12 United States Patent

Meier et al.

US010560698B2

US 10,560,698 B2
“Feb. 11, 2020

(10) Patent No.:
45) Date of Patent:

(54) GRAPHICS SERVER AND METHOD FOR
STREAMING RENDERED CONTENT VIA A
REMOTE GRAPHICS PROCESSING
SERVICE

(71) Applicant: Nvidia Corporation, Santa Clara, CA
(US)

(72) Inventors: Thomas Meier, Santa Clara, CA (US);
Chong Zhang, Sunnyvale, CA (US);
Bhanu Murthy, Bangalore (IN);
Sharad Gupta, Bangalore (IN);
Karthik Vijayan, Bangalore (IN)

(73) Assignee: Nvidia Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 16/181,696

(22) Filed: Nov. 6, 2018

(65) Prior Publication Data
US 2019/0075297 Al Mar. 7, 2019

Related U.S. Application Data

(63) Continuation of application No. 13/923,482, filed on
Jun. 21, 2013, now Pat. No. 10,154,265.

(51) Imt. CL
G09G 5/00 (2006.01)
HO4N 19/137 (2014.01)
(Continued)

31U ~{ START)

(52) U.S. CL
CPC ... HO4N 19/137 (2014.11); HO4N 19/12
(2014.11); HO4N 19/176 (2014.11); HO4N
19/132 (2014.11)

(358) Field of Classification Search
CPC GO6F 2200/1614; GO6F 3/14; GO9G
2340/0492; GO9G 2360/144; GO9G 5/363

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

6,952,215 B1 10/2005 Devins et al.
8,429,699 B2* 4/2013 Rodriguez HO4N 21/25808
345/501
(Continued)

FOREIGN PATENT DOCUMENTS

CN 102638658 A 8/2012
TW [383683 B 1/2013
Primary Examiner — Gordon G Liu
(37) ABSTRACT

A graphics server and method for streaming rendered con-
tent via a remote graphics rendering service 1s provided. In
one embodiment, the server includes a memory, a graphics
renderer, a frame capturer, an encoder, and a processor. The
memory 1s configured to store a pre-computed skip-irame
message 1mdicative to a client to re-use a previously trans-
mitted frame of the video stream. The graphics renderer 1s
configured to identity when rendered content has not
changed. When the graphics renderer identifies that the
rendered content has not changed, the processor 1s config-
ured to cause: (1) the frame capturer to not capture the
frames of the rendered content; (2) the encoder to not encode
the frames of the rendered content; and (3) the pre-encoded
skip-frame message to be transmitted without requiring any
pixel processing.

14 Claims, 2 Drawing Sheets

490~ | DETECT IF RENDERED CONTENT
IS UNCHANGED ANDDRIVEA |
CONTROL SIGNAL ACCORDINGLY |
330
RENDERED ™ _
CONTENT AT e 380
. LEASTPARTIALLY o~)
.. CHARGED? 7 £
A BYPASS FRAME CAPTURE AND
N ENCODE STAGES OF THE REMOTE
GRAPHICS RENDERING SERVICE
340~ CAPTURE AND ENCODE !
RENDERED CORTERT TRANSMIT A PRE-COMPUTED SKIP-FRAME |

TRANSMIT CAPTURED
AND ENGODED FRAME

3501

MESSAGE INDICATIVE TO A CLIENT TG
REUSE A PREVIGUSLY CAFTURED,
ENCCDED AND TRANSMITTED FRAME

oy

LN

380 (LEN2_)

370

US 10,560,698 B2

Page 2
(51) Inmt. CL
HO4N 19/176 (2014.01)
HO4N 19/12 (2014.01)
HO4N 19/132 (2014.01)
(58) Field of Classification Search
USPC e, 345/649, 240
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
2010/0027663 Al* 2/2010 Darcccceenn HO4N 19/159
375/240.16
2010/0111410 Al 5/2010 Lu et al.
2010/0290528 A1 11/2010 Chengalvala et al.
2012/0057636 Al1* 3/2012 Tiancoeeeeeennnn, HO4N 7/147
375/240.24

