12 United States Patent

Greiner

US010572301B2

(10) Patent No.: US 10,572,301 B2
45) Date of Patent: *Feb. 25, 2020

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(63)

(1)

(52)

EXTRACT CPU TIME FACILITY

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventor: Dan F. Greiner, San Jose, CA (US)

Assignee: INTERNATIONAL BUSINESS

MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 213 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/726,772
Filed: Jun. 1, 2015

Prior Publication Data

US 2015/0261565 Al Sep. 17, 2015

Related U.S. Application Data

Continuation of application No. 13/953,206, filed on
Jul. 29, 2013, now Pat. No. 9,047,078, which 1s a

(Continued)
Int. CL.
GO6F 9/48 (2006.01)
GO6F 9/30 (2018.01)
GO6F 11/34 (2006.01)
U.S. CL
CpPC ... GO6I 9/4825 (2013.01); GO6F 9/30003
(2013.01); GO6F 9/3005 (2013.01);
(Continued)
PROCESSOR
102

PROCESSOR
104
PROCESSOR
108

102

(38) Field of Classification Search
CPC GO6F 11/3419; GO6F 9/30003; GOG6F
9/3005; GO6F 9/30087; GO6F 9/4825;
GO6F 9/4887;, GO6F 2201/88

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

4,388,688 A * 6/1983 Curlee, III GOG6F 9/4825
714/12
4,432,051 A * 2/1984 Bogaert GOG6F 9/52
717/127

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0076921 A2 2/1982
EP 0076921 Bl 12/1989
(Continued)

OTHER PUBLICATIONS

Evangelos Markatos “User-Level Atomic Operations”, 1996, pp. 1.
Online Referece : “http://archivlsi.ics.forth.gr/html_papers'HPCA97/
nodel7.html”.*

(Continued)

Primary Examiner — Meng A1 T An
Assistant Examiner — Willy W Huaracha

(74) Attorney, Agent, or Firm — Steven Chiu, Esq.;

Kevin P. Radigan, Esq.; Heslin Rothenberg Farley &
Mesiti P.C.

(57) ABSTRACT

An eflicient facility for determining resource usage, such as
a processor time used by tasks. The determination 1s per-
formed on behalf of user applications that do not require a
call to operating system services. The facility includes an
instruction that determines elapsed time and reports 1t to the
user as a single unit of operation.

14 Claims, 6 Drawing Sheets

100

oees

106

US 10,572,301 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/347,223, filed on
Jan. 10, 2012, now Pat. No. 8,516,485, which 1s a
continuation of application No. 11/437,220, filed on
May 19, 2006, now Pat. No. 8,117,614.

(52) U.S. CL
CPC ... GOGF 9/30087 (2013.01); GOGF 9/4887

(2013.01); GOGF 11/3419 (2013.01); GO6F
2201/88 (2013.01)

(58) Field of Classification Search
USPC e 718/100

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,497,022 A 1/1985 Cormier et al.

4,937,780 A * 6/1990 Geyerocooeeeeennnn G04F 10/00
713/502

5,047,928 A /1991 Wiedemer

5,072,376 A * 12/1991 Ellsworth GO6F 11/3423
713/502

5,265,249 A 11/1993 Kumamoto

5,274,833 A 12/1993 Shima et al.

5,440,750 A 8/1995 Kitai et al.

5,615,354 A 3/1997 Hill et al.

5,696,702 A 12/1997 Skinner et al.

5,937,199 A * 8/1999 Temple GO6F 13/24
710/262

5,963,914 A 10/1999 Skinner et al.

6,003,022 A 12/1999 Eberhard et al.

6,016,466 A 1/2000 Guinther et al.

6,128,710 A 10/2000 Greenspan et al.

6,247,170 Bl 6/2001 Grroux

6,385,637 B1* 5/2002 Petersc......... GO6F 9/4843

379/265.03

6,438,704 Bl 8/2002 Harris et al.

7,243,145 B1* 7/2007 Poortman GO6F 11/3419
709/221

7,272,832 B2 9/2007 Gardner

7,320,013 B2 1/2008 Mukund et al.

7426731 B2 9/2008 Findeisen

7,672,983 B2 3/2010 Printezis et al.
8,117,614 B2 2/2012 Grelner et al.

