
round G first event calculates a new vote that 1s the
majority of the round G-1 firsts that each round G
first event can strongly 1dentily. In instances where
there 1s a tie rather than majority, the vote can be
designated “YES.”

Similarly stated, 11 X 1s a round R witness (or round R
first), then the results of votes in rounds R+1, R+2,
and so on can be calculated, where the witnesses 1n
cach round are voting for whether X 1s famous. In
round R+1, every witness that can see X votes YES,
and the other witnesses vote NO. In round R+2,
every witness votes according to the majority of
votes of the round R+1 witnesses that i1t can strongly
see. Similarly, 1n round R+3, every witness votes
according to the majority of votes of the round R+2
witness that 1t can strongly see. This can continue for
multiple rounds. In case of a tie, the vote can be set
to YES. In other instances, the tie can be set to NO
or can be randomly set. If any round has at least M
ol the witnesses voting NO, then the election ends,
and X 1s not famous. If any round has at least M of
the witnesses voting YES, then the election ends, and
X 1s famous. If neither YES nor NO has at least M
votes, the election continues to the next round.

As an example, in FIG. 14, consider some round first
event X that 1s below the figure shown. Then, each
round 1 first will have a vote on whether X 1s famous.

Event 1412 can strongly identily the round 1 firsts
1401, 1402, and 1408. So 1ts vote will be based on
their votes. If this 1s a majority round, then 1412 will
check whether at least M of {1401, 1402, 1408} have
a vote of YES. If they do, then the decision 1s YES,
and the agreement has been achieved. IT at least M of
them vote NO, then the decision 1s NO, and the
agreement has been achieved. If the vote doesn’t
have at least M either direction, then 1412 1s given
a vote that 1s a majority of the votes of those of 1401,
1402, and 1408 (and would break ties by voting
YES, 1if there were a tie). That vote would then be
used 1n the next round, continuing until agreement 1s
reached.

In some 1nstances, 1f round G 1s a coin round, the votes
can be calculated as follows. If event X can i1dentily

US 10,572,455 B2

17

at least M round G-1 firsts voting V (where V 1s
cither “YES” or “NO”"), then event X will change its
vote to V. Otherwise, 1f round G 1s a coin round, then
cach round G first event X changes its vote to the
result of a pseudo-random determination (akin to a
coin flip 1n some instances), which 1s defined to be
the least significant bit of the signature of event X.

Similarly stated, in such instances, if the election
reaches a round R+K (a coin round), where K 1s a
designated factor (e.g., a multiple of a number such
as 3, 6,7, 8, 16, 32 or any other suitable number),
then the election does not end on that round. If the
election reaches this round, it can continue for at
least one more round. In such a round, 1f event Y 1s
a round R+K witness, then 11 1t can strongly see at
least M witnesses from round R+K-1 that are voting
V, then Y will vote V. Otherwise, Y will vote accord-
ing to a random value (e.g., according to a bit of the
signature of event Y (e.g., least significant bit, most
significant bit, randomly selected bit) where 1=YES
and 0=NO, or vice versa, according to a time stamp
of the event Y, using a cryptographic “shared coin”
protocol and/or any other random determination).
This random determination 1s unpredictable before Y
1s created, and thus can increase the security of the
events and consensus protocol.

For example, 1n FI1G. 14, 1f round 2 1s a coin round, and
the vote 1s on whether some event before round 1
was famous, then event 1412 will first check whether
at least M of {1401, 1402, 1408} voted YES, or at
least M of them voted NO. If that 1s the case, then
1412 will vote the same way. If there are not at least
M voting 1n either direction, then 1412 will have a
random or pseudorandom vote (e.g., based on the
least significant bit of the digital signature that Ed
created for event 1412 when he signed it, at the time
he created and/or defined 1t).

In some instances, the result of the pseudo-random
determination can be the result of a cryptographic
shared coin protocol, which can, for example, be
implemented as the least significant bit of a threshold
signature of the round number.

A system can be built from any one of the methods for
calculating the result of the pseudo-random determi-
nation described above. In some instances, the sys-
tem cycles through the different methods in some
order. In other instances, the system can choose

among the different methods according to a pre-
defined pattern.

“Received round”: An event X has a “received round” of

R 1f R 15 the minimum integer such that at least half of
the famous round R first events (or famous witnesses)
with round number R are descendants of and/or can see
X. In other 1nstances, any other suitable percentage can
be used. For example, in another instance, an event X
has a “recerved round” of R 11 R 1s the mimimum integer
such that at least a predetermined percentage (e.g.,
40%, 60%, 80%, etc.) of the famous round R first
events (or famous witnesses) with round number R are
descendants of and/or can see X.

In some 1nstances, the “received generation” of event X

can be calculated as follows. Find which member
created and/or defined each round R first event that can
identify event X. Then determine the generation num-
ber for the earliest event by that member that can
identify X. Then define the “recerved generation” of X
to be the median of that list.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

In some 1nstances, a “received timestamp” T of an event
X can be the median of the timestamps in the events
that include the first event by each member that i1den-
tifies and/or sees X. For example, the received time-
stamp of event 1401 can be the median of the value of
the timestamps for events 1402, 1403, 1403, and 1408.
In some 1nstances, the timestamp for event 1401 can be
included 1n the median calculation. In other instances,
the recerved timestamp for X can be any other value or
combination of the values of the timestamps 1n the
cvents that are the first events by each member to
identily or see X. For example, the received timestamp
for X can be based on an average of the timestamps, a
standard deviation of the timestamps, a modified aver-
age (e.g., by removing the earliest and latest time-
stamps irom the calculation), and/or the like. In still
other 1nstances, an extended median can be used.

In some 1nstances, the total order and/or consensus order

for the events 1s calculated by sorting the events by their

received round, breaking ties by their received timestamp,
and breaking those ties by their signatures. In other
instances, the total order for the events can be calculated by
sorting the events by their received round, breaking ties by
their recerved generation, and breaking those ties by their
signatures. The foregoing paragraphs specily functions used
to calculate and/or define an event’s received round,
received timestamp, and/or received generation.

In other instances, instead of using the signature of each
event, the signature of that event XORed with the signatures
of the famous events or famous witnesses with the same
received round and/or recerved generation in that round can
be used. In other instances, any other suitable combination
ol event signatures can be used to break ties to define the
consensus order of events.

In still other 1nstances, nstead of defining the “received
generation” as the median of a list, the “received generation™
can be defined to be the list itself. Then, when sorting by
received generation, two received generations can be com-
pared by the middle elements of their lists, breaking ties by
the element immediately before the middle, breaking those
ties by the element immediately after the middle, and
continuing by alternating between the element before those
used so far and the element after, until the tie 1s broken.

In some 1nstances, the median timestamp can be replaced
with an “extended median.” In such instances, a list of
timestamps can be defined for each event rather than a single
received timestamp. The list of timestamps for an event X
can include the first event by each member that identifies
and/or sees X. For example, in FIG. 14, the list of time-
stamps for event 1401 can include the timestamps for events
1402, 1403, 1403, and 1408. In some instances, the time-
stamp for event 1401 can also be included. When breaking
a tie with the list of timestamps (1.e., two events have the
same recerved round), the middle timestamps of each
event’s list (or a predetermined of the first or second of the
two middle timestamps, 1f of even length) can be compared.
If these timestamps are the same, the timestamps 1immedi-
ately after the middle timestamps can be compared. I these
timestamps are the same, the timestamps immediately pre-
ceding the middle timestamps can be compared. If these
timestamps are also the same, the timestamps after the three

already compared timestamps are compared. This can con-
tinue to alternate until the tie 1s broken. Similar to the above
discussion, 1f the two lists are 1dentical, the tie can be broken
by the signatures of the two elements.

In still other instances, a “truncated extended median” can
be used instead of an “extended median.” In such an

US 10,572,455 B2

19

instance, an entire list of timestamps 1s not stored for each
event. Instead, only a few of the values near the middle of
the list are stored and used for comparison.

The median timestamp received can potentially be used
for other purposes 1n addition to calculating a total order of
events. For example, Bob might sign a contract that says he
agrees to be bound by the contract 11 and only if there 1s an
event X containing a transaction where Alice signs that same
contract, with the recerved timestamp for X being on or
before a certain deadline. In that case, Bob would not be
bound by the contract if Alice signs 1t after the deadline, as
indicated by the “received median timestamp”, as described
above.

In some 1nstances, a state of the distributed database can
be defined after a consensus 1s achieved. For example, i
S(R) 1s the set of events that can be seen by the famous
witnesses 1 round R, eventually all of the events in S(R)
will have a known received round and received timestamp.
At that point, the consensus order for the events 1n S(R) 1s
known and will not change. Once this point 1s reached, a
member can calculate and/or define a representation of the
events and their order. For example, a member can calculate
a hash value of the events in S(R) in their consensus order.
The member can then digitally sign the hash value and
include the hash value 1n the next event that member defines.
This can be used to inform the other members that that
member has determined that the events in S(R) have the
given order that will not change. After at least M of the
members (or any other suitable number or percentage of
members) have signed the hash value for S(R) (and thus
agreed with the order represented by the hash value), that
consensus list of events along with the list of signatures of
the members can form a single file (or other data structure)
that can be used to prove that the consensus order was as
claimed for the events 1 S(R). In other instances, 1f events
contain transactions that update a state of the distributed
database system (as described herein), then the hash value
can be of the state of the distributed database system after
applying the transactions of the events 1n S(R) in the
consensus order.

In some instances, M (as described above) can be based
on weight values assigned to each member, rather than just
a fraction, percentage and/or value of the number of total

members. In such an instance, each member has a stake
associated with its interest and/or influence 1n the distributed
database system. Such a stake can be a weight value. Each
event defined by that member can be said to have the weight
value of 1ts defining member. M can then be a fraction of the
total stake of all members. The events described above as
being dependent on M will occur when a set of members
with a stake sum of at least M agree. Thus, based on their
stake, certain members can have a greater ifluence on the
system and how the consensus order i1s derived. In some
instances, a transaction in an event can change the stake of
one or more members, add new members, and/or delete
members. If such a transaction has a received round of R,
then after the received round has been calculated, the events
alter the round R witnesses will recalculate their round
numbers and other information using the modified stakes
and modified list of members. The votes on whether round
R events are famous will use the old stakes and member list,
but the votes on the rounds after R will use the new stakes
and member list.

The foregoing terms, definitions, and algorithms are used
to 1llustrate the embodiments and concepts described in

5

10

15

20

25

30

35

40

45

50

55

60

65

20

FIGS. 14-1656. FIGS. 16a and 1654 illustrate an example
application of a consensus method and/or process shown 1n
mathematical form.

In other instances, and as described in further detail
herein, the database convergence module 211 can initially
define a vector of values for a parameter, and can update the
vector of values as 1t receives additional values for the
parameter from other compute devices. For example, the
database convergence module 211 can receive additional
values for the parameter from other compute devices via the
communication module 212. In some instances, the database
convergence module can select a value for the parameter
based on the defined and/or updated vector of values for the
parameter, as described in further detail herein. In some
embodiments, the database convergence module 211 can
also send a value for the parameter to other compute devices
via the communication module 212, as described 1n further
detail herein.

In some embodiments, the database convergence module
211 can send a signal to memory 220 to cause to be stored
in memory 220 (1) the defined and/or updated vector of
values for a parameter, and/or (2) the selected value for the
parameter based on the defined and/or updated vector of
values for the parameter. For example, (1) the defined and/or
updated vector of values for the parameter and/or (2) the
selected value for the parameter based on the defined and/or
updated vector of values for the parameter, can be stored in
a distributed database 1nstance 221 implemented 1n memory
220. In some embodiments, the distributed database instance
221 can be similar to distributed database instances 114,

124, 134, 144 of the distributed database system 100 shown
in FIG. 1.

In FIG. 2, the database convergence module 211 and the
communication module 212 are shown in FIG. 2 as being
implemented in processor 210. In other embodiments, the
database convergence module 211 and/or the communica-
tion module 212 can be implemented 1n memory 220. In still
other embodiments, the database convergence module 211
and/or the communication module 212 can be hardware
based (e.g., ASIC, FPGA, etc.).

