US010558551B2

12 United States Patent (10) Patent No.: US 10,558,551 B2

Patel et al. 45) Date of Patent: Feb. 11, 2020
(54) RUNTIME EXPANSION OF TEST CASES 7,761,841 B1* 7/2010 Rexroad GO6F 11/3688
717/100
(71) Applicant: salesforce.com, inc., San Francisco, CA 9,471,478 B1* 10/2016 Bhuiya GO6F 11/3692
(US) 10,282,281 B2* 5/2019 Mallya GO6F 11/3676
2005/0096864 Al* 5/2005 Bonillaoo......... GO6F 11/263
| . | 702/121
(72) Inventors: Ashish Patel, Fremont, CA (US): 2008/0010542 Al1* 1/2008 Yamamoto GOG6F 11/3672
Tuhin Kanti Sharma, San Mateo, CA
_ _ _ 714/38.1
(US); Christopher Tammariello, San 2009/0187892 Al* 7/2009 Ohicoovveerrr...... GOGF 11/3684
Mateo, CA (US); Michael Bartoli, San 717/126
Francisco, CA (US) 2009/0204591 Al* 8/2009 Kaksonen GO6F 11/3684
2009/0300585 A1* 12/2009 Meenakshisundara
(73) Assignee: salesforce.com, inc., San Francisco, CA GO6F 11/3664
(US) 717/124
2009/0307468 Al* 12/2009 Choudhury GO6F 11/263
(*) Notice: Subject to any disclaimer, the term of this . 7127227
patent is extended or adjusted under 35 2010/0083233 Al* 4/2010 Vanoverberghe ... GO6F 71/ }f,f’}féé
U.S.C. 154(b) by 50 days. 2010/0281460 Al* 11/2010 Tillmann GOGF 11/3612
717/106
21) Appl. No.: 15/685,980 .
(21) App ’ (Continued)

(22) Filed: Aug. 24, 2017 Primary Examiner — Ziaul A Chowdhury

(74) Attorney, Agent, or Firm — Wong & Rees LLP;

635 Prior Publication Dat
(65) rior Publication Data Zhichong Gu

US 2019/0065345 Al Feb. 28, 2019

(51) Int. Cl. (37) ABSTRACT
GO6F 11/36 (2006.01) Test case data 1s received for individual test cases. The test
(52) U.S. Cl. case data includes sets of test case specific elements. A test
CPC oo GOGF 11/3612 (2013.01) case base object is generated to represent a generic test case.
(58) Field of Classification Search The test case base object includes a set of test case speciiic
CPC oo, GOGF 11/3612 Droperties. The test case base object 1s expanded 1nto indi-

vidual test case specific objects that represent the individual
test cases. Fach individual test case specific object 1s gen-
(56) References Cited crated by setting the set of test case specific properties to a
respective set of test case specific values as indicated in the
sets of test case specific elements. The 1individual test case

See application file for complete search history.

U.S. PATENT DOCUMENTS

6,601,018 B1* 7/2003 Logan GO6F 11/3684 objects are used to execute the individual test cases against
702/186 one or more systems under test.
7421,621 B1* 9/2008 Zambrana GO6F 11/3612
714/38.14 18 Claims, 9 Drawing Sheets

402 receive test case data tor individual test
cases

l

404 generate a test case base object that
represents a generic test case

l

06 expand the test case base object into
individual test case specific objects that
represent individual test cases

'

408 use the individual test case objects to
execute the individual test cases

US 10,558,551 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2010/0287534 Al* 11/2010 Vangala GO6F 11/3612
717/124

2010/0332904 Al1* 12/2010 Bloching GO6F 11/2294
714/32

2011/0208469 Al* 8/2011 Sheye GO6F 11/3684
702/123

2011/0258603 Al* 10/2011 Wisnovsky GO6F 11/3612
717/125

2013/0117611 Al1* 5/2013 Chakraborty GO6F 11/3672
714/33

2014/0282433 Al1* 9/2014 Eilam GO6F 11/3688
717/131

2015/0057961 Al* 2/2015 Montoya GO6F 11/2294
702/121

2015/0254171 Al1* 9/2015 Harden GO6F 17/30563
717/124

2016/0357661 Al1* 12/2016 Furman GO6F 11/3664
2018/0095866 Al* 4/2018 Narayanan GO6F 11/3684

* cited by examiner

US 10,558,551 B2

Sheet 1 of 9

Feb. 11, 2020

U.S. Patent

N
-OTT (S)221AI8S

N-8TT
1Uady 1S9

[4
JERIIVELS

-OTT (

C-8l1
1Ua8y 1S9 |

=
-9TT (S)221A19S

T-8TT
1Uady 1S9

70T
(S))]AOMIaN

VI DI

90T
321N3(

19SM 1S9

1T
1931Se|A 1S9

0CT 24018

eyeq 1so|

dl Dl

US 10,558,551 B2

OET
1N 3531

ZT Siulodpua

8CT SIdV

m UoIINdax3 1s9] 1S3Y
o
3
— —_—
L 44} ‘
au18u3 et N\ 0T
- UOI13NJ9X3 19A3S g9 /\\ (S)}JO0MIDN
S 153
= TT 1uady 1s9]
23

0CT 94018
ejeq 1s9|

U.S. Patent

US 10,558,551 B2

Sheet 3 of 9

Feb. 11, 2020

U.S. Patent

N-ZTC
SJUolld|
214123dS
95D 159 |

- — — 7 711

80¢C

SJUualld|

uowwoy | |
958D 159 | |

— LI

-T1
SJUugllial]
214129dS
9SeD) 1S9

N-90(¢
ase) 159

00¢
159

1-90¢
3ase) 153 |

214103dS

|

|

|

|

|
SEIIETE "
|

ase) 159 |
|

|

|

3se) 153

V¢ Dl

US 10,558,551 B2

Sheet 4 of 9

Feb. 11, 2020

U.S. Patent

~DUBUILYL 1 <IDIAIDS>,

N-CLC

aas h_ﬁm;wc

rn i

<DIINIIS>,

C-ClLC

.SPU023S 09, 1, HWITaWI | 3|qeaydeal,

1IN f |

L, W02'9|8003'<3adIAIRS>, :, WENUIBWOJIDAIDS,,

n i

|

|

|]
MO 002, :,,2suodsayuiniaypailoadxa, |l |

|

|

|

«'EW

I <DIINIIS>,

rn i

L-Cl¢

d¢ Dl

US 10,558,551 B2

JC DI

N
S
&
\r; _
~
% A:wucmc_n_.: nnnAwU_\/meV:u.
% nﬁnnm\swc_._u nnnAwU_\/meV:u.
nﬁ:__mE: nnnAwU_\/meV:u.
] : sapllianQa|geade|dal,
& .SPU0J3s 09, : JwIIawli]3|geaydeal,
— :
S "0 00¢,, : ,8suodsayuiniaypaidadxs,,
— ‘ W0IJ'9|30038°<aJINIBS>, : SWENUIBWOQJIDAIDS,
o
W
e

N-CTC "™ “¢-2¢T¢C 'T-2T¢ '80¢

U.S. Patent

vVE DI

US 10,558,551 B2

Oct
IAREEAN
- 70€ Jopuedx]
= oSeD) 1S9 |
=
3
— N
7 144!
duldu3 443 70T
- UOI13NJ9X3 19A3S g9 /\\ (S)}JO0MIDN
S 153
= 8TT 1uady 1S9
[,

0CT 94018
ejeq 1s9|

U.S. Patent

1-21¢

SJUuallal]
21412908

9587} 159 |

N-CLC ¢-Cld¢
sjuawa|3 Sjusawa|3

214129dS 214129dS
9SeD) 159 2seD) 1S3

US 10,558,551 B2

- N"20¢ tw_o_o Z-90¢ 19290 T-90€ 199/q0

S 21123

~ J1}122dg 21J29dS

>

=P

=

7

— S

Q 70t

« 123[qQ aseg

A

\ —

= =" 3-

g |

= o

o

mlllli._ll_._
AN
| SwewR3
| uowwo) |
|
|

oo g€ ‘Ol

U.S. Patent

U.S. Patent

Feb. 11, 2020 Sheet 8 of 9

FIG. 4

402 receive test case data for individual test
cases

l

404 generate a test case base object that
represents a generic test case

l

06 expand the test case base object into
individual test case specific objects that
represent individual test cases

;

408 use the individual test case objects to
execute the individual test cases

US 10,558,551 B2

US 10,558,551 B2

Sheet 9 of 9

Feb. 11, 2020

U.S. Patent

9¢CS

8CS

0€s
ddAddS

1S

40VJudLNI 705
NOILVOINNWWODO d0553004dd

SNd

0TS 309 OIS
42IAdd

AYOWIN
IDVHOLS NOY NIYIA

LS

1041NOO

d0OSdNo

v1S
49IAdd LNdNI

45
AV 1dSId

US 10,558,551 B2

1
RUNTIME EXPANSION OF TEST CASES

TECHNICAL FIELD

The present invention relates generally to test execution,
and 1n particular, to runtime expansion of test cases 1n test
execution.

