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(57) ABSTRACT

A technique preserves elliciency for replication of data
between a source node of a source cluster (“source”) and a
destination node of a destination cluster (“destination’) of a
clustered network. Replication 1n the clustered network may
be effected by leveraging global 1n-line deduplication at the
source to 1dentily and avoid copying duplicate data from the
source to the destination. To ensure that the copy of the data
on the destination 1s synchronized with the data recerved at
the source, the source creates a snapshot of the data for use
as a baseline copy at the destination. Thereafter, new data
received at the source that ditfers from the baseline snapshot
are transmitted and copied to the destination. In addition, the
source and destination nodes negotiate to establish a map-
ping of name-to-data when transferring data (i.e., an extent)
between the clusters. Illustratively, the name 1s an extent key
for the extent, such that the negotiated mapping established
by the source and destination 1s based on the extent key
associated with the extent.

18 Claims, 14 Drawing Sheets
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TECHNIQUE FOR PRESERVING
EFFICIENCY FOR REPLICATION BETWEEN

CLUSTERS OF A NETWORK

RELATED APPLICATION

The present application claims priority from commonly
owned Provisional Patent Application No. 62/199,408,
entitled TECHNIQUE FOR PRESERVING EFFICIENCY
FOR REPLICATION BETWEEN CLUSTERS OF A NET-
WORK, filed on Jul. 31, 2015, the contents of which are

incorporated herein by reference.

BACKGROUND

Technical Field

The present disclosure relates to replication of data
between storage systems and, more specifically, to data
replication between storage systems ol different clusters.

Background Information

A plurality of storage systems may be interconnected as a
cluster and configured to provide storage service relating to
the organization of data stored on storage devices coupled to
the systems. Each storage system may implement a high-
level module, such as a file system, to logically organize the
data stored on the devices as storage containers, such as
volumes and/or logical units (LUNSs). The storage systems of
the cluster may cooperate to further provide a global-
deduplication {file system.

To improve reliability and facilitate recovery 1n the event
of a failure of the storage system, some or all of the
underlying data of the file system may be replicated (copied)
to another storage system. For example, a source storage
system may create a restorable image of 1ts file system and
transmit a copy of that image over a network to a destination
storage system. The image may be updated with changes
replicated to the destination storage system. However, dupli-
cate data in the update may still be replicated to the
destination storage system (i.e., data already at the destina-
tion may be included in the update). It 1s desirable to
improve replication efliciency by not sending duplicate data
when updating an 1mage previously transmitted between
source and destination storage systems.

BRIEF DESCRIPTION OF THE

DRAWINGS

The above and further advantages of the embodiments
herein may be better understood by referring to the follow-
ing description 1n conjunction with the accompanying draw-
ings in which like reference numerals indicate 1dentically or
functionally similar elements, of which:

FIG. 1 1s a block diagram of a plurality of nodes inter-
connected as a cluster;

FIG. 2 1s a block diagram of a node;

FIG. 3 1s a block diagram of a storage input/output (I/O)
stack of the node;

FIG. 4 1llustrates a write path of the storage 1/0 stack;

FIG. 5 1llustrates a read path of the storage 1/O stack;

FIG. 6 1s a block diagram of a volume metadata entry;

FIG. 7 1s a block diagram of a dense tree metadata
structure;

FIG. 8 1s a block diagram of a top level of the dense tree
metadata structure;

FIG. 9 illustrates mapping between levels of the dense
tree metadata structure;
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FIG. 10 illustrates a workflow for inserting a volume
metadata entry into the dense tree metadata structure in
accordance with a write request;

FIG. 11 illustrates merging between levels of the dense
tree metadata structure;

FIG. 12 1s a block diagram of a dense tree metadata

structure shared between a parent volume and snapshot/
clone;

FIG. 13 1llustrates diverging of the snapshot/clone from
the parent volume; and

FIG. 14 15 a block diagram of a technique for preserving
elliciency of replication between a source cluster and des-
tination cluster of a clustered network.

OVERVIEW

The embodiments herein are directed to a technique for
preserving efliciency for replication of data between a
source node of a source cluster (“source™) and a destination
node of a destination cluster (“destination™) of a clustered
network. Data replication in the clustered network may be
performed by leveraging global deduplication of the cluster
to 1dentily and avoid copying duplicate data from the source
to the destination. To ensure that the copy of the data on the
destination 1s synchronized with the data received at the
source, the source may create a snapshot of the data for use
as a baseline copy at the destination. Thereafter, new data
received at the source that differs from the baseline snapshot
(1.e., copy) are transmitted and copied to the destination. The
new data may be data associated with one or more write
requests (1.e., write data) 1ssued by a host and directed to a
logical block address range of a logical unit served by the
source. The write data may be organized, e.g. aggregated,
into one or more variable length blocks or extents, which
may be de-duplicated. Illustratively, a hash function may be
applied to each extent to generate an extent key that is stored
in a key-value extent store (ES) embodied as a data struc-
ture, e.g., an ES hash table, of each cluster. The extent key
1s configured to reference a location of the extent on one or
more storage devices, such as solid state drives of the cluster.
As such, replication may occur between two diflerent extent
stores on different (e.g., source and destination) clusters,
cach using the same extent keys, 1.e., a same hash function
1s used on both clusters.

To preserve efliciency during data replication, the nodes
of the clusters may negotiate (e.g., during an initialization
stage of replication) to ensure that the same hash function 1s
used by the source and destination. In addition, the source
and destination nodes may negotiate to establish a mapping
of name-to-data when transferring data (1.e., an extent)
between the clusters. Illustratively, the name 1s the extent
key for the extent, such that the negotiated mapping estab-
lished by the source and destination 1s based on the extent
key associated with the extent. To avoid name collisions, the
source sends the extent along with the extent key (1.e., name)
to the destination for the first transter of new data to verily
the association (1.e., mapping) of the key to the extent. The
destination accepts the mapping 1f 1t can use the extent
key-to-extent association (i.e., as a new mapping or as a
duplicate of an existing mapping). The mapping may be
considered valid and 1n effect when the source and destina-
tion agree on the association, and may be considered invalid
when, e.g., the extent i1s deleted by either the source or
destination. The extent 1s considered duplicate when there 1s
an existing mapping associated with the extent key of the
extent.
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In an embodiment, a replication field 1s provided within
cach entry of the ES hash table, wherein the replication field

1s associated on a per-cluster pair basis, €.g., between the
source and destination clusters. The replication field of the
ES hash table may include one or more replication bits
organized as a bit plane, e.g., one byte (8 bits) per entry of
the ES hash table, wherein each bit represents a per-cluster
pair replication relationship, e.g., up to 8 replication rela-
tionships may be represented using a one byte replication
field. Illustratively, each replication bit of the bit plane on the
source 1s linked to a particular destination cluster, which
may be indicated using an associated cluster identifier (ID),
¢.g., a first replication bit may correspond to destination
cluster ID X and a second replication bit may correspond to
destination cluster 1D Y. That 1s, the first replication bit
represents a “Source-X" per-cluster pair replication relation-
ship, whereas the second replication bit represents a
“Source-Y” per-cluster pair replication relationship. Accord-
ingly, when the corresponding replication bits are asserted
(e.g., set) for a given extent key 1n each ES hash table (1.e.,
in the source ES hash table and in the destination ES hash
table), the source and destination agree that the same extent
key 1s used for the same extent between the clusters. Any
other arrangement of the replication bits (e.g., at least one bit
unasserted) requires renegotiation between the source and
the destination to establish the mapping of an extent key to
the extent.

DESCRIPTION

Storage Cluster

FIG. 1 1s a block diagram of a plurality of nodes 200
interconnected as a cluster 100 and configured to provide
storage service relating to the organization of information on
storage devices. The nodes 200 may be interconnected by a
cluster interconnect fabric 110 and include functional com-
ponents that cooperate to provide a distributed storage
architecture of the cluster 100, which may be deployed 1n a
storage area network (SAN). As described herein, the com-
ponents of each node 200 include hardware and software
functionality that enable the node to connect to one or more
hosts 120 over a computer network 130, as well as to one or
more storage arrays 150 of storage devices over a storage
interconnect 140, to thereby render the storage service in
accordance with the distributed storage architecture.

Each host 120 may be embodied as a general-purpose
computer configured to interact with any node 200 1n
accordance with a client/server model of information deliv-
ery. That 1s, the client (host) may request the services of the
node, and the node may return the results of the services
requested by the host, by exchanging packets over the
network 130. The host may issue packets including file-
based access protocols, such as the Network File System
(NFS) protocol over the Transmission Control Protocol/
Internet Protocol (TCP/IP), when accessing information on
the node 1n the form of storage containers such as files and
directories. However, in an embodiment, the host 120 1llus-
tratively 1ssues packets including block-based access proto-
cols, such as the Small Computer Systems Interface (SCSI)
protocol encapsulated over TCP (1SCSI) and SCSI encap-
sulated over FC (FCP), when accessing information in the
form of storage containers such as logical units (LUNs).
Notably, any of the nodes 200 may service a request directed
to a storage container stored on the cluster 100.

FIG. 2 1s a block diagram of a node 200 that 1s illustra-
tively embodied as a storage system having one or more
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central processing units (CPUs) 210 coupled to a memory
220 via a memory bus 2135. The CPU 210 1s also coupled to

a network adapter 230, storage controllers 240, a cluster
interconnect 1interface 250 and a non-volatile random access
memory (NVRAM 280) via a system 1nterconnect 270. The
network adapter 230 may include one or more ports adapted
to couple the node 200 to the host(s) 120 over computer
network 130, which may include point-to-point links, wide
area networks, virtual private networks implemented over a
public network (Internet) or a local area network. The
network adapter 230 thus includes the mechanical, electrical
and signaling circuitry needed to connect the node to the

network 130, which 1llustratively embodies an Ethernet or
Fibre Channel (FC) network.