8,484,643 B2* 7/2013 Takatsu GO6F 11/3423
718/101

8,516,485 B2 8/2013 Greiner
2002/0026291 Al* 2/2002 Lee ...ccoooevevvinnnnn, GOO6F 11/3419
702/186

2003/0120854 Al 6/2003 Chen

2004/0267548 Al* 12/2004 Jones GOO6F 11/3409
705/34

2005/0086028 Al* 4/2005 Jones GO6F 9/30101
702/187

2005/0166204 Al 7/2005 Takatsu et al.

2005/0229176 Al 10/2005 Findeisen

2007/0150894 Al* 6/2007 Barsness GOG6F 9/45533
718/100

2007/0271566 Al 11/2007 Greiner

2009/0089123 Al 4/2009 Delcheva et al.

2013/0311757 Al 11/2013 Greiner

FOREIGN PATENT DOCUMENTS

EP 0953908 A2 11/1999
JP 8292956 A 11/1996
WO W0O9956205 4/1999
WO w00072143 Al 11/2000

OTHER PUBLICATTONS

Crowley, Charles, and Gary Klimowicz. “A note on procedure

timing.” ACM SIGPLAN Notices 14.11 (1979): 19-22.*

Zagha, Marco, et al., “Performance Analysis Using the MIPS

R10000 Performance Counters,” Proceedings of the 1996 ACM/
IEEE Conference on Supercomputing, Jan. 1996, pp. 1-20.

“Z/Architecture: Principles of Operation,” IBM Publication No.
SA22-7832-04, Fitth Edition, Sep. 2005, pp. 1-1144.

European Search Report for Application No. 08161018.0-2224/
1980944, dated Dec. 2008, pp. 1-5.

International Search Report for PCT/EP2006/069989 dated Dec. 20,
2006, pp. 1-3.

Combined Search and Examination Report under Sections 17 &
18(3) for Application No. GB0625722.4 dated Feb. 6, 2007, pp. 1-3.
Tomoyoshi, S. et al., “Table-based QoS Control for Embedded
Real-Time Systems,” C&C Media Research Laboratories, NEC
Corporation, May 1999, pp. 65-72.

O’Neill, P. et al., “Performance Statistics of a Time Sharing Net-

work at a Small University,” Communications of the ACM, Jan.
1980, vol. 23, No. 1, pp. 10-13.
Gehringer, Edward et al., “Run-Time Characteristics of a Simula-

tion Model,” Symposium on the Simulation of Computer Systems
IV, Aug. 1976, pp. 120-128.

Oflice Action for U.S. Appl. No. 11/437,220 dated Aug. 5, 2010, pp.
1-28.
Markatos, Evangelos, “User-Level Atomic Operations,” Nov. 1996,

p. 1.
Final Oflice Action for U.S. Appl. No. 11/437,220 dated Feb. 1,

2011, pp. 1-14.

Davies, Julian, “Clock Architecture and Management,” ACM SIGARCH
Computer Architecture, vol. 8, Issue 5, Aug. 1980, pp. 3-6.
Oflice Action for U.S. Appl. No. 13/953,206 dated Oct. 6, 2014, pp.
1-20.

Markatos et al., “User-Level DMA Without Operating System
Kernel Modification”, Third International Symposium on High-
Performance Computer Architecture, Feb. 1997 (11 pages).

* cited by examiner

U.S. Patent Feb. 25, 2020 Sheet 1 of 6 US 10,572,301 B2

100
PROCESSOR
104 106

PROCESSOR
108

102

fig. 17

U.S. Patent Feb. 25, 2020 Sheet 2 of 6 US 10,572,301 B2

et e Jood wik ey ww bl ey ey v Al mE S0 WF B A G i ek e Gm By W gl o i BN S5 W N Gy Sa B Gy N Ey aE W i w dau

DETERMINE RESOURCE USAGE :
ABSENT OPERATING SYSTEM :
SERVICES AND PRIVLEGED 202!

DETERMINE CURRENT
VALUE OF COUNTER

OPERATONS

U.S. Patent Feb. 25, 2020 Sheet 3 of 6 US 10,572,301 B2

304 300
ECTGC
opP oP
Hﬂﬂﬂ B
302a~- 302 308 810 3812

f'ig. 3

400
GENERAL REGISTER O

ELAPSED TIME SINCE LAST DISPATCH

0z f1g. 4a

410
GENERAL REGISTER 1

TASK TIME ACCUMULATOR

U.S. Patent Feb. 25, 2020 Sheet 4 of 6 US 10,572,301 B2

500
CURREEbfTT%AP?JT TIMER
6§02

SUBTRACT FROM
FIRST OPERAND
50
RE TURN DIFFERENCE

60
EXTRACT
ADDITIONAL INFORMATION

&
fi9. 5

4

6

US 10,572,301 B2

Sheet 5 of 6

Feb. 25, 2020

U.S. Patent

NINL NdD ONV
GNVY340 N33m138 IDONIYIJ30 | O8O

] IIIIIIIIIIIIIIIIIIIIII I..