* cited by examiner

U.S. Patent Feb. 11, 2020 Sheet 1 of 2 US 10,560,698 B2

CLIENT

+

+

+

e

H H " +
H +

+*

+

+

+

+

++

+*

+ +
+ +
+*
+

140 | 146~ VIDED
,n RENDERER

+
+ +
+*
+ +

144 DECODER |

+
+ +
+*
+

+ +
+ + +
+*
+ + + + + F ¥ + + ¥ +

142~ NIC

++

MU NeTwork)

| GRAPHICS |
132] RENDERER |

| FRAME |
CAPTURER |

ENCODER |

120

s
{ad
)

+
+ +
+ + +
+
+ + + +
+ + + + +
+ +* *
+
+ +
+ + +
+
. + + + + + + F + F o+

o o

FIG. 1

U.S. Patent Feb. 11, 2020 Sheet 2 of 2 US 10,560,698 B2

122 NIC

+ + + - + + + + + + &
* + * -
: +
+
-
+
+++ +
-
+
+
-
*
BODEE EEDD DDDDE DENNEN OO0 DREODE EDDD DD DROEX EDDD DRDEE DDEEN 0000 .
-
+
+
-
*
+
-

DETECT IF RENDERED CONTENT
1S UNCHANGED AND DRIVE A
CONTROL SIGNAL ACCORDINGLY

+++

320~

RENDERED
CONTENT AT NO 80
LEAST PARTIALLY ;

CHARGEDY

HYPASS FRAME CAPTURE AND

ENCOUE STAGES OF ThHE REMOTE

YES GRAPHICS RENDERING SERVICE

+++

TRANSMIT A PRE-COMPUTED SKIP-FRAME |
+ MESSAGE INDICATIVE TOACLIENTTO
TRANSMIT CAPTURED REUSE A PREVIOUSLY CAPTURED,

AND ENCODED FRAME ENCODED AND TRANSMITTED FRAME

+
+++

350

US 10,560,698 B2

1

GRAPHICS SERVER AND METHOD FOR
STREAMING RENDERED CONTENT VIA A
REMOTE GRAPHICS PROCESSING
SERVICE

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/923,482, entitled “GRAPHICS SERVER
AND METHOD FOR STREAMING RENDERED CON-
TENT VIA A REMOTE GRAPHICS PROCESSING SER-
VICE”, filed on Jun. 21, 2013. The above-listed application
commonly assigned with the present application 1s 1ncorpo-
rated herein by reference as 1f reproduced herein in its
entirety.

TECHNICAL FIELD

This application 1s directed, 1n general, to computer
graphics processing and, more specifically, to power,
memory and time ethicient remote rendering, frame capture
and encoding.

BACKGROUND

The utility of personal computing was originally focused
at an enterprise level, putting powertul tools on the desktops
of researchers, engineers, analysts and typists. That utility
has evolved from mere number-crunching and word pro-
cessing to highly programmable, interactive workpieces
capable of production level and real-time graphics rendering
for incredibly detailed computer aided design, drafting and
visualization. Personal computing has more recently
evolved 1nto a key role as a media and gaming outlet, fueled
by the development of mobile computing. Personal comput-
ing 1s no longer resigned to the world’s desktops, or even
laptops. Robust networks and the miniaturization of com-
puting power have enabled mobile devices, such as cellular
phones and tablet computers, to carve large swaths out of the
personal computing market.

Mobile computing has transformed conventional notions
ol information accessibility and media dissemination. Net-
work enabled devices are the new norm, connecting a wide
variety of devices over a variety of networks. This has led to
a proliferation of conventional, or “mainstream’ content, as
well as non-conventional, amateur, or home-made content.
Going forward, not only will this content be available on
virtually any mobile device, in addition to conventional
outlets, but mobile devices can play the role of a media hub,
gaining access to a plethora of content and forwarding 1t, or
“pushing 1t out,” to one or more display devices, including
televisions, computer monitors, projectors, or any device
capable of receiving, decoding, and displaying streamed
content. While typically thought of as clients, mobile
devices, and more generally, virtually any computing device
can play the role of a “media server.”