T'he memory 220 may include memory locations that are
addressable by the CPU 210 for storing soitware programs
and data structures associated with the embodiments
described heremn. The CPU 210 may, in turn, imnclude pro-
cessing elements and/or logic circuitry configured to execute
the software programs, such as a storage mput/output (I/0O)
stack 300, and manipulate the data structures. Illustratively,
the storage 1/0 stack 300 may be implemented as a set of
user mode processes that may be decomposed into a plu-
rality of threads. An operating system kernel 224, portions of
which are typically resident 1n memory 220 (in-core) and
executed by the processing elements (1.e., CPU 210), func-
tionally organizes the node by, inter alia, mmvoking opera-
tions 1n support of the storage service implemented by the
node and, in particular, the storage 1/0 stack 300. A suitable
operating system kernel 224 may include a general-purpose
operating system, such as the UNIX® series or Microsoit
Windows® series ol operating systems, or an operating
system with configurable functionality such as microkernels
and embedded kernels. However, in an embodiment
described herein, the operating system kernel 1s illustratively
the Linux® operating system. It will be apparent to those
skilled 1n the art that other processing and memory means,
including various computer readable media, may be used to
store and execute program instructions pertaining to the
embodiments herein.

Each storage controller 240 cooperates with the storage
I/0 stack 300 executing on the node 200 to access informa-
tion requested by the host 120. The information 1s preferably
stored on storage devices such as solid state drives (SSDs)
260, illustratively embodied as flash storage devices, of
storage array 150. In an embodiment, the flash storage
devices may be based on NAND flash components, e.g.,
single-layer-cell (SLC) flash, multi-layer-cell (MLC) flash
or triple-layer-cell (TLC) flash, although 1t will be under-
stood to those skilled in the art that other non-volatile,
solid-state electronic devices (e.g., drives based on storage
class memory components) may be advantageously used
with the embodiments described herein. Accordingly, the
storage devices may or may not be block-oriented (i.e.,
accessed as blocks). The storage controller 240 includes one
or more ports having I/O imterface circuitry that couples to
the SSDs 260 over the storage interconnect 140, 1illustra-
tively embodied as a serial attached SCSI (SAS) topology.
Alternatively, other point-to-point I/O interconnect arrange-
ments, such as a conventional serial ATA (SATA) topology
or a PCI topology, may be used. The system interconnect
270 may also couple the node 200 to a local service storage
device 248, such as an SSD, configured to locally store

cluster-related configuration information, e.g., as cluster
database (DB) 244, which may be replicated to the other
nodes 200 in the cluster 100.
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The cluster interconnect interface 250 may include one or
more ports adapted to couple the node 200 to the other
node(s) of the cluster 100. In an embodiment, Infiniband
may be used as the clustering protocol and interconnect
tabric media, although 1t will be apparent to those skilled 1n
the art that other types of protocols and interconnects may be
utilized within the embodiments described herein. The
NVRAM 280 may include a back-up battery or other built-in
last-state retention capability (e.g., non-volatile semicon-
ductor memory such as storage class memory) that is
capable of maintaining data 1n light of a failure to the node
and cluster environment. Illustratively, a portion of the
NVRAM 280 may be configured as one or more non-volatile
logs (NVLogs 285) configured to temporarily record (“log”)

I/0 requests, such as write requests, received from the host
120.

Storage 1/0 Stack

FI1G. 3 1s a block diagram of the storage 1/0 stack 300 that
may be advantageously used with one or more embodiments
described herein. The storage 1/O stack 300 includes a
plurality of software modules or layers that cooperate with
other functional components of the nodes 200 to provide the
distributed storage architecture of the cluster 100. In an
embodiment, the distributed storage architecture presents an
abstraction of a single storage container, 1.e., all of the
storage arrays 150 of the nodes 200 for the entire cluster 100
organized as one large pool of storage. In other words, the
architecture consolidates storage, 1.e., the SSDs 260 of the
arrays 150, throughout the cluster (retrievable via cluster-
wide keys) to enable storage of the LUNs. Both storage
capacity and performance may then be subsequently scaled
by adding nodes 200 to the cluster 100.

Hlustratively, the storage I/0 stack 300 includes an admin-
istration layer 310, a replication layer 3135 (described later
herein), a protocol layer 320, a persistence layer 330, a
volume layer 340, an extent store layer 350, a Redundant
Array of Independent Disks (RAID) layer 360, a storage
layer 365 and a NVRAM (storing NVLogs) “layer” inter-
connected with a messaging kernel 370. The messaging
kernel 370 may provide a message-based (or event-based)
scheduling model (e.g., asynchronous scheduling) that
employs messages as fundamental units of work exchanged
(1.e., passed) among the layers. Suitable message-passing
mechanisms provided by the messaging kernel to transier
information between the layers of the storage 1/0 stack 300
may include, e.g., for intra-node communication: 1) mes-
sages that execute on a pool of threads, 11) messages that
execute on a single thread progressing as an operation
through the storage 1/0 stack, 111) messages using an Inter
Process Communication (IPC) mechamism and, e.g., for
inter-node communication: messages using a Remote Pro-
cedure Call (RPC) mechanism 1n accordance with a function
shipping 1mplementation. Alternatively, the I/O stack may
be implemented using a thread-based or stack-based execu-
tion model. In one or more embodiments, the messaging,
kernel 370 allocates processing resources from the operating
system kernel 224 to execute the messages. Each storage 1/O
stack layer may be implemented as one or more instances
(1.e., processes) executing one or more threads (e.g., 1n
kernel or user space) that process the messages passed
between the layers such that the messages provide synchro-
nization for blocking and non-blocking operation of the
layers. Note that one or more of the layers, such as the
administrative layer 310 and the replication layer 315, may
execute asynchronously to the other layers.

In an embodiment, the protocol layer 320 may commu-
nicate with the host 120 over the network 130 by exchanging

10

15

20

25

30

35

40

45

50

55

60

65

6

discrete frames or packets configured as I/O requests accord-
ing to pre-defined protocols, such as 1SCSI and FCP. An 1/0
request, ¢.g., a read or write request, may be directed to a
LUN and may include I/O parameters such as, inter alia, a
LUN identifier (ID), a logical block address (LBA) of the
LUN, a length (1.e., amount of data) and, 1n the case of a
write request, write data. The protocol layer 320 receives the
I/O request and forwards 1t to the persistence layer 330,
which records the request into a persistent write-back cache
380, illustratively embodied as a log whose contents can be
replaced randomly, e.g., under some random access replace-
ment policy rather than only 1n log fashion, and returns an
acknowledgement to the host 120 via the protocol layer 320.
In an embodiment only I/O requests that modify the LUN,
¢.g., write requests, are logged. Notably, the I/O request may
be logged at the node receiving the 1I/O request, or in an
alternative embodiment in accordance with the function
shipping implementation, the I/O request may be logged at
another node.

Ilustratively, dedicated logs may be maintained by the
various layers of the storage I/O stack 300. For example, a
dedicated log 335 may be maintained by the persistence
layer 330 to record the I/O parameters of an I/O request as
equivalent internal, 1.e., storage 1/O stack, parameters, e.g.,
volume ID, oflset, and length. In the case of a write request,
the persistence layer 330 may also cooperate with the
NVRAM 280 to implement the write-back cache 380 con-
figured to store the write data associated with the write
request. Notably, the write data for the write request may be
physically stored in the log 355 such that the cache 380
contains the reference to the associated write data. That 1s,
the write-back cache may be structured as a log. In an
embodiment, a copy of the write-back cache may be also
maintained i the memory 220 to facilitate direct memory
access to the storage controllers. In other embodiments,
caching may be performed at the host 120 or at a receiving
node 1n accordance with a protocol that maintains coherency
between the write data stored at the cache and the cluster.

In an embodiment, the administration layer 310 may
apportion the LUN 1nto multiple volumes, each of which
may be partitioned into multiple regions (e.g., allotted as
disjoint block address ranges), with each region having one
or more segments stored as multiple stripes on the array 150.
A plurality of volumes distributed among the nodes 200 may
thus service a single LUN, 1.e., each volume within the LUN
services a different LBA range (1.e., offset and length,
hereinafter offset and range) or set of ranges within the LUN.
Accordingly, the protocol layer 320 may implement a vol-
ume mapping technique to identify a volume to which the
I/O request 1s directed (1.e., the volume servicing the offset
range indicated by the parameters of the I/O request).
[lustratively, the cluster database 244 may be configured to
maintain one or more associations (e.g., key-value pairs) for
cach of the multiple volumes, e.g., an association between
the LUN ID and a volume, as well as an association between
the volume and a node ID for a node managing the volume.
The administration layer 310 may also cooperate with the
database 244 to create (or delete) one or more volumes
associated with the LUN (e.g., creating a volume ID/LUN
key-value pair in the database 244). Using the LUN ID and
LBA (or LBA range), the volume mapping technique may
provide a volume ID (e.g., using appropriate associations in
the cluster database 244) that identifies the volume and node
servicing the volume destined for the request, as well as
translate the LBA (or LBA range) into an oflset and length
within the volume. Specifically, the volume ID 1s used to
determine a volume layer instance that manages volume
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metadata associated with the LBA or LBA range. As noted,
the protocol layer may pass the 1/0O request (1.e., volume 1D,
oflset and length) to the persistence layer 330, which may
use the function shipping (e.g., inter-node) implementation
to forward the I/O request to the appropriate volume layer
instance executing on a node in the cluster based on the
volume ID.

In an embodiment, the volume layer 340 may manage the
volume metadata by, e.g., maintaining states of host-visible
containers, such as ranges ol LUNs, and performing data
management functions, such as creation of snapshots and
clones, for the LUNSs 1n cooperation with the administration
layer 310. The volume metadata 1s 1llustratively embodied as
in-core mappings from LUN addresses (i.e., LBAs) to
durable extent keys, which are unique cluster-wide IDs
associated with SSD storage locations for extents within an
extent key space of the cluster-wide storage container. That
1s, an extent key may be used to retrieve the data of the
extent at an SSD storage location associated with the extent
key. Alternatively, there may be multiple storage containers
in the cluster wherein each container has 1ts own extent key
space, €.g., where the host provides distribution of extents
among the storage containers and cluster-wide (across con-
tainers) de-duplication 1s infrequent. An extent 1s a variable
length block of data that provides a unit of storage on the
SSDs and that need not be aligned on any specific boundary,
1.€., 1t may be byte aligned. Accordingly, an extent may be
an aggregation ol write data from a plurality of write
requests to maintain such alignment. Illustratively, the vol-
ume layer 340 may record the forwarded request (e.g.,
information or parameters characterizing the request), as
well as changes to the volume metadata, 1n dedicated log
345 maintained by the volume layer 340. Subsequently, the
contents of the volume layer log 345 may be written to the
storage array 150 in accordance with retirement of log
entries, while a checkpoint (e.g., synchronization) operation
stores 1n-core metadata on the array 1350. That 1s, the
checkpoint operation (checkpoint) ensures that a consistent
state of metadata, as processed in-core, 1s committed to
(stored on) the storage array 150; whereas the retirement of
log entries ensures that the entries accumulated i the
volume layer log 345 synchronize with the metadata check-
points committed to the storage array 150 by, e.g., retiring
those accumulated log entries prior to the checkpoint. In one
or more embodiments, the checkpoint and retirement of log
entries may be data driven, periodic or both.