BACKGROUND

A computing system that processes massive volumes of
transactions and interactions may comprise numerous soit-
ware and hardware components distributed across a large
number of computing nodes and networks. To verity that the
system performs correctly and responsively, extensive and
sophisticated testing need to be performed against some or
all the components 1n the system regularly, on demand, or 1n
development.

Typically, specific test code 1s written 1n various program-
ming languages such as JAVA, C#, C++, etc., to support
specific test cases against a system under test. If the system
1s developed by many developers and used by many users,
the test code need to be designed, written and 1tself tested
over and over again through tightly coupled cooperative and
handholding eflorts involving numerous people, organiza-
tions, and development teams. As the system evolves over
time with new features, new components and new bug fixes,
test code development eflorts, preparing test data, coordi-
nating different stakeholders in testing, and so forth, can
consume significant personnel and non-personnel resources.

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therefore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section quality as prior
art merely by virtue of their inclusion in this section.
Similarly, i1ssues i1dentified with respect to one or more
approaches should not assume to have been recognized 1n
any prior art on the basis of this section, unless otherwise
indicated.

BRIEF DESCRIPTION OF DRAWINGS

The present invention 1s illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and 1n which:

FIG. 1A 1illustrates an example stateless test execution
framework comprising a test master and test agents; FIG. 1B
illustrates an example test agent that interacts with test
master for executing tests;

FIG. 2A through FIG. 2C illustrate example test case data
used to generate test cases at runtime or in oflline process-
Ing;

FIG. 3A illustrates an example test case expander; FIG.
3B illustrates example test case generic and specific objects;

FI1G. 4 1llustrates an example process flow; and

FI1G. 5 illustrates an example hardware platform on which
a computer or a computing device as described herein may
be implemented.

DESCRIPTION OF EXAMPLE EMBODIMENTS

In the following description, for the purposes ol expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may

5

10

15

20

25

30

35

40

45

50

55

60

65

2

be practiced without these specific details. In other
instances, well-known structures and devices are not

described 1n exhaustive detail, in order to avoid unneces-
sarily occluding, obscuring, or obfuscating the present
invention.

Example embodiments are described herein according to
the following outline:

1.0. General Overview

2.0. Functional Overview

2.1. Test Tools and Proxy Agents

2.2. Stateless Text Execution Framework
2.3. RESTtul Endpoints

2.4. lest Case Data

2.5. Test Case Expander

2.6. Generic Test Case and Specific Test Cases

2.7. Testing Applications/Services at Multiple End-

points/Servers

3.0. Example Embodiments
4.0 Implementation Mechanism—Hardware Overview
5.0. Extensions and Alternatives

1.0 General Overview

This overview presents a basic description of some
aspects of an embodiment of the present invention. It should
be noted that this overview i1s not an extensive or exhaustive
summary of aspects of the embodiment. Moreover, 1t should
be noted that this overview 1s not intended to be understood
as 1denfitying any particularly significant aspects or ele-
ments of the embodiment, nor as delineating any scope of
the embodiment 1n particular, nor the invention in general.
This overview merely presents some concepts that relate to
the example embodiment in a condensed and simplified
format, and should be understood as merely a conceptual
prelude to a more detailed description of example embodi-
ments that follows below.

Under some approaches, different test cases are created
for monitoring or testing different applications/services with
respective endpoints, even though the underlying applica-
tions/services may have the same or substantially similar test
configurations, behaviors or characteristics.

Techniques as described herein can be used to implement
a test case expansion mechanism under which a generic test
case 1s expanded into many specifically targeted test cases
against one or more systems under test based on a data file
that 1dentifies specific data elements used 1n the specifically
targeted test cases. The test case expansion mechanism as
described herein can be implemented as a part of a test
execution framework to avoid writing customized test code
that consumes significant resources to develop and maintain.
In addition, the mechanism can be used 1n the test execution
framework to test systems in development as well as 1n
production. Any of the systems under test may be a com-
plicated computing system such as a cloud-based computing
system that delivers a wide range of application services
through many diflerent service endpoints and that supports
massive volumes of concurrent and sequential transactions
and interactions.

The test case expansion mechanism as described herein
can be mmplemented 1n a system configuration that com-
prises a test master and one or more test agents. The test
master and the one or more test agents may, but 1s not limited
to, be deployed 1n a public cloud, 1n a private cloud, 1n a
combination of one or more public clouds and one or more
private clouds, and so forth.

Test case data for test cases such as those against a
database system may be sent or submitted in the data

e

US 10,558,551 B2

3

clements by the test master, for example over an HTTP-
based or non-HTTP-based communication mechanism, and
forwarded to some or all of the test agents. Example test
masters and test agents can be found 1n U.S. patent appli-

cation Ser. No. 15/685,964, with an application title of 5

“STATELESS SELF-SUFFICIENT TEST AGENTS” by
Ashish Patel, Chris Tammariello, Michael Bartoli, Tuhin
Kanti Sharma, and Vaishali Nandal, filed on Aug. 24, 2017,
the entire contents of which are hereby incorporated by
reference as 1 fully set forth herein.

The test case data can be developed/created with a data
description language or a data interchange format such as
JavaScript Object Notation (JSON), a XML file, a flat file
database, etc., without any need to write test tool code for
these test cases 1n a programming language such as JAVA,
C#, C++, efc.

A test user can help create the test case data as defined 1n
the data file. In some embodiments, the test user can interact
with a test user interface of a test master to generate or
modily the test case data without necessarily creating the
data file by hand.

A generic test case as described herein can be represented
by a test case base object. In some embodiments, the test
case base object 1s generated by i1dentifying commonality
such as test case common properties, test case specific
properties, common test checks, common test configura-
tions, and so forth, among individual test cases.

As used herein, the term “test check™ (or “test verifica-
tion”) refers to a verification of one or more of: an expected
return code, an expected return message, an expected time
limit for completing a test step or for receiving a response,
some or all of expected test results associated with one or
more test steps, etc. The term “test configuration™ refers to
one or more of: test operations to be performed, types of test
operations to be performed, a specific order 1n test opera-
tions to be performed, messaging protocols, types of test
data to be used 1n test operations, efc.

The test case common properties may be given the same
keys and the same values applicable to all individual test
cases. Some or all of the test case common properties may
be populated with test case common elements 1included as a
part of data elements 1n a request for executing a test that
includes the individual test cases.

The test case base object with populated values for the test
case common properties and unspecified or overridable
values for the test case specific properties may be deeply
cloned to generate individual test case specific objects for
representing the individual test cases. As used herein, the
term “deep cloning” may refer to that all properties and
methods/APIs of a base object (e.g., a test case base object,
etc.), mcluding but not limited to the base class’s default
values, overridable values, set values, null values, place-
holders, properties with values, properties without values,
and so forth, 1s cloned 1nto a non-base object (e.g., a test case
specific object, etc.).

The test case specific properties 1n the individual test case
specific objects may be populated with respective test case
specific elements (or data values indicated therein) included
as a part of a runtime request for executing a test that
includes the individual test cases.

The 1individual test case specific objects as deeply cloned
from the test case base object and as populated with the
respective test case specific elements from the request for
executing the test may be used to execute the individual test
cases 1n the test. In some embodiments, test case executions
may be eflectuated by mvoking test execution methods or
test execution Application Programming Interface (API)

10

15

20

25

30

35

40

45

50

55

60

65

4

calls supported or implemented 1n the test case base object
with some or all of the test case common properties and the

test case specilic properties.

