US010572151B2

a2 United States Patent 10) Patent No.: US 10,572,151 B2

Chaluvaiah et al. 45) Date of Patent: Feb. 25, 2020
(54) SYSTEM AND METHOD TO ALLOCATE (56) References Cited
AVAILABLE HIGH BANDWIDTH MEMORY .
TO UEFI POOIL SERVICES U.S. PATENT DOCUMENTS
: _ 7,752,427 B2 7/2010 Lambrache et al.
(71) Applicant: DELL PRODUCTS, LP, Round Rock, 0507581 B2 11/2016 Butcher ct al
1X (US) 2003/0023812 Al 1/2003 Nalawadi et al.
2004/0133790 Al 7/2004 Hensley
(72) Inventors: Swamy Kadaba Chaluvaiah, Austin, 2004/0153733 Al 82004 Lin
TX (US); David K. Chalfant, Round 2006/0123223 Al 6/2006 Maytield et al.
Rock, TX (US) 2012/0246385 Al 9/2012 Dhandapani et al.
’ 2013/0111180 A1* 5/2013 Wong GO6F 12/0246
: 711/173
(73) Assignee: Dell Products, LP, Round Rock, TX 2014/0025880 Al1* 1/2014 Yu ... GO6F 12/0638
(US) 711/105
2014/0365755 A1 12/2014 Liu et al.
(*) Notice: Subject to any disclaimer, the term of this 2015/0089238 Al 3/2015 Lewis
patent is extended or adjusted under 35 2016/0140039 AL* 52016 Sodani GOOF ’17’21/1()/??2
U.5.C. 154(b) by 205 days. 2017/0270301 Al* 9/2017 Vidyadhara ... GOGF 9/4411
(21) Appl. No.: 15/645,702 * cited by examiner
(22) Filed: Jul. 10, 2017 Primary Examiner — Aracelis Ruiz
_ o (74) Attorney, Agent, or Firm — Larson Newman, LLP
(65) Prior Publication Data
US 2019/0012088 A1 Jan. 10, 2019 (57) ABSTRACT
An miformation handling system includes a dynamic random
(51) Int. Cl. access memory, and a processor. The dynamic random
Goot 3/06 (20006.01) access memory includes a lower memory portion and multi-
GOot 9/4401 (2018.01) channel dynamic random access memory portion. The
(52) U.S. Cl. dynamic random access memory 1s allocated to operations
CPC ..., GO6F 3/0607 (2013.01); GO6F 3/0608 ol a boot process of the information handling system. The

(2013.01); GO6F 3/0631 (2013.01); GOOF processor communicates with the dynamic random access
3/0685 (2013.01); GO6E 9/4401 (2013.01); memory. The processor determines whether a fast memory
GO6F 9/4406 (2013.01); GO6F 9/4411 allocation service 1s detected 1n the boot process. In response
(2013.01) to the fast memory allocation being detected, the processor

(58) Field of Classification Search allocates the multi-channel dynamic random access memory

CPC GO6F 3/0607; GO6F 3/0608; GO6F 3/0631; portion of the dynamic random access memory to operations
GOG6F 3/0685; GO6F 9/4401; GOGF of the boot process.

9/4406; GO6F 9/4411
See application file for complete search history. 20 Claims, 5 Drawing Sheets

400

(./

402 Start a baot prasess of the information
handling system

Dafect
fast memory
allacation
SErVICE?

Allocate iower portion of & dynamic
random access memory to
operations of the boot process

408~ -
. . Perfarm additional
412 Allocate a malti-channel portion aperations of the
of the DRAM {0 |ater operations boot process
of the boot process

A S

Perform additional operations
of the boot process

416-\ Deallocate the muiti-channel portion
of the dynamic random accass
mamory from the boot process

41 B-\- Allocate the multi-channel portion of the

dynamic random access memory
portion 1o an operating system

of the infermation handling system

y

42
£nd the boot process

U.S. Patent Feb. 25, 2020 Sheet 1 of 5 US 10,572,151 B2

100

Service Processor
110

Memory
132 UM Service
120 122
Disk Update Module 124
138 135
information
Handling System B,II?ZS
102 —

Network
160

Client

N

Devices Host 15
162

FIG. 1

U.S. Patent Feb. 25, 2020 Sheet 2 of 5 US 10,572,151 B2

204

MCDRAM
208

DRAM 200

' 206
202

FIG. 2

=F1 Driver

U.S. Patent Feb. 25, 2020 Sheet 3 of 5
| | I
312l l |
Pre- l | I
Verifier | |
I 322' l
| I I
(e '
y 324 |
I 332 |
| |
| I
| ™

326 |

Chipset |
Init. |

328 |

. Board |
falid |

321 |

Memory l
Allocation |

Security Pre-Eii
initialization
(SEC) (PEL
310G 320
00

Dispatcher

334 | 342
— | '
Device/Bus/ || Boot
Service Drivers | Manager
336 |

System SMM/

STM
(VIMM)

Device/Bus/
Service SMM

(VMM)

Boot Device
Salaection
(BDS)

Driver Execution
Cnvironment
(DXE)

330

340

FIG. 3

OS Boot
Loader

US 10,572,151 B2

392

|
' 367
| |
l QS Run
Time
|
|
Transient Run Time
System Load
{(TSL) (RT)

350

360

U.S. Patent Feb. 25, 2020 Sheet 4 of 5 US 10,572,151 B2

400

402 Start a boot process of the information
handling system

404

Detect
fast memory
atlocation
service?