In an embodiment, the extent store layer 350 1s respon-
sible for storing extents on the SSDs 260 (1.¢., on the storage
array 150) and for providing the extent keys to the volume
layer 340 (e.g., in response to a forwarded write request).
The extent store layer 350 1s also responsible for retrieving
data (e.g., an existing extent) using an extent key (e.g., n
response to a forwarded read request). In an alternative
embodiment, the extent store layer 350 1s responsible for
performing de-duplication and compression on the extents
prior to storage. The extent store layer 350 may maintain
in-core mappings (e.g., embodied as hash tables) of extent
keys to SSD storage locations (e.g., oilset on an SSD 260 of
array 150). The extent store layer 350 may also maintain a
dedicated log 355 of entries that accumulate requested “put”
and “delete” operations (1.e., write requests and delete
requests for extents 1ssued from other layers to the extent
store layer 350), where these operations change the 1n-core
mappings (1.€., hash table entries). Subsequently, the 1n-core
mappings and contents of the extent store layer log 355 may
be written to the storage array 150 in accordance with a
“fuzzy” checkpoint 390 (i.e., checkpoint with incremental
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changes that span multiple log files) in which selected
in-core mappings, less than the total, are commaitted to the
array 150 at various intervals (e.g., driven by an amount of
change to the in-core mappings, size thresholds of log 355,
or periodically). Notably, the accumulated entries in log 355
may be retired once all in-core mappings have been com-
mitted and then, illustratively, for those entries prior to the
first interval.

In an embodiment, the RAID layer 360 may organize the
SSDs 260 within the storage array 150 as one or more RAID
groups (e.g., sets of SSDs) that enhance the reliability an
integrity of extent storage on the array by writing data
“stripes” having redundant information, 1.e., appropriate
parity information with respect to the striped data, across a
grven number of SSDs 260 of each RAID group. The RAID
layer 360 may also store a number of stripes (e.g., stripes of
suflicient depth), e.g., 1n accordance with a plurality of
contiguous range write operations, so as to reduce data
relocation (1.e., internal flash block management) that may
occur within the SSDs as a result of the operations. In an
embodiment, the storage layer 365 implements storage 1/0
drivers that may communicate directly with hardware (e.g.,
the storage controllers and cluster interface) cooperating
with the operating system kernel 224, such as a Linux virtual
function I/O (VFIO) dniver.

Write Path

FIG. 4 illustrates an I/O (e.g., write) path 400 of the
storage I/0 stack 300 for processing an I/O request, e.g., a
SCSI write request 410. The write request 410 may be 1ssued
by host 120 and directed to a LUN stored on the storage
arrays 150 of the cluster 100. Illustratively, the protocol
layer 320 receives and processes the write request by
decoding 420 (e.g., parsing and extracting) fields of the
request, e.g., LUN ID, LBA and length (shown at 413), as
well as write data 414. The protocol layer 320 may use the
results 422 from decoding 420 for a volume mapping
technique 430 (described above) that translates the LUN ID
and LBA range (1.e., equivalent oflset and length) of the
write request to an appropriate volume layer instance, 1.e.,
volume ID (volume 445), in the cluster 100 that 1s respon-
sible for managing volume metadata for the LBA range. In
an alternative embodiment, the persistence layer 330 may
implement the above described volume mapping technique
430. The protocol layer then passes the results 432, e.g.,
volume ID, offset, length (as well as write data), to the
persistence layer 330, which records the request in the
persistence layer log 335 and returns an acknowledgement
to the host 120 via the protocol layer 320. As described
herein, the persistence layer 330 may aggregate and organize
write data 414 from one or more write requests 1nto a new
extent 470 and perform a hash computation, 1.e., a hash
function, on the new extent to generate a hash value 472 1n
accordance with an extent hashing technique 474.

The persistence layer 330 may then pass the write request
with aggregated write data including, e.g., the volume ID,
offset and length, as parameters 434 to the approprate
volume layer instance. In an embodiment, message passing
of the parameters 434 (received by the persistence layer)
may be redirected to another node via the function shipping
mechanism, e.g., RPC, for inter-node communication. Alter-
natively, message passing of the parameters 434 may be via
the IPC mechanism, e.g., message threads, for intra-node
communication.

In one or more embodiments, a bucket mapping technique
476 1s provided that translates the hash value 472 to an
instance ol an appropriate extent store layer (e.g., extent
store 1stance 478) that 1s responsible for storing the new




US 10,565,230 B2

9

extent 470. Note that the bucket mapping technique may be
implemented 1n any layer of the storage I/0 stack above the
extent store layer. In an embodiment, for example, the
bucket mapping technique may be implemented in the
persistence layer 330, the volume layer 340, or a layer that
manages cluster-wide information, such as a cluster layer
(not shown). Accordingly, the persistence layer 330, the
volume layer 340, or the cluster layer may contain computer
executable mstructions executed by the CPU 210 to perform
operations that implement the bucket mapping technique
476 described herein. The persistence layer 330 may then
pass the hash value 472 and the new extent 470 to the
appropriate volume layer instance and onto the appropriate
extent store instance via an extent store put operation. The
extent hashing technique 474 may embody an approximately
uniform hash function to ensure that any random extent to be
written may have an approximately equal chance of falling
into any extent store instance 478, 1.e., hash buckets are
evenly distributed across extent store instances of the cluster
100 based on available resources. As a result, the bucket
mapping technique 476 provides load-balancing of write
operations (and, by symmetry, read operations) across nodes
200 of the cluster, while also leveling flash wear 1n the SSDs
260 of the cluster.

In response to the put operation, the extent store instance
may process the hash value 472 to perform an extent
metadata selection technique 480 that (1) selects an appro-
priate hash table 482 (e.g., hash table 482a) from a set of
hash tables (illustratively in-core) within the extent store
instance 478, and (1) extracts a hash table index 484 from
the hash value 472 to index into the selected hash table and
lookup a table entry having an extent key 618 1dentifying a
storage location 490 on SSD 260 for the extent. Accordingly,
the persistence layer 330, the volume layer 340, or the
cluster layer may contain computer executable instructions
executed by the CPU 210 to perform operations that imple-
ment the extent metadata selection technique 480 described
herein. If a table entry with a matching extent key 1s found,
then the SSD location 490 mapped from the extent key 618
1s used to retrieve an existing extent (not shown) from SSD.
The existing extent 1s then compared with the new extent
4’70 to determine whether their data 1s 1dentical. If the data
1s 1dentical, the new extent 470 1s already stored on SSD 260
and a de-duplication opportunity (denoted de-duplication
452) exists such that there 1s no need to write another copy
of the data. Accordingly, a reference count (not shown) 1n
the table entry for the existing extent 1s incremented and the
extent key 618 of the existing extent i1s passed to the
appropriate volume layer instance for storage within an
entry (denoted as volume metadata entry 600) of a dense tree
metadata structure (e.g., dense tree 700a), such that the
extent key 618 1s associated an oflset range 440 (e.g., oflset
range 440a) of the volume 443.

However, 11 the data of the existing extent 1s not 1dentical
to the data of the new extent 470, a collision occurs and a
deterministic algorithm 1s 1voked to sequentially generate
as many new candidate extent keys (not shown) mapping to
the same bucket as needed to either provide de-duplication
452 or produce an extent key that 1s not already stored within
the extent store instance. Notably, another hash table (e.g.
hash table 4827») may be selected by a new candidate extent
key 1n accordance with the extent metadata selection tech-
nique 480. In the event that no de-duplication opportunity
exists (1.e., the extent 1s not already stored) the new extent
470 1s compressed 1n accordance with compression tech-
nique 454 and passed to the RAID layer 360, which pro-
cesses the new extent 470 for storage on SSD 260 within one
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or more stripes 464 of RAID group 466. The extent store
instance may cooperate with the RAID layer 360 to identity
a storage segment 460 (1.¢., a portion of the storage array
150) and a location on SSD 260 within the segment 460 1n
which to store the new extent 470. Illustratively, the 1den-
tified storage segment 1s a segment with a large contiguous
free space having, e.g., location 490 on SSD 2605 for storing
the extent 470.

In an embodiment, the RAID layer 360 then writes the
stripes 464 across the RAID group 466, illustratively as one
or more full write stripe 462. The RAID layer 360 may write
a series of stripes 464 of suflicient depth to reduce data
relocation that may occur within the flash-based SSDs 260
(1.e., tlash block management). The extent store instance
then (1) loads the SSD location 490 of the new extent 470
into the selected hash table 482# (i.e., as selected by the new
candidate extent key) and (1) passes a new extent key
(denoted as extent key 618) to the appropriate volume layer
instance for storage within an entry (also denoted as volume
metadata entry 600) of a dense tree 700 managed by that
volume layer instance, and (111) records a change to extent
metadata of the selected hash table 1n the extent store layer
log 3355. Illustratively, the volume layer instance selects
dense tree 700a spanning an oflset range 440q of the volume
445 that encompasses the offset range of the write request.
As noted, the volume 445 (e.g., an oflset space of the
volume) 1s partitioned into multiple regions (e.g., allotted as
disjoint oflset ranges); 1n an embodiment, each region 1is
represented by a dense tree 700. The volume layer instance
then inserts the volume metadata entry 600 1nto the dense
tree 700a and records a change corresponding to the volume
metadata entry 1n the volume layer log 345. Accordingly, the
I/O (write) request 1s sulliciently stored on SSD 260 of the
cluster.