As a result, there 1s no need to write code for new
applications/services or new 1nstances of existing applica-
tions/services, 1 a generic test case has been specified/
developed for an application/service that shares the same
test checks and the same test configuration with the new
applications/services or the new instances of existing appli-
cations/services.

Furthermore, 1n some embodiments, all the test case data
needed for expanding the generic test case mnto the indi-
vidual test cases can be captured in a single data file. Thus,
changes or extensions of new or existing test cases can be
made 1n a single place as represented by the single data file,
obviating any need to make multiple changes to multiple
files.

Various modifications to the preferred embodiments and
the generic principles and features described herein will be
readily apparent to those skilled 1 the art. Thus, the disclo-
sure 1s not intended to be limited to the embodiments shown,
but 1s to be accorded the widest scope consistent with the
principles and features described herein.

2.0 Functional Overview

2.1 Stateless Text Execution Framework

FIG. 1A 1illustrates an example stateless test execution
framework comprising a test master 112 and one or more test
agents (e.g., 118-1, 118-2, 118-3, etc.). This framework can
be used to run a wide variety of focused and/or extensive
tests against soltware and/or hardware components 1n sys-
tem 100. Example systems may include, but are not neces-
sarily limited to: any of: multitenant data service systems,
web-based systems, systems that support massive volumes
of concurrent and/or sequential transactions and interac-
tions, database systems, and so forth.

In some embodiments, system 100 may comprise one or
more data centers 110-1, 110-2, . . . 110-N, where N 1s a
positive integer. Each of data centers may comprise respec-
tive software and/or hardware components to be tested by
the test cases. Data center 110-1 deploys first services 116-1;
data center 110-2 deploys second services 116-2; data center
110-N deploys N-th services 116-N. Other software and/or
hardware components, assets, and so forth, of system 100
may be hosted in or outside these data centers, and may
serve as test target under techniques as described herein. As
used herein, a service may refer to a service with an HT'TP
interface, or a service with a non-HT'TP interface. Addition-
ally, optionally or alternatively, services that serve as test
targets under techmiques as described herein may be
deployed anywhere, not necessarily inside data centers.

As used herein, the term “‘software components” may
refer to one or more of: services with HI'TP interfaces,
services with non-HTTP interfaces, mobile applications,
web-based applications, browser-based applications, user
interfaces, plug-ins, APIs, operating systems, software
libraries, computer executable codes, related non-executable
data, application software, system software, embedded soft-
ware, device drivers, microcode, computer clustering soft-
ware, server processes, web servers, backend servers, data-
base servers, databases, and so forth. The term ‘“hardware
components” may refer to one or more of: CPUs, control-
lers, microprocessors, FPGAs, ASICs, ICs, network proces-
sors, lirmware, chipsets, interconnects, buses, RF integrated
chips, graphic processors, computer memory, fixed and
removable storage media, peripherals, and so forth.

US 10,558,551 B2

~
Under techniques as described herein, test master 112 and
test agents (e.g., 118-1, 118-2 . . . , 118-N, efc.) operate

within a stateless framework that 1s agnostic to specific
network setups. The one or more computer networks 104
through which test master 112 and test agents (e.g., 118-1,
118-2 . . ., 118-N, etc.) communicate may refer to any
combination of one or more of: the Internet; intranets,
extranets, virtual private networks (VPNs), local area net-
works (LANs), wide area networks (WANs), wireless net-
works, wireline networks, client-server, mobile networks,
public networks, carrier-class networks, access networks,
enterprise networks, proprietary networks, or the like.

Test master 112 can be deployed at a test user device 106,
which represents a computer device that may or may not be
co-located with any of the test agents (e.g., 118-1,
118-2 . . ., 118-N, etc.). Example test user devices may
include, but are not necessarily limited to only, any of: a
computer server, a handheld computing device, a mobile
device, a wearable device, a laptop computer, a work station,
a desktop personal computer, a PDA, a cell phone, a tablet,
a PC, or any device or any computing device capable of
interfacing directly or indirectly to test agents as described
herein for the purpose of running test cases against software
and/or hardware components under test 1n system 100. In
some embodiments, test master 112 may be deployed on any
device which supports a JAVA virtual machine (JVM).
Additionally, optionally or alternatively, test master 112 may
be hosted on one or more server devices that host or provide
one or more data repositories such as relational or non-
relational databases for storing test related data. In some
embodiments, test master 112 can be hosted on a web server
and can be accessed through HI'TP or REST endpoints.

The test agents (e.g., 118-1, 118-2 . . ., 118-N, etc.) can
receive test execution requests from test master 112, and
then execute tests as requested by the test execution requests
in complete independence of test master 112. Final test
statuses and related test results of the requested tests may be
made available or sent to test master 112, for example, as
responses to the test execution requests.

For example, to execute a specific test against specific
soltware and/or hardware components under test 1n system
100, test master 112 retrieves test definition data and test
data for the test from a test data store 120. Test master 112
can further 1dentify a set of one or more candidate test agents
that are configured to execute the test, for example based on
agent configuration and status data retrieved from an acces-
sible data store such as test data store 120. Example agent
configuration and status data may include, but 1s not neces-
sarily limited to only, any of: test capabilities of test agents
in relation to the specific test, locations of test agents 1n
relation to the specific test 1n relation to locations of the
software and/or hardware components under test, etc.

Test master 112 can select any test agent 1n the set of
candidate test agents to execute the test, and send a request
for executing the test to the selected agent over one or more
computer networks 104. The request for executing the test
includes, but 1s not necessarily limited to only, any 1nitial test
data needed by the recipient test agent for scheduling and
executing the test.

In response to recerving the request for executing the test,
the test agent (e.g., 118-1, 118-2 . . ., 118-N, efc.) performs

a series of operations to carry out the requested test. In some
embodiments, the series of operation 1s performed by the test
agent (e.g., 118-1, 118-2 . . . , 118-N, etc.) without further
interactions between the test agent (e.g., 118-1, 118-2 . . .,
118-N, etc.) and test master 112 after the request for execut-
ing the test was recerved.

10

15

20

25

30

35

40

45

50

55

60

65

6

The series of operations performed by the test agent (e.g.,
118-1, 118-2 . . ., 118-N, etc.) independently may include,
but are not necessarily limited to only, one or more of:
determining a set of test cases to be run in the test, deter-
mining a time schedule for executing each test case in the
test, determining a complete set of test steps for each test
case 1n the test, determining a complete set of test data used
to 1nitiate or execute the complete set of test steps for each
such test case, executing the complete set of test steps for
cach such test case with the complete set of test data,
generating a final test execution status for each such test
case, causing the final test execution status and related test
results for each such test case to be made available or
returned to test master 112, and so forth.

Under the stateless test execution framework as described
herein, once the request for the test 1s received by the test
agent (e.g., 118-1, 118-2 . . . , 118-N, etc.), no coupling or
interaction between the test agent (e.g., 118-1, 118-2 . . .,
118-N, etc.) and test master 112 1s needed for the test agent
(e.g., 118-1, 118-2 . . ., 118-N, etc.) to carry out executing
the test. Even 1f test master 112 fails or otherwise becomes
incommunicado with the test agent (e.g., 118-1, 118-2 . . .,
118-N, etc.), the test agent (e.g., 118-1, 118-2 . . ., 118-N,
etc.) requested to perform the test can continue to schedule
and execute all the test cases in the test, and carry out
executing these test cases to their respective completions.
When a new instance of test master 112 starts up or an
existing instance of test master 112 recovers, test master 112
can send a new request to retrieve the final test execution
status and the related test results for each test case 1n the test
previously requested by a prior reincarnation of test master
112.

For the purpose of i1llustration only, FIG. 1A depicts a test
agent for each data center. It should be noted, however, that
in general, test agents may be deployed 1n same or different
locations other than those implying a one-to-one relationship
with data centers. In various embodiments, zero, one, or
more test agents may be deployed at a data center. For
example, a test agent pool comprising multiple test agents of
similar capabilities may be deployed at a data center. Addi-
tionally, optionally or alternatively, another data center may
be devoid of any locally deployed test agent. In some
embodiments, a test agent at a data center may be used to test
solftware and/or hardware components in system 100. In
some embodiments, a test agent remote to a data center may
be used to test software and/or hardware components in
system 100. In some embodiments, test agents may be
deployed at likely locations where potential users of system
100 are located so that functionality (or logic) and/or respon-
siveness can be tested with respect to certain soitware and/or
hardware components 1n system 100.