410

High
bandwidth
memory
available?

Allocate lower portion of a dynamic
random access memory to
operations of the boot process

ves 408

Perform additional
412 Allocate a multi-channel portion

of the DRAM to later operations
of the boot process

Perform additional operations
of the boot process

416 Deazallocate the muiti-channel portion
of the dynamic random access
memory from the boot process

operations of the
boot process

414

418

Allocate the muiti-channel portion of the
dynamic random access memory
portion to an operating system
of the information handling system

420
End the boot process

FIG. 4

U.S. Patent Feb. 25, 2020 Sheet 5 of 5 US 10,572,151 B2

J 500

502~ 504

R USB 514
508 Bus ||a—n o .
510] Keyboard

UsB K= 010

51
ATA A 024
520 Bus|l. « Hard |
o o] T
52 =) CD ROM
SPIN2C -
Bus ”530
) VGA
540
Network
S Interface F I G' 5
550

e—| WLAN

UsS 10,572,151 B2

1

SYSTEM AND METHOD TO ALLOCATE
AVAILABLE HIGH BANDWIDTH MEMORY
TO UEFI POOL SERVICES

FIELD OF THE DISCLOSURE

The present disclosure generally relates to information
handling systems, and more particularly relates to allocating
available high bandwidth memory to UEFI pool services.

BACKGROUND

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store mmformation. One option 1s an mformation han-
dling system. An information handling system generally
processes, compiles, stores, or communicates information or
data for business, personal, or other purposes. Technology
and information handling needs and requirements can vary
between different applications. Thus information handling
systems can also vary regarding what information 1s
handled, how the information 1s handled, how much infor-
mation 1s processed, stored, or communicated, and how
quickly and efhliciently the information can be processed,
stored, or communicated. The wvariations in nformation
handling systems allow information handling systems to be
general or configured for a specific user or specific use such
as financial transaction processing, airline reservations,
enterprise data storage, or global commumications. In addi-
tion, information handling systems can include a variety of
hardware and software resources that can be configured to
process, store, and communicate information and can
include one or more computer systems, graphics interface
systems, data storage systems, networking systems, and
mobile communication systems. Information handling sys-
tems can also implement various virtualized architectures.
Data and voice communications among information han-
dling systems may be via networks that are wired, wireless,
or some combination.

SUMMARY

An information handling system may include a dynamic
random access memory and a processor. The dynamic
random access memory includes a lower memory portion
and multi-channel dynamic random access memory portion.
The dynamic random access memory 1s allocated to opera-
tions ol a boot process of the information handling system.

The processor communicates with the dynamic random
access memory, and determines whether a fast memory
allocation service 1s detected 1n the boot process. In response
to the fast memory allocation being detected, the processor
allocates the multi-channel dynamic random access memory
portion of the dynamic random access memory to operations
of the boot process.

BRIEF DESCRIPTION OF THE DRAWINGS

It will be appreciated that for simplicity and clarity of
illustration, elements 1llustrated 1n the Figures are not nec-
essarily drawn to scale. For example, the dimensions of
some elements may be exaggerated relative to other ele-
ments. Embodiments incorporating teachings of the present
disclosure are shown and described with respect to the
drawings herein, 1n which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1s block diagram of a system that includes multiple
storage devices to store copies of an operating system boot

image according to at least one embodiment of the disclo-
sure;

FIG. 2 1s a block diagram of a dynamic random access
memory of the information handling system according to at
least one embodiment of the present disclosure;

FIG. 3 1s a boot phase diagram for the information
handling system according to at least one embodiment of the
present disclosure;

FIG. 4 1s a flow diagram of a method for allocating
available high bandwidth memory to UEFI pool services
according to at least one embodiment of the present disclo-
sure; and

FIG. 5 1s a block diagram of a general information
handling system according to an embodiment of the present
disclosure.

The use of the same reference symbols 1n different draw-
ings indicates similar or 1dentical items.

DETAILED DESCRIPTION OF THE DRAWINGS

The following description 1n combination with the Fig-
ures 1s provided to assist in understanding the teachings
disclosed herein. The description 1s focused on specific
implementations and embodiments of the teachings, and 1s
provided to assist in describing the teachings. This focus
should not be mterpreted as a limitation on the scope or
applicability of the teachings.