In a typical server-client remote graphics processing
arrangement, graphics content 1s stored, retrieved, and ren-
dered on a server. Frames of rendered content are then
captured and encoded, generally at a frame rate that 1s either
specified by a managing device or 1s simply part of a
configuration. Captured and encoded frames are then pack-
ctized and transmitted over a network to a client as a video
stream (often including audio). The client simply decodes

10

15

20

25

30

35

40

45

50

55

60

65

2

the video stream and displays the content. Such a “thin-
client” application can be easily portable to a variety of
platforms.

As mobile computing continues to evolve with the grow-
ing focus on content accessibility and dissemination, the role
of mobile devices will continue to expand. Typical client
server boundaries will continue to fade and more people will
rely on mobile devices as their client and server, depending
on the content of interest.

SUMMARY

One aspect provides a graphics server. In one embodi-
ment, the server includes: (1) a graphics renderer; (2) a
frame capturer; (3) an encoder; and (4) a processor. The
graphics renderer 1s configured to identify when rendered
content has not changed. When the graphics renderer 1den-
tifies that rendered content has not changed, the processor 1s
configured to cause: (1) the frame capturer to not capture
frames of the rendered content; (2) the encoder to not encode
the frames of the rendered content; and (3) cause a pre-
encoded skip-frame message to be transmitted without
requiring any pixel processing.

Another aspect provides a method of streaming rendered
content via a remote graphics processing service. The
method comprises when 1dentifying the rendered content has
not changed causing: (1) a frame capturer to not capture the
frames of the rendered content; (2) an encoder to not encode
the frames of the rendered content; and (3) a pre-encoded
skip-frame message to be transmitted without requiring any
pixel processing.

Yet another aspect provides a graphics server for stream-
ing rendered content of a video stream. In one embodiment,
the server includes a memory, a graphics renderer, a frame
capturer, an encoder, and a processor. The memory 1is
configured to store a pre-computed skip-frame message
indicative to a client to re-use a previously transmitted frame
of the video stream. The graphics renderer 1s configured to
identily when rendered content has not changed. When the
graphics renderer 1dentifies that the rendered content has not
changed, the processor 1s configured to cause: (1) the frame
capturer to not capture the frames of the rendered content;
(2) the encoder to not encode the frames of the rendered
content; and (3) the pre-encoded skip-iframe message to be
transmitted without requiring any pixel processing.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference 1s now made to the following descriptions
taken 1n conjunction with the accompanying drawings, in
which:

FIG. 1 1s a block diagram of one embodiment of a
server-client remote graphics processing system;

FIG. 2 1s a block diagram of one embodiment of a
graphics server; and

FIG. 3 15 a flow diagram of one embodiment of a method
for streaming rendered content via a remote graphics pro-
cessing service.

DETAILED DESCRIPTION

As the role of media server opens up to a growing variety
of computing devices, limitations arise that were previously
dismissed under conventional server-client regimes. Con-
ventional servers are centrally located, plug into the wall for
power and typically rely on externally provided network
access, cooling and possibly storage. While such an arrange-

US 10,560,698 B2

3

ment 1s not immune to power, memory or latency restric-
tions, these restrictions are much more prevalent in mobile
devices 1n a server role.

Mobile devices, which include smart phones, tablets,
laptop PCs and others, generally rely on battery power to
some extent. Many mobile devices are also limited to a built
in memory, or are at most expanded by some form of
removable media, such as SD Flash or MicroSD cards.
Having those limitations 1n mind, mobile device manufac-
turers and software developers are careful to not introduce
unnecessary processes or memory caches. Considering a
mobile device 1n a server role, even modest efliciencies 1n
power consumption, memory bandwidth and latency can
become critical.

It 1s realized herein the capture and encode stages of
remote graphics processing can be bypassed when rendering
1s 1dle and the rendered content 1s unchanged. On a graphics
server, processing 1s typically divided between a central
processing unit (CPU) and a graphics processing unit
(GPU). The GPU carries out rendering tasks and frame
capture, and 1n some cases encoding. The CPU executes an
application, generating scene data and rendering commands,
or can recall content from memory and direct 1t to the GPU
tor rendering. Additionally, the CPU processes captured and
encoded frames to prepare them for transmission to the
client. In some embodiments, the CPU manages the opera-
tion of the rendering, capture and encode stages either by
enabling and disabling, clock frequency scaling, or some
other mechanism. By detecting when rendered content is
unchanged, the capture and encode stages can be disabled or
at least their operation slowed to a rate more comparable
with the content update rate. It 1s further realized herein that
this can be accomplished by maintaining a control bit that,
when set, indicates new content has been rendered. The
control bit can be maintained by the rendering stage and read
by the capture and encode stages, or the control bit can be
maintained by the CPU, which would manage the operation
of the capture and encode stages based on the control bait.