i (39vu01S M) ONvY340 81

NOLLYY3d0 9103

U.S. Patent Feb. 25, 2020 Sheet 6 of 6 US 10,572,301 B2

COMPUTER
PROGRAM
PRODUCT

700

704

PROGRAM
CODE LOGIC

COMPUTER
USABLE
MEDIUM

20¢

fig. 7

Us 10,572,301 B2

1
EXTRACT CPU TIME FACILITY

This application 1s a continuation of commonly assigned,
U.S. Ser. No. 13/953,206, entitled “Extract CPU Time
Facility,” filed Jul. 29, 2013, now U.S. Pat. No. 9,047,078,
1ssued Jun. 2, 2015, which 1s a continuation of U.S. Ser. No.
13/347,223, entitled “Extract CPU Time Facility,” filed Jan.
10, 2012, now U.S. Pat. No. 8,516,483, 1ssued Aug. 20,
2013, which 1s a continuation of U.S. Ser. No. 11/437,220,
entitled “Extract CPU Time Facility,” filed May 19, 2006,
now U.S. Pat. No. 8,117,614, 1ssued Feb. 14, 2012, each of
which 1s hereby incorporated herein by reference 1n 1its
entirety.

BACKGROUND

This invention relates, 1n general, to processing within a
processing environment, and in particular, to a facility to
elliciently determine resource usage of tasks.

The determination of resource usage 1s critical for many
aspects of processing, including code refinement, billing,
etc. One resource for which utilization 1s determined 1s
processor time. In the z/Architecture®, offered by Interna-
tional Business Machines Corporation, a timer 1s provided
that measures elapsed central processing unit (CPU) time
and causes an 1terruption when a specified amount of time
has elapsed.

This timer 1s set by a Set CPU Timer (SPT) control
instruction, and the contents of the timer are mspected via a
Store CPU Time (STPT) control mnstruction. Both of these
instructions are privileged instructions to ensure the accu-
racy of the time, and as such are not usable by problem-state
programs (1.e., User programs).

In addition to the above, the zZ/OS® operating system,
offered by International Business Machines Corporation,
also provides a service routine referred to as TIMEUSED,
which 1s available to problem-state programs. A program or
operation calls the service to determine the amount of CPU
time a piece of code (e.g., task) has used. The TIMEUSED
service routine computes the elapsed time, adds the accu-
mulated time, and returns the value to the program. The
calculations of the TIMEUSED routine must be performed
while being disabled for interruptions, since any interruption
could adversely effect the results by manipulating the CPU
timer or the accumulator.

The TIMEUSED service routine i1s linked via program
call and program return instructions. This routine disables
for interruptions, obtains and releases a CPU lock, estab-
lishes a recovery environment, calculates the elapsed time,
and re-enables after having completed 1ts work, all of which
takes hundreds of CPU cycles. When attempting to measure
a small fragment of code, the overhead of the TIMEUSED

service routine can severely perturb what 1s being measured.

BRIEF SUMMARY

Based on the foregoing, a need exists for a facility to
cihiciently determine resource usage, such as elapsed CPU
time of a task. In particular, a need exists for a facility that
ciiciently determines resource usage of tasks without call-
ing operating system services. A need exists for the ability
of a user to efliciently determine resource usage.

The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a computer program product for executing a machine
istruction 1 a processing environment, the processing
environment supporting a privileged mode 1 which both

5

10

15

20

25

30

35

40

45

50

55

60

65

2

privileged and non-privileged instructions are executable
and a non-privileged mode in which only non-privileged
istructions are executable. The computer program product
including, for instance, a computer readable storage medium
readable by a processing circuit and storing instructions for
execution by the processing circuit for performing a method
including, for instance, obtaining a non-privileged extract
CPU time machine 1instruction to be executed, the non-
privileged extract CPU time machine instruction having an
operand field that at least partially identifies a memory
location to store a central processing unit (CPU) timer value
obtained by a prnivileged instruction; and executing the
non-privileged extract CPU time machine instruction, the
executing including obtaining the stored CPU timer value
from the memory location; obtaining a current CPU timer
value from a CPU timer; subtracting the current CPU timer
value from the stored CPU timer value; and storing the result
of the subtracting.