An information handling system may include a dynamic
random access memory (DRAM) and a processor. The
DRAM may include memory, such as synchronous dynamic
random access memory (SDRAM), located behind an exter-
nal data bus, such as a double data rate (DDR) bus. The
DRAM may optionally include additional high bandwidth,
multi-channel dynamic random access memory
(MCDRAM) located internally on the processor package
itself. The processor can communicate with the DRAM, and
can determine whether optional, high-bandwidth, on-pack-
age, MCDRAM 1s detected. In addition, the processor
determines 1f a fast memory allocation service 1s supported
during the boot process. If both a fast memory allocation
service and high-bandwidth, on-package memory are
detected, the processor can then allocate the high-band-
width, on-package, MCDRAM portion of the overall
SDRAM to operations of the boot process using the fast
memory allocation service as described 1n FIGS. 1-4 below.

FIG. 1 shows a system 100 including an information
handling system 102. For purposes of this disclosure, an
information handling system may include any instrumental-
ity or aggregate of instrumentalities operable to compute,
classily, process, transmit, receive, retrieve, originate,
switch, store, display, manifest, detect, record, reproduce,
handle, or utilize any form of information, mtelligence, or
data for business, scientific, control, entertainment, or other
purposes. For example, an information handling system may
be a personal computer, a PDA, a consumer electronic
device, a network server or storage device, a switch router
or other network communication device, or any other suit-
able device and may vary in size, shape, performance,
functionality, and price. The information handling system
may include memory, one or more processing resources such
as a central processing umt (CPU) or hardware or software
control logic. Additional components of the information
handling system may include one or more storage devices,
one or more communications ports for communicating with
external devices as well as various other 1/O devices, such

UsS 10,572,151 B2

3

as a keyboard, a mouse, and a video display. The information
handling system may also include one or more buses oper-
able to transmit communications between the various hard-
ware components.

The information handling system 102, host 152, and client
devices 162. In an embodiment, the iformation handling
system 102 can be a server. The information handling
system 102 1ncludes a service processor 110, a basic iput/
output system (BIOS) 112, operating system (OS) 130, a
memory 132, a network interface card (MC) 134, a central
processing unit (CPU) 136, a disk 138, and a dynamic
random access memory (DRAM) 140. In an embodiment,
the DRAM 140 can be an on-chip memory for the CPU 136.
In an embodiment, the DRAM 140 can include a multi-
channel DRAM (MCDRAM) portion, as shown in FIG. 2.

FIG. 2 illustrates a DRAM 200 according to at least one
embodiment of the present disclosure. The DRAM 200
includes a lowest memory location 202, a top memory
location 204, a lowest memory portion 206, and a
MCDRAM portion 208. In an embodiment, the DRAM 200
can be the DRAM 140 of FIG. 1. In an embodiment, the
lower portion 206 of DRAM 200 can be a slower memory
portion of DRAM 200 as compared to the MCDRAM
portion 208. In an embodiment, the MCDRAM portion 208
can be a high bandwidth, stacked-die, technology used for
processor on-package memory. In this situation, operations
utilizing the MCDRAM portion 208 can be performed five
times faster than the lower portion 206. The DRAM 140 can
be utilized by the CPU 136 while the OS 130 1s being
executed and while a boot process of the information
handling system 102 1s being performed, as will be dis-
cussed with respect to FIG. 3 below.

Referring back to FIG. 1, the service processor 110
includes a non-volatile random access memory (NVRAM)
120, a CPU 122, a NIC 124, and an update module 133. For
purposes of this application, the term NVRAM refers to all
non-volatile memory technologies. The service processor
110 represents an integrated device or devices that 1s utilized
to provide out-of-band management functions to the infor-
mation handling system 102 that includes management
system, and can include a chassis management controller
(CMC), a baseboard management controller (BMC), a man-
agement engine (ME), an integral part of a Dell remote
access controller (DRAC), or an mtegrated Dell remote
access controller 1DRAC), which are systems management
hardware and software solutions operable to provide remote
management capabilities and that operate according to the
an Intelligent Platform Management Interface (IPMI) speci-
fication, such as an IPMI Specification V2.0.

The service processor 110 of the information handling
system 102 1s connected to the host 152 through network
150, and to other the client devices 162 through the network
160. In some embodiments, the network 150 may comprise
an out-oi-band management network and the network 160
may comprise a client, OS, or in-band network. Other client
devices 162 may be a client device communicating with
information handling system 102 or may be another server
of the system 100 that operates information handling system
102.

The service processor 110 may be any system, device,
apparatus or component of information handling system 102
configured to permit an administrator or other person to
remotely monitor and/or remotely manage information han-
dling system 102 (for example, by an mnformation handling
system remotely connected to information handling system
102 via the network 1350) regardless of whether information
handling system 102 1s powered on and/or has an operating,

10

15

20

25

30

35

40

45

50

55

60

65

4

system 1nstalled thereon. In certain embodiments, the ser-
vice processor 110 may allow for out-of-band control of
information handling system 102. Out-of-band communica-
tions refer to communications that may bypass an operating
system, such as OS 130. The communications may utilize
hardware resources and components that are independent of
an operating system. In the embodiment of FIG. 1, network
communications to and from the service processor 110 are
sent through the NIC 124 that 1s physically 1solated from the
in band communication through network interface card 134.
The NIC 124 may serve as an interface between the service
processor 110 and the network 150. The NIC 124 may
enable the service processor 110 to communicate over the
network 150 using any suitable transmission protocol and/or
standard.