It 1s realized herein that by bypassing capture and encode,
costly memory read/write cycles are forgone along with the
processing cycles required for encoding. These savings
reduce power consumption, memory bandwidth consump-
tion and latency.

Although the server has bypassed unnecessary processes,
the client still requires frames be displayed at the specified
frame rate. It 1s realized herein that a skip-frame message
can be transmitted 1n lieu of a captured and encoded frame.
The skip-frame message 1s typically built 1n to whatever
encoding scheme 1s employed for the streaming. For
instance, the h.264 standard provides a protocol to instruct
a client to re-use the previously received and decoded frame.
That 1s to say, keep displaying the current frame, the
rendered content has not changed. It i1s further realized
herein this skip-frame message can be pre-computed inde-
pendent of the render, capture, and encode stages. For
example, the CPU can pre-compute an h.264 skip-frame
message and simply transmit it whenever the control bit
indicates and the capture and encode stages are bypassed.

It 1s also realized herein the efliciencies gained when
rendered content 1s unchanged, can also be had when
rendered content 1s new, but well known. In those cases,
capture, and encode can be bypassed so long as an eflicient
coding pattern can be pre-computed in place of a captured
and encoded frame. It 1s further realized herein the eflicien-
cies may be most valuable when a mobile device 1s the
server, but are just as applicable to conventional, centralized
server arrangements. The scale of such arrangements could

10

15

20

25

30

35

40

45

50

55

60

65

4

reach a point that 1t would justity modest gains 1n power and
memory efliciency on a per-client level.

Betfore describing various embodiments of the graphics
server and method of streaming rendered content introduced
herein, a server-client remote graphics processing system
within which the graphics server and method may be
embodied or carried out will be described.

FIG. 1 1s a block diagram of one embodiment of a
server-client remote graphics processing system 100. Sys-
tem 100 includes a network 110 through which a server 120
and a client 140 communicate. Server 120 represents the
central repository of content, processing, and rendering
resources. Client 140 1s a consumer of that content and those
resources. In certain embodiments, server 120 1s freely
scalable and has the capacity to provide that content and
those services to many clients simultaneously by leveraging
parallel and apportioned processing and rendering resources.
In addition to any limitations on the power, memory band-
width, or latency of server 120, the scalability of server 120
1s limited by the capacity of network 110 1n that above some
threshold of number of clients, scarcity of network band-
width requires that service to all clients degrade on average.

Server 120 includes a network interface card (NIC) 122,
a central processing unit (CPU) 124, and a GPU 130. Upon
an election on server 120, or in certain embodiments, upon
request from client 140, graphics content 1s recalled from
memory via an application executing on CPU 124. As 1s
convention for graphics applications, games for instance,
CPU 124 reserves itself for carrying out high-level opera-
tions, such as determining position, motion, and collision of
objects 1n a given scene. From these high level operations,
CPU 124 generates rendering commands that, when com-
bined with the scene data, can be carried out by GPU 130.
For example, rendering commands and data can define scene
geometry, lighting, shading, texturing, motion, and camera
parameters for a scene.

GPU 130 includes a graphics renderer 132, a frame
capturer 134, and an encoder 136. Graphics renderer 132
executes rendering procedures according to the rendering
commands generated by CPU 124, vielding a stream of
frames of video for the scene. Those raw video frames are
captured by frame capturer 134 and encoded by encoder
136. Encoder 134 formats the raw video stream for trans-
mission, possibly employing a video compression algorithm
such as the H.264 standard arrived at by the International
Telecommunication Union Telecommunication Standardiza-
tion Sector (ITU-T) or the MPEG-4 Advanced Video Coding

(AVC) standard from the International Organization for
Standardization/International Electrotechnical Commission
(ISO/IEC). Alternatively, the video stream may be encoded
into Windows Media Video® (WMYV) format, VP8 format,
or any other video encoding format.