System and methods corresponding to the above-summa-
rized computer program product, as well as one or more
instructions, are also described and may be claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the mvention are described 1n detail herein
and are considered a part of the claimed 1nvention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particu-
larly pointed out and distinctly claimed as examples 1n the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the mnvention
are apparent from the following detailed description taken 1n
conjunction with the accompanying drawings in which:

FIG. 1 depicts one embodiment of a processing environ-
ment 1incorporating and using one or more aspects of the
present 1nvention;

FIG. 2 depicts one embodiment of the logic associated
with determining resource usage, in accordance with an
aspect of the present invention;

FIG. 3 depicts one example of a format of an Extract CPU
Time 1nstruction used 1n accordance with an aspect of the
present 1nvention;

FIG. 4a depicts one embodiment of the fields of general
register O used by the Extract CPU Time instruction of one
aspect of the present invention;

FIG. 4b depicts one embodiment of the fields of general
register 1 employed by the Extract CPU Time 1nstruction of
one aspect of the present invention;

FIG. 5 depicts one embodiment of the logic associated
with executing the Extract CPU Time instruction, in accor-
dance with an aspect of the present invention;

FIG. 6 1s a pictonal representation of the operations of the
Extract CPU Time instruction of one aspect of the present
invention; and

FIG. 7 depicts one example of a computer program

product 1ncorporating one or more aspects ol the present
invention.

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, a
tacility 1s provided to efliciently determine resource usage of
tasks executing within a processing environment. In one
example, a facility 1s provided in which a user (e.g., user
code, user application, user program, etc.) can accurately

Us 10,572,301 B2

3

measure the processor time required to execute a particular
code fragment (referred to herein as a task). This facility
determines the elapsed processor time without significant
overhead that has skewed such measurements, such as
overhead associated with using an operating system service
to determine the elapsed time.

One embodiment of a processing environment 1nCorpo-
rating and using one or more aspects of the present invention
1s described with reference to FIG. 1. Processing environ-
ment 100 1s, for instance, a multi-processing environment
including a plurality of processors 102 (e.g., central pro-
cessing units (CPUs)), a memory 104 (e.g., main memory)
and one or more 1mput/output (I/O) devices 106 coupled to
one another via, for example, one or more buses 108 or other
connections.

As one example, each processor 102 1s an IBM System
7™ gserver, offered by International Business Machines
Corporation, Armonk, N.Y., and one or more of the proces-
sors execute an operating system, such as z/OS®, also
offered by International Business Machines Corporation.
(IBM and z/OS are registered trademarks of International
Business Machines Corporation, Armonk, N.Y., USA. Other
names used herein may be registered trademarks, trade-
marks or product names of International Business Machines
Corporation or other companies.)

Processing within the processing environment 1s facili-
tated by the provision of a facility that enables the determi-
nation of resource usage, such as elapsed processor (e.g.,
CPU) time, without requiring the call of an operating system
service or without using privileged instructions or opera-
tions.

One embodiment of the logic associated with determining
resource usage 1s described with reference to FIG. 2. This
logic 1s executed by a processing unit of the processing
environment, 1n response to, for istance, a request by a user
application (e.g., non-privileged code). The resource usage
1s determined for a task absent a call to an operating system
service and without using privileged operations, STEP 200.

Initially, a current value of a counter used to track the
resource for the task, such as time used, 1s determined by
reading the counter value, as instructed by the logic, STEP
202. The determined value 1s then subtracted from a saved
value, which 1s, for instance, the value of the counter when
it was started, STEP 204. In one example, the counter
decrements as the resource 1s used by the task and the
current value of the counter 1s read, in response to the
request. The result of the subtraction represents the amount
of resource used by the task for this time interval, which 1s
defined by the beginning and ending values of the counter,
STEP 206.

In one example, the operations used to determine resource
usage are performed by an instruction. As a specific
example, an instruction 1s provided to determine an amount
of processor time used by a task. The instruction can be
implemented 1n many architectures and may be emulated.
As examples, the instruction 1s executed 1n hardware by a
processor; or by emulation of an instruction set that includes
this instruction, by software executing on a processing unit
having a different native instruction set. In one particular
example, the instruction 1s implemented 1n the z/Architec-
ture, oflered by International Business Machines Corpora-

tion, and 1s referred to herein as an Extract CPU Time
(ECTG) 1nstruction.