FIG. 7 illustrates a signal flow diagram of two compute
devices syncing events, according to an embodiment. Spe-
cifically, in some embodiments, the distributed database
instances 703 and 803 can exchange events to obtain con-
vergence. The compute device 700 can select to sync with
the compute device 800 randomly, based on a relationship
with the compute device 700, based on proximity to the
compute device 700, based on an ordered list associated with
the compute device 700, and/or the like. In some embodi-
ments, because the compute device 800 can be chosen by the
compute device 700 from the set of compute devices belong-
ing to the distributed database system, the compute device
700 can select the compute device 800 multiple times 1n a
row or may not select the compute device 800 for awhile. In
other embodiments, an indication of the previously selected
compute devices can be stored at the compute device 700. In
such embodiments, the compute device 700 can wait a
predetermined number of selections before being able to
select again the compute device 800. As explained above,
the distributed database instances 703 and 803 can be
implemented 1 a memory of compute device 700 and a
memory of compute device 800, respectively.

FIGS. 3-6 illustrate examples of a hashDAG, according to
an embodiment. There are five members, each of which 1s
represented by a dark vertical line. Each circle represents an
event. The two downward lines from an event represent the
hashes of two previous events. Every event 1n this example

US 10,572,455 B2

21

has two downward lines (one dark line to the same member
and one light line to another member), except for each
member’s first event. Time progresses upward. In FIGS. 3-6,
compute devices ol a distributed database are indicated as
Alice, Bob, Carol, Dave and Ed. In should be understood
that such indications refer to compute devices structurally
and functionally similar to the compute devices 110, 120,
130 and 140 shown and described with respect to FIG. 1.
Example System 1: If the compute device 700 1s called
Alice, and the compute device 800 1s called Bob, then a sync
between them can be as 1llustrated in FIG. 7. A sync between
Alice and Bob can be as follows:
Alice sends Bob the events stored in distributed database
703.
Bob creates and/or defines a new event which contains:
a hash of the last event Bob created and/or defined
a hash of the last event Alice created and/or defined
a digital signature by Bob of the above
Bob sends Alice the events stored 1n distributed database
803.
Alice creates and/or defines a new event.
Alice sends Bob that event.
Alice calculates a total order for the events, as a function
of a hashDAG

Bob calculates a total order for the events, as a function

of a hashDAG

At any given time, a member can store the events received
so far, along with an identifier associated with the compute
device and/or distributed database instance that created
and/or defined each event. Each event contains the hashes of
two earlier events, except for an 1nitial event (which has no
parent hashes), and the first event for each new member
(which has a single parent event hash, representing the event
of the existing member that invited them to join). A diagram
can be drawn representing this set of events. It can show a
vertical line for each member, and a dot on that line for each
event created and/or defined by that member. A diagonal line
1s drawn between two dots whenever an event (the higher
dot) includes the hash of an earlier event (the lower dot). An
event can be said to be linked to another event if that event
can reference the other event via a hash of that event (either
directly or through intermediary events).

For example, FIG. 3 1llustrates an example of a hashDAG
600. Event 602 1s created and/or defined by Bob as a result
of and after syncing with Carol. Event 602 1ncludes a hash
of event 604 (the previous event created and/or defined by
Bob) and a hash of event 606 (the previous event created
and/or defined by Carol). In some embodiments, for
example, the hash of event 604 included within event 602
includes a pointer to 1ts immediate ancestor events, events
608 and 610. As such, Bob can use the event 602 to reference
events 608 and 610 and reconstruct the hashDAG using the
pointers to the prior events. In some instances, event 602 can
be said to be linked to the other events 1n the hashDAG 600
since event 602 can reference each of the events in the
hashDAG 600 via earlier ancestor events. For example,
event 602 1s linked to event 608 via event 604. For another
example, event 602 1s linked to event 616 via events 606 and
event 612.

Example System 2: The system from Example System 1,
where the event also includes a “payload” of transactions or
other information to record. Such a payload can be used to
update the events with any transactions and/or information
that occurred and/or was defined since the compute device’s
immediate prior event. For example, the event 602 can
include any transactions performed by Bob since event 604
was created and/or defined. Thus, when syncing event 602

10

15

20

25

30

35

40

45

50

55

60

65

22

with other compute devices, Bob can share this information.
Accordingly, the transactions performed by Bob can be
associated with an event and shared with the other members
using events.

Example System 3: The system from Example System 1,
where the event also includes the current time and/or date,
useiul for debugging, diagnostics, and/or other purposes.
The time and/or date can be the local time and/or date when
the compute device (e.g., Bob) creates and/or defines the
event. In such embodiments, such a local time and/or date 1s
not synchromized with the remaiming devices. In other
embodiments, the time and/or date can be synchronized
across the devices (e.g., when exchanging events). In still
other embodiments, a global timer can be used to determine
the time and/or date.

Example System 4: The system from Example System 1,
where Alice does not send Bob events created and/or defined
by Bob, nor ancestor events of such an event. An event X 1s
an ancestor of an event y 1f v contains the hash of x, or y
contains the hash of an event that 1s an ancestor of Xx.
Similarly stated, in such embodiments Bob sends Alice the
events not yet stored by Alice and does not send events
already stored by Alice.

For example, FI1G. 4 illustrates an example hashDAG 620
illustrating the ancestor events (dotted circles) and descen-
dent events (striped circles) of the event 622 (the black
circle). The lines establish a partial order on the events,
where the ancestors come before the black event, and the
descendants come after the black event. The partial order
does not indicate whether the white events are before or after
the black event, so a total order 1s used to decide their
sequence. For another example, FIG. 35 illustrates an
example hashDAG illustrating one particular event (solid
circle) and the first time each member receives an indication
of that event (striped circles). When Carol syncs with Dave
to create and/or define event 624, Dave does not send to
Carol ancestor events of event 622 since Carol 1s already
aware of and has received such events. Instead, Dave sends
to Carol the events Carol has yet to recerve and/or store in
Carol’s distributed database instance. In some embodiments,
Dave can i1dentify what events to send to Carol based on
what Dave’s hashDAG reveals about what events Carol has
previously received. Event 622 1s an ancestor of event 626.
Therefore, at the time of event 626, Dave has already
received event 622. FIG. 4 shows that Dave received event
622 from Ed who received event 622 from Bob who
received event 622 from Carol. Furthermore, at the time of
event 624, event 622 1s the last event that Dave has received
that was created and/or defined by Carol. Therefore, Dave
can send Carol the events that Dave has stored other than
event 622 and its ancestors. Additionally, upon receiving
event 626 from Dave, Carol can reconstruct the hashDAG
based on the pointers in the events stored 1n Carol’s distrib-
uted database instance. In other embodiments, Dave can
identify what events to send to Carol based on Carol sending
event 622 to Dave (not shown 1n FIG. 4) and Dave 1denti-
tying using event 622 (and the references therein) to identity
the events Carol has already received.

Example System 5: The system from Example System 1
where both members send events to the other 1n an order
such that an event 1s not sent until after the recipient has
received and/or stored the ancestors of that event. Accord-
ingly, the sender sends events from oldest to newest, such
that the recipient can check the two hashes on each event as
the event 1s recerved, by comparing the two hashes to the
two ancestor events that were already received. The sender
can 1dentily what events to send to the receiver based on the

US 10,572,455 B2

23

current state of the sender’s hashDAG (e.g., a database state
variable defined by the sender) and what that hashDAG
indicates the recerver has already received. Referring to FIG.
3, for example, when Bob 1s syncing with Carol to define
event 602, Carol can 1dentily that event 619 1s the last event
created and/or defined by Bob that Carol has received.
Therefore, Carol can determine that Bob knows of that
event, and 1ts ancestors. Thus Carol can send Bob event 618
and event 616 first (i.e., the oldest events Bob has yet to
receive that Carol has recerved). Carol can then send Bob
event 612 and then event 606. This allows Bob to easily link
the events and reconstruct Bob’s hashDAG. Using Carol’s
hashDAG to identily what events Bob has yet to receive can
increase the efliciency of the sync and can reduce network
trailic since Bob does not request events from Carol.

In other embodiments, the most recent event can be sent
first. I the recerver determines (based on the hash of the two
previous events in the most recent event and/or pointers to
previous events in the most recent event) that they have not
yet recerved one of the two previous events, the receiver can
request the sender to send such events. This can occur until
the receiver has received and/or stored the ancestors of the
most recent event. Referring to FIG. 3, 1n such embodi-
ments, for example, when Bob receives event 606 from
Carol, Bob can identify the hash of event 612 and event 614
in event 606. Bob can determine that event 614 was previ-
ously received from Alice when creating and/or defining
event 604. Accordingly, Bob does not need to request event
614 from Carol. Bob can also determine that event 612 has
not yet been received. Bob can then request event 612 from
Carol. Bob can then, based on the hashes within event 612,
determine that Bob has not received events 616 or 618 and
can accordingly request these events from Carol. Based on
events 616 and 618, Bob will then be able to determine that
he has received the ancestors of event 606.

Example System 6: The system from Example System 35
with the additional constraint that when a member has a
choice between several events to send next, the event 1s
chosen to minimize the total number of bytes sent so far
created and/or defined by that member. For example, 1f Alice
has only two events left to send Bob, and one 1s 100 bytes
and was created and/or defined by Carol, and one 1s 10 bytes
and was created and/or defined by Dave, and so far in this
sync Alice has already sent 200 bytes of events by Carol and
210 by Dave, then Alice should send the Dave event {irst,
then subsequently send the Carol event. Because 210+
10<100+4200. This can be used to address attacks 1in which
a single member either sends out a single gigantic event, or
a flood of tiny events. In the case 1n which the traflic exceeds
a byte limit of most members (as discussed with respect to
Example System 7), the method of Example System 6 can
ensure that the attacker’s events are 1gnored rather than the
events of legitimate users. Similarly stated, attacks can be
reduced by sending the smaller events before bigger ones (to
defend against one giant event tying up a connection).
Moreover, 1f a member can’t send each of the events 1n a
single sync (e.g., because of network limitation, member
byte limaits, etc.), then that member can send a few events
from each member, rather than merely sending the events
defined and/or created by the attacker and none (of few)
events created and/or defined by other members.

Example System 7: The system from Example System 1
with an additional first step 1n which Bob sends Alice a
number indicating a maximum number of bytes he 1s willing,
to recerve during this sync, and Alice replies with her limat.
Alice then stops sending when the next event would exceed
this limit. Bob does the same. In such an embodiment, this

10

15

20

25

30

35

40

45

50

55

60

65

24

limits the number of bytes transferred. This may increase the
time to convergence, but will reduce the amount of network
traflic per sync.

Example System 8: The system from Example System 1,
in which the following steps added at the start of the syncing
Process:

Alice 1dentifies S, the set of events that she has received
and/or stored, skipping events that were created and/or
defined by Bob or that are ancestors of events created
and/or defined by Bob.

Alice 1dentifies the members that created and/or defined
each event 1n S, and sends Bob the list of the member’s
ID numbers. Alice also send a number of events that
were created and/or defined by each member that she
has already received and/or stored.

Bob replies with a list of how many events he has received
that were created and/or defined by the other members.

Alice then sends Bob only the events that he has yet to
receive. For example, 11 Alice indicates to Bob that she
has received 100 events created and/or defined by
Carol, and Bob replies that he has received 95 events
created and/or defined by Carol, then Alice will send
only the most recent 5 events created and/or defined by
Carol.