Read Path

FIG. 5 1llustrates an I/O (e.g., read) path 500 of the storage
I/0 stack 300 for processing an 1/0O request, e.g., a SCSI read
request 510. The read request 510 may be 1ssued by host 120
and received at the protocol layer 320 of a node 200 1n the
cluster 100. Illustratively, the protocol layer 320 processes

the read request by decoding 420 (e.g., parsing and extract-
ing) fields of the request, e.g., LUN ID, LBA, and length

(shown at 513), and uses the results 522, e.g., LUN 1D,
oflset, and length, for the volume mapping technique 430.
That 1s, the protocol layer 320 may implement the volume
mapping technique 430 (described above) to translate the
LUN ID and LBA range (1.e., equvalent offset and length)
of the read request to an appropriate volume layer instance,
1.e., volume ID (volume 445), in the cluster 100 that is
responsible for managing volume metadata for the LBA
(1.e., oflset) range. The protocol layer then passes the results
532 to the persistence layer 330, which may search the write
cache 380 to determine whether some or all of the read
request can be service from 1ts cache data. If the entire
request cannot be serviced from the cached data, the per-
sistence layer 330 may then pass the remaining portion of
the request including, e.g., the volume ID, offset and length,
as parameters 534 to the appropnate volume layer instance
in accordance with the function shipping mechanism (e.g.,
RPC, for inter-node communication) or the IPC mechanism
(e.g., message threads, for intra-node communication).
The volume layer instance may process the read request
to access a dense tree metadata structure (e.g., dense tree
700a) associated with a region (e.g., oflset range 440a) of a
volume 445 that encompasses the requested oflset range
(specified by parameters 332). The volume layer instance
may further process the read request to search for (lookup)
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one or more volume metadata entries 600 of the dense tree
700a to obtain one or more extent keys 618 associated with
one or more extents 470 within the requested offset range.
As described further herein, each dense tree 700 may be
embodied as multiple levels of a search structure with
possibly overlapping oflset range entries at each level. The
entries, 1.¢., volume metadata entries 600, provide mappings
from host-accessible LUN addresses, 1.e., LBAs, to durable
extent keys. The various levels of the dense tree may have
volume metadata entries 600 for the same oflset, in which
case the higher level has the newer entry and 1s used to
service the read request. A top level of the dense tree 700 1s
illustratively resident in-core and a page cache 448 may be
used to access lower levels of the tree. If the requested range
or portion thereol 1s not present in the top level, a metadata
page assoclated with an index entry at the next lower tree
level 1s accessed. The metadata page (1.e., 1n the page cache
448) at the next level 1s then searched (e.g., a binary search)
to find any overlapping entries. This process 1s then 1terated
until one or more volume metadata entries 600 of a level are
found to ensure that the extent key(s) 618 for the entire
requested read range are found. If no metadata entries exist
tfor the entire or portions of the requested read range, then the
missing portion(s) are zero filled.

Once found, each extent key 618 1s processed by the
volume layer 340 to, e.g., implement the bucket mapping
technique 476 that translates the extent key to an appropriate
extent store instance 478 responsible for storing the
requested extent 470. Note that, in an embodiment, each
extent key 618 may be substantially i1dentical to the hash
value 472 associated with the extent 470, 1.e., the hash value
as calculated during the write request for the extent, such
that the bucket mapping 476 and extent metadata selection
480 techniques may be used for both write and read path
operations. Note also that the extent key 618 may be derived
from the hash value 472. The volume layer 340 may then
pass the extent key 618 (1.¢., the hash value from a previous
write request for the extent) to the appropriate extent store
instance 478 (via an extent store get operation), which
performs an extent key-to-SSD mapping to determine the
location on SSD 260 for the extent.

In response to the get operation, the extent store instance
may process the extent key 618 (i.e., hash value 472) to
perform the extent metadata selection technique 480 that (1)
selects an appropriate hash table (e.g., hash table 482a) from
a set of hash tables within the extent store instance 478, and
(1) extracts a hash table index 484 from the extent key 618
(1.e., hash value 472) to index into the selected hash table
and lookup a table entry having a matching extent key 618
that identifies a storage location 490 on SSD 260 for the
extent 470. That 1s, the SSD location 490 mapped to the
extent key 618 may be used to retrieve the existing extent
(denoted as extent 470) from SSD 260 (e.g., SSD 26056). The
extent store instance then cooperates with the RAID layer
360 to access the extent on SSD 2605 and retrieve the data
contents 1n accordance with the read request. Illustratively,
the RAID layer 360 may read the extent 1n accordance with
an extent read operation 468 and pass the extent 470 to the
extent store instance. The extent store instance may then
decompress the extent 470 1n accordance with a decompres-
sion technique 456, although it will be understood to those
skilled 1n the art that decompression can be performed at any
layer of the storage 1/0 stack 300. The extent 470 may be
stored 1n a bufler (not shown) in memory 220 and a
reference to that bufler may be passed back through the
layers of the storage I/O stack. The persistence layer may
then load the extent into a read cache 580 (or other staging,
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mechanism) and may extract appropnate read data 512 from
the read cache 580 for the LBA range of the read request
510. Thereatter, the protocol layer 320 may create a SCSI
read response 514, including the read data 512, and return
the read response to the host 120.

Dense Tree Volume Metadata

As noted, a host-accessible LUN may be apportioned into
multiple volumes, each of which may be partitioned 1nto one
or more regions, wherein each region 1s associated with a
disjoint oflset range, 1.e., a LBA range, owned by an instance
of the volume layer 340 executing on a node 200. For
example, assuming a maximum volume size of 64 terabytes
(IB) and a region size of 16 gigabytes (GB), a volume may
have up to 4096 regions (1.e., 16 GBx4096=64 TB). In an
embodiment, region 1 may be associated with an oilset
range of, e.g., 0-16 GB, region 2 may be associated with an
oflset range of 16 GB-32 GB, and so forth. Ownership of a
region denotes that the volume layer instance manages
metadata, 1.e., volume metadata, for the region, such that I/O
requests destined to a LBA range within the region are
directed to the owning volume layer instance. Thus, each
volume layer instance manages volume metadata for, and
handles 1/O requests to, one or more regions. A basis for
metadata scale-out 1n the distributed storage architecture of
the cluster 100 includes partitioning of a volume into regions
and distributing of region ownership across volume layer
instances of the cluster.

Volume metadata, as well as data storage, in the distrib-
uted storage architecture 1s illustratively extent based. The
volume metadata of a region that 1s managed by the volume
layer instance 1s illustratively embodied as 1in memory
(1n-core) and on SSD (on-flash) volume metadata configured
to provide mappings from host-accessible LUN addresses,
1.e., LBAs, of the region to durable extent keys. In other
words, the volume metadata maps LBA ranges of the LUN
to data of the LUN (via extent keys) within the respective
LBA range. In an embodiment, the volume layer organizes
the volume metadata (embodied as volume metadata entries
600) as a data structure, 1.e., a dense tree metadata structure
(dense tree 700), which maps an oflset range within the
region to one or more extent keys. That 1s, the LUN data
(user data) stored as extents (accessible via extent keys) 1s
associated with LUN LBA ranges represented as volume
metadata (also stored as extents).

FIG. 6 1s a block diagram of a volume metadata entry 600
ol the dense tree metadata structure. Each volume metadata
entry 600 of the dense tree 700 may be a descriptor that
embodies one of a plurality of types, including a data entry
(D) 610, an index entry (I) 620, and a hole entry (H) 630.
The data entry (D) 610 1s configured to map (oilset, length)
to an extent key for an extent (user data) and includes the
following content: type 612, oflset 614, length 616 and
extent key 618. The index entry (I) 620 1s configured to map
(offset, length) to a page key (e.g., and extent key) of a
metadata page (stored as an extent), 1.e., a page containing
one or more volume metadata entries, at a next lower level
of the dense tree; accordingly, the index entry 620 includes
the following content: type 622, oilset 624, length 626 and
page key 628. Illustratively, the index entry 620 manifests as
a pointer from a higher level to a lower level, 1.¢., the index
entry 620 essentially serves as linkage between the different
levels of the dense tree. The hole entry (H) 630 represents
absent data as a result of a hole punching operation at (oflset,
length) and 1ncludes the following content: type 632, oflset
634, and length 636.

FIG. 7 1s a block diagram of the dense tree metadata
structure that may be advantageously used with one or more
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embodiments described herein. The dense tree metadata
structure 700 1s configured to provide mappings of logical
oflsets within a LUN (or volume) to extent keys managed by
one or more extent store instances. Illustratively, the dense
tree metadata structure 1s organized as a multi-level dense
tree 700, where a top level 800 represents recent volume
metadata changes and subsequent descending levels repre-
sent older changes. Specifically, a higher level of the dense
tree 700 1s updated first and, when that level fills, an adjacent
lower level 1s updated, e.g., via a merge operation. A latest
version ol the changes may be searched starting at the top
level of the dense tree and working down to the descending
levels. Each level of the dense tree 700 includes fixed size
records or entries, 1.e., volume metadata entries 600, for
storing the volume metadata. A volume metadata process
710 1llustratively maintains the top level 800 of the dense
tree 11 memory (in-core) as a balanced tree that enables
indexing by offsets. The volume metadata process 710 also
maintains a fixed sized (e.g., 4 KB) in-core bufller as a
staging area (1.e., an 1-core staging bufler 715) for volume
metadata entries 600 mserted 1into the balanced tree (1.e., top
level 800). Each level of the dense tree 1s further maintained
on-flash as a packed array of volume metadata entries,
wherein the entries are stored as extents illustratively orga-
nized as fixed sized (e.g., 4 KB) metadata pages 720.
Notably, the staging bufler 715 1s de-staged to SSD upon a
trigger, e.g., the staging bufler 1s tull. Each metadata page
720 has a unmique 1dentifier (ID) which guarantees that no
two metadata pages can have the same content. Illustra-
tively, metadata may not be de-m duplicated by the extent
store layer 350.

In an embodiment, the multi-level dense tree 700 includes
three (3) levels, although 1t will be apparent to those skilled
in the art that additional levels N of the dense tree may be
included depending on parameters (e.g., size) of the dense
tree configuration. Illustratively, the top level 800 of the tree
1s maintained in-core as level O and the lower levels are
maintained on-flash as levels 1 and 2. In addition, copies of
the volume metadata entries 600 stored 1n staging butler 715
may also be maintained on-flash as, e.g., a level 0 linked list.
A leaf level, e.g., level 2, of the dense tree contains data
entries 610, whereas a non-leaf level, e.g., level 0 or 1, may
contain both data entries 610 and index entries 620. Each
index entry (I) 620 at level N of the tree 1s configured to
point to (reference) a metadata page 720 at level N+1 of the
tree. Each level of the dense tree 600 also includes a header
(e.g., level O header 730, level 1 header 740 and level 2
header 750) that contains per level information, such as
reference counts associated with the extents. Each upper
level header contains a header key (an extent key for the
header, e.g., header key 732 of level O header 730) to a
corresponding lower level header. A region key 762 to a root,
e.g., level O header 730 (and top level 800), of the dense tree
700 1s 1illustratively stored on-flash and maintained 1 a
volume root extent, e.g., a volume superblock 760. Notably,
the volume superblock 760 contains region keys to the roots
of the dense tree metadata structures for all regions 1n a
volume.

