US010572450B2

a2y United States Patent (10) Patent No.: US 10,572,450 B2

Manville et al. 45) Date of Patent: *Feb. 25, 2020
(54) REDUCING DATABASE FRAGMENTATION (56) References Cited
(71) Applicant: Maginatics LLC, Mountain View, CA U.S. PATENT DOCUMENTS
(US) .
6,112,210 A 8/2000 Nori
: : : 9,875,249 Bl * 1/2018 Manville GO6F 17/30135
(72) Inventors: Thomas Manville, Mountain View, CA 2002/0194149 Al* 12/2002 Gerber GOGF 17/30595
(US); Julio Lopez, Mountain View, CA 2007/0288495 Al 12/2007 Narasayya
(US) 2008/0313213 Al 12/2008 Zhang
2011/0307521 Al1* 12/2011 Slezak GO6F 17/30595
(73) Assignee: Maginatics LLC, Mountain View, CA 707/800
(US) 2012/0096046 Al* 4/2012 Kucera GO6F 17/3089
707/802
: : : : : 2014/0019706 Al 1/2014 Kanfi
(*) Notice: Subject to any disclaimer, the term of this 2014/0089017 Al* 3/2014 Klappert GO6Q 10/02
patent 1s extended or adjusted under 35 705/5
U.S.C. 154(b) by 0 days. 2014/0172708 Al* 6/2014 Chrapko GO8G 1/096741
705/44
This patent 1s subject to a terminal dis- 7015/0347492 A1 12/2015 Dickie
claimer. 2016/0232207 Al* 8/2016 Brunel GO6F 17/30483
(21) Appl. No.: 15/844,203 * cited by examiner
(22) Filed: Dec. 15, 2017 Primary Examiner — Wilson Lee
(74) Attorney, Agent, or Firm — Van Pelt, Y1 & James
(65) Prior Publication Data LLP
US 2018/0373725 Al Dec. 27, 2018 (57) ABRSTRACT
Related U.S. Application Data Techniques to reduce database fragmentation are disclosed.
(63) Continuation of application No. 14/675,454, filed on In various embodiments, an indication 1s received to store an
Mar. 31, 2015, now Pat. No. 9,875,249. attribute value for an entity that has a row or other entry in
a first database table, wherein the first database table does
(51) Imt. CL H not have a column for the attribute. It 1s determined that the
Goot 16/17 (201 9-0:~) value corresponds to a mapped value that 1s associated with
Gool 16/23 (2019-0:~) not having an entry in a separate, second database table
Gool 16/22 (2019.01) configured to store the attribute. Entries are made in the
(52) U.S. CL second database table only for values of the attribute other
CPC ... GO6F 16/1724 (2019.01); GO6F 16/2282 than the mapped value. Application level software code 1s
(2019.01); GO6F 16/2365 (2019.01) configured to associate absence of a row in the second
(58) Field of Classification Search database table with the mapped value for the attribute.
None
See application file for complete search history. 20 Claims, 14 Drawing Sheets
100\‘ 102 104 106
\ \ 4
Client 1 Client 2 "mw Client n

XN

110

File System

Metadata Server Cloud-based Object Store

e

114 N\ File Systern
Metadata

H."__ __"J

U.S. Patent Feb. 25, 2020 Sheet 1 of 14 US 10,572,450 B2

100\ 102 104 106

Client 1 Client 2 amn Client n

X

108

Network

112
110

File System |
Metadata Server Cloud-based Object Store

114 File System

Metadata

FIG. 1

U.S. Patent Feb. 25, 2020 Sheet 2 of 14 US 10,572,450 B2

to Network
102
Network Interface
File System
APP Client Cache
210
206
Operating System
204

FIG. 2

U.S. Patent Feb. 25, 2020 Sheet 3 of 14 US 10,572,450 B2

102

Client 1

302 304

112
110

Cloud-based Object Store

File System
Metadata Server

Active Directory

306

FIG. 3

U.S. Patent Feb. 25, 2020 Sheet 4 of 14 US 10,572,450 B2

402
Recelve request from app to store file

404
Break file into segments

406
Compute segment references
Send file write request, including segment 408
references, to file system metadata server
410
Recelve set of URI's or other pointers
412

Use pointers to store segments

End

FIG. 4

U.S. Patent Feb. 25, 2020 Sheet 5 of 14 US 10,572,450 B2

| | 502
Receive request to store file

504
Create and store segment map

o006
Determine segment that are not duplicates
For each segment that is not a duplicate, 208
compute a storage location and generate a
URI or other pointer
910

Send URI’s to file system client

FIG. 5

U.S. Patent Feb. 25, 2020 Sheet 6 of 14 US 10,572,450 B2

602
Receive PUT to URI

Check URI signature and 604
expiration time
610
606
o>

Yes

608

Store payload data at location

assoclated with URI

End

FIG. 6

U.S. Patent Feb. 25, 2020 Sheet 7 of 14 US 10,572,450 B2

Receive request from app to access file 702
identified by file name

Send to file system metadata server a request 704
to read file (by name)