Example System 9: The system from Example System 1,
with an additional mechanism for identifying and/or han-
dling cheaters. Each event contains two hashes, one from the
last event created and/or defined by that member (the *“self
hash”™), and one from the last event created and/or defined by
another member (the “foreign hash™). If a member creates
and/or defines two diferent events with the same self hash,
then that member 1s a “cheater”. If Alice discovers Dave 1s
a cheater, by receiving two different events created and/or
defined by him with the same self hash, then she stores an
indicator that he 1s a cheater, and refrains from syncing with
him 1n the future. If she discovers he 1s a cheater and yet still
syncs with him again and creates and/or defines a new event
recording that fact, then Alice becomes a cheater, too, and
the other members who learn of Alice further syncing with
Dave stop syncing with Alice. In some embodiments, this
only aflects the syncs 1n one way. For example, when Alice
sends a list of 1dentifiers and the number of events she has
recerved for each member, she doesn’t send an ID or count
for the cheater, so Bob won’t reply with any corresponding
number. Alice then sends Bob the cheater’s events that she
has recerved and for which she hasn’t recerved an indication
that Bob has received such events. After that sync 1s finished,
Bob will also be able to determine that Dave 1s a cheater (1f
he hasn’t already 1dentified Dave as a cheater), and Bob will
also refuse to sync with the cheater.

Example System 10: The system in Example System 9,
with the addition that Alice starts a sync process by sending
Bob a list of cheaters she has 1dentified and of whose events
she 1s still storing, and Bob replies with any cheaters he has
identified 1n addition to the cheaters Alice 1dentified. Then
they continue as normal, but without giving counts for the
cheaters when syncing with each other.

Example System 11: The system 1in Example System 1,
with a process that repeatedly updates a current state (e.g.,
as captured by a database state variable defined by a member
of the system) based on transactions inside of any new
events that are received during syncing. This also can
include a second process that repeatedly rebuilds that state
(e.g., the order of events), whenever the sequence of events
changes, by going back to a copy of an earlier state, and
recalculating the present state by processing the events in the
new order. In some embodiments, the current state 1s a state,

US 10,572,455 B2

25

balance, condition, and/or the like associated with a result of
the transactions. Similarly stated, the state can include the
data structure and/or variables modified by the transactions.
For example, 11 the transactions are money transiers between
bank accounts, then the current state can be the current
balance of the accounts. For another example, i1 the trans-
actions are associated with a multiplayer game, the current
state can be the position, number of lives, 1tems obtained,
state of the game, and/or the like associated with the game.

Example System 12: The system 1n Example System 11,
made faster by the use of “fast clone™ arrayList to maintain
the state (e.g., bank account balances, game state, etc.). A
fast clone arrayList 1s a data structure that acts like an array
with one additional feature: 1t supports a “clone” operation
that appears to create and/or define a new object that 1s a
copy of the original. The close acts as 11 it were a true copy,
because changes to the clone do not affect the original. The
cloning operation, however, 1s faster than creating a true
copy, because creating a clone does not actually mvolve
copying and/or updating the entire contents of one arrayList
to another. Instead of having two clones and/or copies of the
original list, two small objects, each with a hash table and a
pointer to the original list, can be used. When a write 1s made
to the clone, the hash table remembers which element 1is
modified, and the new value. When a read 1s performed on
a location, the hash table 1s first checked, and if that element
was modified, the new value from the hash table 1s returned.
Otherwise, that element from the original arrayList 1s
returned. In this way, the two “clones” are initially just
pointers to the original arraylist. But as each 1s modified
repeatedly, 1t grows to have a large hash table storing
differences between 1tself and the original list. Clones can
themselves be cloned, causing the data structure to expand
to a tree of objects, each with 1ts own hash table and pointer
to 1ts parent. A read therefore causes a walk up the tree until
a vertex 1s found that has the requested data, or the root 1s
reached. IT vertex becomes too large or complex, then 1t can
be replaced with a true copy of the parent, the changes in the
hash table can be made to the copy, and the hash table
discarded. In addition, 1f a clone 1s no longer needed, then
during garbage collection 1t can be removed from the tree,
and the tree can be collapsed.

Example System 13: The system in Example System 11,
made faster by the use of a “fast clone” hash table to
maintain the state (e.g., bank account balances, game state,
etc.). This 1s the same as System 12, except the root of the
tree 1s a hash table rather than an arraylist.

Example System 14: The system 1n Example System 11,
made faster by the use of a “fast clone” relational database
to maintain the state (e.g., bank account balances, game
state, etc.). This 1s an object that acts as a wrapper around an
existing Relational Database Management System (RD-
BMS). Each apparent “clone™ 1s actually an object with an
ID number and a pointer to an object containing the data-
base. When the user’s code tries to perform a Structure
Query Language (SQL) query on the database, that query 1s
first modified, then sent to the real database. The real
database 1s 1dentical to the database as seen by the client
code, except that each table has one additional field for the
clone ID. For example, suppose there 1s an original database
with clone ID 1, and then two clones of the database are

made, with IDs 2 and 3. F

Each row 1n each table will have a
1, 2, or 3 1n the clone ID field. When a query comes from the
user code mto clone 2, the query i1s modified so that the
query will only read from rows that have a 2 or 1 1n that field.
Similarly, reads to 3 look for rows with a 3 or 1 ID. It the
Structured Query Language (SQL) command goes to clone

5

10

15

20

25

30

35

40

45

50

55

60

65

26

2 and says to delete a row, and that row has a 1, then the
command should just change the 1 to a 3, which marks the
row as no longer being shared by clones 2 and 3, and now
just being visible to 3. If there are several clones 1n opera-
tion, then several copies of the row can be 1nserted, and each
can be changed to the ID of a different clone, so that the new
rows are visible to the clones except for the clone that just

“deleted” the row. Similarly, if a row 1s added to clone 2,
then the row 1s added to the table with an ID of 2. A
modification of a row 1s equivalent to a deletion then an
isertion. As before, if several clones are garbage collected,
then the tree can be simplified. The structure of that tree wall
be stored 1n an additional table that 1s not accessible to the
clones, but 1s purely used internally.

Example System 13: The system 1in Example System 11,
made faster by the use of a “fast clone” file system to
maintain the state. This 1s an object that acts as a wrapper
around a file system. The file system 1s built on top of the
existing file system, using a fast clone relational database to
manage the different versions of the file system. The under-
lying file system stores a large number of files, either 1n one
directory, or divided up according to filename (to keep
directories small). The directory tree can be stored in the
database, and not provided to the host file system. When a
file or directory 1s cloned, the “clone” 1s just an object with
an 1D number, and the database 1s modified to reflect that
this clone now exists. I a fast clone file system 1s cloned, 1t
appears to the user as 1f an entire, new hard drive has been
created and/or defined, initialized with a copy of the existing
hard drive. Changes to one copy can have no effect on the
other copies. In reality, there 1s just one copy of each file or
directory, and when a file 1s modified through one clone the
COpying occurs.

Example System 16: The system 1n Example System 15
in which a separate file 1s created and/or defined on the host
operating system for each N-byte portion of a file in the fast
clone file system. N can be some suitable size, such as for
example 4096 or 1024. In this way, if one byte 1s changed
in a large file, only one chunk of the large file 1s copied and
modified. This also increases efliciency when storing many
files on the drive that differ 1n only a few bytes.

Example System 17: The system in Example System 11
where each member includes in some or all of the events
they create and/or define a hash of the state at some previous
time, along with the number of events that occurred up to
that point, indicating that the member recognizes and/or
identifies that there 1s now a consensus on the order of
cvents. After a member has collected signed events contain-
ing such a hash from a majority of the users for a given state,
the member can then store that as proof of the consensus
state at that point, and delete from memory the events and
transactions before that point.

Example System 18: The system 1n Example System 1
where operations that calculate a median or a majority 1s
replaced with a weighted median or weighted majority,
where members are weighted by their “stake”. The stake 1s
a number that indicates how much that member’s vote
counts. The stake could be holdings 1n a crypto currency, or
just an arbitrary number assigned when the member 1s first
invited to join, and then divided among new members that
the member 1nvites to join. Old events can be discarded
when enough members have agreed to the consensus state so
that their total stake 1s a majority of the stake 1n existence.
It the total order 1s calculated using a median of ranks
contributed by the members, then the result 1s a number
where half the members have a higher rank and half have a
lower. On the other hand, if the total order 1s calculated using

US 10,572,455 B2

27

the weighted median, then the result 1s a number where
about half of the total stake 1s associated with ranks lower
than that, and half above. Weighted voting and medians can
be useful 1 preventing a Sybil attack, where one member
invites a huge number of “sock puppet” users to join, each
of whom are simply pseudonyms controlled by the mnviting
member. If the mviting member 1s forced to divide their
stake with the invitees, then the sock puppets will not be
usetul to the attacker 1n attempts to control the consensus
results. Accordingly, proof of stake may be useful 1n some
circumstances.

Example System 19: The system in Example System 1 in
which instead of a single, distributed database, there are
multiple databases 1n a hierarchy. For example, there might
be a single database that the users are members of, and then
several smaller databases, or “chunks”, each of which has a
subset of the members. When events happen in a chunk, they
are synced among the members of that chunk and not among
members outside that chunk. Then, from time to time, after
a consensus order has been decided within the chunk, the
resulting state (or events with their consensus total order)
can be shared with the entire membership of the large
database.

Example System 20: The system 1n Example System 11,
with the ability to have an event that updates the software for
updating the state (e.g., as captured by a database state
variable defined by a member of the system). For example,
events X and Y can contain transactions that modify the
state, according to software code that reads the transactions
within those events, and then updates the state appropnately.
Then, event Z can contain a notice that a new version of the
soltware 1s now available. IT a total order says the events
happen 1n the order X, Z, Y, then the state can be updated by
processing the transactions in X with the old software, then
the transactions in Y with the new software. But if the
consensus order was X, Y, 7Z, then both X and Y can be
updated with the old software, which might give a diflerent
final state. Therefore, in such embodiments, the notice to
upgrade the code can occur within an event, so that the
community can achieve consensus on when to switch from
the old version to the new version. This ensures that the
members will maintain synchronized states. It also ensures
that the system can remain running, even during upgrades,
with no need to reboot or restart the process.

The systems described above are expected to create
and/or achieve an eflicient convergence mechanism for
distributed consensus, with eventual consensus. Several
theorems can be proved about this, as shown 1n the follow-
ng.

Example Theorem 1: If event x precedes event vy 1n the
partial order, then 1n a given member’s knowledge of the
other members at a given time, each of the other members
will have either received an 1ndication of x before vy, or will
not yet have received an indication of v.

Proof: If event X precedes event vy 1n the partial order, then
X 1s an ancestor ol y. When a member receives an indication
of v for the first time, that member has either already
received an indication of X earlier (in which case they heard
of x before vy), or 1t will be the case that the sync provides
that member with both x and y (1n which case they will hear
of x before y during that sync, because the events received
during a single sync are considered to have been recerved 1n
an order consistent with ancestry relationships as described
with respect to Example System 5). QED

Example Theorem 2: For any given hashDAG, if x
precedes vy 1n the partial order, then x will precede v 1n the
total order calculated for that hashDAG.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

Prooft: IT x precedes y 1n the partial order, then by theorem
1:

for all 1, rank(1,x)<rank(1,y)

where rank(1,x) 1s the rank assigned by member 1 to event
X, which 1s 1 1f x 1s the first event received by member 1, 2
if 1t 1s second, and so on. Let med(x) be the median of the
rank(1,x) over all 1, and similarly for med(y).

For a given k, choose an 11 and 12 such that rank(i1,x) 1s
the kth-smallest x rank, and rank(i2,y) 1s the kth-smallest y
rank. Then:

rank(11,x)<rank(12,y)

This 1s because rank(12,y) 1s greater than or equal to k of
the v ranks, each of which 1s strictly greater than the
corresponding x rank. Therefore, rank(i2,y) 1s strictly
greater than at least k of the x ranks, and so 1s strictly greater
than the kth-smallest x rank. This argument holds for any k.