In some embodiments, an administrator may be able to
diagnose problems that have caused failure of information
handling system 102. In the same or alternative embodi-
ments, the service processor 110 may allow an administrator
to remotely manage one or more parameters associated with
operation of information handling system 102 such as power
usage, processor allocation, memory allocation, or security
privileges.

CPU 122 may be communicatively coupled to NVRAM
120, the NIC 124, and update module 135. CPU 122 may
also be electrically coupled to a power source dedicated to
the service processor 110. CPU 122 may include any system,
device, or apparatus configured to interpret and/or execute
program 1instructions and/or process data, and may include,
without limitation a microprocessor, microcontroller, or any
other digital or analog circuitry configured to interpret
and/or execute program instructions and/or process data. In
some embodiments, CPU 122 may interpret and/or execute
program 1nstructions and/or process data stored in NVRAM
120, update module 135, and/or another component of the
service processor 110.

Update module 135 may obtain code for use on informa-
tion handling system 102. For purposes of this disclosure,
code includes software, firmware, and other torms of com-
puter programs. Update module 135 may make the code
available to information handling system 102. The code may
be updates of previously installed code or may be for 1nitial
installation. Some of the code may be downloaded from the
host 152 over the network 150. Update module 135 may
constitute an advanced embedded system management tool
for automated updates of system code, code 1nventory, code
rollback (restoration of code to a previous version), and code
correction. Update module 135 may reside 1n non-volatile
memory, such as in NVRAM 120, may be started during a
boot sequence, and may function 1n a pre-operating system
environment. In some embodiments, the host 152 may be
part of a cloud-computing facility. Cloud computing may
refer to the access of computing resources and data via a
network infrastructure, such as the Internet. The computing
resources and data storage may be provided by linked data
centers of the network infrastructure. In many embodiments,
cloud computing resources are provided on demand to
customers. As a result, the customers may have access to
needed computer resources without having to purchase
equipment or construct data centers.

Operating system 130 includes update manager service
145. Update manager service 145 is a service or daegmon, a
computer program that runs as a background process. Dae-
mons may be started at boot time and may respond to
network requests, hardware activity, or other programs by
performing some task. Daemons may also configure hard-
ware and run scheduled tasks. Update manager service 143

UsS 10,572,151 B2

S

may be created by an operating system vendor or may be
installed during the manufacture of information handling
system 102.

In the embodiment of FIG. 1, update manager service 145
communicates with the service processor 110 about code,
such as device drivers. A device drniver may constitute
software that acts as an interface between hardware and
operating system 130 or another higher-level program. The
device driver may communicate with the hardware over a
communications bus. It may receive calls from the higher-
level program and issue commands to the hardware in
response to the commands.

Update manager service 145 may, for example, constantly
scan for deployment of new hardware. If 1t detects new
hardware, it may send a message to the service processor
110 to provide device drivers needed for the new hardware.
The messages may be sent under a standard management
protocol, such as Intelligent Platform Management Interface
(IPMI) or WS-Management (WS-Man). Similarly, update
manager service 145 may receive messages from the service
processor 110 of the availability of code for use by operating,
system 130, such as the availability of device drivers for
newly-installed hardware or updated device drivers and may
inform operating system 130.

During a Unified Extensible Firmware Interface (UEFI)
boot process, a boot 1image can be loaded from BIOS 112 and
the boot process can be executed by the CPU 136. In an
embodiment, the CPU 136, through different boot services
in boot process, the CPU 136 may be allocated different
portions of the DRAM 140 to operations of the boot process
as will be discussed with respect to FIG. 3 below.

FIG. 3 illustrates a boot phase diagram 300 for an
information handling system that operates using a UEFI,
including a security phase (SEC) 310, a pre-EFI 1mnitializa-
tion phase (PEI) 320, a driver execution environment phase
(DXE) 330, a boot device selection phase (BDS) 340, a
transient system load phase (TSL) 350, and a run time phase
(RT) 360. SEC 310 1s the first phase of a UEFI boot process
on the information handling system 102 that operates to set
up a pre-verifier 312. Pre-verifier 312 handles all restart
events on the information handling system 102, and tempo-
rarily allocates a portion of memory for use during the other
boot phases.

SEC 310 1s executed out of the firmware resident on the
information handling system 102, and so serves as a root of
trust for the system. The SEC phase 310 can find, validate,
and run the PEI phase 320. The SEC phase also can initialize
any trusted platform management (TPM) modules within the
information handling system 102, can initialize and run a
built-in self test (BIST) for the CPU, such as CPU 136, and
can 1mtialize a cache memory or memories associated with
the CPU 136.