Recelve set of segment references and for 706
each a corresponding URI and encryption key

708
Check local cache for segments
For any cache misses, use URI to GET 710
segment and use key to decrypt
712

Reconstruct file and provide to requesting app

End

FIG. 7

U.S. Patent Feb. 25, 2020 Sheet 8 of 14 US 10,572,450 B2

802
Recelve request to access file (by name)
- 804
Use segment map to find segment references,
and for each a corresponding URI and
encryption key
806

Return segment references, URI's, and keys
o requesting client

End

FIG. 8

U.S. Patent Feb. 25, 2020 Sheet 9 of 14 US 10,572,450 B2

902\ 904-\‘
“inode | ofset [chukia] +ee

906A
™

chuniid sze | ==+ [refcount] comp | encrypt | state _
IEE o
EEEE K

id + 3 1 ZIp 3DES | verified

id + 4 2 none AES verified
'-
@l [[[none | rome [umer

908 910 912 914 916

FIG. 9A
9065-\

Ghurkd] size | ==+ Jref count] comp [encrypt | state

id <null> | <nul> | AES | <nuli>

id + 1 O <null> <nuil> | deleted

ICE I R S R I TR

ap | DES

<l | AES
.. e

908 910 912 914 916

FIG. 9B

U.S. Patent Feb. 25, 2020 Sheet 10 of 14 US 10,572,450 B2

Perform analysis to determine 1002
most common value

Configure system to store "null’ 1004
when value = most common
value
1006

Configure system to map “null’
back to most common value

End

FIG. 10

U.S. Patent Feb. 25, 2020 Sheet 11 of 14 US 10,572,450 B2

9063-\
Ghunkid| sze | +ex | siate
I I R T
. deleted
<>
ICESN I R T
IR I R
ICECH I R
T | | Junverfed
908 916

1102“~\\ ’/r*1104

chunk 10 state
id + 1 deleted

id + n | unverified

1112 1116

FIG. 11

U.S. Patent Feb. 25, 2020 Sheet 12 of 14 US 10,572,450 B2

1202
Monitor proportion of null values

1204

Transform

threshold? No

Yes

1206 Transform table to store non-null

values in new table and remove
nullable column

1208

No

Yes

End

FIG. 12

U.S. Patent Feb. 25, 2020 Sheet 13 of 14 US 10,572,450 B2

Recelve Indication entity has no

1302 record In table to which data in a

nullable column has been
transferred and consolidated
1308
1304
Mapped value? NG Return/use “null
value
Yes
1306

Return value to which “null” 1s

mapped for that attribute

End

FIG. 13

U.S. Patent

1402

1406

Feb. 25, 2020 Sheet 14 of 14

Recelve Indication update an
attribute value In a table to which

data in a nullable column has
been transferred

1404

Update to value

mapped to null? No

Yes

Delete corresponding row from

table

End

FIG. 14

US 10,572,450 B2

1408

Update value In

table

US 10,572,450 B2

1
REDUCING DATABASE FRAGMENTATION

CROSS REFERENCE TO OTHER
APPLICATIONS

This application 1s a continuation of co-pending U.S.
patent application Ser. No. 14/675,454, entitled REDUC-
ING DATABASE FRAGMENTATION filed Mar. 31, 2015

which 1s incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Relational databases (RDBMS), such as MySQL, are used

to store data, typically in one or more tables. Each table
typically has one or more rows, one row for each record, for
example, and one or more columns, one column for each
different attribute capable of being stored.
If a given row (record) does not have a value for a column,
a “null” value may be mdicated for that column i1 the table
has been set up to support storing a “null” value with the
column. A database system may be configured to store null
values 1n a space and/or computationally eflicient manner,
which may for example require less storage space or other
resources than storing an integer “0, a string, or any other
non-null value.

For a sparsely populated table, or a table in which the
same most common value 1s stored repeatedly for a given
attribute, a single, large database table may use a lot of space
to store data. In some database systems, data may be
overwritten in place, 1.¢., 1n the same location(s) on storage
media, resulting 1n unused space between database records
as stored.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed 1n the
tollowing detailed description and the accompanying draw-
Ings.

FIG. 1 1s a block diagram illustrating an embodiment of
a distributed file system and environment.

FIG. 2 1s a block diagram illustrating an embodiment of
a client system.

FIG. 3 1s a block diagram illustrating an embodiment of
a distributed file system.

FIG. 4 1s a flow chart illustrating an embodiment of a
process to store a file or other file system object 1 a
distributed file system.

FIG. 5 1s a flow chart illustrating an embodiment of a
process to handle a request to store a file or other file system
object 1n a distributed file system.

FIG. 6 1s a flow chart illustrating an embodiment of a
process to store file segment or “chunk™ data associated with
a distributed file system.

FIG. 7 1s a flow chart illustrating an embodiment of a
process to access a file or other file system object stored in
a distributed file system.

FIG. 8 1s a flow chart illustrating an embodiment of a
process to handle a request to access a file or other file
system object stored 1n a distributed file system.