CPU 124 prepares the encoded video stream for trans-
mission, which 1s passed along to NIC 122. NIC 122
includes circuitry necessary for communicating over net-
work 110 via a networking protocol such as Ethernet, Wi-Fi,
or Internet Protocol (IP). NIC 122 provides the physical
layer and the basis for the software layer of server 120°s
network interface.

Client 140 receives the transmitted video stream for
display. Client 140 can be a variety of personal computing
devices, including: a desktop or laptop personal computer, a
tablet, a smart phone, or a television. Client 140 1ncludes a

NIC 142, a decoder 144, a video renderer 146, a display 148,
and a CPU 150. NIC 142, similar to NIC 122, includes
circuitry necessary for communicating over network 110 and
provides the physical layer and the basis for the software

US 10,560,698 B2

S

layer of client 140°s network interface. The transmitted
video stream 1s received by client 140 through NIC 142.
CPU 150 unpacks the recerved video stream and prepares 1t
for decoding.

The wvideo stream 1s then decoded by decoder 144.
Decoder 144 should match encoder 136, in that each should
employ the same formatting or compression scheme. For
instance, if encoder 136 employs the ITU-T H.264 standard,
so should decoder 144. Decoding may be carried out by
either a client CPU or a client GPU, depending on the
physical client device. Once decoded, all that remains 1n the
video stream are the raw rendered frames. The rendered
frames are processed by a basic video renderer 146, as 1s
done for any other streaming media. The rendered video can
then be displayed on display 148.

Having described a server-client remote graphics process-
ing system within which the graphics server and method for
streaming rendered content may be embodied or carried out,
various embodiments of the graphics server and method wall
be described.

FIG. 2 1s a block diagram of one embodiment of a
graphics server 200, such as server 120 of FIG. 1. Graphics
server 200 includes NIC 122, CPU 124, and GPU 130, all of
FIG. 1. Additionally, graphics server 200 includes a memory
210, a data bus 220, and a control bus 230. GPU 130
includes graphics renderer 132, frame capturer 134, and
encoder 136, also of FIG. 1.

As 1n server 120 of FIG. 1, basic operation of graphics
server 200 1includes rendering content, capturing frames, and
encoding frames for subsequent transmission to a client.
CPU 124, graphics renderer 132, frame capturer 134, and
encoder 136 all read and write to memory 210 via data bus
220. Data bus 220 1s the primary avenue for moving content
through the render, capture, and encode process. Data bus
220 can be used to move data directly from processing unit
to processing unit, but more often than not, for large
amounts ol data, data 1s moved from a processing unit, over
data bus 220 and into memory 210. Once in memory, access
to the data can be had by any processing unit attached to data
bus 220. CPU 124 manages the operation ol graphics
renderer 132, frame capturer 134, and encoder 136 wvia
control bus 230.

CPU 124 executes an application by which 1t generates
rendering commands and either generates, or recalls from
memory, scene data for rendering. Typically, scene data 1s
stored 1n memory 210 and used later during rendering.
Graphics renderer 132 gains access to the scene data 1n
memory 210 via data bus 220 and carries out the rendering,
commands on the scene data to produce rendered content.
Rendered content 1s moved into memory 210 via data bus
220. Graphics renderer 132 generally only renders when
“on-screen”” content has changed. There are numerous meth-
ods available for conserving rendering resources when con-
tent 1s unchanged. When rendered content 1s at least partially
changed, a control signal, or control bit, 1s set.