SEC 310 can then pass execution to PEI 320 which
initializes the system memory for the information handling
system 102 during memory allocation 321. PEI 320 also
includes CPU initialization 324, chipset initialization 326,
and board resource 1nitialization 328. During memory allo-
cation 321, the CPU, such as CPU 136, can determine
whether a fast memory allocation service 1s detected 1n the
boot process. In an embodiment, the fast memory allocation
service can be a UEFI service, such as AllocateFastMem,
which can cause the CPU to utilize a high bandwidth
memory for memory allocation services. In an embodiment,
the high bandwidth memory can be MCDRAM portion 208
of the DRAM 200 or 140. If the CPU does not detect the fast
memory allocation service, the CPU can allocate a lower
portion, such lower portion 206 of DRAM 200, to later

10

15

20

25

30

35

40

45

50

55

60

65

6

operations of the boot process. In this situation, the CPU can
allocate the MCDRAM portion of the DRAM to the oper-
ating system, such as OS 130, and the PEI 320 can pass the
execution to DXE 330.

However, if the CPU does detect the fast memory allo-

cation service during memory allocation 321, the CPU can
allocate the MCDRAM portion of the DRAM to later

operations of the boot process, such as DXE 330, BDS 340,
and TSL 350. Also, during memory allocation 321, the CPU
can allocate MCDRAM portion of the DRAM to an oper-
ating system, such as OS 130 of the mnformation handling
system 102, after the boot process has been completed.
Thus, 1n this situation, the memory allocation service 321
can allocate the MCDRAM portion to boot operations
during the boot process, then when the boot process is
completed the MCDRAM portion of the DRAM can be
allocated to the operating system of the immformation han-
dling system for run time operations. In this embodiment,
the boot processes of DXE 330, BDS 340, and TSL 350 can
be executed five times faster when the MCDRAM portion of
the DRAM 1s allocated to the boot process operations as
compared to when a lower portion of the DRAM 1s allocated
to the later boot operations.

PEI 320 can then pass execution to DXE 330 which
performs device specific iitializations for the information
handling system. In particular, DXE 330 executes an EFI
driver dispatcher 332 that operates to load device, bus, and
service drivers 334, to mstantiate the system SMI handler 1n
the STM 336, and to instantiate virtual machines associated
with the device, bus, and service SMMs 338. DXE 330
passes execution to BDS 340 executes a boot manager 342
which 1dentifies a boot target, and passes execution to TSL
350. TSL 350 launches an OS boot loader 352 which loads
the operating system, and passes execution to the operating
system at R1 360.

Techniques implemented during PEI 320 that utilize ser-
vices provided by the UEFI specification, such as boot
services, and UEFI applications, including OS loaders, must
use boot services functions to access devices and allocate
memory. Services are defined by interface functions that
may be used by code running in the UEFI environment.
Such code may include protocols that manage device access
or extend platform capability, as well as applications running
in the preboot environment, and OS loaders. During boot,
system resources are owned by the firmware and are con-
trolled through boot services interface functions. All boot
services functionality 1s available until an OS loader loads
enough of 1ts own environment to take control of the
system’s continued operation and then terminates boot ser-
vices with a call to ExitBootServices().

One class of boot services includes protocol handler
services, such as Loadlmage, Startlmage, InstallProto-
collnterface, RegisterProtocolNotity, LocateProtocol, Allo-
cateMem, AllocateFastMem, and numerous others. Allo-
cateFastMem 1s the protocol handler service disclosed
herein. A protocol consists of a 128-bit globally unique
identifier (GUID) and a Protocol Interface structure. The
structure contains the functions and instance data that are
used to access a device. The functions that make up Protocol
Handler Services allow applications to install a protocol on
a handle, identify the handles that support a given protocol,
determine whether a handle supports a given protocol, and
the like. Loadlmage loads an 1image, such as a device driver,
into system memory, such as memory 140. Startlmage
transiers control to a loaded 1mage’s entry point. InstallPro-
tocollnterface 1nstalls a protocol interface on a device
handle. A driver can install multiple protocols. RegisterPro-

UsS 10,572,151 B2

7

tocolNotily registers an event that 1s to be signaled when-
ever an interface 1s 1nstalled for a specified protocol.
LocateProtocol returns an array of handles that support a
specified protocol. During DXE 330, boot services and
runtime services can be started and a UEFI boot manager
can load UEFI dnivers and UEFI applications 1n an order

defined by the global NVRAM variables. Driver initializa-
tion includes identifying a driver image that 1s stored on
some type of media.

FIG. 4 illustrates a method 400 for allocating available
high bandwidth memory to UEFI pool services according to
at least one embodiment of the present disclosure. At block
402, a boot process, such as a UEFI boot process, of an
information handling system 1s started. At block 404, a
determination 1s made whether a fast memory allocation
service 1s detected. In an embodiment, the fast memory
allocation service can be a UEFI service, such as Allocate-
FastMem, which can cause the boot process to utilize a high
bandwidth memory for memory allocation services. In an
embodiment, the high bandwidth memory can be a multi-
channel dynamic random access memory (MCDRAM), and
the MCDRAM can be an on-chip memory of the processor
executing the UEFI boot process. If the fast memory allo-
cation service 1s not detected, a lower portion of a DRAM
1s allocated to operations of the boot process during UEFI
memory allocation at block 406, and additional operations
of the boot process are performed at block 408.