FIG. 9A 15 a block diagram 1llustrating an example set of
file system metadata tables used 1n an embodiment of a
distributed file system.

FIG. 9B 1s a block diagram 1llustrating an example of a
file system metadata table 1n which a most common value
for an attribute may be represented as a null value.

FIG. 10 1s a flow chart illustrating an embodiment of a
process to store a new file segment (chunk) metadata.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 1s a block diagram illustrating an example of a
database table transformation in an embodiment of a data-

base system configured to store file system metadata.

FIG. 12 1s a flow chart 1llustrating an embodiment of a
process to transform a database table to reduce fragmenta-
tion.

FIG. 13 1s a flow chart illustrating an embodiment of a
process to use a separate table into which only a subset of
values that are non-null have been stored for an attribute.

FIG. 14 1s a flow chart illustrating an embodiment of a
process to update or otherwise store a value for an attribute
for which a separate table has been created to store only
non-null values.

DETAILED DESCRIPTION

The mvention can be implemented 1n numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the mvention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that 1s tem-
porarily configured to perform the task at a given time or a
specific component that 1s manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention 1s provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention 1s described in connection with such embodi-
ments, but the mvention 1s not limited to any embodiment.
The scope of the invention 1s limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that 1s known i the technical fields related to the
invention has not been described 1n detail so that the
invention 1s not unnecessarily obscured.

Techniques to reduce database fragmentation are dis-
closed. In various embodiments, a most common value for
an attribute may be stored and/or overwritten by a “null”
value. In some embodiments, a column 1n which previously
stored most common value may have been overwritten with
a “null” value, or 1n which a most common value may have
been stored from the outset as a “null” value, the affected
database table may be transformed by removing the affected
column and storing the non-null (or other non-most com-
mon) data values only 1n a separate table.

FIG. 1 1s a block diagram illustrating an embodiment of
a distributed file system and environment. In the example
shown, the distributed file system environment 100 includes
a plurality of client systems and/or devices, represented 1n
FIG. 1 by clients 102, 104, and 106. In the example shown,
the clients connect (wireless or otherwise) to a network 108,
e.g., one or more of a local area network (LAN), a wide area

US 10,572,450 B2

3

network (WAN), the Internet, and/or one or more other
public and/or private networks. The clients have access via
network 108 to a file system metadata server 110. Applica-
tions on the respective clients, such as clients 102, 104, and
106, make file system calls, which result in various embodi-
ments 1n corresponding remote calls being made to file
system metadata server 110. For example, a file system
client, agent, or other enftity on the client may intercept or
otherwise receive calls by the application to a local (e.g.,
native) file system, and may redirect such calls to an agent
configured to make corresponding remote calls to file system
metadata server 110 (e.g., transparently to the application).

In the example shown, data comprising objects stored in
the file system, such as files, 1s stored in a cloud-based object
store 112. In some embodiments, files may be segmented
into a plurality of segments or “chunks”, each of which 1s
stored 1n a corresponding location 1n the cloud-based object
store. File system calls are made to file system metadata
server 110, which stores file system metadata 1n a file system
metadata storage 114, e.g., 1n a database or other data store.
File system metadata server 110 may store in file system
metadata store 114, for example, a segment or “chunk” map
tor each file or other object stored and represented 1n the file
system. For example, for each file name (e.g., pathname) the
file system metadata server 110 may store 1n a corresponding
segment map a hash or other representation of each segment,
and for each a corresponding location 1n which the segment
1s (or 1s to be) stored 1n cloud-based object store 112. Other
file system metadata, such as metadata typically stored by a
file system, may be stored by file system metadata server 110
in file system metadata store 114. Examples include, without
limitation, a directory, file, or other node/object name; an
identification of parent and/or child nodes; a creation time;
a user that created and/or owns the object; a time last
modified and/or other time; an end-of-file (EOF) or other
value mdicative of object size; security attributes such as a
classification, access control list, etc.; and/or other file
system metadata.

FIG. 2 1s a block diagram illustrating an embodiment of
a client system. In the example shown, the client system/
device 102 of FIG. 1 1s shown to include an application 202
running 1n an environment provided by an operating system
204. The operating system 204 includes a kernel (not shown)
and other components configured to provide services and/or
functionality to applications such as application 202. For
example, operating system 204 may include and/or be
configured to provide access to a native file system (not
shown) of client system 102. Application 202 may be
configured to make file system calls to the native file system,
¢.g., to store files or other objects created by/using applica-
tion 202, to modily, move, or delete such objects, etc. In the
example shown, file system calls made by application 202,
represented mm FIG. 2 by the downward pointing arrow
originating in the block labeled “app” (202), are intercepted
by a kernel module (or other component) 206 and redirected
to a file system client (or other file system agent) 208. File
system client 208 1n this example has associated therewith a
local cache 210. In various embodiment, cache 210 may be
used to bufler and/or otherwise stage file data prior to its
being sent to remote storage (e.g., cloud-based object store
112 of FIG. 1), and/or to facilitate access to data stored
previously but to which access may be requested later.