An Extract CPU Time instruction 300 (FIG. 3) 15 a
non-privileged instruction, and includes, for instance, an
operation code 302a, 3026 designating the Extract CPU
Time instruction; a general register 304, the contents of

10

15

20

25

30

35

40

45

50

55

60

65

4

which specily a third operand used by the 1nstruction; a base
register 306, which may be any of sixteen general purpose
registers of the processing unit and includes a portion of an
address of a first operand 1n storage used by the instruction;
a displacement value 308, which 1s, for instance, an
unsigned 12 bit binary number added to the contents of
register 306 to provide the address of the first operand in
storage; a base register 310, which again 1s any of the sixteen
general purpose registers 1n the processing unit and includes
a portion of an address of a second operand 1n storage used
by the instruction; and a displacement value 312, which 1s
added to the contents of register 310 to provide the address
of the second operand 1n storage for the instruction.

In addition to the registers described above, the Extract
CPU Time instruction also implicitly uses two general
registers that do not have to be encoded 1n the instruction,
but are used by the instruction. These registers include
general register O and general register 1.

General register 0 (400, FIG. 4a) includes, for instance,
the elapsed time since last dispatch of the task 402. It 1s the
difference resulting from subtracting the value of the current
CPU timer from the first operand, the contents of which
include the value of the CPU timer at task dispatch.

General register 1 (410; FIG. 45) includes, for mstance, a
value of the task time accumulator when the task was
dispatched 412. This i1s the contents of the second operand
of the instruction.

Although examples of registers are described above, each
of the registers may include more, less or diflerent infor-
mation. Further, each may include additional data not nec-
essarily needed 1 one or more aspects ol the present
invention. The specific location within the registers for the
information 1s implementation and/or architecture depen-
dent.

One embodiment of the logic associated with the Extract
CPU Time 1nstruction 1s described with reference to FIG. 5.
As one example, this mstruction i1s executed by a processor
of the processing environment on behalf of a non-privileged
user application (e.g., 1n problem state) that requests the
operation as it relates to a particular task. The Extract CPU
Time 1nstruction 1s a non-privileged instruction that does not
invoke an operating system service. It does, however,
assume 1n this embodiment, that the CPU timer (e.g.,
counter, register, etc.) 1s set when a task 1s dispatched. In
embodiments, the CPU timer provides a means for measur-
ing elapsed CPU time and for causing an interruption when
a specified amount of time has elapsed. In one example, the
timer 1s set by a Set CPU Timer (STP) instruction, which 1s
a privileged instruction described in z/Architecture: Prin-
ciples of Operation, IBM® Publication No. SA22-7832-4,
Sep. 2005, which 1s hereby incorporated herein by reference
in 1ts entirety. It may also be set by any other means. The
timer 1s set to a given value which represents a specified time
slice for execution of the task (e.g., 10-12 ms).

In response to executing the Extract CPU Time 1nstruc-
tion, the current value of the CPU timer 1s determined, STEP
500. For instance, the timer decrements as the processor
processes the task, and 1n response to executing the Extract
CPU Time 1nstruction, the value of the timer, at that time, 1s
observed. This includes, for instance, reading the register
that holds the timer. In one embodiment, the value of the
timer can be extracted at any time, including prior to the end
of the time slice provided for the task and without waiting
for an interruption of the timer.

The current value of the CPU timer 1s then subtracted
from the first operand of the mstruction, STEP 502. The first
operand represents the value of the CPU timer at the time the

Us 10,572,301 B2

S

task was dispatched. For example, when a task 1s dispatched,
the CPU timer 1s set to a chosen value (e.g., 10-12 ms) and
that value 1s stored 1n storage (e.g., PSDATSAV). Thus,
PSADTSAV-current CPU Timer=elapsed processor time
since last dispatch of the task. This value 1s placed in general

register 0, STEP 504.

In addition to the above, additional information 1s also
extracted, 1n one embodiment, STEP 506. As one example,
the second operand of the mstruction 1s placed unchanged in
general register 1. The second operand includes, for
instance, an address of a task control block (e.g., TCBT-
TUSD) that maintains the previously used amount of total
CPU time for the task. By extracting and placing this
information 1n general register 1, the user application 1s able
to determine the total amount of processor time used thus
tar, by adding the results of general register O and general
register 1.

Also, 1n one embodiment, information at the third operand
location of the instruction replaces the contents of general
register R;. This information includes various types of
information, including but not limited to, tlags designating
information important or desired for the task, a scaling factor
usable 1 adjusting the processor time for billing purposes,
as well as other types of information.