If the fast memory allocation service 1s detected, a
MCDRAM portion of a DRAM 1s allocated to later opera-
tions of the boot process at block 412. In an embodiment, the
MCDRAM portion of the DRAM can be a top portion the
DRAM. For example, the MCDRAM can be the top 16 Gb
of the DRAM. At block 414, additional operations of the
boot process are performed. The MCDRAM portion of the
DRAM 1s deallocated from the operations of the boot
process at block 416. At block 420, the MCDRAM portion
of the DRAM 1s allocated to an operating system of the
information handling system. The boot process ends at block
420.

FIG. 5 illustrates a general information handling system
500 including a processor 502, a memory 504, a north-
bridge/chipset 506, a PCI bus 3508, a universal serial bus
(USB) controller 510, a USB 512, a keyboard device con-
troller 514, a mouse device controller 5316, a configuration
an ATA bus controller 520, an ATA bus 522, a hard drive
device controller 524, a compact disk read only memory
(CD ROM) device controller 526, a video graphics array
(VGA) device controller 530, a network 1nterface controller
(NIC) 540, a wireless local area network (WLAN) controller
550, a senal peripheral interface (SPI) bus 560, a NVRAM
570 for storing BIOS 572, and a baseboard management
controller (BMC) 580. BMC 580 can be referred to as a
service processor or embedded controller (EC). Capabilities
and functions provided by BMC 580 can vary considerably
based on the type of information handling system. For
example, the term baseboard management system 1s often
used to describe an embedded processor included at a server,
while an embedded controller 1s more likely to be found in
a consumer-level device. As disclosed herein, BMC 580
represents a processing device different from CPU 502,
which provides various management functions for informa-
tion handling system 500. For example, an embedded con-
troller may be responsible for power management, cooling,
management, and the like. An embedded controller included
at a data storage system can be referred to as a storage
enclosure processor.

10

15

20

25

30

35

40

45

50

55

60

65

8

For purpose of this disclosure information handling sys-
tem 500 can include any instrumentality or aggregate of
instrumentalities operable to compute, classily, process,
transmit, receive, retrieve, originate, switch, store, display,
manifest, detect, record, reproduce, handle, or utilize any
form of information, intelligence, or data for business,
scientific, control, entertainment, or other purposes. For
example, information handling system 300 can be a personal
computer, a laptop computer, a smart phone, a tablet device
or other consumer electronic device, a network server, a
network storage device, a switch, a router, or another net-
work communication device, or any other suitable device
and may vary in size, shape, performance, functionality, and
price. Further, information handling system 500 can include
processing resources lfor executing machine-executable
code, such as CPU 502, a programmable logic array (PLA),
an embedded device such as a System-on-a-Chip (S0C), or
other control logic hardware. Information handling system
500 can also include one or more computer-readable
medium for storing machine-executable code, such as soft-
ware or data.

System 300 can include additional processors that are
configured to provide localized or specific control functions,
such as a battery management controller. Bus 560 can
include one or more busses, including a SPI bus, an 12C bus,
a system management bus (SMBUS), a power management
bus (PMBUS), and the like. BMC 580 can be configured to
provide out-of-band access to devices at information han-
dling system 500. As used herein, out-of-band access herein
refers to operations performed prior to execution ol BIOS
572 by processor 502 to initialize operation of system 500.

BIOS 572 can be referred to as a firmware 1mage, and the
term BIOS 1s herein used interchangeably with the term
firmware 1mage, or sumply firmware. BIOS 372 includes
instructions executable by CPU 502 to initialize and test the
hardware components of system 500, and to load a boot
loader or an operating system (OS) from a mass storage
device. BIOS 572 additionally provides an abstraction layer
for the hardware, such as a consistent way for application
programs and operating systems to interact with the key-
board, display, and other mnput/output devices. When power
1s first applied to information handling system 500, the
system begins a sequence of mitialization procedures. Dur-
ing the inmitialization sequence, also referred to as a boot
sequence, components of system 500 are configured and
ecnabled for operation, and device drivers can be installed.
Device drivers provide an interface through which other
components of the system 3500 can communicate with a
corresponding device.

Information handling system 300 can include additional
components and additional busses, not shown for clarity. For
example, system 500 can include multiple processor cores,
audio devices, and the like. While a particular arrangement
ol bus technologies and interconnections 1s illustrated for the
purpose of example, one of skill will appreciate that the
techniques disclosed herein are applicable to other system
architectures. System 500 can include multiple CPUs and
redundant bus controllers. One or more components can be
integrated together. For example, portions of northbridge/
chipset 506 can be integrated within CPU 502. Additional
components of information handling system 500 can include
one or more storage devices that can store machine-execut-
able code, one or more communications ports for commu-
nicating with external devices, and various input and output
(I/0) devices, such as a keyboard, a mouse, and a video
display. An example of imnformation handling system 500
includes a multi-tenant chassis system where groups of

UsS 10,572,151 B2

9

tenants (users) share a common chassis, and each of the
tenants has a unique set of resources assigned to them. The
resources can include blade servers of the chassis, mput/
output (I/0) modules, Peripheral Component Interconnect-
Express (PCle) cards, storage controllers, and the like.