The client system 102 includes a network communication
interface 212 that provides network connectivity, e.g., to a
network such as network 108 of FIG. 1. For example, a
request from app 202 to access a {ile stored remotely in
various embodiments may result 1 file system client 208

10

15

20

25

30

35

40

45

50

55

60

65

4

making a remote call, via network communication interface
212, for example to a file system metadata server such as
server 110 of FIG. 1.

In various embodiments, file system client 208 may be
configured to store 1n a metadata write builer comprising or
otherwise associated with file system client 208 and/or cache
210 one or more file system operations and/or requests
allecting file system metadata comprising a portion of the
file system metadata with respect to which a file system
metadata write lease 1s held by file system client 208. For
example, file system operations aflecting metadata may be
buflered as recerved, e.g., as a result of local file system calls
by applications such as application 202 of FIG. 2, and may
be communicated to the remote file system metadata server
asynchronously and/or upon occurrence of an event, e.g.,
receipt of an indication that a metadata write lease “break™
event has been received and/or has occurred. For example,
a second client system may indicate a desire and need to
perform operations aflecting a portion of the file system
metadata with respect to which a first client system holds a
lease, result 1n a “break” communication being sent to the
first client system, which 1n turns “flushes™ at least those
operations 1n the bufler that affect the portion of metadata
with respect to which the lease had been held.

FIG. 3 1s a block diagram illustrating an embodiment of
a distributed file system. In the example shown, client 102
communicates via a secure session-based connection 302
with file system metadata server 110. In addition, client 102
communicates with cloud-based object store 112 via a
TCP/IP or other connection that enables client 102 to store
objects (e.g., file segments or “chunks™) via HT'TP “PUT”
requests and to retrieve segments (“‘chunks”) via HT'TP
“GET” requests. In various embodiments, client 102 (e.g., a
file system client or other agent running on client 102) sends
and receives distributed file system “control plane” commu-
nications via secure connection 302 (e.g., file system opera-
tions that change or require the processing and/or use of file
system metadata), whereas communicates sent via connec-
tion 304 may be considered to comprising a “data plane™ via
which file system object data (1.e., segments or “chunks™)
may be stored and/or retrieved. In the example shown, file
system metadata server 110 has access to active directory
306, which in various embodiments may comprise informa-
tion usable to authenticate users of clients such as client 102.

In various embodiments, file system objects, such as {iles,
may be stored by a client on which a distribute file system
client or other agent has been installed. Upon receiving a
request to store (or modily) a file system object, 1n various
embodiments the file system client segments the object into
one or more segments or “chunks™ and computes a reference
(e.g., a hash) for each. The references are included 1n a file
system request sent to the file system metadata server, e.g.,
via a secure connection such as connection 302 of FIG. 3.
The file system metadata server returns information to be
used by the file system client to store (non-duplicate)
segments/chunks 1n the cloud-based object store by sending
the segment data directly to the cloud-based object store,
¢.g., via PUT requests sent via a connection such as con-
nection 304 of FIG. 3.

FIG. 4 1s a flow chart illustrating an embodiment of a
process to store a file or other file system object 1 a
distributed file system. In various embodiments, the process
of FIG. 4 may be performed on a client system or device,
¢.g., by a file system client or other agent running on the
client system/device, such as file system client 208 of FIG.
2. In the example shown, a request 1s recerved, e.g., from an
application, to store a file (402). The file 1s segmented into

US 10,572,450 B2

S

one or more segments (404). For each segment, a segment
reference, e¢.g., a hash, 1s computed (406). A file write
request that includes the segment references 1s sent to the file
system metadata server (408). A set of uniform resource
indicators (URI’s) or other pointers 1s received from the file
system metadata server (410). In various embodiments, the
set of pointers may include pointers only for those segments
not already stored by the distributed file system. The
received pointers are used to store segments, e.g., via HI'TP
“PUT” requests sent directly to the cloud-based object store
(412).

FIG. 5 1s a flow chart illustrating an embodiment of a
process to handle a request to store a file or other file system
object 1n a distributed file system. In various embodiments,
the process of FIG. 5 may be performed by a file system
metadata server, such as file system metadata server 110 of
FIG. 1. In the example shown, a request to store a file 1s
received (502). A segment (“chunk’™) map that associates the
file system object name and/or other identifier (e.g., file
name, pathname) with a set of one or more segment refer-
ences (e.g., hash values) 1s created (504). Segments that are
not duplicates of segments already stored by the distributed
file system are 1dentified, for example based on the segment
retferences (506). For each segment that 1s not a duplicate, a
storage location 1s computed (e.g., based at least 1n part on
all or part of the segment reference) and a URI or other
pointer usable to store the segment directly i the cloud-
based data store 1s generated (508). In various embodiments,
the URI or other pointer 1s signed cryptographically by the
file system metadata server. The URI may have an expiration
time by which 1t must be used to store the segment. The
URI’s are sent to the file system client from which the
request to store the file was received (510).