A pictorial representation of the operations 1s depicted 1n
FIG. 6. B, D, (600) reference a first operand 1n storage 602.
Subtracted from the contents of the first operand 604 1s the
current value of the CPU timer 606. The diflerence 1s stored
in general register O (608). B,D, (610) reference a second
operand 1n storage 612, the contents of which are placed
unchanged in general register 1 (614). Additionally, R, (616)
references a third operand 1n storage 618, the contents of
which are placed unchanged 1n general register R, (620).

In one embodiment, the above operations all occur within
the same unit of operation, without the possibility of being,
interrupted. By performing these operations atomically, the
values retain their meanings.

Described 1n detail above 1s a facility to efliciently deter-
mine resource usage without the overhead associated with
costly operating system services and/or without using privi-
leged operations. In particular, an Extract CPU Time facility
1s described that enables the eflicient determination of the
amount of CPU time consumed, without the costly overhead
of calling an operating system service and/or without 1ssuing
Program Call and/or Program Return instructions. This
facility enables an application program to accurately mea-
sure the CPU time required to execute a particular code
fragment without the significant overhead that has tradition-
ally skewed such measurements. The measurements are
useiul 1n many aspects, including, but not limited to, fine
tuning of application code and billing. The facility advan-
tageously enables an application program to efliciently
determine the amount of task time used at any given
moment, and not just at the end of a time slice. This allows
the program to ellectively determine instruction timings in
the microsecond or nanosecond range without having to wait
until milliseconds have elapsed.

One or more aspects of the present invention can be
included 1n an article of manufacture (e.g., one or more
computer program products) having, for instance, computer
usable media. The media has therein, for instance, computer
readable program code means or logic (e.g., instructions,
code, commands, etc.) to provide and facilitate the capabili-
ties of the present invention. The article of manufacture can
be included as a part of a computer system or sold separately.

One example of an article of manufacture or a computer
program product mcorporating one or more aspects of the

10

15

20

25

30

35

40

45

50

55

60

65

6

present mvention 1s described with reference to FIG. 7. A
computer program product 700 includes, for instance, one or
more computer usable media 702 to store computer readable
program code means or logic 704 thereon to provide and
facilitate one or more aspects of the present invention. The
medium can be an electronic, magnetic, optical, electromag-
netic, inirared, or semiconductor system (or apparatus or
device) or a propagation medium. Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Examples
of optical disks include compact disk-read only memory
(CD-ROM), compact disk-read/write (CD-R/W) and DVD.

A sequence of program instructions or a logical assembly
ol one or more 1nterrelated modules defined by one or more
computer readable program code means or logic direct the
performance of one or more aspects of the present invention.

Although one or more examples have been provided
herein, these are only examples. Many variations are pos-
sible without departing from the spirit of the present mnven-
tion. For instance, processing environments other than the
example provided herein may include and/or benefit from
one or more aspects of the present invention. As an example,
one or more processors can be other than IBM System z™
processors and/or execute operating systems other than
7z/OS®. Further, the environment need not be based on the
7/ Architecture, but 1nstead, can be based on other architec-
tures, oflered by, for instance, Intel, Sun Microsystems, as
well as others. Yet further, the instruction can include other
registers or enftities other than registers to designate infor-
mation. Further, different data and/or positioning within the
registers and/or entities are possible. Still further, the timer
can be other than counters or registers. Any mechanism can
be used to determine resource usage. The term “timer’” 1s
meant to mnclude a broad spectrum of mechanisms, 1nclud-
ing, but not limited to, counters and registers. Further,
although 1n the embodiments herein, the timer decrements,
in other embodiments, it may increment and/or follow some
pattern. Many other variations exist.

Moreover, an environment may include an emulator (e.g.,
soltware or other emulation mechanisms), 1n which a par-
ticular architecture or subset thereof 1s emulated. In such an
environment, one or more emulation functions of the emu-
lator can implement one or more aspects of the present
invention, even though a computer executing the emulator
may have a diflerent archutecture than the capabilities being,
emulated. As one example, 1n emulation mode, the specific
instruction or operation being emulated 1s decoded, and an
appropriate emulation function 1s built to implement the
individual 1nstruction or operation.

In an emulation environment, a host computer includes,
for 1stance, a memory to store instructions and data; an
instruction fetch unit to fetch mstructions from memory and
to optionally, provide local buflering for the fetched instruc-
fion; an 1instruction decode unit to receive the instruction
fetch unit and to determine the type of instructions that have
been fetched; and an instruction execution unit to execute
the instructions. Execution may include loading data into a
register for memory; storing data back to memory from a
register; or performing some type of arnthmetic or logical
operation, as determined by the decode umit. In one example,
cach unit 1s 1mplemented i1n soiftware. For instance, the
operations being performed by the units are implemented as
one or more subroutines within emulator software.