Frame capturer 134 and encoder 136 are configured to
operate at a frame rate specified by CPU 124. The frame rate
1s often the result of a user setting, a quality-of-service
(QoS) process, a negotiation between server 200 and the
client, or some other configuration. Not only 1s the frame
rate the rate at which frames of rendered content are cap-
tured and encoded, but also transmitted, and likely decoded
and displayed. Such an arrangement 1s sensitive to latency
and sub-optimal network conditions. Frame capturer 134
“captures” rendered content by periodically copying the
rendered content into a staging bufler 1n memory 210. In
certain embodiments, the control bit 1s set when new ren-

10

15

20

25

30

35

40

45

50

55

60

65

6

dered content 1s submitted to the capture stage. Once cap-
tured, the control bit 1s cleared. If when frame capturer 134
goes to copy rendered content, the control bit 1s cleared,
frame capturer then knows the rendered content 1is
unchanged since the last capture. In the embodiment of FIG.
2, CPU 124 maintains the control bit. When graphics ren-
derer 132 produces new rendered content, the control bit 1s
set. CPU 124 then uses the control bit to enable and disable
frame capturer 134 and encoder 136 via control bus 230.
Alternatively, CPU 124 can use clock frequency scaling
based on the control bit to manage the rate at which frame
capturer 134 and encoder 136 operate. Clock frequency
scaling allows a clocked device to be sped up and slowed
down according to 1ts work load and work capacity. In this
case, CPU 124 can reduce the rate at which frame capturer
134 operates, such that no frames are captured unless the
rendered content 1s at least partially changed. This bypass of
the frame capture stage reduces the consumption of power
and memory bandwidth by eliminating unnecessary read and
write cycles.

Encoder 136 gains access to the staging builer in memory
210 via data bus 220 and encodes the stored frame. For
example, many video streaming implementations use h.264
encoding. The encoded frame 1s then written to a frame
bufler in memory 210 via data bus 220. Similar to frame
capturer 134, operation of encoder 136 1s managed by CPU
124 over control bus 230. CPU 124 reduces the rate at which
encoder 136 operates based on the control bit. If the control
bit 1s set, the rendered content 1s at least partially changed
and new data has been written to the staging bufler 1n
memory 210. IT the control bit 1s clear, the rendered content
1s unchanged and new data has not been written to the
staging bufler in memory 210. The encode stage 1s bypassed,
which reduces power consumption by eliminating unneces-
sary processing.

CPU 124 retrieves encoded frames from memory 210 via
data bus 220 and prepares, or “packs” them for transmission
via NIC 122. This preparation typically involves packetizing
the data from the frame bufler and possibly additional
encoding for the transmission protocol. When the capture
and encode stages are bypassed, as indicated by the control
bit via control bus 230, no new frame is ready for packing
and transmission. Instead, a skip-frame message 1s trans-
mitted to the client. The skip-frame message indicates to the
client that no update 1s needed and the client should continue
displaying, or using, the previous frame. The client main-
tains i1ts frame rate regardless of whether content 1s chang-
ing, being rendered, captured, and encoded. The skip-frame
message 1s generally built mto the encoding scheme, for
example, an h.264 skip frame message. The skip-frame
message 1s a fixed message and can be pre-computed by
CPU 124 betore rendering time and stored in memory 210.
Once computed, CPU 124 can have the skip-frame message
re-transmitted via NIC 122 whenever on-screen content 1s
idle or unchanged.

FIG. 3 1s a flow diagram of one embodiment of a method
for streaming rendered content via a remote graphics pro-
cessing service. The method begins 1n a start step 310. A
determination 1s made, 1n a detection step 320, as to whether
the rendered content 1s unchanged. According to that deter-
mination, a control signal 1s driven. In certain embodiments,
the control signal 1s a control bit, which could be embedded
in a control message or form 1ts own message. The control
signal may also be an independent signal distributed to one
or more processing devices. In a decision step 330, a
decision 1s made based on the control signal from detection
step 320. It the control signal 1indicates the rendered content

US 10,560,698 B2

7

has at least partially changed, then the method proceeds to
a capture and encode step 340 and a transmit frame step 350.
If the control signal indicates the rendered content 1is
unchanged, then the method proceeds to a bypass step 360
and a transmit skip-frame step 370.

In alternate embodiments, the rendered content may be
partially changed, but the rendered content 1s well known
and an eflicient coding pattern can be pre-computed to
represent it. In that case, 1n those alternate embodiments, the
method would proceed to bypass step 360. Rather than
proceeding to transmit skip-frame step 370, the pre-com-
puted frame 1s transmitted. This reduces power consump-
tion, memory bandwidth and latency normally experienced
during capture and encode.