FIG. 6 1s a flow chart illustrating an embodiment of a
process to store file segment or “chunk™ data associated with
a distributed file system. In various embodiments, the pro-
cess of FIG. 6 may be performed by a cloud-based object
store, such as object store 112 of FIG. 1. In the example
shown, a “PUT” request associated with a URI specified 1n
the request 1s received (602). A cryptographic signature
associated with the URI and an expiration time encoded 1n
the URI are checked (604). For example, the cloud-based
object store may be provisioned to check that the URI has
been signed by a trusted file system metadata server and/or
that an expiration time of the URI has not elapsed. If the URI
1s determined to be currently valid (606), a payload data
associated with the PUT request, e.g., file system object

segment or “chunk™ data, 1s stored 1n a location associated
with the URI (608). If the URI i1s determined to not be valid

(606), the PUT request fails (610), and the file system client
receives a response indicating 1t must obtain a new URI from
the file system metadata server.

In various embodiments, file system objects, such as files,
may be retrieved by a client on which a distribute file system
client or other agent has been installed. Upon receiving a
request to access a file system object, 1n various embodi-
ments the file system client sends a file access request to the
file system metadata server, €.g., via a secure connection
such as connection 302 of FIG. 3. The file system metadata
server returns information (e.g., one or more URI’s or other
pointers) to be used by the file system client to retrieve
segments/chunks directly from the cloud-based object store,
¢.g., via GET requests sent via a connection such as con-
nection 304 of FIG. 3.

FIG. 7 1s a flow chart illustrating an embodiment of a
process to access a file or other file system object stored in
a distributed file system. In various embodiments, the pro-

10

15

20

25

30

35

40

45

50

55

60

65

6

cess of FIG. 4 may be performed on a client system or
device, e.g., by a file system client or other agent running on
the client system/device, such as file system client 208 of
FIG. 2. In the example shown, a request to access a file
system object, e.g. a file identified by file name, 1s received
from an application (702). A request 1s sent to a file system
metadata server to retrieve the file (704). A set of segment
references, and for each a corresponding URI and encryption
key, 1s received from the file system metadata server (706).
A local cache 1s checked to determine whether any required
segments are present in the cache (708). For all segments not
present 1n the cache, the associated URI 1s used to send a
GET request to retrieve the segment from the cloud-based
object store, and the associated key 1s used to decrypt the
segment once 1t has been received from the object store 1n
encrypted form (710). The segments are used to reconstruct
the file and provide access to the file to the application from
which the access request was received (712).

FIG. 8 1s a flow chart illustrating an embodiment of a
process to handle a request to access a file or other file
system object stored 1n a distributed file system. In various
embodiments, the process of FIG. 5 may be performed by a
file system metadata server, such as file system metadata
server 110 of FIG. 1. In the example shown, a request to
access a named file 1s received (802). A segment map
associated with the file 1s retrieved and used to determine a
set of segment references (e.g., hashes), and for each a
corresponding URI indicating where the segment 1s stored 1n
the cloud-based segment store and an encryption key usable
to decrypt the segment (804). The segment references,
URTI’s, and keys are returned to the file system client from
which the file access request was received (806).

FIG. 9A 1s a block diagram illustrating an example set of
file system metadata tables used 1n an embodiment of a
distributed file system. In various embodiments, the tables
902, 904, and 906A of FIG. 9A may be created and main-
taimned by a file system metadata server, such as file system
metadata server 110 of FIGS. 1 and 3. In the example shown,
an 1node table 902 1s used to store data associating each
named file system object, e.g., directories, files, or other
objects, with a corresponding 1node or other unique number
or i1dentifier. Chunk map table 904 1s used in various
embodiments to store for each file, and for each of one or
more segments (chunks) into which that file has been broken
up to be stored, an offset of the chunk within the file, a chunk
identifier (chunk 1d), and other metadata. For example, a file
that has been stored as three chunks would have three entries
(rows) 1n table 904, one for each chunk. In various embodi-
ments, the chunk 1d 1s a monotonically increasing value,
with each successively stored chunk being given a next
chunk 1d in alphanumeric order. In various embodiments,
chunks are immutable once stored. If file data 1s modified,
aflected data 1s stored as a new chunk and assigned a next
chunk 1d 1n order. As a result, a chunk with a higher chunk
id by definition was stored subsequent to a chunk with a
lower chunk 1d, and 1t can be assumed neither was modified
since 1t was created and stored.

Referring further to FIG. 9, the chunk metadata table 906
includes a row for each chunk, identified by chunk 1d
(column 908 1n the example shown), and for each chunk
metadata indicating the size of the chunk; other metadata; a
reference count (column 910) indicating how many cur-
rently live files (or other file system objects) reference the
chunk; a compression method used, 1f any (column 912); an

encryption method used, 11 any (column 914); and a state of
the chunk, 1.e., whether 1t has been verified or deleted
(column 916).

US 10,572,450 B2

7

Storing a most common (non-null) value for an attribute
as a “null” value, e.g., 1n a database table, 1s disclosed. In
various embodiments, a most common value for an attribute
1s determined. Application, database driver, and/or other
code 1s configured to indicate a “null” value for the attribute,
in place of the actual value, 1n the event that actual value 1s
the most common value. In various embodiments, 1f the
database returns a null value for the attribute, application
level or other code maps the null value to the most common
value.