2.2 REST1ul Endpoints

FIG. 1B illustrates an example test agent 118 that interacts
with test master 112 for executing tests. As illustrated, test
agent 118 comprises or implements a web server 122 and a
test execution engine 124. Test execution engine 124 imple-
ments test execution functionality such as scheduling tests,
executing tests, updating tests and test cases therein, report-
ing test execution statuses and results, and so forth. The test
execution functionality implemented by the test execution
engine 124 of test agent 118 may be exposed to web server
122 as one or more test execution Application Programming,
Interfaces (APIs) 128.

Test execution API calls 128 (e.g., implemented as HT'TP-
based REST1ul APIs, etc.) exposed to web server 122 by test
execution engine 124 may be indirectly exposed by web
server 122 as HTTP-based endpoints/resources such as

US 10,558,551 B2

7

REST1ul endpoints 126. These RESTTul endpoints 126 are
addressable by a web application or a web browser on any
device directly or indirectly capable of establishing a web-
based data connection with web server 122, including but
not limited to: test master 112, another instance of test
master 112 on a different device, and so forth.

Each of REST1ul endpoints 126 may be addressable with
an HTTP-based REST request including but not necessarily
limited to only the following data items: a corresponding
base Universal Resource Locator (URL) such as “https://
txapi.force.com/resources/” that identifies a REST resources
location for test execution; an internet media type that

defines REST state transition data elements for test execu-
tion such as JSON, a XML file, a flat file database, and so

forth: a standard HTTP method such as OPTIONS, GET,
PUT, POST, and DELETE; etc.

In some embodiments, some or all of the RESTful end-
points may be publicly accessible. In some embodiments,
some or all of the RESTT1ul endpoints may be accessible by
test master 112 through one or more private, proprietary,
and/or specifically provisioned, data connections. In some
embodiments, some or all of the REST1ul endpoints may
require authentication and/or authorization. One or more
authentication and/or authorization mechanisms that can
operate with HTTP or HI'TP-based REST operations can be
used before an API call can be successiully invoked indi-
rectly by an HTTP request from test master 112 to web
server 122. In some embodiments, some or all of the
endpoints mnvoke API calls that execute tests accessing one
or more of: test and/or production data owned by a service
provider, test and/or production data owned by a user system
of a service provider, data maintained at a specific data
center or data store, data maintained at multiple data centers
or data stores, and so forth.

At runtime, test master 112 may determine/select a REST-
tul (test execution) endpoint for scheduling a specific test to
be executed by test agent 118. For instance, test master 112
may determine a set of data items to be included with an
HTTP request such as the base URL of RESTTul endpoints
126, a path (e.g., to be concatenated to the base URL, etc.)
for the REST1Tul endpoint among the RESTtul endpoints
126, REST state transition data elements (e.g., test definition
data, test data, in JSON, 1n XML, 1in a flat file database
format, etc.), a standard HI'TP method of POST, and so
forth.

Test master 112 generates an H1'TP-based REST request
based on a URL constructed from the base URL and the
path, the REST state transition data elements (e.g., in JSON,
in XML, i a flat file database format, etc.), the HI'TP
method, and so forth, and sends the HTTP-based REST
request to web server 122 to cause web server 122 to invoke
a call to a corresponding test execution APl among test
execution API 128 exposed to web server 122 by test
execution engine 124.

In some embodiments, the HITP-based REST request
comprises test defimition data that identifies the set of test
cases, test steps 1n each test case 1n the set of test cases, test
data to be used 1n each, some, or all of the test cases and/or
the test steps 1n the test, and so forth. Some or all of the test
definition data and the test data received as a part of the
HTTP-based REST request from test master 112 may be
passed to test execution engine 124,

The test may comprise a set of one or more test cases. For
instance, a first test case in the test may be to execute one or
more first test transactions and/or interactions with data
center 110-1 of FIG. 1A; a second test case 1n the test may
be to execute one or more second test transactions and/or

10

15

20

25

30

35

40

45

50

55

60

65

8

interactions with data center 110-2 of FIG. 1A; a third test
case 1n the test may be to execute one or more third test
transactions and/or interactions with data center 110-1 of
FIG. 1A.

In response to imvoking the specific API call by web
server 122, test agent 118-1, or test execution engine 124
therein, performs a series of operations to schedule and/or
carry out the requested test, as previously discussed. In some
embodiments, the series of operation 1s performed by the test

agent (e.g., 118-1, 118-2 . . . , 118-N, etc.) without further
interactions between the test agent (e.g., 118-1, 118-2 . . .,
118-N, etc.) and test master 112.

In some embodiments, a final test execution status and
some or all of test results from executing the set of test cases
ol the test may be provided by test execution engine 124 as
return code or return data 1n the call to the corresponding test
execution API to web server 122. Web server 122 may
cache/store the final test execution status and some or all of

the test results as REST resources that can be accessed or
retrieved through HI'TP-based REST GET operations from

the REST resources location of web server 122. Some or all
of the REST resources cached/stored by web server 122,
including but not necessarily limited to only the final test
execution status and the test results, may be returned in an
HTTP-based REST response (or ssmply HT'TP response) to
test master 112 1n response to the HTTP-based REST request
for the test.

If test master 112 fails or otherwise becomes 1ncommu-
nicado with test agent 118, the HT'TP-based REST response
sent by test agent 118, or web server 122 operating 1in
conjunction with test agent 118, may fail to reach test master
112. In some embodiments, a new 1nstance or a recovered
instance of test master 112 or another test master (e.g., from
the same test user device, from a different test user device,
ctc.) may retrieve mformation from HTTP-based REST
responses by querying the REST resources cached/stored by
web server 122 with HT'TP-based REST request with GET
methods/operations.

For example, the test master 112, after being restored or
restarted, can 1ssue a new HTTP-based REST request to
receive a new HTTP-based REST response that comprises
information 1n the failed HT'TP-based REST response. For
instance, the new HTTP-based REST request may be gen-
crated based on the base URL of RESTTul endpoints 126, the
same path (e.g., to be concatenated to the base URL, etc.) for
the specific RESTiul endpoint among the RESTIul end-
points 126 that was used to request executing the test, a
standard HTTP method of GFET, and so forth.

2.3 Test Definition Data and Test Data

In some embodiments, test execution engine 124 may be
implemented with computer code that performs test trans-
actions and test interactions based on the test definition data
and the test data forwarded by web server 122 1n the API call
invoked by web server 122. Example test transactions and
test interactions may include, but are not necessarily limited
to only, any of: transactions and interactions using produc-
tion data (e.g., actual data generated by users, etc.), trans-
actions and interactions using test data (e.g., synthesized
data to cover special or general data values or special or
general application logic, etc.), transactions and interactions
using software and hardware components 1 a production
environment, transactions and interactions using soltware
and hardware components in a development environment,
transactions and interactions involving user input, transac-
tions and interactions between backend servers, any com-
bination of the foregoing, and so forth.

US 10,558,551 B2

9

Test definition data and test data can be used to enable a
test agent to execute a test independent of a test master while
the test 1s being executed. For example, test execution
engine 124 may be used to execute one or more test cases
that comprise test transactions and test interactions that
simulate transactions and interactions supported by user
applications that run on user systems and that are used by
users to access the subscribed services. Data representing,
user mput in the test may be provided as a part of the test
data originally in REST data elements (e.g., in JSON, 1n
XML, 1n a flat file database format, etc.) and forwarded in
the API call to test execution engine 124. The REST data
clements as described herein can be used to include com-
plete replications of view forms, which might be otherwise
entered by a test user by hand under other approaches. Thus,
based on the complete replications of the view forms (e.g.,
with synthesized data designed to test specific value range or
specific logic of system 100, etc.), the test execution engine
124 can store the complete replication of the view forms 1n
memory aiter the HT'TP request causes a corresponding test
execution API to be mvoked (or called), and execute test
steps without going back to test master 112 for additional
user mput for the view forms.

To simulate the transactions and interactions comprising,
dependency relationships, the test definition data may 1den-
t1fy a set of dependent and/or independent test steps for each
test case to be run in the test. The test definition data may
identily specific relationships between and/or among the test
steps 1n terms of timing, data, and other dependencies.