Let n be the number of members (which 1s the number of
1 values). Then n must be either odd or even. If n 1s odd, then
let k=(n+1)/2, and the kth-smallest rank will be the median.
Therefore med(x)<med(y). If n 1s even, then when k=n/2, the
kth-smallest x rank will be strictly less than the kth-smallest
y rank, and also the (k+1)th-smallest x rank will be strictly
less than the (k+1)th-smallest v rank. So the average of the
two X ranks will be less than the average of the two y ranks.
Therefore, med(x)<med(y). So in both cases, the median of
X ranks 1s strictly less than the median of y ranks. So if the
total order 1s defined by sorting the actions by median rank,
then x will precede y 1n the total order. QED

Example Theorem 3: If a “gossip period” 1s the amount of
time for existing events to propagate through syncing to all
the members, then:

alter 1 gossip period: all members have received the

events

alter 2 gossip periods: all members agree on the order of

those events

alter 3 gossip periods: all members know that agreement

has been reached

after 4 gossip periods: all members obtain digital signa-

tures from all other members, endorsing this consensus
order.

Proof: Let SO be the set of the events that have been
created and/or defined by a given time TO0. If every member
will eventually sync with every other member infinitely
often, then with probability 1 there will eventually be a time
T1 at which the events 1n SO have spread to every member,
so that every member 1s aware of all of the events. That 1s
the end of the first gossip period. Let S1 be the set of events
that exist at time T'1 and that didn’t yet exist at TO. There will
then with probability 1 eventually be a time T2 at which
every member has received every event in set S1, which 1s
those that existed at time T1. That 1s the end of the second
gossip period. Similarly, T3 1s when all events 1n S2, those
existing by T2 but not before T1, have spread to all mem-
bers. Note that each gossip period eventually ends with
probability 1. On average, each will last as long as it takes
to perform log 2(n) syncs, i there are n members.

By time T1, every member will have received every event
in SO.

By time T2, a given member Alice will have received a
record of each of the other members recerving every event
in SO. Alice can therefore calculate the rank for every action
in SO for every member (which is the order 1in which that
member recerved that action), and then sort the events by the
median of the ranks. The resulting total order does not
change, for the events 1n SO. That 1s because the resulting
order 1s a function of the order 1n which each member first
received an indication of each of those events, which does

US 10,572,455 B2

29

not change. It 1s possible, that Alice’s calculated order will
have some events from S1 interspersed among the SO events.
Those S1 events may still change where they fall within the
sequence of SO events. But the relative order of events 1n SO
will not change.

By time T3, Alice will have learned a total order on the
union of SO and S1, and the relative order of the events 1n
that union will not change. Furthermore, she can find within
this sequence the earliest event from S1, and can conclude
that the sequence of the events prior to S1 will not change,
not even by the insertion of new events outside of SO.
Therefore, by time T3, Alice can determine that consensus
has been achieved for the order of the events in history prior
to the first S1 event. She can digitally sign a hash of the state
(c.g., as captured by a database state variable defined by
Alice) resulting from these events occurring in this order,
and send out the signature as part of the next event she
creates and/or defines.

By time T4, Alice will have received similar signatures
from the other members. At that point she can simply keep
that list of signatures along with the state they attest to, and
she can discard the events she has stored prior to the first S1
event. QED

The systems described herein describe a distributed data-
base that achieves consensus quickly and securely. This can
be a useful building block for many applications. For
example, 11 the transactions describe a transier of crypto
currency irom one crypto currency wallet to another, and 1f
the state 1s simply a statement of the current amount 1n each
wallet, then this system will constitute a crypto currency
system that avoids the costly proof-of-work in existing
systems. The automatic rule enforcement allows this to add
features that are not common in current crypto currencies.
For example, lost coins can be recovered, to avoid detlation,
by enforcing a rule that if a wallet neither sends nor receives
crypto currency for a certain period of time, then that wallet
1s deleted, and 1ts value 1s distributed to the other, existing
wallets, proportional to the amount they currently contain. In
that way, the money supply would not grow or shrink, even
if the private key for a wallet 1s lost.

Another example 1s a distributed game, which acts like a
Massively Multiplayer Online (MMO) game being played
on a server, yet achieves that without using a central server.
The consensus can be achieved without any central server
being 1n control.

Another example 1s a system for social media that 1s built
on top of such a database. Because the transactions are
digitally signed, and the members receive information about
the other members, this provides security and convenience
advantages over current systems. For example, an email
system with strong anti-spam policies can be implemented,
because emails could not have forged return addresses. Such
a system could also become a unified social system, com-
bining 1n a single, distributed database the functions cur-
rently done by email, tweets, texts, forums, wikis, and/or
other social media.

Other applications can include more sophisticated cryp-
tographic functions, such as group digital signatures, in
which the group as a whole cooperates to sign a contract or
document. This, and other forms of multiparty computation,
can be usefully implemented using such a distributed con-
Sensus system.

Another example 1s a public ledger system. Anyone can
pay to store some information in the system, paying a small
amount of crypto currency (or real-world currency) per byte
per year to store information 1n the system. These funds can
then be automatically distributed to members who store that

10

15

20

25

30

35

40

45

50

55

60

65

30

data, and to members who repeatedly sync to work to
achieve consensus. It can automatically transfer to members
a small amount of the crypto currency for each time that they
SYNC.

These examples show that the distributed consensus data-
base 1s useful as a component of many applications. Because
the database does not use a costly proof-of-work, possibly
using a cheaper proof-oi-stake instead, the database can run
with a full node runnming on smaller computers or even
mobile and embedded devices.

While described above as an event containing a hash of
two prior events (one self hash and one foreign hash), in
other embodiments, a member can sync with two other
members to create and/or define an event containing hashes
of three prior events (one self hash and two foreign hashes).
In still other embodiments, any number of event hashes of
prior events from any number of members can be included
within an event. In some embodiments, different events can
include different numbers of hashes of prior events. For
example, a first event can include two event hashes and a
second event can include three event hashes.

While events are described above as including hashes (or
cryptographic hash values) of prior events, 1n other embodi-
ments, an event can be created and/or defined to include a
pointer, an identifier, and/or any other suitable reference to
the prior events. For example, an event can be created and/or
defined to include a serial number associated with and used
to 1dentily a prior event, thus linking the events. In some
embodiments, such a serial number can include, {for
example, an identifier (e.g., media access control (MAC)
address, Internet Protocol (IP) address, an assigned address,
and/or the like) associated with the member that created
and/or defined the event and an order of the event defined by
that member. For example, a member that has an i1dentifier
of 10 and the event is the 157 event created and/or defined
by that member can assign an identifier of 1015 to that event.
In other embodiments, any other suitable format can be used
to assign 1dentifiers for events.

In other embodiments, events can contain full crypto-
graphic hashes, but only portions of those hashes are trans-
mitted during syncing. For example, 11 Alice sends Bob an
event containing a hash H, and I 1s the first 3 bytes of H, and
Alice determines that of the events and hashes she has
stored, H 1s the only hash starting with I, then she can send
I instead of H during the sync. If Bob then determines that
he has another hash starting with J, he can then reply to Alice
to request the full H. In that way, hashes can be compressed
during transmission.

While the example systems shown and described above
are described with reference to other systems, in other
embodiments any combination of the example systems and
their associated functionalities can be implemented to create
and/or define a distributed database. For example, Example
System 1, Example System 2, and Example System 3 can be
combined to create and/or define a distributed database. For
another example, 1n some embodiments, Example System
10 can be implemented with Example System 1 but without
Example System 9. For vyet another example, Example
System 7 can be combined and implemented with Example
System 6. In still other embodiments, any other suitable
combinations of the example systems can be implemented.

While described above as exchanging events to obtain
convergence, 1n other embodiments, the distributed database
instances can exchange values and/or vectors of values to
obtain convergence as described with respect to FIGS. 3-8.
Specifically, for example, FIG. 8 1llustrates a communica-
tion flow between a first compute device 400 from a dis-

US 10,572,455 B2

31

tributed database system (e.g., distributed database system
100) and a second compute device 500 from the distributed
database system (e.g., distributed database system 100),
according to an embodiment. In some embodiments, com-
pute devices 400, 500 can be structurally and/or functionally
similar to compute device 200 shown 1n FIG. 2. In some
embodiments, compute device 400 and compute device 500
communicate with each other in a manner similar to how
compute devices 110, 120, 130, 140 communicate with each
other within the distributed database system 100, shown and
described with respect to FIG. 1.

Similar to compute device 200, described with respect to
FIG. 2, compute devices 400, 500 can each initially define
a vector of values for a parameter, update the vector of
values, select a value for the parameter based on the defined
and/or updated vector of values for the parameter, and store
(1) the defined and/or updated vector of values for the
parameter and/or (2) the selected value for the parameter
based on the defined and/or updated vector of values for the
parameter. Each of the compute devices 400, 500 can
initially define a vector of values for a parameter any number
of ways. For example, each of compute devices 400, 500 can
initially define a vector of values for a parameter by setting
cach value from the vector of values to equal the value
iitially stored in distributed database instances 403, 503,
respectively. For another example, each of compute devices
400, 500 can initially define a vector of values for a
parameter by setting each value from the vector of values to
equal a random value. How the vector of values for a
parameter 1s to be initially defined can be selected, for
example, by an administrator of a distributed database
system to which the compute devices 400, 500 belong, or
individually or collectively by the users of the compute
devices (e.g., the compute devices 400, 500) of the distrib-
uted database system.

The compute devices 400, 300 can also each store the
vector of values for the parameter and/or the selected value
tor the parameter 1n distributed database instances 403, 503,
respectively. Each of the distributed database instances 403,
503 can be implemented in a memory (not shown 1n FIG. 8)
similar to memory 220, shown 1n FIG. 2.

In step 1, compute device 400 requests from compute
device 500 a value for a parameter stored in distributed
database instance 503 of compute device 500 (e.g., a value
stored 1n a specific field of the distributed database instance
503). In some embodiments, compute device 500 can be
chosen by compute device 400 from a set of compute
devices belonging to a distributed database system. The
compute device 500 can be chosen randomly, chosen based
on a relationship with the compute device 400, based on
proximity to the compute device 400, chosen based on an
ordered list associated with the compute device 400, and/or
the like. In some embodiments, because the compute device
500 can be chosen by the compute device 400 from the set
of compute devices belonging to the distributed database
system, the compute device 400 can select the compute
device 500 multiple times 1n a row or may not select the
compute device 500 for awhile. In other embodiments, an
indication of the previously selected compute devices can be
stored at the compute device 400. In such embodiments, the
compute device 400 can wait a predetermined number of
selections before being able to select again the compute
device 500. As explaimned above, the distributed database
instance 503 can be implemented 1n a memory of compute
device 500.

In some embodiments, the request from compute device
400 can be a signal sent by a communication module of

10

15

20

25

30

35

40

45

50

55

60

65

32

compute device 400 (not shown 1n FIG. 8). This signal can
be carried by a network, such as network 1035 (shown 1 FIG.
1), and received by a communication module of compute
device 500. In some embodiments, each of the communi-
cation modules of compute devices 400, 500 can be 1mple-
mented within a processor or memory. For example, the
communication modules of compute devices 400, 500 can
be similar to communication module 212 shown in FIG. 2.

After recerving, from compute device 400, the request for
the value of the parameter stored in distributed database
instance 503, the compute device 5300 sends the value of the
parameter stored in distributed database instance 503 to
compute device 400 i step 2. In some embodiments,
compute device 500 can retrieve the value of the parameter
from memory, and send the value as a signal through a
communication module of compute device 500 (not shown
in FIG. 8). In some instance 1f the distributed database
instance 503 does not already include a value for the
parameter (e.g., the transaction has not yet been defined in
distributed database nstance 503), the distributed database
instance 503 can request a value for the parameter from the
compute device 403 (if not already provided 1n step 1) and
store that value for the parameter 1n the distributed database
instance 303. In some embodiments, the compute device 400
will then use this value as the value for the parameter in
distributed database instance 503.