FIG. 9B 1s a block diagram 1llustrating an example of a
file system metadata table 1n which a most common value
for an attribute may be represented as a null value. In the
example shown in FIG. 9B, for each of a plurality of
attributes (910, 912, 914, and 916) a most common value for
that attribute 1s stored 1n chunk metadata table 906B as a
“null” value. In the example shown, for example, the most
common value for the reference count attribute, 1.e., “1”, has
been overwritten with a null value, obviating the need to
store the value “1” as an nteger. Similarly, 1n the column
labeled “comp” (912), the most common value “none™, 1.e.,
the chunk 1s not compressed as stored, has been overwritten
with null values. In the example shown in FIG. 9B, “none”
1s the most common value for encryption type and has been
overwritten with “null” values. In other system or instances,
in which AES type encryption 1s used for almost all data, the
value “AES” may be most common value and may be the
value that 1s mapped to null. In either case, 1n various
embodiments the most common value expected for and/or
observed to be present 1n that particular instance of the
chunk metadata table 906 may be mapped to “null”. Finally,
in this example, each chunk transitions through three states,
as retlected 1n the “state” column (906); “unverified”, “veri-
fied”, and “deleted”. In this example, a chunk 1s “unvernfied”
only for a relatively short time when it 1s first stored, and
then enters and remains 1n the “verified” state, possible for
a relatively long time, unless/until 1t enters the “deleted”
state (e.g., potentially for a relatively limited time, such as
until it can be determined the chunk 1s no longer needed). As
a result, 1n this example the most common state, “verified”,
has been mapped to null.

FIG. 10 1s a flow chart illustrating an embodiment of a
process to store a new file segment (chunk) metadata. In
various embodiments, the process of FIG. 10 may be imple-
mented by a file system metadata server, such as file system
metadata server 110 of FIG. 1. In various embodiments, all
or part ol the process of FIG. 10 may be performed with
respect to a chunk metadata table, such as chunk metadata
table 906 of FIGS. 9A and 9B. In the example shown, an
analysis 1s performed to determine a most common value for
an attribute (1002). For example, a statistical analysis or
other computer analysis may be performed. The system 1s
configured to store or to cause the database to store a “null”
value for instances 1n which the actual value for the attribute
1s equal to the most common value (1004). The system 1s
configured to map a “null” value returned by the database for
the attribute back to the most common value (1006).

For example, one database data type for which a “null”
value may be stored 1s an enumerated or “ENUM” type. An
ENUM type may have one of a defined number of integer
values, each of which 1s associated with a corresponding

data value, such as a string. For example, 1f there are two
regions, EAST and WEST, then a data type ENUM may be

defined, with O=EAST and 1=WEST. Suppose, for example,
that for a given table the value EAST was the most common
value. In various embodiments, rather than store a value of
“0” as an integer value over and over again, for 1nstances

10

15

20

25

30

35

40

45

50

55

60

65

8

(rows) for which the value of the attribute “Region™ 1s
“BEAST” the application or other code would be configured
to indicate a “null” value for that attribute. On reading a
“null” value for the attribute Region, the application or other
code would substitute the value “EAST”, 1n this example.

Techniques to reduce database fragmentation are dis-
closed. In various embodiments, fragmentation may result
when database values are overwritten 1n place by values that
require less space to store than the value that was overwrit-
ten required. For example, 1n some embodiments, overwrit-
ing a most common (or other mapped value) with a “null”
value may result in unused storage space between databased
records as stored on media. In some embodiments, excessive
space may be used to store the same most common value for
a given attribute over and over again, whether represented as
“null” or otherwise. In various embodiments, any change 1n
row size can cause fragmentation. If a row size decreases,
the modification can be done in place, but doing so will
create a gap between the modified row and the next row as
stored on storage media. If the row size increases and there
1S no room between the modified row and the next row, the
row will need to be rewritten elsewhere, leaving a gap equal
to the row’s original size.

In various embodiments, a database table may be trans-
formed to create a more ellicient representation of the same

set of data. In some embodiments, a database table that
includes a column that contains non-null values for some
rows and null values for other rows that are mapped at the
application level to a most common or other mapped non-
null value may be transformed by removing the column
from the original table and storing a separate table only the
non-null values from the original table/column.