FIG. 8 1s a block diagram of the top level 800 of the dense
tree metadata structure. As noted, the top level (level 0) of
the dense tree 700 1s maintained in-core as a balanced tree,
which 1s illustratively embodied as a B+ tree data structure.
However, 1t will be apparent to those skilled 1n the art that
other data structures, such as AVL trees, Red-Black trees,
and heaps (partially sorted trees), may be advantageously
used with the embodiments described herein. The B+ tree
(top level 800) includes a root node 810, one or more
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internal nodes 820 and a plurality of leaf nodes (leaves) 830.
The volume metadata stored on the tree 1s preferably orga-
nized 1n a manner that 1s eflicient both to search in order to
service read requests and to traverse (walk) in ascending
order of offset to accomplish merges to lower levels of the
tree. The B+ tree has certain properties that satisiy these
requirements, including storage of all data (1.e., volume
metadata entries 600) 1n leaves 830 and storage of the leaves
as sequentially accessible, e.g., as one or more linked lists.
Both of these properties make sequential read requests for
write data (1.e., extents) and read operations for dense tree
merge more eflicient. Also, since 1t has a much higher
fan-out than a binary search tree, the illustrative B+ tree
results 1n more eflicient lookup operations. As an optimiza-
tion, the leaves 830 of the B+ tree may be stored in a page
cache 448, making access ol data more eflicient than other
trees. In addition, resolution of overlapping oflset entries in
the B+ tree optimizes read requests of extents. Accordingly,
the larger the fraction of the B+ tree (1.e., volume metadata)
maintained in-core, the less loading (reading) or metadata
from SSD 1s required so as to reduce read amplification.

FIG. 9 illustrates mappings 900 between levels of the
dense tree metadata structure. Each level of the dense tree
700 includes one or more metadata pages 720, each of which
contains multiple volume metadata entries 600. In an
embodiment, each volume metadata entry 600 has a fixed
s1ze, e.g2., 12 bytes, such that a predetermined number of
entries may be packed into each metadata page 720. As
noted, the data entry (D) 610 1s a map of (oilset, length) to
an address of (user) data which 1s retrievable using extent
key 618 (1.e., from an extent store instance). The (oflset,
length) illustratively specifies an oflset range of a LUN. The
index entry (I) 620 1s a map of (oflset, length) to a page key
628 of a metadata page 720 at the next lower level. Illus-
tratively, the offset in the index entry (I) 620 1s the same as
the offset of the first entry 1n the metadata page 720 at the
next lower level. The length 626 1n the mdex entry 620 1s
illustratively the cumulative length of all entries 1n the
metadata page 720 at the next lower level (including gaps
between entries).

For example, the metadata page 720 of level 1 includes an
index entry “I(2K,10K)” that specifies a starting offset 2K
and an ending ofiset 12K (1.e., 2ZK+10K=12K); the index
entry (I) 1llustratively points to a metadata page 720 of level
2 covering the specified range. An aggregate view of the data
entries (D) packed 1n the metadata page 720 of level 2 covers
the mapping from the smallest offset (e.g., 2K) to the largest
oflset (e.g., 12K). Thus, each level of the dense tree 700 may
be viewed as an overlay of an underlying level. For instance
the data entry “D(0,4K)” of level 1 overlaps 2K of the
underlying metadata in the page of level 2 (1.e., the range
2K ,4K).

In one or more embodiments, operations for volume
metadata managed by the volume layer 340 include 1nsertion
of volume metadata entries, such as data entries 610, into the
dense tree 700 for write requests. As noted, each dense tree
700 may be embodied as multiple levels of a search structure
with possibly overlapping oflset range entries at each level,
wherein each level 1s a packed array of entries (e.g., sorted
by oflset) and where leaf entries have an LBA range (oflset,
length) and extent key. FIG. 10 1llustrates a workflow 1000
for mserting a volume metadata entry into the dense tree
metadata structure 1n accordance with a write request. In an
embodiment, volume metadata updates (changes) to the
dense tree 700 occur first at the top level of the tree, such that
a complete, top-level description of the changes 1s main-
tamned 1n memory 220. Operationally, the volume metadata
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process 710 applies the region key 762 to access the dense
tree 700 (1.¢., top level 800) of an appropriate region (e.g.,
LBA range 440 as determined from the parameters 432
derived from the write request 410). Upon completion of a
write request, the volume metadata process 710 creates a
volume metadata entry, e.g., a new data entry 610, to record
a mapping ol oflset/length-to-extent key (1.e., LBA range-
to-user data). Illustratively, the new data entry 610 includes
an extent key 618 (1.e., from the extent store layer 350)
associated with data (1.e., extent 470) of the write request
410, as well as oflset 614 and length 616 (1.e., from the write
parameters 432) and type 612 (i.e., data entry D).

The volume metadata process 710 then updates the vol-
ume metadata by inserting (adding) the data entry D mto the
level O staging butler 715, as well as into the top level 800
of dense tree 700 and the volume layer log 345. In the case
of an overwrite operation, the overwritten extent and 1ts
mapping should be deleted. The deletion process 1s similar
to that of hole punching (un-map). When the level 0 1s full,
1.e., no more entries can be stored, the volume metadata
entries 600 from the level 0 in-core are merged to lower
levels (maintained on SSD), 1.e., level 0 merges to level 1
which may then merge to level 2 and so on (e.g., a single
entry added at level 0 may trigger a merger cascade). Note,
any entries remaining in the staging bufler 713 after level O
1s full also may be merged to lower levels. The level O
staging buliler 1s then emptied to allow space for new entries
600.

Dense Tree Volume Metadata Checkpointing

When a level of the dense tree 700 1s full, volume
metadata entries 600 of the level are merged with the next
lower level of the dense tree. As part of the merge, new 1ndex
entries 620 are created 1n the level to point to new lower
level metadata pages 720, 1.e., data entries from the level are
merged (and pushed) to the lower level so that they may be
“replaced” with an index reference 1n the level. The top level
800 (i.e., level 0) of the dense tree 700 1s 1illustratively
maintained in-core such that a merge operation to level 1
tacilitates a checkpoint to SSD 260. The lower levels (1.e.,
levels 1 and/or 2) of the dense tree are illustratively main-
tained on-flash and updated (e.g., merged) as a batch opera-
tion (1.e., processing the entries of one level with those of a
lower level) when the higher levels are full. The merge
operation illustratively includes a sort, e.g., a 2-way merge
sort operation. A parameter of the dense tree 700 1s the ratio
K of the size of level N-1 to the size of level N. Illustra-
tively, the size of the array at level N 1s K times larger than
the size of the array at level N-1, 1e., sizeol(level
N)=K*s1zeoi(level N-1). After K merges from level N-1,
level N becomes full (i.e., all entries from a new, fully-
populated level N-1 are merged with level N, iterated K
times. )

FIG. 11 illustrates merging 1100 between levels, e.g.,
levels 0 and 1, of the dense tree metadata structure. In an
embodiment, a merge operation 1s triggered when level O 1s
tull. When performing the merge operation, the dense tree
metadata structure transitions to a “merge” dense tree struc-
ture (shown at 1120) that merges, while an alternate “active”
dense tree structure (shown at 1150) 1s utilized to accept
incoming data. Accordingly, two 1n-core level 0 staging
butlers 1130, 1160 are illustratively maintained for concur-
rent merge and active (write) operations, respectively. In
other words, an active staging bufler 1160 and active top
level 1170 of active dense tree 1150 handle 1n-progress data
flow (1.e, active user read and write requests), while a merge
staging bufler 1130 and merge top level 1140 of merge dense
tree 1120 handle consistency of the data during a merge
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operation. That 1s, a “double bufler” arrangement may be
used to maintain consistency of data (1.e., entries 1n the level
0 of the dense tree) while processing active operations.

During the merge operation, the merge staging builer
1130, as well as the top level 1140 and lower level array
(e.g., merge level 1) are read-only and are not modified. The
active staging builer 1160 1s configured to accept the incom-
ing (user) data, 1.e., the volume metadata entries received
from new put operations are loaded into the active staging
bufler 1160 and added to the top level 1170 of the active
dense tree 11350. Illustratively, merging from level 0 to level
1 within the merge dense tree 1120 results 1n creation of a
new active level 1 for the active dense tree 1150, 1.e., the
resulting merged level 1 from the merge dense tree 1s
inserted as a new level 1 into the active dense tree. A new
index entry I 1s computed to reference the new active level
1 and the new 1ndex entry I 1s loaded into the active staging
bufler 1160 (as well as 1n the active top level 1170). Upon
completion of the merge, the region key 762 of volume
superblock 760 1s updated to reference (point to) the root,
e.g., active top level 1170 and active level O header (not
shown), of the active dense tree 1150, thereby deleting (1.e.,
rendering active) merge level 0 and merge level 1 of the
merge dense tree 1120. The merge staging builer 1130 thus
becomes an empty mactive bufler until the next merge. The
merge data structures (1.e., the merge dense tree 1120
including staging buffer 1130) may be maintained in-core
and “swapped” as the active data structures at the next merge
(1.e., “double butlered™).

Snapshot and Clones

As noted, the LUN ID and LBA (or LBA range) of an I/O
request are used to identity a volume (e.g., of a LUN) to
which the request i1s directed, as well as the volume layer
(1instance) that manages the volume and volume metadata
associated with the LBA range. Management of the volume
and volume metadata may include data management func-
tions, such as creation of snapshots and clones, for the LUN.
[lustratively, the snapshots and clones may be represented
as mdependent volumes accessible by host 120 as LUNSs,
and embodied as respective read-only copies, 1.€., snapshots,
and read-write copies, 1.€., clones, of the volume (hereinatter
“parent volume™) associated with the LBA range. The vol-
ume layer 340 may interact with other layers of the storage
I/O stack 300, e.g., the persistence layer 330 and the
administration layer 310, to manage both administration
aspects, ¢.g., snapshot/clone creation, of the snapshot and
clone volumes, as well as the volume metadata, 1.e., 1n-core
mappings from LBAs to extent keys, for those volumes.
Accordingly, the administration layer 310, persistence layer
330, and volume layer 340 contain computer executable
instructions executed by the CPU 210 to perform operations
that create and manage the snapshots and clones described
herein.