Information handling system 500 can include a set of
instructions that can be executed to cause the information
handling system to perform any one or more of the methods
or computer based functions disclosed herein. The informa-
tion handling system 500 may operate as a standalone device
or may be connected to other computer systems or periph-
eral devices, such as by a network.

In a networked deployment, the information handling
system 500 may operate in the capacity of a server or as a
client user computer 1n a server-client user network envi-
ronment, or as a peer computer system 1n a peer-to-peer (or
distributed) network environment. The information handling
system 500 can also be implemented as or incorporated 1nto
various devices, such as a personal computer (PC), a tablet
PC, a set-top box (STB), a personal digital assistant (PDA),
a mobile device, a palmtop computer, a laptop computer, a
desktop computer, a communications device, a wireless
telephone, a land-line telephone, a control system, a camera,
a scanner, a facsimile machine, a printer, a pager, a personal
trusted device, a web appliance, a network router, switch or
bridge, or any other machine capable of executing a set of
istructions (sequential or otherwise) that specity actions to
be taken by that machine. In a particular embodiment, the
computer system 500 can be implemented using electronic
devices that provide voice, video or data communication.
Further, while a single information handling system 500 1s
illustrated, the term “system” shall also be taken to 1nclude
any collection of systems or sub-systems that individually or
jointly execute a set, or multiple sets, of instructions to
perform one or more computer functions.

The information handling system 500 can include a disk
drive unit and may include a computer-readable medium,
not shown in FIG. 5, in which one or more sets of instruc-
tions, such as software, can be embedded. Further, the
instructions may embody one or more of the methods or
logic as described herein. In a particular embodiment, the
instructions may reside completely, or at least partially,
within system memory 504 or another memory included at
system 500, and/or within the processor 502 during execu-
tion by the mformation handling system 3500. The system
memory 504 and the processor 502 also may include com-
puter-readable media.

While the computer-readable medium 1s shown to be a
single medium, the term “computer-readable medium”
includes a single medium or multiple media, such as a
centralized or distributed database, and/or associated caches
and servers that store one or more sets of istructions. The
term “‘computer-readable medium™ shall also include any
medium that 1s capable of storing, encoding, or carrying a set
ol 1nstructions for execution by a processor or that cause a
computer system to perform any one or more of the methods
or operations disclosed herein.

In a particular non-limiting, exemplary embodiment, the
computer-readable medium can include a solid-state
memory such as a memory card or other package that houses
one or more non-volatile read-only memories. Further, the
computer-readable medium can be a random access memory
or other volatile re-writable memory. Additionally, the com-
puter-readable medium can include a magneto-optical or
optical medium, such as a disk or tapes or other storage
device to store mnformation received via carrier wave signals
such as a signal communicated over a transmission medium.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Furthermore, a computer readable medium can store infor-
mation received from distributed network resources such as
from a cloud-based environment. A digital file attachment to
an e-mail or other self-contained information archive or set
of archives may be considered a distribution medium that 1s
equivalent to a tangible storage medium. Accordingly, the
disclosure 1s considered to include any one or more of a
computer-readable medium or a distribution medium and
other equivalents and successor media, 1n which data or
istructions may be stored.

In the embodiments described herein, an information
handling system includes any instrumentality or aggregate
ol mstrumentalities operable to compute, classily, process,
transmit, receive, retrieve, originate, switch, store, display,
manifest, detect, record, reproduce, handle, or use any form
ol information, intelligence, or data for business, scientific,
control, entertainment, or other purposes. For example, an
information handling system can be a personal computer, a
consumer electronic device, a network server or storage
device, a switch router, wireless router, or other network
communication device, a network connected device (cellular
telephone, tablet device, etc.), or any other suitable device,
and can vary 1n size, shape, performance, price, and func-
tionality.

The information handling system can include memory
(volatile (such as random-access memory, etc.), nonvolatile
(read-only memory, flash memory etc.) or any combination
thereol), one or more processing resources, such as a central
processing unit (CPU), a graphics processing unit (GPU),
hardware or software control logic, or any combination
thereof. Additional components of the information handling
system can 1include one or more storage devices, one or more
communications ports for communicating with external
devices, as well as, various input and output (I/O) devices,
such as a keyboard, a mouse, a video/graphic display, or any
combination thereof. The information handling system can
also 1nclude one or more buses operable to transmit com-
munications between the various hardware components.
Portions of an information handling system may themselves
be considered information handling systems.

When referred to as a “device,” a “module,” or the like,
the embodiments described herein can be configured as
hardware. For example, a portion of an information handling
system device may be hardware such as, for example, an
integrated circuit (such as an Application Specific Integrated
Circuit (ASIC), a Field Programmable Gate Array (FPGA),
a structured ASIC, or a device embedded on a larger chip),
a card (such as a Peripheral Component Intertace (PCI) card,
a PCl-express card, a Personal Computer Memory Card
International Association (PCMCIA) card, or other such
expansion card), or a system (such as a motherboard, a
system-on-a-chip (SoC), or a stand-alone device).