FIG. 11 1s a block diagram illustrating an example of a
database table transformation 1n an embodiment of a data-
base system configured to store file system metadata. In the
example shown, chunk metadata table 9068 of FIG. 9B, 1n
which the most common values formerly stored 1n columns
910, 912, 914, and 916 have been overwritten by “null”
values, 1s shown as being transformed to create a trans-
formed chunk metadata table 1102, from which the over-
written columns have been removed. As shown 1n FIG. 11,
for purposes of clarity only the “state” column 916 1s shown
and the “ref count”, “comp”, and “encrypt” columns 910,
912, and 914 are not shown. In the example shown, the
“state” column 916 has been removed from the chunk
metadata table 906B to create transformed chunk metadata
table 1102, and 1n a separate “state” table 1104 the respective
“state” values only for those records (rows) that were not 1n
the “verified” state that had previously been overwritten
with “null” are stored. In thus example, the “null” values
stored previously in chunk metadata table 906B for the
“state” attribute for rows corresponding to the following
chunk identifiers are not included the separate table gener-
ated 1n connection with the transformation disclosed herein:
1d, 1d+2, 1d+3, 1d+4, and 1d+5. In various embodiments, for
cach of the other columns removed from the chunk metadata
table, a corresponding separate table specific to that attribute
would be created (not shown in FIG. 11), and 1n each such
table there would be a row only for those chunks that had a
non-null (1.e., other than the most common) value for that
attribute. In the example shown 1n FIG. 11, the transformed
chunk metadata table 1102 includes all of the chunks in
chunk 1d column 1108, but includes columns only for
attributes that have not been separate out 1into separate, more
compact separate tables, such as “state” table 1104. State

table 1104 1n this example includes 1n chunk 1d column 1112

US 10,572,450 B2

9

and “state” column 1116 entries (rows) only for those
chunks that had a non-null value as stored in chunk metadata
table 906B.

FIG. 12 1s a flow chart illustrating an embodiment of a
process to transform a database table to reduce fragmenta-
tion. In the example shown, a proportion of values 1n a given
column that have been mapped to and/or overwritten with
“null” values 1s monitored (1202). If a transform threshold
1s reached (1204), e.g., X % of rows have a “null” value for
the column, the table 1s transformed to store just the non-null
values 1n that column 1n a separate table (1206). If the
threshold to transform has not been reach (1204), monitor-
ing continues unless/until the threshold 1s reached or the
process ends (1208).

In some embodiments, a table i1s not transformed as
disclosed herein. Instead, a database table design time, 11 the
most common or other mapped value for a given attribute 1s
to be mapped to a “null” value, the database schema 1s set
up at that time to omit the attribute from the main (e.g.,
chunk metadata) table and a separate table 1s set up to store
only non-null values for the attribute. Values that would
have been stored as null are handled 1n application level
code by not storing an entry in the attribute specific table 1f
the attribute otherwise would have been stored as a null
value, and by configuring application code to interpret
absence ol a record 1n the separate table as indicating the
“null” value and/or the most common or other value to
which null previously had been or would have been mapped.

FIG. 13 1s a flow chart illustrating an embodiment of a
process 1o use a separate table into which only a subset of
values that are non-null have been stored for an attribute. In
the example shown, an indication 1s received that a separate
database table created to store for an attribute only those
values that are non-null includes no row for an entity that 1s
known to exist (1302). For example, a chunk that has a row
in chunk metadata table 1102 of FIG. 11 would be known to
exist, but would not necessarily have an entry 1n state table
1104 of FIG. 11. If the value stored in the separate table 1s
one for which a “null” value or other result associated with
the absence of a record in the separate table 1s mapped to
some non-null value (1304), e.g., a most common value for
the attribute, then the value that 1s mapped to “null” 1s
returned for the attribute (1306). For example, 1n the case of
the state table 1104 of FIG. 11, absence of an entry would be
mapped to a state value of “venfied”. If the value 1s not a
mapped value (1304), a null value 1s returned for the
attribute (1308).

FIG. 14 1s a flow chart illustrating an embodiment of a
process to update or otherwise store a value for an attribute
for which a separate table has been created to store only
non-null values. An indication 1s received to update an
instance of an attribute for which a separate table has been
created to store only non-null values (1402). For example,
an updated value for an instance of the attribute as stored 1n
the separate table may be received. If the value indicated in
the update 1s one that 1s to be mapped to a null value (1404),
¢.g., a most common value for the attribute, then the existing
row 1n the separate table, which was created/modified pre-
viously to store a value other than the most common value
and/or other value mapped to null, 1s deleted from the
separate table (1406). For example, a row added to table
1104 of FIG. 11 to reflect the “unverified” state of a new
chunk may be deleted, rather than updating the value to
“verified”, once the chunk has been verified. If the new value
1s not one that 1s mapped to null (1404), the existing entry
1s updated (or 11 needed a row added) to retlect the updated
value 1n the separate table (1408).

10

15

20

25

30

35

40

45

50

55

60

65

10

Using techniques disclosed herein, file system metadata
and/or other data may be stored more efliciently, 1n various
embodiments, by storing in a separate table only those
values for an attribute that are not the most common value
or some other value mapped to and/or otherwise associated
with a null value and/or absence of an entry 1n the separate
table.

Although the {foregoing embodiments have been
described 1n some detail for purposes of clarity of under-
standing, the mvention 1s not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What 1s claimed 1s:

1. A method of storing data, comprising:

storing, by one or more processors, first information

assoclated with a chunk 1n a first database table,
wherein the chunk 1s associated with a file and the first
information associated with the chunk comprises data
associated with a first attribute, and wherein the storing
of the first information comprises storing a null value 1n
the first database table in place of a first attribute value,
the first attribute value being mapped to the null value
in connection with storing the first attribute value 1n the
first database table; and

reducing, by one or more processors, fragmentation asso-

ciated with storing the null value 1n place of the first
attribute value 1n the first database table, the fragmen-
tation being reduced based at least in part on by storing
one or more values for the first attribute 1n one or more
other database tables.