In executing a test case, based on the test definition data
and the test data, test execution engine 124 guides the test
case through relatively controlled test execution paths that
purposelully exercise specific logic under test that 1s sup-
ported or implemented by one or more soitware and/or
hardware components 1n system 100.

For example, test execution engine 124 may perform a
first test step of a test case to interact with a set of specific
software and/or hardware components under test 1n system
100 to execute a specific API call implemented or performed
by the specific software and/or hardware component(s)
under test with specific test data portions received 1n the test
data or generated in prior dependent test steps (prior to the
first step). The specific software and/or hardware compo-
nents under test may return a status code and other related
information in the specific API call. Test execution engine
124 may analyze the status code and return information, and
perform a second test step of the test case to interact with a
new set of specific software and/or hardware components
under test 1 system 100 to execute a new specific applica-
tion programming interface (API) call with new specific test
data portions received 1n the test data or generated 1n prior
dependent test steps (prior to the second step). Thus, while
executing the test case, for the purpose of guiding the test
case through the predesignated test execution paths, test
execution engine 124 can maintain test execution state
information 1n relation to the test case independent of test
master 112.

2.4 lest Case Data

FIG. 2A illustrates example test case data 216 that can be
used to generate test cases at runtime or 1n offline process-
ing. Under techniques as described herein, test cases involv-
ing diverse types of tests and diverse types of test subjects
can be generated based on test case data 216 developed/
created 1n a data file, without any need to write test tool code
for these test cases in a programming language such as
JAVA, C#, C++, etc. The data file may be, without limitation,
a human readable file, a binary data file, etc.

10

15

20

25

30

35

40

45

50

55

60

65

10

In some embodiments, test case data 216 comprises (e.g.,
constitutes, etc.) test definition data and test data for a test or
test cases therein, and 1s defined/specified with a data
description language or a data interchange format including
but not limited to JavaScript Object Notation (JSON), a
XML file, a flat file database, etc. A test user can interact
with a test user mterface (e.g., 130 of FIG. 1B, etc.) of a test
master to generate, update and/or delete the test cases (as
specified/defined 1n the test definition data) and the test data
in test case data 216, mnstead of or in addition to directly
operating the data file comprising test case data 216 that
specifies or defines the test cases and the test data.

A test case as described herein 1s (e.g., tully, completely,
together with a generic test case, etc.) specified and defined
in portions of test case data 216 that are related to the test
case. Test steps 1n the test case can use the test data 1n test
case data 216 to generate intermediate test data as needed.
This allows a test execution engine as described herein to
execute autonomously (e.g., with respect to the test master,
etc.), including but not limited to, execute each test step of
the test case and generate any intermediate data needed to
carry out each test step of the test case, without further
interacting with a test master that made the original request
for executing the test case while the test case i1s being
executed by the test execution engine. More specifically, the
portions of test case data 216 as related to the test case
represent test execution metadata used in a data-driven
message-driven test execution model to (e.g., fully, com-
pletely, etc.) control worktlows of test execution at runtime
for the test case and the test steps therein. Example test

execution models can be found i U.S. patent application
Ser. No. 15/686,005, with an application title of “CON-

TROLLING EXECUTIONS OF SYNCHRONOUS ANDY/
OR NON-SYNCHRONOUS OPERATIONS WITH ASYN-
CHRONOUS MESSAGES” by Chris Tammariello, Ashish
Patel, Tuhin Kanti Sharma, and Michael Bartoli, filed on
Aug. 24, 2017, the entire contents of which are hereby
incorporated by reference as if fully set forth herein.

Example test cases may include, but are not necessarily
limited to only, synthetic web transactions against endpoints
of web-based applications or services in order to measure
and assess health and performance of the applications or
services. In some embodiments, some or all of the synthetic
web transactions can be developed and curated by test users
who own the applications or services and would like to have
a particular level of monitoring for their applications or
SErvices.

In some embodiments, test case data 216 comprises a set
of test case common elements 208 and one or more sets of
test case specific elements 212-1, 212-2, . . . 212-N, where
N 1s a positive mteger no less than one (1).

Test case data 216 may be used to replace or populate
values for test case specific properties ol a test case base
object when expanding the test case base object into 1ndi-
vidual test cases. While the test case base object represents
a generic test case, each of the individual test cases repre-
sents a respective test case 1n a set of one or more test cases
206-1, 206-2, . . . 206-N 1n a test 200.

Additionally, optionally or alternatively, when the set of
test case common elements 1s available 1n the test case data
216, the set of test case common elements can be used to
replace or populate values for some or all of test case
common properties of the test case base object. Each set of
test case speciiic elements in the one or more sets of test case
specific elements 212-1, 212-2, . . . 212-N can be used to

replace or populate values for a respective set of test case

US 10,558,551 B2

11

specific properties of a respective test case specific object 1n
the 1ndividual test case specific objects.

A test case, such as a synthetic web transaction and so
forth, may comprise a set of one or more individual test
steps. Some or all of the individual test steps in the test case >
may be executed 1 any order. Some or all of the individual
test steps 1n the test case may need to be executed in a
sequential execution order (or 1n a sequential execution
chain). Test steps that need to be sequentially executed may
convey their respective test step execution states imcluding
some or all of data 1n the test steps (e.g., received responses
to requests made 1n a synthetic web transaction, etc.) to other
test steps down 1n the sequential order. Test steps collec-
tively may be used to assess an overall test execution state
(e.g., via a final test case execution status, etc.) of services
or applications under test.

In some embodiments, some or all of the test case data
216 for the test cases as described herein may be accompa-
nied with individual timing information (or individual time 2¢
constraints). Example individual timing information may
include individual allocated time durations (e.g., one (1)
minute for the first test case in the test, five (5) minutes for
the second test case, to be executed at the one-minute mark,
to be executed at the five-minute mark, etc.) for respective 25
test cases to complete, specific individual start times for
respective test cases to start, specific individual end times for
respective test cases to end, and so forth. The individual
timing information may be used to schedule the test cases
and determined whether any of these test cases has failed by 30
timeout (or exceeding the allocated time durations; or end-
ing after the specified ending times) or by any other reason.

In some embodiments, some or all of test steps 1n a test
case may be accompanied with individual timing informa-
tion 1n test defimition data and/or test data (e.g., test case data 35
216, ctc.) for the test case. Example individual timing
information may include imndividual allocated time durations
(e.g., ten (10) second for the first test step 1n the first test
case, fifteen (15) seconds for the second test step in the third
test case, etc.) for respective test steps to complete, specific 40
individual start times for respective test steps to start,
specific individual end times for respective test steps to end,
and so forth. The individual timing information may be used
to schedule the test steps and determined whether any of
these test steps has failed by timeout or by any other reason 45
(or exceeding the allocated time durations; or ending after
the specified ending times).

The set of test case common elements 208 and the sets of
test case specific elements 212-1, 212-2, . . . 212-N 1n test
case data 216 may be represented, without limitation, key- 50
value pairs such as 1n JSON, markup tags such as in XML,
data values 1n flat file database formats, and so forth. In some
embodiments, the test execution engine of the test agent
may, but 1s not limited to, run in JAVA virtual machine
(JVM). 55

FIG. 2B 1illustrates an example set of test case common
clements (e.g., 208, etc.) and one or more sets of test case
specific elements (e.g., 212-1, 212-2, . .., 212-N, etc.). The
set of test case common elements 208 comprises a key-value
pair of a key “serverDomamName” and a wvalue 60
“<service>.google.com”, a key-value pair of a key “expect-
edReturnResponse” and a value “200 OK,” a key-value pair
of a key “reachableTimelLimit” and a value “60 seconds,”
etc. A first set of test case specific elements 212-1 comprises
a key-value pair of a key “service” and a value “mail”, etc. 65
A second set of test case specific elements 212-2 comprises
a key-value pair of a key “service” and a value “finance”,

10

15

12

etc. A third set of test case specific elements 212-3 comprises
a key-value pair of a key “service” and a value “sports”, etc.

2.5 Test Case Expander

A generic test case can be expanded into multiple test case
specific objects that represent multiple individual test cases
against multiple applications/services at runtime and/or 1n
oflline processing.