In step 3, compute device 400 sends to compute device
500 a value for a parameter stored in distributed database
instance 403. In other embodiments, the value for the
parameter stored in distributed database instance 403 (step
1) and the request for the value for the same parameter
stored 1n distributed database 1nstance 503 (step 3) can be
sent as a single signal. In other embodiments, the value for
the parameter stored 1n distributed database instance 403 can
be sent 1n a signal different from the signal for the request
for the value for the parameter stored 1n distributed database
instance 503. In embodiments where the value for the
parameter stored in distributed database mstance 403 1s sent
in a signal different from signal for the request for the value
for the parameter stored 1n distributed database instance 503,
the value for the parameter stored in distributed database
instance 403, the two signals can be sent 1n any order. In
other words, either signal can be the sent before the other.

After the compute device 400 receives the value of the
parameter sent from compute device 500 and/or the compute
device 500 recerves the value for the parameter sent from the
compute device 400, 1n some embodiments, the compute
device 400 and/or the compute device 300 can update the
vector of values stored in distributed database instance 403
and/or the vector of values stored in distributed database
instance 503, respectively. For example, compute devices
400, 500 can update the vector of values stored 1n distributed
database instances 403, 503 to include the value of the
parameter received by compute devices 400, 500, respec-
tively. Compute devices 400, 500 can also update the value
ol the parameter stored 1n distributed database instance 403
and/or the value of the parameter stored in distributed
database instance 503, respectively, based on the updated
vector of values stored 1n distributed database 1nstance 403
and/or the updated vector of values stored in distributed
database instance 503, respectively.

Although the steps are labeled 1, 2, and 3 in FIG. 8 and
in the discussion above, 1t should be understood steps 1, 2,
and 3 can be performed 1n any order. For example, step 3 can
be performed before steps 1 and 2. Furthermore, communi-
cation between compute device 400 and 500 1s not limited
to steps 1, 2, and 3 shown in FIG. 3, as described 1n detail

US 10,572,455 B2

33

herein. Moreover, after steps 1, 2 and 3 are complete, the
compute device 400 can select another compute device from
the set of compute devices within the distributed database
system with which to exchange values (similar to steps 1, 2
and 3).

In some embodiments, data communicated between com-
pute devices 400, 500 can nclude compressed data,
encrypted data, digital signatures, cryptographic checksums,
and/or the like. Furthermore, each of the compute devices
400, 500 can send data to the other compute device to
acknowledge receipt of data previously sent by the other
device. Each of the compute devices 400, 500 can also
ignore data that has been repeatedly sent by the other device.

Each of compute devices 400, 500 can initially define a
vector of values for a parameter, and store this vector of
values for a parameter 1n distributed database instances 403,
503, respectively. FIGS. 9a-9¢ illustrate examples of vectors
of values for a parameter. A vector can be any set of values
for a parameter (e.g., a one dimensional array of values for
a parameter, an array ol values each having multiple parts,
etc.). Three examples of vectors are provided 1n FIGS. 9a-9¢
for purposes of illustration. As shown, each of vectors 410,
420, 430 has five values for a particular parameter. It should,
however, be understood that a vector of values can have any
number of values. In some instances, the number of values
included 1n a vector of values can be set by user, situation,
randomly, eftc.

A parameter can be any data object capable of taking on
different values. For example, a parameter can be a binary
vote, 1n which the vote value can be either “YES” or “NO”
(or a binary “1” or “0”). As shown 1n FIG. 9a, the vector of
values 410 1s a vector having five binary votes, with values
411, 412, 413, 414, 415 being “YES,” “NQO,” “NO,” “YES,”
and “YES,” respectively. For another example, a parameter
can be a set of data elements. FIG. 95 shows an example
where the parameter 1s a set of alphabet letters. As shown,
the vector of values 420 has five sets of four alphabet letters,
with values 421, 422, 423, 424, 425 being {A, B, C, D}, {A,
B, C, E}, {A, B, C, F}, {A, B, F, G}, and {A, B, G, H},
respectively. For vet another example, a parameter can be a
ranked and/or ordered set of data elements. FIG. 9¢ shows
an example where the parameter 1s a ranked set of persons.
As shown, vector of values 430 has five ranked sets of six
persons, with values 431, 432, 433, 434, 435 bemg

(1. Alice, 2. Bob, 3. Carol, 4. Dave, 5. Ed, 6. Frank),

(1. Bob, 2. Alice, 3. Carol, 4. Dave, 5. Ed, 6. Frank),

(1. Bob, 2. Alice, 3. Carol, 4. Dave, 5. Frank, 6. Ed),

(1. Alice, 2. Bob, 3. Carol, 4. Ed, 5. Dave, 6. Frank), and

(1. Alice, 2. Bob 3. Ed, 4. Carol, 5. Dave, 6. Frank),
respectively.

After defining a vector of values for a parameter, each of
compute devices 400, 500 can select a value for the param-
cter based on the vector of values for the parameter. This
selection can be performed according to any method and/or
process (e.g., a rule or a set of rules). For example, the
selection can be performed according to “majority rules,”
where the value for the parameter 1s selected to be the value
that appears 1n more than 50% of the values included in the
vector. To illustrate, vector of values 410 (shown 1n FIG. 9a)
includes three “YES” values and two “NO” values. Under
“majority rules,” the value selected for the parameter based
on the vector of values would be “YES.,” because “YES”
appears 1n more than 50% of values 411, 412, 413, 414, 415
(of vector of values 410).

For another example, the selection can be performed
according to “majority appearance,” where the value for the
parameter 1s selected to be a set of data elements, each data

10

15

20

25

30

35

40

45

50

55

60

65

34

clement appearing in more than 50% of the values included
in the vector. To 1llustrate using FIG. 95, data elements “A.,”
“B,” and “C” appear 1n more than 50% of the of values 421,
422, 423, 424, 425 of vector of values 420. Under “majority
appearance,”’ the value selected for the parameter based on
the vector of values would be {A, B, C} because only these
data elements (1.e., “A,” “B,” and “C”) appear 1n three out
of the five values of vector of values 420.

For yet another example, the selection can be performed
according to “rank by median,” where the value for the
parameter 1s selected to be a ranked set of data elements
(e.g., distinct data values within a value of a vector of
values), the rank of each data element equal to the median
rank of that data element across all values included 1n the
vector. To 1llustrate, the median rank of each data element 1n
FIG. 9¢ 1s calculated below:

Alice: (1, 2, 2, 1, 1); median rank=1;

Bob: (2, 1, 1, 2, 2); median rank=2;

Carol: (3, 3, 3, 3, 4); median rank=3;

Dave: (4, 4, 4, 5, 5); median rank=4;

Ed: (5, 5, 6, 4, 3); median rank=>5;

Frank: (6, 6, 5, 6, 6); median rank=56.

Thus, under “rank by median,” the value for the ranked set
of data elements calculated based on the vector of values 430
would be (1. Alice, 2. Bob, 3. Carol, 4. Dave, 5. Ed, 6.
Frank). In some embodiments, if two or more data elements
have a same median (e.g., a tie), the order can be determined
by any suitable method (e.g., randomly, first indication of
rank, last indication of rank, alphabetically and/or numeri-
cally, etc.).

For an additional example, the selection can be performed
according to “Kemeny Young voting,” where the value for
the parameter 1s selected to be a ranked set of data elements,
the rank being calculated to minimize a cost value. For
example, Alice ranks before Bob 1n vectors of values 431,
434, 435, for a total of three out of the five vectors of values.
Bob ranks betore Alice 1n vectors of values 432 and 433, for
a total of two out of the five vectors of values. The cost value
for ranking Alice before Bob 1s 35 and the cost value for
ranking Bob before Alice 1s 5. Thus, the cost value for Alice
before Bob 1s lower, and Alice will be ranked before Bob
under “Kemeny Young voting.”

It should be understood that “majority rules,” “majority
appearance,” “rank by median,” and “Kemeny Young vot-
ing”” are discussed as examples of methods and/or processes
that can be used to select a value for the parameter based on
the vector of values for the parameter. Any other method
and/or process can also be used. For example, the value for
the parameter can be selected to be the value that appears in
more than x % of the values included in the vector, where x
% can be any percentage (1.e., not limited to 50% as used 1n
“majority rules™). The percentage (1.e., X %) can also vary
across selections performed at different times, for example,
in relation to a confidence value (discussed 1n detail herein).

In some embodiments, because a compute device can
randomly select other compute devices with which to
exchange values, a vector of values of a compute device may
at any one time include multiple values from another single
compute device. For example, 1f a vector size 1s five, a
compute device may have randomly selected another com-
pute device twice within the last five value exchange 1tera-
tions. Accordingly, the value stored in the other compute
device’s distributed database instance would be included
twice 1n the vector of five values for the requesting compute
device.

FIGS. 3 and 5 together 1illustrate, as an example, how a
vector of values can be updated as one compute device

2% &q

US 10,572,455 B2

35

communicates with another compute device. For example,
compute device 400 can imitially define a vector of values
510. In some embodiments, the vector of values 510 can be
defined based on a value for a parameter stored 1n distributed
database 1nstance 403 at compute device 400. For example,
when the vector of values 510 1s first defined, each value
from the vector of values 510 (i.e., each of values 511, 512,
513, 514, 515) can be set to equal the value for the parameter
stored 1n distributed database instance 403. To illustrate, 1f
the value for the parameter stored in distributed database
instance 403, at the time the vector of values 510 1s defined,
1s “YES,” then each value from the vector of values 510 (1.¢.,
cach of values 511, 512, 513, 514, 515) would be set to
“YES,” as shown 1 FIG. 10a. When compute device 400
receives a value for the parameter stored in an mstance of the
distributed database of another compute device (e.g., dis-
tributed database instance 504 of compute device 500),
compute device 400 can update the vector of values 510 to
include the value for the parameter stored in distributed
database instance 504. In some 1instances, the vector of
values 510 can be updated according to First In, First Out
(FIFO). For example, if the compute device 400 receives
value 516 (“YES”), the compute device 400 can add value
516 to the vector of values 510 and delete value 511 from the
vector of values 510, to define vector of values 520, as
shown 1 FIG. 1056. For example, 1f at a later time compute
device receives values 517, 518, compute device 400 can
add values 517, 518 to the vector of values 510 and delete
value 512, 513, respectively, from the vector of values 510,
to define vector of values 530, 540, respectively. In other
instances, the vector of values 510 can be updated according
to schemes other than First In, First Out, such as Last In,
First Out (LIFO).

After the compute device 400 updates the vector of values
510 to define vectors of values 520, 530, and/or 540, the

compute device 400 can select a value for the parameter
based on the vector of values 520, 530, and/or 540. This
selection can be performed according to any method and/or
process (e.g., arule or a set of rules), as discussed above with
respect to FIGS. 9a-9c.

In some 1nstances, compute devices 400, 500 can belong
to a distributed database system that stores information
related to transactions involving financial mstruments. For
example, each of compute devices 400, S00 can store a
binary vote (an example of a “value’) on whether a particu-
lar stock 1s available for purchase (an example of a “param-
cter”’). For example, the distributed database instance 403 of
compute device 400 can store a value of “YES,” indicating
that the particular stock 1s indeed available for purchase. The
distributed database instance 503 of compute device 300, on
the other hand, can store a value of “NO,” indicating that the
particular stock 1s not available for purchase. In some
instances, the compute device 400 can imitially define a
vector ol binary votes based on the binary vote stored in the
distributed database instance 403. For example, the compute
device 400 can set each binary vote within the vector of
binary votes to equal the binary vote stored 1n the distributed
database 1nstance 403. In this case, the compute device 400
can define a vector of binary votes similar to vector of values
510. At some later time, the compute device 400 can
communicate with compute device 500, requesting compute
device 500 to send 1ts binary vote on whether the particular
stock 1s available for purchase. Once compute device 400
receives the binary vote of compute device 500 (in this
example, “NO,” indicating that the particular stock 1s not
available for purchase), the compute device 400 can update
its vector of binary votes. For example, the updated vector

10

15

20

25

30

35

40

45

50

55

60

65

36

of binary votes can be similar to vector of values 520. This
can occur indefimitely, until a confidence value meets a
predetermined criterion (described in further detail herein),
periodically, and/or the like.