2. The method of claim 1, further comprising:

determining, for the first attribute, a value that 1s to be

mapped to null.

3. The method of claim 1, wherein entries made in the one
or more other database tables are only for values of the first
attribute that are different from the first attribute value that
1s mapped to the null value.

4. The method of claam 3, wherein application level
soltware code 1s configured to determine that a value for a
corresponding chunk 1s a mapped value for the first attribute
based on a determination that a row 1n the third database
table for the corresponding chunk does not exist.

5. The method of claim 1, further comprising;:

recerving, by one or more processors, an indication to

store second mnformation associated with a correspond-
ing chunk, wherein the second information associated
with the corresponding chunk comprises data associ-
ated with a second attribute; and

determining that the data associated with the second

attribute corresponds to a value that 1s mapped to the
null value.

6. The method of claim 1, wherein the reducing the
fragmentation comprises forming a second database table,
and wherein the second database table does not have a
column for the first attribute at least 1n part as a result of a
transformation of the first database table.

7. The method of claim 6, wherein the forming of the
second database table comprises transforming the first data-
base table by removing from the first database table a former
column configured to store the data associated with the first
attribute, and a third database table 1s created and configured
to store only those values 1n the former column that were not
mapped to the null value.

8. The method of claam 1, wherein application level
software code 1s configured to associate the null value for the
first attribute with the mapped value.

US 10,572,450 B2

11

9. The method of claim 1, wherein the first attribute value
corresponds to a most common value for the attribute.

10. The method of claim 1, further comprising receiving
an indication to update a row 1n at least one of the one or
more other database tables, determining that an updated
attribute value comprising the update 1s associated with a
mapping to the null value, and deleting the row from the at
least one of the one or more other database tables based at
least 1in part on the determination.

11. A system, comprising:

one or more processors configured to:

store first information associated with a chunk 1n a first
database table, wherein the chunk 1s associated with
a file and the first information associated with the
chunk comprises data associated with a first attri-
bute, and wherein the storing of the first information
comprises storing a null value 1n the first database
table 1 place of a first attribute value, the first
attribute value being mapped to the null value 1n
connection with storing the first attribute value 1n the
first database table; and

reduce fragmentation associated with storing the null
value 1n place of the first attribute value 1n the first
database table, the fragmentation being reduced
based at least 1n part on by storing one or more
values for the first attribute in one or more other
database tables.

12. The system of claim 11, wherein the one or more
processors are further configured to determine, for the first
attribute, a value that 1s to be mapped to null.

13. The system of claim 11, wherein entries made 1n the
one or more other database tables are only for values of the
first attribute that are different from the first attribute value
that 1s mapped to the null value.

14. The system of claim 11, wherein the one or more
processors are further configured to:

receive an indication to store second information associ-

ated with a corresponding chunk, wherein the second
information associated with the corresponding chunk
comprises data associated with data associated with a
second attribute; and

determine that the data associated with a second attribute

corresponds to a value that 1s mapped to the null value.

15. The system of claam 11, wherein the reducing the
fragmentation comprises forming a second database table,

10

15

20

25

30

35

40

12

and wherein the second database table does not have a
column for the first attribute at least 1n part as a result of a
transformation of the first database table.

16. The system of claim 15, wherein the forming of the
second database table comprises transforming the first data-
base table by removing {rom the first database table a former
column configured to store the data associated with the first
attribute, and a third database table 1s created and configured
to store only those values 1n the former column that were not
mapped to the null value.

17. The system of claim 11, wheremn application level
soltware code 1s configured to associate the null value for the
first attribute with the mapped value.

18. The system of claim 11, wherein the first attribute
value corresponds to a most common value for the attribute.

19. The system of claim 11, wherein the one or more
processors 1s further configured to recerve an indication to
update a row 1n at least one of the one or more other database
tables, determine that an updated attribute value comprising
the update 1s associated with a mapping to the null value, and
delete the row from the at least one of the one or more other
database tables based at least in part on the determination.

20. A computer program product to store data, the com-
puter program product being embodied in a non-transitory
computer readable storage medium and comprising com-
puter instructions for:

storing, by one or more processors, first information

associlated with a chunk 1n a first database table,
wherein the chunk 1s associated with a file and the first
information associated with the chunk comprises data
associated with a first attribute, and wherein the storing,
of the first information comprises storing a null value 1n

the first database table in place of a first attribute value,
the first attribute value being mapped to the null value
in connection with storing the first attribute value 1n the
first database table; and

reducing, by one or more processors, Iragmentation asso-
ciated with storing the null value 1n place of the first
attribute value in the first database table, the fragmen-
tation being reduced based at least in part on by storing
one or more values for the first attribute 1n one or more
other database tables.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