FIG. 3A 1llustrates an example test case expander 302. In
some embodiments, test case expander 302 can be 1mple-
mented 1n a test execution engine (e.g., 124, etc.) of a test
agent (e.g., 118, etc.) to expand a generic test case 1into a set
ol one or more test cases (e.g., 206-1, 206-2, . . . 206-N, etc.)
in a test (e.g., 200, etc.).

In some embodiments, test case data 216 may be gener-
ated and/or stored 1n a test data store (e.g., 120, etc.) by a test
user, by test master 112 interacting with a test user, and so
forth. Test master 112 receives/retrieves test case data 216
from the test user and/or from test data store 120, and
includes test case data 216 in the request for executing test
200, and sends the request for executing test 200 to test agent
(e.g., 118, etc.) by way of web server 122.

Test case data 216 may be passed by test master 112 to test
agent 118 1n payloads (e.g., REST data elements, JSON
key-value pairs, a flat file database, etc.) of the request for
executing test 200 that 1s addressed to a specific endpoint at
web server 122. Web server 122 in turn invokes a test
execution API corresponding to the specific endpoint and
forwarded test case data 216 to test execution engine 124 of
test agent 118 1n mput data/parameters 1n the test execution
API call.

In response to receiving test case data 216, test execution
engine 124 delegates to test case expander 302 to use the set
of test case common elements in test case data 216 to replace
or populate values for some or all of test case common
properties 1 a test case base object that represents the
generic test case.

Test case expander 302 expands the test case base object
into a set of one or more test case specific objects for
representing the set of one or more test cases 206-1,
206-2, . .. 206-N, etc., in test 200. The set of one or more
test case specific object may be generated from the test case
base object by deep cloning or by inheritance.

Test case expander 302 uses each set of test case specific
clements to replace or populate values for a respective set of
test case specific properties 1n a respective test case specific
object 1n the test case specific objects.

Once test case expander 302 finishes populating the
values 1n the set of test case specific objects, test execution
engine 124 may schedule/execute the set of one or more test
cases 206-1, 206-2, . . . 206-N with the set of one or more
test case specific objects, and cause final test case statuses of
these test cases to be available to test master 112 by way of
web server 122, for example as web-based resources (e.g.,
REST resources, etc.).

Additionally, optionally or alternatively, in some embodi-
ments, after a test case specific object for a specific test case
in the set of one or more test cases 206-1, 206-2, . .. 206-N
1s generated by test case expander 302, the test case specific
object may be partly or 1n whole cached 1n memory until the
test case 1s finished executing.

2.6 Generic Test Case and Specific Test Cases

Under techniques as described herein, instead of devel-
oping diflerent test cases for different applications/services
that share the same checks and the same test configuration,
a (e.g., single, etc.) generic test case 1s developed for all
these applications/services. The generic test case may or
may not be directly used to test a specific application/

US 10,558,551 B2

13

service. In some embodiments, the generic test case can be
used to generate, or can be expanded 1nto, specific test cases
for the various applications/services that share the same
checks and the same test configuration.

In some embodiments, the generic test case for the
applications/services 1s represented by a single test case base
object. As used herein, the term “test case base object” refers
to a set of computer code units (e.g., an object, a class, etc.)
that encapsulate a plurality of test case properties such as a
set ol zero or more test case common properties, a set of one
or more test case specific properties, and so forth; 1n some
embodiments, the test base object also implements at least
one test case execution method based on the same checks
and the same configuration shared among all the applica-
tions/services.

The test case base object may be generated/defined (1) by
identifying, from the applications/services, the set of zero or
more test case common properties that are common to all the
applications/services, (2) by identifving, from the applica-
tions/services, the set of one or more test case specific
properties that may vary among the applications/services,
and (3) by implementing the same test checks and the same
test configuration in one or more test case execution meth-
ods that make use of values of the test case common
properties and the test case specific properties.

In some embodiments, values for some or all of the test
case common properties 1n the test case base object may be
directly (e.g., hardcoded, etc.) or indirectly (e.g., from a
parameter file, etc.) coded/implemented into the test case
base object. In some embodiments, as 1llustrated 1n FIG. 3B,
values of some or all test case common properties 1n the test
case base object (e.g., 304, etc.) may be dynamically set for
all the applications/services based on a set of test case
common elements (e.g., 208, etc.) that 1s passed 1n a request
for executing a test against the applications/services. Addi-
tionally, optionally or alternatively, values of some or all test
case common properties 1n the test case base object may be
stored/cached for the applications/services once these values
are determined or received.

In some embodiments, an individual test case for an
individual application/service among the applications/ser-
vices 1s represented by an individual test case specific object
(e.g.,306-1, 306-2, ...306-N asillustrated 1n FIG. 3B, etc.).
In some embodiments, the individual test case specific
object may be created/generated by deep cloning the test
case base object. As a result, the individual test case base
object inherits or clones the plurality of test case properties
(including any default values, set values, and unspecified
values therefor) and the test case execution method that 1s
implemented based on the same checks and the same
configuration shared among all the applications/services.

In some embodiments, as cloned, the individual test case
specific object comprises the set of test case common
properties that have already been set with determined values
applicable to all the applications/services. However, as
cloned, the individual test case specific object comprises the
set of test case specific properties at least one of which 1s
either unspecified or has a default or overridable value. In
some embodiments, values of some or all test case specific
properties 1n the mdividual test case specific object may be
dynamically set for the specific application/service based on
a set of test case specific elements that 1s passed 1n the
request for executing the test against the applications/ser-
vices that include the specific application/service. Addition-
ally, optionally or alternatively, values of some or all test
case specific properties 1n the imdividual test case specific

10

15

20

25

30

35

40

45

50

55

60

65

14

object may be stored/cached for the specific application/
service once these values are determined or received.

Different applications/services among the application/ser-
vice may be represented by different individual test case
specific objects. Each of the different individual test case
specific objects can be cloned or other inherited from the test
case base object the plurality of test case properties and the
test case execution method(s) or API(s) that implement the
same test checks and the same test configuration. Each of the
different individual test case specific objects comprises the
set of test case common properties that have already been set
with determined values applicable to all the applications/
services. As cloned, each such test case specific object
comprises the set of test case specific properties at least one
of which 1s etther unspecified or has a default or overridable
value. Values of some or all test case specific properties in
cach such test case specific object may be dynamically set
for a respective application/service based on a respective set
of test case specific elements that 1s passed in the request for
executing the test against the applications/services that
include the respective application/service. Additionally,
optionally or alternatively, values of some or all test case
specific properties 1n each such test case specific object may
be stored/cached for the respective application/service once
these values are determined or received.

As used herein, a test case element such as a test case
common element or a test case specific element may be
represented, without limitation, by a key-value pair. The
applications/services that share a test case common element
have the same key 1n a key-value pair representing the test
case common element, as well as have the same value 1n the
key-value pair. The applications/services may have the same
key 1n a key-value pair representing a test case specific
clement but may or may not have the same value in the
key-value pair.

2.7. Testing Applications/Services at Multiple Endpoints/
Servers

By way of example but not limitation, test case specific
objects as expanded from a test case base object that
represents a generic test case can be generated and used to
execute mdividual test cases against multiple applications/
services of a service provider such as one associated with a
domain name of “<service>.google.com”. The applications/
services may include, but are not necessarily limited to only,
a “mail” application/service, a “news’ application/service, a
“finance” application/service, and so forth. These applica-
tions/services may be accessible at diflerent endpoints, such
as “mail.google.com”, “news.google.com”,
“finance.google.com™, and so forth.

Under techniques as described herein, a test user may
create a single generic test case that can be expanded into
individual test cases for all the applications/services of the
service provider, even 1 the different endpoints, different
web servers, different web-based applications/services, and
different computing nodes, and so forth, are used to support
these diflerent applications/services. These individual test
cases may constitute a test for checking individual health
statuses of these applications/services.

The single generic test case may be represented by a test
case base object that 1s generated by 1dentifying common-
ality and non-commonality among the different applications/
SErvices.

For example, the commonality of the applications/ser-
vices 1n the test for checking health statuses may be iden-
tified by the test user as follows: a common part of an URL
such as “.google.com™; a common expected return code
“200 OK’’; a common time limit of 60 seconds; the same test

US 10,558,551 B2

15

configuration of sending an HT'TP request to an endpoint as
represented by the URL and obtaining an HT'TP response in
return; the same test check of whether the response includes
the common expected return code “200 OK™; and so forth.