FIG. 11 shows a flow chart 10 illustrating the steps
performed by the compute device 110 within the distributed
database system 100, according to an embodiment. In step
11, the compute device 110 defines a vector of values for a
parameter based on a value of the parameter stored in the
distributed database instance 113. In some embodiments, the
compute device 110 can define a vector of values for the
parameter based on a value for a parameter stored 1n the
distributed database instance 113. In step 12, the compute
device 110 chooses another compute dewce within the
distributed database system 110 and requests from the
chosen compute device a value for the parameter stored 1n
the distributed database instance of the chosen compute
device. For example, the compute device 110 can randomly
choose the compute device 120 from among compute
devices 120, 130, 140, and request from the compute device
120 a value for the parameter stored in the distributed
database instance 123. In step 13, compute device 110 (1)
receives, from the chosen compute device (e.g., the compute
device 120), the value for the parameter stored in the
distributed database instance of the chosen compute device
(e.g., the distributed database instance 123) and (2) sends, to
the chosen compute device (e.g., the compute device 120),
a value for the parameter stored in the distributed database
instance 113. In step 14, the compute device 110 stores the
value for the parameter received from the chosen compute
device (e.g., the compute device 120) 1n the vector of values
for the parameter. In step 15, the compute device 110 selects
a value for the parameter based on the vector of values for
the parameter. This selection can be performed according to
any method and/or process (e.g., a rule or a set of rules), as
discussed above with respect to FIGS. 9a-9¢. In some
embodiments, the compute device 110 can repeat the selec-
tion ol a value for the parameter at different times. The
compute device 110 can also repeatedly cycle through steps
12 through 14 between each selection of a value for the
parameter.

In some 1nstances, the distributed database system 100
can store mformation related to transactions within a Mas-
sively Multiplayer Game (MMG). For example, each com-
pute device belonging to the distributed database system 100
can store a ranked set of players (an example of a “value™)
on the order 1n which a particular item was possessed (an
example of a “parameter”). For example, the distributed
database instance 114 of the compute device 110 can store
a ranked set of players (1. Alice, 2. Bob, 3. Carol, 4. Dave,
5. Ed, 6. Fran{) similar to value 431, indicating that the
possession of the particular item began Wlth Alice, was then
passed to Bob, was then passed to Carol, was then passed to
Dave, was then passed to Ed, and was finally passed to
Frank. The distributed database instance 124 of the compute
device 120 can store a value of a ranked set of players
similar to value 432: (1. Bob, 2. Alice, 3. Carol, 4. Dave, 3.
Ed, 6. Frank); the distributed database instance 134 of the
compute device 130 can store a value of a ranked set of
players similar to value 433: (1. Bob, 2. Alice, 3. Carol, 4.
Dave, 5. Frank, 6. Ed); the distributed database instance 144
of the compute device 140 can store a value of a ranked set
of players similar to value 434: (1. Alice, 2. Bob, 3. Carol,
4. Ed, 5. Dave, 6. Frank); the distributed database instance
of a fifth compute device (not shown 1n FIG. 1) can store a
value of a ranked set of players similar to value 435: (1.

Alice, 2. Bob, 3. Ed, 4. Carol, 5. Dave, 6. Frank).

US 10,572,455 B2

37

After the compute device 110 defines a vector of ranked
set of players, the compute device can receive values of
ranked sets of players from the other compute devices of the

distributed database system 100. For example, the compute

device 110 can receive (1. Bob, 2. Alice, 3. Carol, 4. Dave,
5. Ed, 6. Frank) from the compute device 120; (1 Bob, 2.
Alice, 3. Carol, 4. Dave, 5. Frank, 6. Ed) from the compute
device 130; (1. Alice, 2. Bob, 3. Carol, 4. Ed, 5. Dave, 6.
Frank) from the compute dewce 140; and (1. Alice, 2. Bob,
3. Ed, 4. Carol, 5. Dave, 6. Frank) from the fifth compute
device (not shown in FIG. 1). As the compute device 110
receives values of ranked sets of players from the other
compute devices, the compute device 110 can update 1its
vector of ranked sets of players to include the values of
ranked sets of players received from the other compute
devices. For example, the vector of ranked sets of players
stored 1n distributed database instance 114 of the compute
device 110, after receiving the values of ranked sets listed
above, can be updated to be similar to vector of values 430.
After the vector of ranked sets of players has been updated
to be similar to vector of values 430, the compute device 110
can select a ranked set of players based on the vector of
ranked sets of players. For example, the selection can be
performed according to “rank by median,” as discussed
above with respect to FIGS. 9a-9c¢. Under “rank by median,”
the compute device 110 would select (1. Alice, 2. Bob, 3.
Carol, 4. Dave, 5. Ed, 6. Frank) based on the vector of
ranked sets of players similar to vector of values 430.

In some 1nstances, the compute device 110 does not
receive the whole value from another compute device. In
some 1nstances, the compute device 110 can receive an
identifier associated with portions of the whole value (also
referred to as the composite value), such as a cryptographic
hash value, rather than the portions themselves. To illustrate,
the compute device 110, 1n some 1nstances, does not receive
(1. Alice, 2. Bob, 3. Carol, 4. Ed, 5. Dave, 6. Frank), the
entire value 434, from the compute device 140, but recerves
only (4. Ed, 5. Dave, 6. Frank) from the compute device 140.
In other words, the compute device 110 does not receive
from the compute device 140 (1. Alice, 2. Bob, 3. Carol),
certain portions of the value 434. Instead, the compute
device 110 can receive from the compute device 140 a
cryptographic hash value associated with these portions of
the value 434, 1.e., (1. Alice, 2. Bob, 3. Carol).

A cryptographic hash value uniquely represents the por-
tions of the value that it 1s associated with. For example, a
cryptographic hash representing (1. Alice, 2. Bob, 3. Carol)
will be different from cryptographic hashes representing:

(1. Alice);

(2. Bob);

(3. Carol);

(1. Alice, 2. Bob);

(2. Bob, 3. Carol);

(1. Bob, 2. Alice, 3. Carol);

(1. Carol, 2. Bob, 3. Alice);

etc.

After the compute device 110 receives from the compute
device 140 a cryptographic hash value associated with
certain portions of the value 434, the compute device 110
can (1) generate a cryptographic hash value using the same
portions of the value 431 stored 1n the distributed database
instance 113 and (2) compare the generated cryptographic
hash value with the received cryptographic hash value.

For example, the compute device 110 can receive from the
compute device 140 a cryptographic hash value associated
with the certain portions of the value 434, indicated by
italics: (1. Alice, 2. Bob, 3. Carol, 4. Ed, 5. Dave, 6. Frank).

10

15

20

25

30

35

40

45

50

55

60

65

38

The compute device can then generate a cryptographic hash
value using the same portions of the value 431 (stored 1n the
distributed database instance 113), indicated by italics: (1.
Alice, 2. Bob, 3. Carol, 4. Dave, 5. Ed, 6. Frank). Because
the 1talicized portions of value 434 and the 1talicized por-
tions of value 431 are identical, the received cryptographic
hash value (associated with the 1talicized portions of value
434) will also be i1dentical to the generated cryptographic
hash value (associated with 1talicized portions of value 431).

By comparing the generated cryptographic hash value
with the received cryptographic hash value, the compute
device 110 can determine whether to request from the
compute device 140 the actual portions associated with the
received cryptographic hash value. If the generated crypto-
graphic hash value 1s 1dentical to the received cryptographic
hash value, the compute device 110 can determine that a
copy 1dentical to the actual portions associated with the
received cryptographic hash value 1s already stored in the
distributed database instance 113, and theretfore the actual
portions associated with the recerved cryptographic hash
value 1s not needed from the compute device 140. On the
other hand, if the generated cryptographic hash value 1s not
identical to the received cryptographic hash value, the
compute device 110 can request the actual portions associ-
ated with the received cryptographic hash value from the
compute device 140.

Although the cryptographic hash values discussed above
are associated with portions of single values, 1t should be
understood that a cryptographic hash value can be associated
with an entire single value and/or multiple values. For
example, 1n some embodiments, a compute device (e.g., the
compute device 140) can store a set of values 1n its distrib-
uted database instance (e.g., the distributed database
instance 144). In such embodiments, after a predetermined
time period since a value has been updated in the database
instance, after a confidence value (discussed with respect to
FIG. 13) for the value meets a predetermined criterion (e.g.,
reaches a predetermined threshold), after a specified amount
of time since the transaction originated and/or based on any
other suitable factors, that value can be included 1n a
cryptographic hash value with other values when data is
requested from and sent to another database instance. This
reduces the number of specific values that are sent between
database instances.

In some instances, for example, the set of values 1n the
database can include a first set of values, including trans-
actions between the year 2000 and the year 2010; a second
set of values, including transactions between the year 2010
and the year 2013; a third set of values, including transac-
tions between the year 2013 and the year 2014; and a fourth
set of values, including transactions between 2014 and the
present. Using this example, if the compute device 110
requests from the compute device 140 data stored in dis-
tributed database instance 144 of the compute device 140, in
some embodiments, the compute device 140 can send to the
compute device 110 (1) a first cryptographic hash value
associated with the first set of values, (2) a second crypto-
graphic hash value associated with the second set of values,
(3) a third cryptographic hash value associated with the third
set of values; and (4) each value from the fourth set of
values. Criteria for when a value 1s added to a cryptographic
hash can be set by an administrator, individual users, based
on a number of values already in the database instance,
and/or the like. Sending cryptographic hash values instead
of each individual value reduces the number of individual
values provided when exchanging values between database
instances.

US 10,572,455 B2

39

When a receiving compute device (e.g., compute device
400 1 step 2 of FIG. 8) receives a cryptographic hash value
(e.g., generated by compute device 500 based on values 1n
distributed database instance 303), that compute device
generates a cryptographic hash value using the same method
and/or process and the values 1n its database instance (e.g.,
distributed database instance 403) for the parameters (e.g.,
transactions during a specified time period) used to generate
the received cryptographic hash value. The receiving com-
pute device can then compare the received cryptographic
hash value with the generated cryptographic hash value. IT
the values do not match, the recerving compute device can
request the imndividual values used to generate the received
cryptographic hash from the sending compute device (e.g.,
compute device 500 1n FIG. 8) and compare the individual
values from the sending database instance (e.g., distributed
database instance 503) with the individual values for those
transactions in the received database 1nstance (e.g., distrib-
uted database instance 403).

For example, 11 the receiving compute device receives the
cryptographic hash value associated with the transactions
between the year 2000 and the year 2010, the receiving
compute device can generate a cryptographic hash using the
values for the transactions between the year 2000 and the
year 2010 stored in 1ts database instance. If the receirved
cryptographic hash value matches the locally-generated
cryptographic hash value, the receiving compute device can
assume that the values for the transactions between the year
2000 and the year 2010 are the same 1n both databases and
no additional information 1s requested. If, however, the
received cryptographic hash value does not match the
locally-generated cryptographic hash value, the receiving
compute device can request the individual values the send-
ing compute device used to generate the received crypto-
graphic hash value. The receiving compute device can then
identily the discrepancy and update a vector of values for
that individual value.

The cryptographic hash values can rely on any suitable
process and/or hash function to combine multiple values
and/or portions of a value into a single identifier. For
example, any suitable number of values (e.g., transactions
within a time period) can be used as inputs to a hash function
and a hash value can be generated based on the hash
function.

Although the above discussion uses cryptographic hash
values as the identifier associated with values and/or por-
tions of values, 1t should be understood that other identifiers
used to represent multiple values and/or portions of values
can be used. Examples of other i1dentifiers include digital
fingerprints, checksums, regular hash values, and/or the like.