In one or more embodiments, the volume metadata man-
aged by the volume layer, 1.e., parent volume metadata and
snapshot/clone metadata, 1s illustratively organized as one or
more multi-level dense tree metadata structures, wherein
cach level of the dense tree metadata structure (dense tree)
includes volume metadata entries for storing the metadata.
Each snapshot/clone may be derived from a dense tree of the
parent volume (parent dense tree) to thereby enable fast and
cllicient snapshot/clone creation 1n terms of time and con-
sumption of metadata storage space. To that end, portions
(e.g., levels or volume metadata entries) of the parent dense
tree may be shared with the snapshot/clone to support time
and space efliciency of the snapshot/clone, 1.e., portions of
the parent volume divergent from the snapshot/clone volume
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are not shared. Illustratively, the parent volume and clone
may be considered “active,” 1n that each actively processes
(1.e., accepts) additional I/O requests which modity or add
(user) data to the respective volume; whereas a snapshot 1s
read-only and, thus, does not modily volume (user) data, but
may still process non-modifying I/O requests (e.g., read
requests).

FIG. 12 1s a block diagram of a dense tree metadata
structure shared between a parent volume and a snapshot/
clone. In an embodiment, creation of a snapshot/clone may
include copying an in-core portion of the parent dense tree
to a dense tree of the snapshot/clone (snapshot/clone dense
tree). That 1s, the in-core level 0 staging builer and in-core
top level of the parent dense tree may be copied to create the
in-core portion of the snapshot/clone dense tree, 1.e., parent
staging buller 1160 may be copied to create snapshot/clone
staging builer 1130, and top level 800a (shown at 1170) may
be copied to create snapshot/clone top level 8005 (shown at
1140). Note that although the parent volume layer log 345a
may be copied to create snapshot/clone volume layer log
345b, the volume metadata entries of the parent volume log
345a recorded (1.e., logged) after in1tiation of snapshot/clone
creation may not be copied to the log 3455, as those entries
may be directed to the parent volume and not to the
snapshot/clone. Lower levels of the parent dense tree resid-
ing on SSDs may be initially shared between the parent
volume and snapshot/clone. As the parent volume and
snapshot/clone diverge, the levels may split to accommodate
new data. That 1s, as new volume metadata entries are
written to a level of the parent dense tree, that level 1s copied
(1.e., split) to the snapshot/clone dense tree so that the parent
dense tree may diverge from its old (now copied to the
snapshot/clone) dense tree structure.

A reference counter may be maintained for each level of
the dense tree, illustratively within a respective level header
(reference counters 734, 744, 754) to track sharing of levels
between the volumes (1.e., between the parent volume and
snapshot/clone). Illustratively, the reference counter may
increment when levels are shared and decremented when
levels are split (e.g., copied). For example, a reference count
value of 1 may indicate an unshared level (i1.e., portion)
between the volumes (1.e., has only one reference). In an
embodiment, volume metadata entries of a dense tree do not
store data, but only reference data (as extents) stored on the
storage array 150 (e.g., on SSDs 260). Consequently, more
than one level of a dense tree may reference the same extent
(data) even when the level reference counter 1s 1. This may
result from a split (1.e., copy) of a dense tree level brought
about by creation of the snapshot/clone. Accordingly, a
separate reference count 1s maintained for each extent in the
extent store layer to track sharing of extents among volumes.

In an embodiment, the reference counter 734 for level O
(in a level-0 header) may be incremented, illustratively from
value 1 to 2, to indicate that the level O array contents are
shared by the parent volume and snapshot/clone. Illustra-
tively, the volume superblock of the parent volume (parent
volume superblock 760a) and a volume superblock of the
snapshot/clone (snapshot/clone volume superblock 7605)
may be updated to point to the level-0 header, e.g., via region
key 762a,b. Notably, the copies of the in-core data structures
may be rendered 1in conjunction with the merge operation
(described with reference to FIG. 11) such that the “merge
dense tree 1120” copy of in-core data structures (e.g., the top
level 1140 and staging bufler 1130) may become the in-core
data structures of the snapshot/clone dense tree by not
deleting (i1.e., maintaining as active rather than rendering
inactive) those copied in-core data structures. In addition,
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the snapshot/clone volume superblock 76056 may be created
by the volume layer 340 1n response to an administrative
operation initiated by the administration layer 310. More-
over, snapshots/clones may be hierarchical, in that, a snap-
shot/clone may be derived from a clone that 1s 1tself derived
from an original parent volume, 1.e., the clone i1s a parent
volume to 1ts “oflspring” snapshots (or clones) and the
original parent volume 1s grandparent to the clone’s “ofl-
spring.”

Over time, the snapshot/clone may split or diverge from
the parent volume when either modifies the level O array as
a result of new I/0 operations, e.g., a write request. FI1G. 13
illustrates diverging of the snapshot/clone from the parent
volume. In an embodiment, divergence as a result of modi-
fication to the level O array 1205a of the parent volume
illustratively imnvolves creation of a copy of the on-flash level
0 array for the snapshot/clone (array 12055b), as well as
creation of a copy of the level 0 header 730a for the
snapshot/clone (header 73056). As a result, the on-flash level
1 array 1210 becomes a shared data structure between the
parent volume and snapshot/clone. Accordingly, the refer-
ence counters for the parent volume and snapshot/clone
level O arrays may be decremented (1.e., ref count 734a and
734b of the parent volume and snapshot/clone level 0
headers 730a, 7305, respectively), because each level O
array now has one less reference (e.g., the volume super-
blocks 760a and 76056 each reference separate level 0 arrays
1205a and 12055). In addition, the reference counter 744 for
the shared level 1 array may be incremented (e.g., the level
1 array 1s referenced by the two separate level 0 arrays,
12054 and 12055). Notably, a reference counter 754 in the
header 750 for the next level, 1.e., level 2, need not be
incremented because no change in references from level 1 to
level 2 have been made, 1.e., the single level 1 array 1210
still references level 2 array 1220.

Similarly, over time, level N (e.g., levels 1 or 2) of the
snapshot/clone may diverge from the parent volume when
that level 1s modified, for example, as a result of a merge
operation. In the case of level 1, a copy of the shared level
1 array may be created for the snapshot/clone such that the
on-flash level 2 array becomes a shared data structure
between the level 1 array of the parent volume and a level
1 array of the snapshot/clone (not shown). Reference coun-
ters 744 for the parent volume level 1 array and the snapshot/
clone level 1 array (not shown) may be decremented, while
the reference counter 754 for the shared level 2 array may be
incremented. Note that this technique may be repeated for
cach dense tree level that diverges from the parent volume,
1.¢., a copy of the lowest (leafl) level (e.g., level 2) of the
parent volume array may be created for the snapshot/clone.
Note also that as long as the reference counter 1s greater than
1, the data contents of the array are pinned (cannot be
deleted).

Nevertheless, the extents for each data entry 1n the parent
volume and the snapshot/clone (e.g., the level O array
12054a,b) may still have two references (1.e., the parent
volume and snapshot/clone) even 1f the reference count
734a,b of the level O header 730q,6 1s 1. That 1s, even though
the level O arrays (1205a and 12056) may have separate
volume layer references (i.e., volume superblocks 760a and
7600), the underlying extents 470 may be shared and, thus,
may be referenced by more than one volume (i.e., the parent
volume and snapshot/clone). Note that the parent volume
and snapshot/clone each reference (initially) the same
extents 470 1n the data entries, 1.e., via extent key 618 1n data
entry 610, of their respective level 0 arrays 1205q, b. Accord-
ingly, a reference counter associated with each extent 470
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may be incremented to track multiple (volume) references to
the extent, 1.e., to prevent inappropriate deletion of the
extent. Illustratively, a reference counter associated with
cach extent key 618 may be embodied as an extent store
(ES) reference count (refcount) 1330 stored 1n an entry of an
appropriate hash table 482 serviced by an extent store
process 1320. Incrementing of the ES refcount 1330 for each
extent key (e.g., in a data entry 610) 1n level O of the parent
volume may be a long running operation, e.g., level 0 of the
parent volume may contain thousands of data entries. This
operation may illustratively be performed in the background
through a refcount log 1310, which may be stored persis-
tently on SSD.

Hlustratively, extent keys 618 obtained from the data
entries 610 of level 0 of the parent volume may be queued,
1.€., recorded, by the volume metadata process 710 (1.e., the
volume layer instance servicing the parent volume) on the
refcount log 1310 as entries 1315. Extent store process 132
(1.e., the extent store layer instance servicing the extents)
may receive each entry 1315 and increment the refcount
1330 of the hash table entry contaiming the appropnate the
extent key. That 1s, the extent store process/instance 1320
may 1dex (e.g., search using the extent metadata selection
technique 480) the hash tables 482a-# to find an entry having,
the extent key in the ref count log entry 13135. Once the hash
table entry 1s found, the refcount 1330 of that entry may be
incremented (e.g., refcnt+1). Notably, the extent store
instance may process the ref count log entries 13135 at a
different priority (i.e., higher or lower) than “put” and “get”
operations from user I/O requests directed to that instance.

Data Replication

The embodiments herein are directed to a technique for
preserving eiliciency for replication of data between a
source node of a source cluster and a destination node of a
destination cluster of a clustered network. FIG. 14 1s a block
diagram of a technique for preserving efliciency of replica-
tion between a source cluster 1410 (i.e., a first cluster 100)
and destination cluster 1420 (1.e., a second cluster 100) of a
clustered network 1400.

Data replication in the clustered network 1400 may be
performed by the replication layer 315, which leverages
global in-line deduplication of the clusters to identify and
avoid copying duplicate data from the source cluster
(source) to the destination cluster (destination). To ensure
that the copy of the data on the destination 1s synchronized
with the data received at the source, the replication layer 315
of the source may create a snapshot S1 of the data that i1s
copied to the destination for use as a baseline snapshot D1
at the destination. Thereafter, new data received at the source
that diflers from the baseline snapshot S1 are transmitted and
copied to the destination.