Continuing the embodiment of FIG. 3, when the rendered
content 1s at least partially changed, frames of the rendered
content are captured and encoded at capture and encode step
340. Frame capture typically occurs at a specified frame rate.
Encoding follows suit, encoding captured frames at the
specified frame rate. At transmit frame step 350, the cap-
tured and encoded frame 1s transmitted toward a client,
which expects frames at the specified frame rate. The
method then ends 1n an end step 380.

When the rendered content 1s unchanged, rendering 1s idle
and new rendered content 1s not submitted to the capture and
encode stages. The capture and encode stages are bypassed
at bypass step 360. Then, at transmit skip frame step 370, a
pre-computed skip-iframe message 1s transmitted toward the
client. When the client receives the skip-frame message, the
client interprets 1t as an istruction to continue displaying, or
re-use the previous captured and encoded frame. The skip-
frame message can be stored 1n memory, computed at
start-up, at scene-load time, or any other time before ren-
dering, capturing, and encoding. The method then ends at
step 380.

Those skilled 1n the art to which this application relates
will appreciate that other and further additions, deletions,
substitutions and modifications may be made to the
described embodiments.

What 1s claimed 1s:
1. A graphics server, comprising:
a graphics renderer configured to identify when rendered
content has not changed;
a Irame capturer;
an encoder; and
a processor, wherein when said graphics renderer 1denti-
fies said rendered content has not changed said proces-
sor 1s configured to:
cause said frame capturer to not capture said frames of
said rendered content:
cause said encoder to not encode said frames of said
rendered content; and
cause a pre-encoded skip-frame message to be trans-
mitted without requiring any pixel processing.
2. The graphics server recited in claim 1 wherein said
graphics server 1s a mobile computing device.

10

15

20

25

30

35

40

45

50

55

8

3. The graphics server recited i claam 1 wherein said
graphics renderer, frame capturer, and encoder are contained
within a graphics processing unit (GPU) communicably
coupled to said processor.

4. The graphics server recited in claim 1 wherein said
encoder 1s a hardware I'TU-T H.264 encoder.

5. The graphics server recited in claim 1 wherein said
skip-frame message 1s a pre-computed I'TU-T H.264 skip
message.

6. A method of streaming rendered content via a remote
graphics processing service, comprising:

identitying said rendered content has not changed caus-
ng:

a frame capturer to not capture said frames of said
rendered content;

an encoder to not encode said frames of said rendered
content; and

a pre-encoded skip-frame message to be transmitted
without requiring any pixel processing.
7. The method recited m claim 6 wherein said frame
capturer and said encoder are contained within a graphics
processing unit (GPU) communicably coupled to a proces-
SOF.
8. The method recited 1n claim 6 wherein said encoder 1s
a hardware ITU-T H.264 encoder.
9. The method recited in claim 6 wherein said skip-frame
message 1s a pre-computed I'TU-T H.264 skip message.
10. A graphics server for streaming rendered content of a
video stream, comprising:
a memory configured to store a pre-computed skip-frame
message indicative to a client to re-use a previously
transmitted frame of said video stream;
a graphics renderer configured to 1dentity when rendered
content has not changed;
a frame capturer;
an encoder; and
a processor, wherein when said graphics renderer 1denti-
fies said rendered content has not changed, said pro-
cessor 1s configured to:
cause said frame capturer to not capture said frames of
said rendered content;

cause said encoder to not encode said frames of said
rendered content; and

cause said pre-encoded skip-frame message to be trans-
mitted without requiring any pixel processing.

11. The graphics server recited 1in claim 10 wherein said
graphics server 1s a mobile computing device.

12. The graphics server recited in claim 10 wherein said
graphics renderer, frame capturer, and encoder are 1mple-
mented within a graphics processing unit (GPU) communi-
cably coupled to said processor.

13. The graphics server recited 1n claim 10 wherein said
encoder 1s a hardware I'TU-T H.264 encoder.

14. The graphics server recited in claim 10 wherein said
skip-frame message 1s a pre-computed ITU-T H.264 skip
message.

	Front Page
	Drawings
	Specification
	Claims