FIG. 12 shows a flow chart (flow chart 20) illustrating
steps performed by the compute device 110 within the
distributed database system 100, according to an embodi-
ment. In the embodiment illustrated by FIG. 12, the vector
of values 1s reset based on a predefined probability. Similarly
stated, each value 1n the vector of values can be reset to a
value every so often and based on a probability. In step 21,
the compute device 110 selects a value for the parameter
based on the vector of values for the parameter, similar to
step 15 illustrated 1n FIG. 11 and discussed above. In step 22,
the compute device 110 receives values for the parameter
from other compute devices (e.g., compute devices 120,
130, 140) and sends a value for the parameter stored in the
distributed database instance 113 to the other compute
devices (e.g., compute devices 120, 130, 140). For example,
step 22 can include performing steps 12 and 13, illustrated
in FIG. 11 and discussed above, for each of the other

10

15

20

25

30

35

40

45

50

55

60

65

40

compute devices. In step 23, the compute device 110 stores
the values for the parameter received from the other com-
pute devices (e.g., compute devices 120, 130, 140) in the
vector of values for the parameter, similar to step 14
illustrated 1in FIG. 11 and discussed above. In step 24, the
compute device 110 determines whether to reset the vector
of values based on a predefined probability of resetting the
vector of values. In some instances, for example, there 1s a
10% probability that the compute device 110 will reset the
vector of values for the parameter after each time the
compute device 110 updates the vector of values for the
parameter stored in distributed database instance 114. In
such a scenario, the compute device 110, at step 24, would
determine whether or not to reset, based on the 10% prob-
ability. The determination can be performed, in some
instances, by processor 111 of the compute device 110.

If the compute device 110 determines to reset the vector
of values based on the predefined probability, the compute
device 110, at step 25, resets the vector of values. In some
embodiments, the compute device 110 can reset each value
in the vector of values for the parameter to equal the value
for the parameter stored 1n the distributed database 1nstance
113 at the time of reset. For example, 11, just prior to reset,
the vector of values 1s vector of values 430, and the value for
the parameter stored 1n the distributed database instance 113
1s (1. Alice, 2. Bob, 3. Carol, 4. Dave, 5. Ed, 6. Frank) (for
example, under “rank by median™), then each value 1n the
vector of values would be reset to equal (1. Alice, 2. Bob, 3.
Carol, 4. Dave, 5. Ed, 6. Frank). In other words, each of
values 431, 432, 433, 434, 435 of vector of values 430 would
be reset to equal value 431. Resetting each value in the
vector of values for the parameter to equal the value for the
parameter stored in the distributed database instance at the
time of reset, every so often and based on a probability, aids
a distributed database system (to which a compute device
belongs) 1 reaching consensus. Similarly stated, resetting
facilitates agreement on the value for a parameter among the
compute devices of a distributed database system.

For example, the distributed database instance 114 of the
compute device 110 can store a ranked set of players (1.
Alice, 2. Bob, 3. Carol, 4. Dave, 5. Ed, 6. Frank), similar to
value 431, indicating that the possession of the particular
item began with Alice, was then passed to Bob, was then
passed to Carol, was then passed to Dave, was then passed
to Ed, and was finally passed to Frank.

FIG. 13 shows a flow chart (flow chart 30) illustrating
steps performed by the compute device 110 within the
distributed database system 100, according to an embodi-
ment. In the embodiment 1llustrated by FIG. 13, selection for
a value of the parameter based on a vector of values for the
parameter occurs when a confidence value associated with
an 1nstance of the distributed database 1s zero. The confi-
dence value can 1ndicate the level of “consensus,” or agree-
ment, between the value of the parameter stored in the
compute device 110 and the values of the parameter stored
in the other compute devices (e.g., compute devices 120,
130, 140) of the distributed database system 100. In some
embodiments, as described 1n detail herein, the confidence
value 1s incremented (e.g., increased by one) each time a
value for the parameter received from another compute
device by the compute device 110 1s equal to the value for
the parameter stored in the compute device 110, and the
confidence value 1s decremented (i.e., decreased by one)
cach time a value for the parameter received from another
compute device by the compute device 110 does not equal
to the value for the parameter stored in the compute device
110, 1f the confidence value 1s above zero.

US 10,572,455 B2

41

In step 31, the compute device 110 receives a value for the
parameter from another compute device (e.g., compute
device 120) and sends a value for the parameter stored 1n
distributed database instance 113 to the other compute
device (e.g., compute device 120). For example, step 31 can
include performing steps 12 and 13, illustrated 1in FIG. 11
and discussed above. In step 32, the compute device 110
stores the value for the parameter received from the other
compute device (e.g., compute device 120) 1n the vector of
values for the parameter, similar to step 14 illustrated in FIG.
11 and discussed above. In step 33, the compute device 110
determines whether the value for the parameter received
from the other compute device (e.g., compute device 120) 1s
equal to the value for the parameter stored in distributed
database instance 113. If the value for the parameter
received from the other compute device (e.g., compute
device 120) 1s equal to the value for the parameter stored 1n
distributed database nstance 113, then the compute device
110, at step 34, increments a confidence value associated
with distributed database instance 113 by one, and the
process 1llustrated by flow chart 30 loops back to step 31. IT
the value for the parameter received from the other compute
device (e.g., compute device 120) 1s not equal to the value
tor the parameter stored 1n distributed database instance 113,
then the compute device 110, at step 335, decrements the
confidence wvalue associated with distributed database
instance 113 by one, 1f the confidence value 1s greater than
ZEro.

At step 36, the compute device 110 determines whether
confidence value associated with distributed database
instance 113 1s equal to zero. 11 the confidence value 1s equal
to zero, then the compute device, at step 37, selects a value
for the parameter based on the vector of values for the
parameter. This selection can be performed according to any
method and/or process (e.g., a rule or a set of rules), as
discussed above. 11 the confidence value 1s not equal to zero,
then the process illustrated by tlow chart 30 loops back to
step 31.

As discussed above, confidence values are associated with
distributed database instances. However, it should be under-
stood that a confidence value can also be associated with a
value of a vector stored 1n a distributed database instance
and/or the compute device storing the value of a vector (e.g.,
within its distributed database instance) instead of, or in
addition to, the distributed database instance.

The values related to the confidence values (e.g., thresh-
olds, increment values, and decrement values) used with
respect to FIG. 13 are for illustrative purposes only. It should
be understood that other values related to the confidence
values (e.g., thresholds, increment values, and decrement
values) can be used. For example, increases and/or decreases
to the confidence value, used 1n steps 34 and 33, respec-
tively, can be any value. For another example, the confi-
dence threshold of zero, used 1n steps 35 and 36, can also be
any value. Furthermore, the values related to the confidence
values (e.g., thresholds, increment values, and decrement
values) can change during the course of operation, 1.¢., as the
process 1illustrated by flow chart 30 loops.

In some embodiments, the confidence value can 1mpact
the communication tlow between a first compute device
from a distributed database system and a second compute
device from the distributed database system, described
above with respect to FIG. 8. For example, 11 the first
compute device (e.g., compute device 110) has a high
confldence value associated with its distributed database
instance (e.g., distributed database instance 114), then the
first compute device can request from the second compute

10

15

20

25

30

35

40

45

50

55

60

65

42

device a smaller portion of a value for a parameter (and a
cryptographic hash value associated with a larger portion of
the value for the parameter) than the first compute device
would otherwise request from the second compute device
(e.g., 1f the first compute device has a low confidence value
associated with 1ts distributed database instance). The high
confldence value can indicate that the value for the param-
cter stored 1n the first compute device 1s likely to be 1n
agreement with values for the parameter stored in other
compute devices from the distributed database system and as
such, a cryptographic hash value 1s used to verily the
agreement.

In some 1nstances, the confidence value of the first com-
pute device can increase to reach a threshold at which the
first compute device determines that 1t no longer should
request particular values, particular portions of values, and/
or cryptographic hash values associated with particular
values and/or particular portions of values from other com-
pute devices from the distributed database system. For
example, 1 a value’s confidence value meets a specific
criterion (e.g., reaches a threshold), the first compute device
can determine that the value has converged and not further
request to exchange this value with other devices. For
another example, the value can be added to a cryptographic
hash value based on its confidence value meeting a criterion.
In such instances, the cryptographic hash value for the set of
values can be sent instead of the individual value after the
confldence value meets the criterion, as discussed 1n detail
above. The exchange of fewer values, and/or smaller actual
portions (of values) with cryptographic hash values associ-
ated with the remaining portions (of values) can facilitate
cilicient communication among compute devices of a dis-
tributed database system.

In some instances, as the confidence value for specific
value of a parameter of a distributed database instance
increases, the compute device associated with that distrib-
uted database instance can request to exchange values for
that parameter with other compute devices less frequently.
Similarly, 1n some 1nstances, as the confidence value for a
specific value of a parameter of a distributed database
instance decreases, the compute device associated with that
distributed database 1nstance can request to exchange values
for that parameter with other compute devices more Ire-
quently. Thus, the confidence value can be used to decrease
a number of values exchanged between compute devices.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Where methods
described above 1ndicate certain events occurring in certain
order, the ordering of certain events may be modified.
Additionally, certain of the events may be performed con-
currently 1 a parallel process when possible, as well as
performed sequentially as described above.

Some embodiments described herein relate to a computer
storage product with a non-transitory computer-readable
medium (also can be referred to as a non-transitory proces-
sor-readable medium) having instructions or computer code
thereon for performing various computer-implemented
operations. The computer-readable medium (or processor-
readable medium) 1s non-transitory in the sense that 1t does
not include transitory propagating signals per se (e.g., a
propagating electromagnetic wave carrying information on a
transmission medium such as space or a cable). The media
and computer code (also can be referred to as code) may be
those designed and constructed for the specific purpose or
purposes. Examples of non-transitory computer-readable
media include, but are not limited to: magnetic storage

US 10,572,455 B2

43

media such as hard disks, floppy disks, and magnetic tape;
optical storage media such as Compact Disc/Digital Video
Discs (CD/DVDs), Compact Disc-Read Only Memories
(CD-ROMSs), and holographic devices; magneto-optical
storage media such as optical disks; carrier wave signal
processing modules; and hardware devices that are specially
configured to store and execute program code, such as

Application-Specific Integrated Circuits (ASICs), Program-
mable Logic Devices (PLDs), Read-Only Memory (ROM)

and Random-Access Memory (RAM) devices. Other
embodiments described herein relate to a computer program
product, which can include, for example, the instructions
and/or computer code discussed herein.

Examples of computer code include, but are not limited
to, micro-code or micro-instructions, machine instructions,
such as produced by a compiler, code used to produce a web
service, and files containing higher-level instructions that
are executed by a computer using an interpreter. For
example, embodiments may be implemented using impera-
tive programming languages (e.g., C, Fortran, etc.), func-
tional programming languages (Haskell, Erlang, etc.), logi-
cal programming languages (e.g., Prolog), object-oriented
programming languages (e.g., Java, C++, etc.) or other
suitable programming languages and/or development tools.
Additional examples of computer code include, but are not
limited to, control signals, encrypted code, and compressed
code.

While various embodiments have been described above,
it should be understood that they have been presented by
way ol example only, not limitation, and various changes in
form and details may be made. Any portion of the apparatus
and/or methods described herein may be combined 1n any
combination, except mutually exclusive combinations. The
embodiments described herein can include various combi-
nations and/or sub-combinations of the functions, compo-
nents and/or {features of the diflerent embodiments
described.

What 1s claimed 1s:

1. An apparatus, comprising:

a memory associated with an mstance of a distributed
database at a first compute device configured to be
included within a plurality of compute devices that
implements the distributed database via a network
operatively coupled to the plurality of compute devices;
and

a processor operatively coupled to the memory,

the processor configured to 1dentily, at a first time, a first
distributed database event (1) defined by the first com-
pute device and (2) linked to a first plurality of distrib-
uted database events,

the processor configured to recerve, at a second time after
the first time, a signal representing a second distributed
database event (1) defined by a second compute device
from the plurality of compute devices and (2) linked to
a second plurality of distributed database events,

the processor configured to 1dentity an order of distributed
database events within a third plurality of distributed
database events based at least 1n part on a value of a first
attribute for each distributed database event from the
third plurality of distributed database events, the value
ol the first attribute for each distributed database event
from the third plurality of distributed database events
being based on a relationship between that distributed
database event and a set of distributed database events
including descendants of that distributed database
event, each distributed database event from the set of
distributed database events being associated with a

10

15

20

25

30

35

40

45

50

55

60

65

44

second attribute that 1s common with the remaining
distributed database events from the set of distributed
database events, each distributed database event from
the third plurality of distributed database events being
from at least one of the first plurality of distributed
database events or the second plurality of distributed
database events, the third plurality of distributed data-
base events being mutually exclusive of the set of
distributed database events,

the processor configured to store 1n the memory the order

associated with the third plurality of distributed data-
base events.