As previously noted, the new data may be data associated
with one or more write requests (1.e., write data) 1ssued by
a host and directed to a LBA range of a LUN served by the
source and associated with the snapshot S1. The write data
may be organized, ¢.g., aggregated, into one or more extents,
which may be de-duplicated in-line, as noted. A hash func-
tion may be applied to each extent to generate an extent key
that 1s stored 1n an ES hash table of each cluster. The extent
key 1s configured to reference a location of the extent on one
or more storage devices, such as SSDs 260 of the cluster. As
such, replication 1llustratively occurs between two different
extent stores on different (e.g., source and destination)
clusters, each using the same extent keys, 1.¢., a same hash
function 1s used on both clusters. Note that the hash function
on each cluster may employ a same hash algorithm, but with
different parameters (e.g., a diflerent salt) or a different hash
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algorithm; in both cases the hash space between the source
and destination differs such that duplicates may not be
avoided (1.e., the same extent key may map to different
extents in the source cluster than 1n the destination cluster).

To preserve efliciency during data replication, a replica-
tion process 1430q,b at each node (1.e., source and destina-
tion) ol each cluster 1410, 1420 negotiate (e.g., during an
initialization stage of replication) to ensure that the same
hash function 1s used by the source and destination. In
addition, the replication processes 1430a,b of the source and
destination nodes negotiate to establish a mapping of name-
to-data when transferring data (1.e., an extent) between the
clusters. Illustratively, the name 1s the extent key for the
extent, such that the negotiated mapping established by the
source and destination 1s based on the extent key associated
with the extent. To avoid name collisions, the source (1.e.,
replication process 1430a) sends the extent along with the
extent key (i.e., name) to the destination (1.e., replication
process 14300) for the first transfer of new data to verity the
association (1.e., mapping) of the key to the extent. The
destination (1.e., replication process 14306) accepts the
mapping if 1t can use the extent key-to-extent association
(1.e., as a new mapping or as a duplicate of an existing
mapping). The mapping may be considered valid and in
cllect when the source and destination agree on the asso-
ciation, and may be considered 1invalid when, e.g., the extent
1s deleted erther by the source or destination. The extent 1s
considered duplicate when there 1s an existing mapping
associated with the extent key of the extent.

In an embodiment, a replication ficld 1440 1s provided
within each entry of the ES hash table 482, wherein the
replication field 1s associated with an extent of the respective
entry. The replication field 1s illustratively associated on a
per-cluster pair, e¢.g., between the source and destination
clusters, and includes one or more replication bits 1442
organized as a bit plane, e.g., one byte (8 bits) per entry of
the ES hash table, wherein each bit represents a per-cluster
pair replication relationship, e.g., up to 8 replication rela-
tionships may be represented using a one byte replication
field. Illustratively, each replication bit 1442s of the bit plane
on the source 1s thus linked to a particular destination cluster,
which may be indicated using an associated cluster identi-
fier, e.g., a first replication bit may correspond to destination
cluster identifier (ID) X and a second bit may correspond to
destination cluster 1D Y. That 1s, the first replication bit
represents a “Source-X" per-cluster pair replication relation-
ship, whereas the second replication bit represents a
“Source-Y” per-cluster pair replication relationship. To that
end, a per-cluster pair ID table 1450 may be maintained 1n
cach cluster 1410, 1420 to i1dentily source and destination
clusters.

In an embodiment, a mapping of extent key to extent may
be established when the source sends the extent key along
with the extent to the destination, and the destination stores
the extent with the same extent key or already has the same
extent stored under the same key. In response, the source and
destination may assert (e.g., set) their replication bits (e.g.,
to 1) 14425s,d 1n their respective replication fields 1440s,d of
the ES hash table entries for the corresponding extent key
618. Notably, assertion of corresponding replication bits at
the source and destination indicates that any further extents
associated with the extent key may be considered duplicate.
Each replication bit may be (1mplicitly) unasserted (e.g.,
cleared) when either the source or destination deletes the
extent and the extent key, such that the ES entry for the key
does not exist. Accordingly, 1f either the source or the
destination deletes the extent, the associated extent key and
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corresponding replication bit are implicitly cleared, since the
ES hash table entry for the extent key no longer exists, 1.e.,
the key 1s removed from the entry. Once the replication bits
are cleared, the extent key (and ES hash table entry) can be
reused for the same or diflerent extent.

In an embodiment, when the replication bit on the source
1s already asserted (e.g., set), the source first sends the key
to the destination before sending the extent. In all other cases
(1.e., when the replication bit on the source 1s not asserted),
the source sends the extent along with the extent key to the
destination. Accordingly, when the corresponding replica-
tion bits are asserted (e.g., set) for a given extent key 1n each
ES hash table (1.e., 1n the source ES hash table and the
destination ES hash table), the source and destination agree
that the same extent key 1s used for the same extent between
the clusters. Thus, a valid mapping of key-to-extent 1s
established between the source and destination clusters.
[lustratively, any other arrangement of the replication bits
(c.g., at least one bit un-asserted) requires renegotiation
between the source and the destination to establish (or
re-establish) the mapping of that extent key to the extent,
1.¢., the mapping of key-to-extent 1s invalid. The various
arrangements of the replication bits at the source (i.e., source
bit) and the destination (destination bit) are 1llustratively as
follows.

Source Bit 0/Destination Bit 0:

New write data arrives at the source that 1s not part of the
baseline snapshot as copied from the source to the destina-
tion. In an embodiment, the source determines that the data
1s new by computing an extent key from the data (extent),
passing the computed key to the extent store (via a put
operation) and determining that the computed key does not
match an extent key stored 1n any entry of the ES hash table
of the source cluster. Since the extent 1s new (i.e., not yet
copied to the destination) the source sends the extent along
with the computed key (source extent key) to the destination.
The destination stores the extent on SSD 1n accordance with
I/0 write path 400, wherein the extent 1s hashed to compute
(generate) an extent key and the generated key (destination
extent key) 1s stored 1n a corresponding entry of the ES hash
table at the destination. The destination compares the des-
tination extent key with the source extent key to determine
if they match. If the destination extent key matches the
source extent key, a mapping 1s established and the desti-
nation asserts 1ts replication bit to 1 and notifies the source
to set 1ts replication bit to 1. In response, the source asserts
its replication bit to 1. Accordingly, 11 a same hash function
1s used on both the source and destination clusters, the extent
keys should match. However 1f the destination uses a
different hash function, e.g., salts the hash function, then
extent keys may not match and duplication of data (extents)
may not be avoided.

Source Bit 1/Destination Bit 1:

Write data arrives at the source that 1s a duplicate of the
data (extent) previously copied from the source to the
destination. The duplicate extent 1s determined by matching
the source extent key computed from the extent with an
extent key stored in an entry of the ES hash table on the
source, and detecting an asserted corresponding replication
bit 1n the ES hash table entry. Accordingly, the source only
sends the source extent key (without the extent) to the
destination, which checks the value of 1ts corresponding
replication bit. In an embodiment, the source extent key 1s
passed (via a put operation) to the extent store and, 1 the
source extent key matches a destination extent key stored 1n
an entry of the ES hash table at the destination, the extent
store asserts the corresponding replication bit and returns the
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destination extent key to the volume layer for insertion into
a dense tree of the LUN associated with the destination
according to a subsequent response from the source. The
destination then notifies the source that the mapping for the
extent key 1s valid and agreed upon. In response, the source
sends a reference (e.g., LBA range of the extent) for the

source extent key to the destination, wherein the LBA range
1s the location (address) within the LUN where the extent
resides. The destination then inserts the key into the dense
tree using oilset and length parameters corresponding to the
LBA range (1.¢., reference) sent from the source. Notably the
extent 1s not sent from the source to the destination, thereby
avoilding forwarding of duplicate data.

In an embodiment the reference count for the extent key
1s not synchronized at the source and destination because 1t
1s possible that either (or both) the destination and/or the
source use the same key to store non-replicated data (pri-
mary data). To that end, replication 1n accordance with the
technique described herein 1s “logical” replication, which
may be performed on a per-volume (e.g., per-LUN) basis.
The LBA range 1s needed to ensure insertion of the extent
key with appropriate parameters 1into the dense tree (meta-
data mapping) of the volume layer. In other words, the
replication technique described herein may be performed at
a LUN granularity instead of an entire extent store.

Source Bit 0/Destination Bit 1:

A previous mapping exists and the source “frees” the
extent or reuses the extent key. As such, the value of the
source replication bit 1s cleared (0) (unasserted). When
“new” data arrives, the source sends the data (extent) and
source extent key to the destination. The extent 1s hashed to
compute the destination extent key and, since the extent 1s
previously stored on SSD, the corresponding replication bit
1s already asserted 1n an entry of the ES hash table associated
with the extent. The destination may then compare the
destination extent key with the source extent key to deter-
mine 1f they match. If the source extent key matches the
destination extent key, a mapping 1s established and the
destination notifies the source to set its corresponding rep-
lication bit, e.g., to 1. Upon the source asserting 1ts bit to 1,
the mapping 1s reestablished. However if the destination
extent key does not match the source extent key, the desti-
nation clears 1ts bit, e.g., to 0, and no mapping 1s established.

Source Bit 1/Destination Bit 0:

A previous mapping exists and the destination frees the
extent or reuses the extent key. As such, the value of the
source replication bit 1s 1 and the value of the destination
replication bit 1s 0. Accordingly the source only sends the
source extent key (without the extent) to the destination.
Upon recerving the source extent key, the destination checks
the value of its corresponding replication bit within an ES
entry of the hash table to discover that there 1s no matching
key 1in any entries of the hash table (i.e., the extent 1s freed
or deleted) or that the value of the corresponding replication
bit 1s O (1.e., the key 1s reused). The destination notifies the
source that the mapping for the extent key 1s invalid and, 1n
response, the source sends the extent and source extent key
to the destination, which stores the extent and generates a
destination extent key. If the destination extent key and the
source extent key match, the destination asserts its replica-
tion bit, e.g., to 1; otherwise the destination notifies the
source to clear 1ts bit, e.g., to 0. Note that the destination may
check the value of 1ts replication bit by first searching the ES
hash table to match the destination extent key with an entry
of the ES hash table and, 1f 1t finds a matching entry, may
check the replication bit field.
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As described herein, each arrangement of replication bits
used to determine whether a mapping 1s established during
replication of data (extents) involves multiple workflow
steps. If a failure (crash) arises during the worktlow, e.g.,
between second and third steps of the workflow, such that
the steps do not complete, transactional semantics are not
required to ensure that a mapping may be reestablished
without harm. An example of the fransaction semantics
involves setting of the replication bits on both the source and
destination. Illustratively, setting of the replication bits may
occur 1 any order since a mapping 1s not established until
both bits are set (asserted). For example, assume that during,
the process of establishing a mapping for a first operation, a
second operation starts on the same extent key. The second
operation may continue as 1f the mapping 1s not established.
Alternatively, the second operation may wait until the first
operation completes.