The non-commonality among the applications/services in
the test may be identified by the test user as follows: a
non-common part of the URL such as “mail”, “news”,
“finance”, etc.; and so forth.

In the present example, a single test case base object can
be created to represent the single generic test case that 1s to
be expanded 1nto the multiple individual test cases for the
multiple applications/services at runtime or in oflline pro-
cessing.

The single test case base object may be implemented with
a set of test case common properties, a set of test case
specific properties, and one or more test execution APIs or
methods for carrying out test case executions of checking
health statuses of the applications/services. The set of test
case common properties may comprise, without limitation,
a first key-value pair with a key “commonURLPart” and a
value of “.google.com™, a second key-value pair with a key
“expectedResponse” and a value of “200 OK,” a third
key-value pair with a key “withinTimeLimit” and a value of
“60 seconds,” and so forth. The set of test case specific
properties may comprise, without limitation, a fourth key-
value parr with a key “nonCommonURLPart” and an
unspecified, default and/or overridable value, and so forth.
The one or more test execution APIs or method for carrying
out test case executions of checking health statuses of the
applications/services may include a test execution API or
method that implements the same test configuration of
sending an HTTP request to an endpoint as represented by
the URL and obtaining an HTTP response 1n return and the
same test check of whether the response includes the com-
mon expected return code “200 OK.”

To expand the single generic test case into the multiple
individual test cases for the multiple applications/services at
runtime or in oflfline processing, multiple test case specific
objects that represent the multiple individual test cases may
be generated by deep cloning or otherwise inhering the
single test case base object. The set of test case specific
properties 1n each of the test case specific objects may be set
with a respective set of test case specific elements that are
passed 1n a request for executing the test for checking the
health statuses of the applications/services.

In the present example, the request may comprise three
sets of test case specific elements respectively corresponding
to the three applications/services: “mail”, “news” and
“finance”. A first set of test case specific elements in the
three sets of test case specific elements 1n the request may
comprise, without limitation, a key-value pair of the key
“nonCommonURLPart” and a first value of “mail”. A sec-
ond set of test case specific elements 1n the three sets of test
case specific elements 1n the request may comprise, without
limitation, a key-value pair of the key “nonCommonURL-
Part” and a second value of “news”. A third set of test case
specific elements 1n the three sets of test case specific
clements 1n the request may comprise, without limitation, a
key-value pair of the key “nonCommonURLPart” and a
third value of “finance”.

This data-driven approach of expanding a generic test
case 1to specific test cases allows a test user to create a
single test case base object to represent the single generic
test case. Test case specific elements, and even some or all
of test case common elements, can be passed 1n a request for
the test from a test master. Additionally, optionally or
alternatively, these test case specific and/or common ele-

10

15

20

25

30

35

40

45

50

55

60

65

16

ments passed 1n the request can be formatted/represented in
JSON, in XML, in flat file database formats, etc. For
instance, the values of the key “nonCommonURLPart” 1n
the previous example may be passed efliciently in the
request as an array (“mail”, “news”, “finance”) 1 JSON
formatted data elements accompanying an HTTP-based
request for executing the test. These array values can then be
respectively used to populate or set values for the set of test
case specific elements 1n the test case specific objects.

FIG. 2C illustrates an example JSON file that includes test
case common ¢lements 208 and test case specific elements
212-1, 212-2, . . . 212-N. The test case specific elements
212-1, 212-2, . . . 212-N are passed as an array named
“replaceableOverrides™ in the JSON file. In some embodi-
ments, the test case base class can set or initialize the
“service’ field (or a test case specific property with “service”
as the property key or name) to a default value (e.g., “www”,
etc.), which may be a correct value for a significant number
ol test cases such as a majority or a plurality of test cases.
The value for the “service” field (denoted as “<service>")
can then be overridden at runtime by values (e.g., “mail”,
“news”’, “finance”, etc.) passed 1n as “replaceableOverrides™
values from the JSON file that 1s included as data elements
of a HI'TP-based REST request for executing the test.

Under techniques as described herein, there 1s no need to
write an individual test case for each endpoint associated
with an application/service. Applications/services similar to
the application/service and/or instances of the application/
service can be tested with test cases generated from a single
generic test case without a user writing or repeating 1ndi-
vidual test execution logic for these applications/services or
the 1nstances of the application/service.

The same test checks against these endpoints such as the
expected “200 OK” responses and within an expected time
limit of 60 seconds can be automatically cloned or reused 1n
the idividual test cases. Thus, for all the applications/
services that share the same test checks and the same test
configuration, the test execution API or method 1s 1mple-
mented (e.g., only, etc.) once. Thereafter, all endpoints
associated with the similar applications/services or the
instances of the application/service can be tested with the
same test configuration using test cases automatically cloned
or generated from the generic test case.

In some embodiment, the test execution API or method
implemented 1n the test case base object may comprise
placeholders or fields in expressions such as URLs. These
placeholders or fields can be replaced as regular expressions
(or “regex”) without code change at runtime or in offline
processing when proper values for the placeholders or fields
are received 1n the request for the test. As a result, there 1s
no need to rewrite the test execution API or method for
individual applications/services for which the test case base
object has been created. A replacement of a placeholder or
field, for example 1n a string representing the URL, may
happen at runtime, thereby enabling a corresponding test
case to use the most current version of the value for the
placeholder or field and reducing or obviating any need to
reconfigure or rewrite code for test cases with the latest
values.

In some embodiments, one or more utility classes may be
implemented to help expanding a test case base object as
described herein 1nto test case specific objects. These utility
classes can be used for a variety of operational scenarios.
For instance, a first utility class may be implemented to
perform deep cloning of the test case base object for each
individual test case that 1s to be expanded, for example at test
execution time or before. A second utility class may be

US 10,558,551 B2

17

implemented to make replacements of placeholders or fields.
In embodiments in which JAVA 1s used to implement
objects/classes as described herein, some or all of test case
properties (e.g., test case speciiic properties, test case com-
mon properties, etc.) may be represented as JAVA beans,
whose values can be get or set through JAVA BeanWrapper
that provide a generic way to set or replace values of
key-value pairs that represent the test case properties. Addi-
tionally, optionally or alternatively, keys (or names) for
some or all of the test case properties (e.g., test case specific
properties, test case common properties, etc.) may be rep-
resented as JAVA beans, and may be get or set through JAVA
BeanWrapper that provide a generic way to set or replace
keys (or names) of key-value pairs that represent the test
case properties. If new test case properties (or fields) are
added, no new code need to be rewritten to set or replace
keys or values of these new properties (or fields).

Under techniques as described herein, test case specific
properties 1n test case specific objects generated from a test
case base object can be automatically set or replaced before
test cases represented by the test case specific objects are
executed. In addition, the test cases can be executed by
invoking test execution API calls or methods implemented
in the test case base object and cloned by the test case
specific objects. This provides a test user a capability to
write or implement code for a single test case base object
that ends up with or 1s expanded mto multiple test case
specific objects for executing individual test cases against
multiple applications/services, even i these applications/
services span across multiple servers.

In some embodiments, the test case base object that 1s to
be expanded into the multiple individual test cases may be
implemented 1 a test agent or a test execution engine
thereol. Multiple sets of test case specific elements that are
to replace or populate values for the set of test case specific
properties 1n the test case base object may be represented or
formatted 1n a human-readable or binary data file stored 1n
a test data store that may be remote to the test agent.
Additionally, optionally or alternatively, a set of test case
common elements that 1s replace or popular values for some
or all of test case common properties 1n the test case base
object may also be represented or formatted in the same data
file.

In some embodiments, the multiple sets of test case
specific elements and/or the set of test case common ele-
ments may be formatted 1nto a single record such as a single
database record. Thus, 1n these embodiments, a test with the
multiple test cases can be represented in the single database
record with no additional records that are created and
persisted. At runtime, the test agent clones the test case base
object mto the individual test case specific objects and
replaces/populates the test case properties (e.g., the test case
specific properties, the test case common properties, etc.). In
some embodiments, the expanded specific test case objects
may be used to execute corresponding test cases and stored.
In some embodiments, the expanded/replaced values of the
test case properties may be cached i memory for an
iteration or execution of the requested test but are not kept
aiter the 1teration or execution of the requested test. This can
simplity management of the test, as for example only a
single spot such as the test agent 1s used to expand the test
case base object into the test case specific objects and to
replace/expand the values of the test case properties 1n the
expanded test cases.