2. The apparatus of claim 1, wherein the value of the first
attribute for each distributed database event from the third
plurality of distributed database events 1s based on a number
ol descendants of that distributed database event included 1n
the set of distributed database events compared to a number
of non-descendants of that distributed database event
included 1n the set of distributed database events.

3. The apparatus of claam 1, wherein each distributed
database event from the set of distributed database events 1s
defined by a unique compute device from the plurality of
compute devices.

4. The apparatus of claam 1, wherein each distributed
database event from the set of distributed database events 1s
defined by a unique compute device from the plurality of
compute devices,

the processor configured to 1dentify each distributed data-

base event from the set of distributed database events
based on each distributed database event from the set of
distributed database events being an initial instance the
compute device from the plurality of compute devices
that defined that distributed database event defined a
distributed database event having a particular value for
a third attribute, each distributed database event from
the set of distributed database events having the par-
ticular value for the third attribute.

5. The apparatus of claim 1, wherein the set of distributed
database events 1s a first set of distributed database events,
cach distributed database event from the first set of distrib-
uted database events 1s defined by a unique compute device
from the plurality of compute devices,

the processor configured to 1dentify each distributed data-

base event from the first set of distributed database
cevents based on (1) each distributed database event
from the first set of distributed database events being an
initial instance the compute device from the plurality of
compute devices that defined that distributed database
event defined a distributed database event having a
particular value for a third attribute and (2) an outcome
of an agreement protocol 1 which a second set of
distributed database events indicates that that distrib-
uted database event from the first set of distributed
database events should be within a third set of distrib-
uted database events, the first set of distributed data-
base events being a subset of the third set of distributed
database events, each distributed database event from
the first set of distributed database events having the
particular value for the third attribute.

6. The apparatus of claim 1, wherein each distributed
database event from the first plurality of distributed database
events and each distributed database event from the second
plurality of distributed database events 1s a sequence of
bytes.

7. The apparatus of claim 1, wherein the set of distributed
database events 1s a first set of distributed database events,
the processor configured to i1dentity each distributed data-

US 10,572,455 B2

45

base event from the first set of distributed database events
based on an outcome of an agreement protocol 1n which a
second set of distributed database events 1indicates that that
distributed database event from the first set of distributed
database events should be within a third set of distributed
database events, the second set of distributed database
events meeting a predetermined criterion, the first set of
distributed database events being a subset of the third set of
distributed database events.

8. The apparatus of claim 1, wherein the set of distributed
database events 1s a first set of distributed database events,
the processor configured to i1dentity each distributed data-
base event from the first set of distributed database events
based on an outcome of an agreement protocol 1n which a
second set of distributed database events indicates that that
distributed database event from the first set of distributed
database events should be within a third set of distributed
database events, the first set of distributed database events
being a subset of the third set of distributed database events,

the processor configured to 1dentily each distributed data-

base event from the second set of distributed database
events based on (1) that distributed database event from
the second set of distributed database events being a
descendent of a fourth set of distributed database events
and (2) a number of distributed database events 1n the
fourth set of distributed database events meeting a
criterion.

9. The apparatus of claim 1, wherein the set of distributed
database events 1s a first set of distributed database events,
the processor configured to i1dentify each distributed data-
base event from the first set of distributed database events
based on an outcome of an agreement protocol 1 which a
second set of distributed database events 1indicates that that
distributed database event from the first set of distributed
database events should be within a third set of distributed
database events, the first set of distributed database events
being a subset of the third set of distributed database events,

the processor configured to 1dentily each distributed data-

base event from the second set of distributed database
events based on (1) that distributed database event from
the second set of distributed database events being a
descendent of a fourth set of distributed database events
and (2) a number of distributed database events in the
fourth set of distributed database events meeting a first
criterion,

cach distributed database event from the fourth set of

distributed database events being an ancestor of a fifth
set of distributed database events, each distributed
database event from the second set of distributed data-
base events being a descendent of the fifth set of
distributed database events,

the processor configured to 1dentily each distributed data-

base event from the fourth set of distributed database
events based on a number of distributed database
events 1n the fifth set of distributed database events
meeting a second criterion.

10. The apparatus of claam 1, wherein the processor 1s
configured to identily the order associated with the third
plurality of distributed database events based at least 1n part
on the value of the first attribute for each distributed data-
base event from the third plurality of distributed database
events and a timestamp associated with each distributed
database event from the third plurality of distributed data-
base events.

11. The apparatus of claim 1, wherein the processor 1s
configured to identify the order associated with the third
plurality of distributed database events based at least 1n part

10

15

20

25

30

35

40

45

50

55

60

65

46

on the value of the first attribute for each distributed data-
base event from the third plurality of distributed database
events and a signature of each distributed database event
from the third plurality of distributed database events.
12. The apparatus of claim 1, wherein the set of distrib-
uted database events 1s a {first set of distributed database
events,
the processor configured to 1dentity each distributed data-
base event from the first set of distributed database
events based on an outcome of an agreement protocol
in which a second set of distributed database events
indicates that that distributed database event from the
first set of distributed database events should be within
a third set of distributed database events,

cach distributed database event from the second set of
distributed database events indicating that that distrib-
uted database event from the first set of distributed
database events should be within the third set of
distributed database events based on a value (1) asso-
ciated with that distributed database event from the first
set of distributed database events and (2) 1dentified by
a set of ancestors of that distributed database event
from the second set of distributed database events.
13. A non-transitory processor-readable medium storing
code representing nstructions to be executed by a processor,
the code comprising code to cause the processor to:
receive a signal representing a plurality of distributed
database events including transactions associated with
a distributed database;

calculate, for each distributed database event from the
plurality of distributed database events, a receirved
round for that distributed database event from the
plurality of distributed database events based on a
relationship between that distributed database event
and a set of distributed database events including
descendants of that event, each distributed database
event from the set of distributed database events being
classified as being famous;

identily an order associated with the plurality of distrib-

uted database events based on the received round
associated with each distributed database event from
the plurality of distributed database events; and

store the order 1n a memory associated with an imstance of

a distributed database at a first compute device config-
ured to be included within a plurality of compute
devices that implements the distributed database via a
network operatively coupled to the plurality of compute
devices.

14. The non-transitory processor-readable medium of
claiam 13, wherein the code to cause the processor to
calculate includes code to cause the processor to calculate,
for each distributed database event from the plurality of
distributed database events, the received round for that
distributed database event based on a number of descendants
of that event included in the set of distributed database
events compared to a number of non-descendants of that
event included 1n the set of distributed database events.

15. The non-transitory processor-readable medium of
claim 13, wherein the set of distributed database events 1s a
first set of distributed database events, each distributed
database event from the first set of distributed database
events 1s defined by a unique compute device from the
plurality of compute devices,

the code further comprising code to cause the processor

to:

classity each distributed database event from the first set

of distributed database events as famous based on (1)

US 10,572,455 B2

47

cach distributed database event from the first set of
distributed database events being an 1inmitial instance the
compute device from the plurality of compute devices
that defined that distributed database event defined a
distributed database event having a particular value for
an attribute and (2) an outcome ol an agreement
protocol in which a second set of distributed database
cevents indicates that that distributed database event
from the first set of distributed database events should
be within a third set of distributed database events, the
first set of distributed database events being a subset of
the third set of distributed database events, each dis-
tributed database event from the first set of distributed
database events having the particular value for the
attribute.

16. The non-transitory processor-readable medium of

claim 13, wherein each distributed database event from the
set of distributed database events i1s defined by a unique
compute device from the plurality of compute devices.

17. The non-transitory processor-readable medium of

claim 13, wherein the set of distributed database events 1s a
first set of distributed database events, the code further
comprising code to cause the processor to:

classily each distributed database event from the first set

of distributed database events as tfamous based on an
outcome of an agreement protocol in which a second
set of distributed database events indicates that that
distributed database event from the first set of distrib-
uted database events should be within a third set of
distributed database events,

each distnibuted database event trom the second set of

distributed database events indicating that that distrib-
uted database event from the first set of distributed
database events should be within the third set of
distributed database events based on a value (1) asso-
ciated with that distributed database event from the first
set of distributed database events and (2) 1dentified by
a set of ancestors of that distributed database event
from the second set of distributed database events.

18. The non-transitory processor-readable medium of
claim 13, wherein the code to cause the processor to 1dentily
the order includes code to cause the processor to 1dentify the
order associated with the plurality of distributed database
events based at least 1n part on the recerved round associated
with each distributed database event from the plurality of
distributed database events and at least one of a timestamp
or a signature of each distributed database event from the
plurality of distributed database events.

19. A method, comprising:

identifying, at a first time, a first distributed database

event (1) defined by a first compute device configured
to be included within a plurality of compute devices
that implements the distributed database via a network
operatively coupled to the plurality of compute devices
and (2) linked to a first plurality of distributed database
cvents;

receiving, at a second time aiter the first time, a signal

representing a second distributed database event (1)
defined by a second compute device from the plurality
of compute devices and (2) linked to a second plurality
of distributed database events;

calculating, using a processor associated with an instance

of the distributed database, an order associated with a
third plurality of distributed database events based at
least 1n part on a value of a first attribute for each
distributed database event from the third plurality of
distributed database events, the value of the first attri-

10

15

20

25

30

35

40

45

50

55

60

65

48

bute for each distributed database event from the third
plurality of distributed database events being based on
a relationship between that distributed database event
and a set of distributed database events including
descendants of that distributed database event, each
distributed database event from the set of distributed

database events being associated with a second attri-
bute that 1s common with the remaining distributed
database events from the set of distributed database
events, each distributed database event from the third
plurality of distributed database events being from at
least one of the first plurality of distributed database
events or the second plurality of distributed database
events; and

storing, 1n a memory associated with the instance of the

distribute database, the order associated with the third
plurality of distributed database events.

20. The method of claim 19, wherein each distributed
database event from the set of distributed database events 1s
defined by a unique compute device from the plurality of
compute devices, the method further comprising:

identifying each distributed database event from the set of

distributed database events based on each distributed
database event from the set of distributed database
events being a first instance the compute device from
the plurality of compute devices that defined that
distributed database event defined a distributed data-
base event having a particular value for a third attribute,
cach distributed database event from the set of distrib-
uted database events having the particular value for the
third attribute.

21. The method of claim 19, wherein the set of distributed
database events 1s a first set of distributed database events,
the method further comprising:

identifying each distributed database event from the first

set of distributed database events based on an outcome
of an agreement protocol 1 which a second set of
distributed database events indicates that that distrib-
uted database event from the first set of distributed
database events should be within a third set of distrib-
uted database events,

cach distributed database event from the second set of

distributed database events indicating that that distrib-
uted database event from the first set of distributed
database events should be within the third set of
distributed database events based on a value (1) asso-
ciated with that distributed database event from the first
set of distributed database events and (2) 1dentified by
a set of ancestors of that distributed database event
from the second set of distributed database events.

22. The method of claim 19, further comprising;

calculating the order associated with the third plurality of

distributed database events based at least 1n part on the
value of the first attribute for each distributed database
event from the third plurality of distributed database
events and at least one of a timestamp or a signature of
cach distributed database event from the third plurality
of distributed database events.

23. The method of claim 19, wherein the value of the first
attribute for each distributed database event from the third
plurality of distributed database events 1s based on a number
of descendants of that event included in the set of distributed
database events compared to a number of non-descendants
of that event included in the set of distributed database
events.

	Front Page
	Drawings
	Specification
	Claims