Another example mvolves clearing of the replication bits
on the source and destination. According to the technique,
the replication bits are cleared implicitly i response to
deletion of the extent and extent key since the replication bit
field 1s included within the same data structure (1.¢., the same
entry of the ES hash table) as the key. Use of a single data
structure (1.e., replication field of hash table entry) avoids the
need for an explicit atomic transaction, as atomicity 1s
assured, 1.e., replication bit 1s cleared when the extent key
(extent) 1s deleted.

Yet another example involves preventing deletion of the
extent key during transfer of a reference. Since extent key
mapping 1s established by providing the (baseline) snapshot
from the source to the destination, a simple scheme may be
tollowed that disallows snapshot deletion during reference
transier to thereby prevent deletion of the extent key. IT
extent key deletion 1s allowed, extent (data) sharing fails and
the extent 1s resent (recopied). Illustratively, the snapshot on
the source (the source snapshot) 1s locked during transfer of
the reference, so the ES key deletion cannot occur on the
source.

As described previously herein, the replication relation-
ship 1llustratively occurs from source to destination with the
source sending differences (1.e., extent deltas) from the
baseline snapshot. However, the replication relationship 1s a
unidirectional “push™ of changes (1.e., differences) from a
first node to a second node that share a baseline snapshot.
The source and destination may be understood as peers
where a flow of information (i.e., extent deltas) designates
which peer 1s the source and which 1s the destination. For
example, 1n another embodiment, synchronization may be
performed 1n reverse, 1.e., from a prior designated destina-
tion to a prior designated source. Reversing of the relation-
ship may be performed by a resynchronize (resync) opera-
tion. For example, 1n response to the prior source (new
destination) becoming nonfunctional and going offline, an
application (host) may be directed to use data at the prior
destination (new source) as a result of the logical replication.
As such, the client may direct 1ts I/O requests (including
write requests having new data) to the new source (prior
destination). When the new destination (prior source) recov-
ers and comes back online, the replication relationship may
be reversed such that the new source (prior destination)
sends more recent extent changes (1.e., the new data) to the
new destination (prior source) 1in accordance with the resync
operation. According to the technique, the mapping infor-
mation 1s symmetric since the only replication bit arrange-
ment for an agreed-upon mapping 1s when both replication
bits are asserted (e.g., 1:1).
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In an embodiment, replication may be cascaded which
may mvolve an arrangement of three (3) clusters, e.g., A, B,
and C. Assume source A establishes a mapping with desti-
nation B (i.e., per-cluster pair A:B) and the source B
establishes a replication mapping with destination C (i.e.,
per-cluster pair B:C), such that cluster B has two replication
bit fields (one for replication between clusters A and B and
another for replication between clusters B and C). IT cluster
B 1s removed from the replication arrangement, a replication
relationship between clusters A and C may be created
without expressly establishing mappings between A and C.
For example, assume a mapping 1s established for an extent
key between clusters A and B such that their corresponding
replication bits are asserted (e.g., to 1). In addition, an
agreed-upon mapping 1s established for the same extent key
between clusters B and C such that their replication bits are
asserted. When cluster B 1s removed, clusters A and C may
continue the mapping using the same bit planes (i.e., repli-
cation bits) for the same extent key, e.g., both replication bits
are asserted. Accordingly, the replication technique may be
used to establish distributed relationships without additional
transier ol replication data, e.g., replication relationships
A:B and B:C may be used to establish replication “distrib-
uted” relationship A:C without additional cost.

Notably, a replication relationship may be broken prior to
serving 1/0 requests at the destination to ensure that there are
no further transters, 1.e., the destination 1s writable and able
serve host I/0 requests. Upon breaking of the replication
relationship (and prior to serving the I/O requests), the
resync operation may be mvoked. When breaking the rep-
lication relationship, there 1s no need to clear the replication
bit plane since those bits may be used for the resync
operation (as described above). Alternatively, to completely
unconfigure the replication relationship between the source
and destination, the replication bit plane may be cleared so
to enable establishment of another replication relationship
between a cluster pair.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it 1s expressly contemplated that
the components and/or elements described herein can be
implemented as software encoded on a tangible (non-tran-
sitory) computer-readable medium (e.g., disks, electronic
memory, and/or CDs) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereof. Accordingly this description 1s to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, 1t 1s the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

What 1s claimed 1s:

1. A method comprising:

recetving first and second write requests, the first write

request having a data and a first logical block address
(LBA), the second write request having the data and a
second LBA different from the first LBA, the write
requests processed at a source storage system;
applying a hash function to the data to generate a first key;
associating the first key with a replication value and the
first LBA;

de-duplicating the data by associating the first key with

the second LBA:;

sending the first key and the data to a destination storage

system:
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in response to the destination storage system notifying the
source storage system that the first key 1s matched at the
destination storage system, asserting the replication
value to establish a mapping of the first key to the data
between the source storage system and the destination
storage system;

sending the first key to the destination storage system to
duplicate the data at the destination storage system;

deleting the data from the source storage system by
unassociating the first key with a location of the data on
a storage device connected to the source storage sys-
tem;

in response to deleting the data, unasserting the replica-
tion value to invalidate the established mapping of the
first key to the data;

associating the first key with the unasserted replication
value; and

sending the first key and the data to the destination storage

system.

2. The method of claim 1, wherein the response to the
destination storage system notilying the source storage
system that the first key 1s matched further comprises:

sending the second LBA to the destination storage system.

3. The method of claim 1 further comprising;:

in response to the destination storage system notitying the

source storage system that the first key 1s not matched,
invalidating the established mapping of the first key to
the data.

4. The method of claim 3 further comprising;:

associating the established mapping of the first key to the

data with a first cluster identifier of source storage
system and with a second cluster identifier of the
destination storage system.

5. The method of claim 4 wherein the source storage
system 1s included 1n a first cluster and the destination
storage system 1s included 1n a second cluster, and wherein
the first cluster applies the hash function and the second
cluster applies a diflerent hash function.

6. The method of claim 1 further comprising:

applying the hash function to the data at the destination

storage system to generate a second key; and

in response to matching the first key with the second key

at the destination storage system, sending the notifica-
tion to the source storage system that the first key 1s
matched.
7. The method of claim 1 further comprising;:
1n response 1o a resynchronization operation, receiving at
the source storage system, the first key associated with
the data from the destination storage system;

determining whether the replication value associated with
the first key 1s asserted;

in response to determining that the replication value 1s

asserted, notifying the destination storage system that
the first key 1s matched; and

refraining at the destination storage system from sending

the data to the source storage system.

8. The method of claim 1, wherein the source storage
system maintains the first key, a location of the data on a
storage device connected to the storage system and the
replication value 1 an entry of a hash table stored 1n a
memory of the source storage system.

9. A method comprising:

receiving a first write request having a data and a first

logical block address (LBA), the first write request
processed at a source storage system;

associating a hash of the data with the LBA;
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sending the hash and the data to a destination storage
system:

in response to the destination storage system notifying the
source storage system that the hash 1s matched at the
destination storage system, establishing a replication
pair between the source and destination storage systems
for the hash by setting a replication bait;

receiving a second write request having the data and a
second LBA different from the first LBA;

de-duplicating the data by associating the hash with the
second LBA;

sending the hash and the second LBA to the destination
storage system to duplicate the data at the destination
storage system;

delete the data from the source storage system by unas-
sociating the hash with a location of the data on a
storage device connected to the source storage system:;

in response to deletion of the data, unassert the replication
value to invalidate the established mapping of the hash
to the data;

associate the hash with the unasserted replication value;
and

send the hash and the data to the destination storage
system.

10. A system comprising:

a source storage system having a memory connected to a
Processor;

a storage I/O stack executing on the processor of the
storage system, the storage 1/0O stack configured to:
receive a first write request having a data and a first

logical block address (LBA);
apply a hash function to the data to generate a key;
associate the key with a replication value and the first
LBA;
send the key and the data to a destination storage
system:
in response to the destination storage system notifying
the source storage system that the key 1s matched at
the destination storage system, assert the replication
value to establish a mapping of the key to the data
between the source storage system and the destina-
tion storage system;
receive a second write request having the data and a
second LBA different from the first LBA;
de-duplicate the data by associating the key with the
second LBA;
send the key to the destination storage system to
duplicate the data at the destination storage system:;
delete the data from the source storage system by
unassociating the key with a location of the data on
a storage device connected to the source storage
system:
in response to deletion of the data, unassert the repli-
cation value to invalidate the established mapping of
the key to the data;
associate the key with the unasserted replication value;
and
send the key and the data to the destination storage
system.
11. The system of claim 10 wherein the storage 1/0O stack
1s Turther configured to:
send the second LBA to the destination storage system.
12. The system of claim 10 wherein the storage 1/0 stack
1s Turther configured to:
in response to the destination storage system notifying the
source storage system that the key i1s not matched,
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unassert the replication value to mvalidate the estab-
lished mapping of the key to the data.
13. The system of claim 12 wherein the storage /O stack

1s further configured to:
send the second LBA to the destination storage system.
14. The system of claim 10 wherein the source storage
system 1s 1ncluded 1n a first cluster and the destination
storage system 1s included 1n a second cluster, and wherein
the first cluster applies the hash function and the second
cluster applies a diflerent hash function.
15. The system of claim 14 wherein the first cluster and
the second cluster globally de-duplicate the data.
16. The system of claim 10 wherein the storage I/O stack
1s further configured to:
in response to a resynchronization operation, receive at
the source storage system, a new key associated with
new data from the destination storage system;
determine whether a new replication value associated
with the new key in the memory of the source storage
system 1s asserted;
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in response to determining that the new replication value
1s not asserted, acknowledge to the destination storage
system that the key does not match;
receive the new data from the destination storage system;
and
associate the new key with the new data and store the new
data at the source storage system.
17. The system of claim 10, wherein the source storage
system maintains the key, a location of the data in a storage
device connected to the source storage system and the

replication value 1n an entry of a hash table stored in the
memory of the source storage system.

18. The system of claim 17, wherein the entry of the hash
table 1includes the replication value represented by a prede-
termined bit of a plurality of bits, and wherein the prede-
termined bit represents the validity of the mapping of the key
to the data between the source and destination storage
systems.
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