Further, a data processing system suitable for storing
and/or executing program code 1s usable that includes at

Us 10,572,301 B2

7

least one processor coupled directly or indirectly to memory
clements through a system bus. The memory elements
include, for istance, local memory employed during actual
execution of the program code, bulk storage, and cache
memory which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution.
Input/Output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening I/O
controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems and Ethernet cards are
just a few of the available types of network adapters.
As used herein, the term “operand” not only includes
and/or refers to operands of an instruction, but also other
operands, as well as parameters or arguments passed
between functions of programs, or any other data that 1s
passed between entities. Further, a task includes any portion
of code, including an entire application or program or any
portion thereof.
The capabilities of one or more aspects of the present
invention can be implemented 1n software, firmware, hard-
ware or some combination thereof. At least one program
storage device readable by a machine embodying at least
one program ol instructions executable by the machine to
perform the capabilities of the present invention can be
provided.
The flow diagrams depicted herein are just examples.
There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be
performed in a differing order, or steps may be added,
deleted or modified. All of these variations are considered a
part of the claimed 1nvention.
Although preferred embodiments have been depicted and
described 1n detail herein, 1t will be apparent to those skilled
in the relevant art that various modifications, additions,
substitutions and the like can be made without departing
from the spirit of the invention and these are therefore
considered to be within the scope of the invention as defined
in the following claims.
What 1s claimed 1s:
1. A computer program product for determiming elapsed
processor time of tasks executing in a processing environ-
ment without calling an operating system service, the pro-
cessing environment supporting both privileged instructions
and non-privileged instructions, the computer program prod-
uct comprising:
a non-transitory computer readable storage medium read-
able by a processing circuit and storing instructions for
execution by the processing circuit for performing a
method comprising:
receiving, from a user application, which 1s a non-
privileged code, a request to determine an elapsed
processor time for a task;

obtaining, based on the request, an extract central
processing unit (CPU) time machine instruction to
be executed to determine the elapsed processor time
of the task, the extract CPU time machine instruction
being a non-privileged instruction and including at
least three or more fields:

a {irst one of the at least three or more fields to specity
an operation code indicating a non-privileged extract
CPU operation;

10

15

20

25

30

35

40

45

50

55

60

65

8

a second one of the at least three or more fields 1s to be
used to 1dentify an address of a memory location that
stores an 1nitial value of a CPU timer, wherein the
initial value of the CPU timer 1s set and stored in the
memory location based on dispatching the task and
by executing a privileged Set CPU Timer machine
instruction;
a third one of the at least three or more fields 1s to be
used to 1dentily another memory location to be used
to obtain a value that represents previously used total
CPU time for the task;
another field of the at least three or more fields 1s to be
used to specily a scaling factor usable 1n adjusting
processor time; and
executing the extract CPU time machine instruction,
said executing comprising:
obtaining from the memory location the 1nitial value
of the CPU timer stored by the privileged Set CPU
Timer machine instruction;

obtaining a current value of the CPU timer;

subtracting the current value of the CPU timer from
the initial value of the CPU timer to obtain a
result;

providing 1n a location specified by the extract CPU
time machine instruction the scaling factor to be
used to adjust processor time for billing; and

storing the result of the subtracting, the result indi-
cating an amount of CPU time used by the task
since a last dispatch of the task, wherein the
obtaining the initial value, the obtaining the cur-
rent value, the subtracting, the providing and the
storing are performed within a same unit of opera-
tion without being interrupted.

2. The computer program product of claim 1, wherein the
CPU timer 1s configured to be decremented as time elapses
and 1s configured to cause an interrupt 1f a threshold value
1s reached.

3. The computer program product of claim 1, wherein the
method 1s performed on a processing unit that 1s emulating
the execution of the extract CPU time machine instruction.