The device or module can include software, including
firmware embedded at a device, such as a Pentium class or
PowerPC™ brand processor, or other such device, or sofit-
ware capable of operating a relevant environment of the
information handling system. The device or module can also
include a combination of the foregoing examples of hard-
ware or soltware. Note that an information handling system
can include an integrated circuit or a board-level product
having portions thereof that can also be any combination of
hardware and software.

Devices, modules, resources, or programs that are in
communication with one another need not be 1n continuous
communication with each other, unless expressly specified
otherwise. In addition, devices, modules, resources, or pro-

UsS 10,572,151 B2

11

grams that are in communication with one another can
communicate directly or indirectly through one or more
intermediaries.

Although only a few exemplary embodiments have been
described 1n detail herein, those skilled in the art will readily
appreciate that many modifications are possible in the exem-
plary embodiments without materially departing from the
novel teachings and advantages of the embodiments of the
present disclosure. Accordingly, all such modifications are
intended to be included within the scope of the embodiments
of the present disclosure as defined in the following claims.
In the claims, means-plus-function clauses are itended to
cover the structures described herein as performing the
recited function and not only structural equivalents, but also
equivalent structures.

What 1s claimed 1s:

1. An mformation handling system comprising:

a dynamic random access memory allocated to operations
of a boot process of the information handling system,
wherein the dynamic random access memory includes
a lower memory portion and multi-channel dynamic
random access memory portion; and

a processor to communicate with the dynamic random
access memory, the processor to determine whether a
fast memory allocation service 1s detected 1n the boot
process, and 1n response to the fast memory allocation
being detected to allocate the multi-channel dynamic
random access memory portion of the dynamic random
access memory to operations of the boot process.

2. The information handling system of claim 1, in
response to the fast memory allocation not being detected,
the processor further to allocate the lower memory portion
of the dynamic random access memory to the operations of
the boot process, and to execute the operations of the boot
process Irom the lowest portion of the dynamic random
access memory.

3. The information handling system of claim 1, wherein
the multi-channel dynamic random access memory portion
1s an on-chip memory of the processor executing the boot
process.

4. The information handling system of claim 1, wherein
the multi-channel dynamic random access memory portion
1s a high bandwidth memory.

5. The mformation handling system of claim 1, wherein
the fast memory allocation service 1s an Unified Extensible
Firmware Interface service of the boot process.

6. The information handling system of claim 1, the
processor further to execute the operations of the boot
process from the multi-channel dynamic random access
memory portion of the dynamic random access memory.

7. The information handling system of claim 1, the
multi-channel dynamic random access memory portion 1s a
top portion of the dynamic random access memory.

8. A method comprising:

starting, by a processor, a boot process of an mnformation
handling system:;

10

15

20

25

30

35

40

45

50

55

12

determiming whether a fast memory allocation service 1s
detected 1n the boot process; and

11 the fast memory allocation 1s detected, then allocating,
by the processor, a multi-channel dynamic random
access memory portion of a dynamic random access
memory to operations of the boot process.

9. The method of claim 8 further comprising:

11 the fast memory allocation 1s not detected, allocating a
lowest portion of the dynamic random access memory
to the operations of the boot process; and

executing the operations of the boot process from the
lowest portion of the dynamic random access memory.

10. The method of claam 8 wherein the multi-channel
dynamic random access memory portion 1s an on-chip
memory of the processor executing the boot process.

11. The method of claim 8 further comprising:

executing the operations of the boot process from the
multi-channel dynamic random access memory portion
of the dynamic random access memory.

12. The method of claam 8 wherein the multi-channel
dynamic random access memory portion 1s a top portion of
the dynamic random access memory.

13. The method of claim 8 wherein the multi-channel
dynamic random access memory portion 1s a high bandwidth
memory.

14. The method of claim 8 wherein the fast memory
allocation service 1s an Unified Extensible Firmware Inter-
face service of the boot process.

15. A method comprising:

starting, by a processor, a boot process of an information
handling system:;

determinming whether a fast memory allocation service 1s
detected 1n the boot process; and

11 the fast memory allocation 1s detected, then allocating,
by the processor, a multi-channel dynamic random
access memory portion of a dynamic random access
memory to operations of the boot process;

i1 the fast memory allocation 1s not detected, then allo-
cating a lowest portion of the dynamic random access
memory to the operations of the boot process.

16. The method of claim 15 wherein the multi-channel
dynamic random access memory portion 1s a top portion of
the dynamic random access memory.

17. The method of claim 15 wherein the multi-channel
dynamic random access memory portion 1s an on-chip
memory of the processor executing the boot process.

18. The method of claim 15 further comprising:

executing the operations of the boot process from the
multi-channel dynamic random access memory portion
of the dynamic random access memory.

19. The method of claim 15 wherein the multi-channel
dynamic random access memory portion 1s a high bandwidth
memory.

20. The method of claim 15 wherein the fast memory
allocation service 1s a Unified Extensible Firmware Interface
service ol the boot process.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