4. The computer program product of claim 1, wherein the
CPU timer 1s a counter set based on dispatching the task.

5. The computer program product of claim 1, wherein the
CPU timer 1s a register set based on dispatching the task.

6. A computer system for determining elapsed processor
time of tasks executing in a processing environment without
calling an operating system service, the processing environ-
ment supporting both privileged 1nstructions and non-privi-
leged instructions, the computer system comprising:

a memory; and

a processor in communications with the memory, wherein

the computer system 1s configured to perform a

method, said method comprising:

receiving, from a user application, which 1s a non-
privileged code, a request to determine and elapsed
processor time for a task;

obtaining, based on the request, an extract central
processing unit (CPU) time machine instruction to
be executed to determine the elapsed processor time
of the task, the extract CPU time machine instruction
being a non-privileged instruction and including at
least three or more fields;

a first one of the at least three or more fields to specity
an operation code indicating a non-privileged extract
CPU operation;

a second one of the at least three or more fields 1s to be
used to 1dentity an address of a memory location that

Us 10,572,301 B2

9

stores an initial value of a CPU timer, wherein the
imitial value of the CPU timer 1s set and stored in the
member location based on dispatching the task and
by executing a privileged Set CPU Timer machine
instruction;
a third one of the at least three or more fields 1s to be
used to 1dentily another memory location to be used
to obtain a value that represents previously used total
CPU time for the task;:
another field of the at least three or more fields 1s to be
used to specily a scaling factor usable 1n adjusting
processor time; and
executing the extract CPU time machine instruction,
said executing comprising:
obtaining from the memory location the initial value
of the CPU timer stored by the privileged Set CPU
Timer instruction;

obtaining a current value of the CPU timer;

subtracting the current value of the CPU timer from
the initial value of the CPU timer to obtain a
result;

providing 1n a location specified by the extract CPU
time machine instruction the scaling factor to be
used to adjust processor time for billing; and

storing the result of the subtracting, the result 1ndi-
cating an amount of CPU time used by the task
since a last dispatch of the task, wherein the
obtaining the 1initial value, the obtaining the cur-
rent value, the subtracting, the providing and the
storing are performed within a same unit of opera-
tion without being interrupted.

7. The computer system of claim 6, wherein the CPU
timer 1s configured to be decremented as time elapses and 1s
configured to cause an interrupt i1 a threshold value is
reached.

8. The computer system of claim 6, wherein the method
1s performed on a processing unit that 1s emulating the
execution of the extract CPU time machine instruction.

9. The computer system of claim 6, wherein the CPU
timer 1s a counter set based on dispatching the task.

10. The computer system of claim 6, wherein the CPU
timer 1s a register set based on dispatching the task.

11. A method of determining resource usage of tasks
executing in a processing environment, the processing envi-
ronment supporting both privileged instructions and non-
privileged instructions, the method comprising:

receiving, from a user application, which 1s a non-privi-

leged code, a request to determine an elapsed processor

time for a task;

obtaining, based on the request, an extract central pro-

cessing umt (CPU) time machine instruction to be

10

15

20

25

30

35

40

45

50

10

executed to determine the elapsed processor time of the
task, the extract CPU time machine instruction being a
non-privileged instruction and including at least three
or more fields;

a first one of the at least three or more fields to specily an
operation code indicating a non-privileged extract CPU
operation;

a second one of the at least three or more fields 1s to be
used to 1dentily an address of a memory location that
stores an 1nitial value of a CPU timer, wherein the
initial value of the CPU timer 1s set and stored 1n the
memory location based on dispatching the task and by
executing a privileged Set CPU Timer machine instruc-
tion;

a third one of the at least three or more fields 1s to be used
to 1dentily another memory location to be used to
obtain a value that represents previously used total
CPU time for the task;:

another field of the at least three or more fields 1s to be
used to specily a scaling factor usable 1in adjusting
processor time; and

executing the extract CPU time machine instruction, said
executing comprising;:
obtaining from the memory location the 1itial value of

the CPU timer stored by the privileged Set CPU
Timer machine instruction;
obtaining a current value of the CPU timer;
subtracting the current value of the CPU timer from the
initial value of the CPU timer to obtain a result;
providing in a location specified by the extract CPU
time machine instruction the scaling factor to be used
to adjust processor time for billing; and

storing the result of the subtracting, the result indicat-
ing an amount of CPU time used by the task since a
last dispatch of the task, wherein the obtaining the
imitial value, the obtaiming the current value, the
subtracting, the providing and the storing are per-
formed within a same unit of operation without being,
interrupted.

12. The method of claim 11, wherein the CPU timer 1s
configured to be decremented as time elapses and 1s con-
figured to cause an interrupt if a threshold value 1s reached.

13. The method of claim 11, wherein the method 1s
performed on a processing unit that 1s emulating the execu-
tion of the extract CPU time machine instruction.

14. The computer-implemented method of claim 11,
wherein the CPU timer 1s one of a counter or a register set
based on dispatching the task.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