Example tests as described herein may include, but are not
necessarily limited to only, those related to any of: produc-
tion system functionality, system functionality in various

10

15

20

25

30

35

40

45

50

55

60

65

18

stages of development and/or test phases, functionality
related to user experiences, checking login pool, orchestra-
tion of multiple services, accesses to multiple data centers
and/or data stores, system or service health checks, ping
checks, transactions, account creation, reporting software,
results analysis, alerting, visualization, multi-step tests, data
creation tests, data deletion tests, data entry tests, compli-
cated and/or uncomplicated transactions, services exposed
to user systems, internal services not exposed to user sys-
tems, HI'TP-based operations, Ul related functionality, web-
based accesses, SMTP-based operations, FTP-based opera-
tions, network functionality, real-time operations, near-real-
time operations, non-real-time operations, and so forth.

3.0 Example Embodiments

FIG. 4 illustrates an example process tlow that may be
implemented by a computing system (or device) as
described herein. In block 402, a test execution engine (e.g.,
124 of FIG. 1B, etc.) operating with a test agent (e.g., 118
of FIG. 1B, 118-1 through 118-N of FIG. 1A, etc.) recetves
test case data for a plurality of individual test cases, the test
case data including a plurality of sets of test case specific
clements.

In block 404, the test execution engine generates a test
case base object that represents a generic test case, the test
case base object including a set of test case specific prop-
erties.

In block 406, the test execution engine expands the test
case base object mto a plurality of individual test case
specific objects that represents the plurality of individual test
cases, each individual test case specific object 1n the plural-
ity of individual test case specific objects being generated at
least 1n part by setting the set of test case specific properties
in each such idividual test case specific object to a respec-
tive set of test case specific values as 1indicated 1n a respec-
tive set of test case specific elements 1n the plurality of sets
ol test case specific elements.

In block 408, the test execution engine uses the plurality
of mdividual test case objects to execute the plurality of
individual test cases against one or more systems under test,
cach mdividual test case object 1n the plurality of individual
test case objects representing a respective test case in the
plurality of test cases.

In an embodiment, the test case generic object imple-
ments at least a test execution method that 1s cloned by the
plurality of individual test case specific objects; the test
execution method, when mmvoked through the plurality of
individual test case specific objects, performs same test
checks across all test cases 1n the plurality of individual test
cases.

In an embodiment, the plurality of sets of test case specific
clements 1s represented as a plurality of sets of key-value
pairs.

In an embodiment, the test case base object includes a set
ol test case common properties each of which 1s set with one
ol: a test case common element received with the set of test
case common clements 1 a request for executing the plu-
rality of test cases, a coded value used 1n constructing the
test case base object, efc.

In an embodiment, the method as described herein i1s
performed by a test agent; the test case data 1s generated by
a test user interacting with a test master; the test case data 1s
sent by the test master to the test agent, 1n a request for
executing a test that includes the plurality of test cases.

US 10,558,551 B2

19

In an embodiment, the plurality of test cases 1s used to test
whether a plurality of applications or services in the one or

more systems 1s performing correctly and responsively.

In an embodiment, the plurality of applications or services
1s accessed through diflerent endpoints of one or more web
servers 1n the one or more systems.

In some embodiments, process tlows involving opera-
tions, methods, etc., as described herein can be performed
through one or more computing devices or units.

In an embodiment, an apparatus comprises a processor
and 1s configured to perform any of these operations, meth-
ods, process tlows, efc.

In an embodiment, a non-transitory computer readable
storage medium, storing software mnstructions, which when
executed by one or more processors cause performance of
any of these operations, methods, process flows, etc.

In an embodiment, a computing device comprising one or
more processors and one or more storage media storing a set
of instructions which, when executed by the one or more
processors, cause performance of any of these operations,
methods, process flows, etc. Note that, although separate
embodiments are discussed herein, any combination of
embodiments and/or partial embodiments discussed herein
may be combined to form further embodiments.

4.0 Implementation Mechanisms—Hardware
Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 5 1s a block diagram that 1llustrates a
computer system 500 upon which an embodiment of the
invention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
MICroprocessor.

Computer system 500 also includes a main memory 506,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing information
and 1nstructions to be executed by processor 504. Main
memory 506 also may be used for storing temporary vari-
ables or other intermediate mformation during execution of
instructions to be executed by processor 504. Such nstruc-
tions, when stored in non-transitory storage media acces-
sible to processor 504, render computer system 500 1nto a
special-purpose machine that 1s device-specific to perform
the operations specified in the instructions.

Computer system 300 further includes a read only
memory (ROM) 508 or other static storage device coupled

10

20

25

30

35

40

45

50

55

60

65

20

to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 502 for
storing 1information and instructions.

Computer system 500 may be coupled via bus 502 to a
display 512, such as a liquid crystal display (LCD), for
displaying information to a computer user. An input device
514, including alphanumeric and other keys, 1s coupled to
bus 502 for communicating nformation and command
selections to processor 504. Another type of user input
device 1s cursor control 516, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 504 and {for
controlling cursor movement on display 512. This input
device typically has two degrees of freedom 1n two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specily positions 1n a plane.

Computer system 500 may implement the techniques
described herein using device-specific hard-wired logic, one
or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 500 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 in response to
processor 304 executing one or more sequences of one or
more instructions contained i main memory 306. Such
instructions may be read mto main memory 506 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained i1n main
memory 506 causes processor 504 to perform the process
steps described heremn. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation 1n a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510.
Volatile media includes dynamic memory, such as main
memory 506. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be mvolved 1n carrying one
or more sequences of one or more instructions to processor
504 for execution. For example, the instructions may 1ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An 1nfra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 502. Bus 502 carries the data to main memory

US 10,558,551 B2

21

506, from which processor 504 retrieves and executes the
instructions. The instructions received by main memory 506
may optionally be stored on storage device 510 erther before
or after execution by processor 504.

Computer system 300 also includes a communication
interface 518 coupled to bus 502. Communication 1nterface
518 provides a two-way data communication coupling to a
network link 520 that 1s connected to a local network 522.
For example, communication interface 518 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 3520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.

The recerved code may be executed by processor 504 as
it 1s recerved, and/or stored in storage device 510, or other
non-volatile storage for later execution.

5.0 Equivalents, Extensions, Alternatives and
Miscellaneous

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what 1s
the mmvention, and 1s intended by the applicants to be the
invention, 1s the set of claims that 1ssue from this applica-
tion, 1 the specific form 1 which such claims 1ssue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained 1n such claims
shall govern the meanming of such terms as used 1n the claims.
Hence, no limitation, element, property, feature, advantage
or attribute that 1s not expressly recited 1n a claim should
limit the scope of such claim in any way. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative rather than a restrictive sense.

What 1s claimed 1s:

1. A method, comprising:

receiving test case data, defined by a user, for a plurality
of individual test cases, the test case data including a
plurality of sets of test case specific elements;

5

10

15

20

25

30

35

40

45

50

55

60

65

22

wherein the test case data identifies a set of dependent and
independent test steps for each test case 1n the plurality
of individual test cases:
generating, based on the test case data as defined by the
user, a test case base object that represents a generic test
case, the test case base object including a set of test case
specific properties to be populated by test case specific
values;
expanding the test case base object mnto a plurality of
individual test case specific objects that represents the
plurality of individual test cases, each individual test
case specific object 1n the plurality of individual test
case specific objects being generated at least 1n part by
setting the set of test case specific properties in each
such individual test case specific object to a respective
set of test case specific values as indicated 1n a respec-
tive set of test case specific elements 1n the plurality of
sets of test case specific elements;
using the plurality of individual test case specific objects
to execute the plurality of individual test cases against
one or more systems under test, each individual test
case specilic object 1n the plurality of individual test
case specific objects representing a respective test case
in the plurality of test cases;
wherein the test case generic object implements at least a
test execution method, wherein the test execution
method 1s cloned by the plurality of individual test case
specific objects; and wherein the test execution method,
when invoked through the plurality of individual test
case specific objects, performs same test checks across
all test cases 1n the plurality of individual test cases.
2. The method as recited 1n claim 1, wherein the plurality
ol sets of test case specific elements 1s represented as a
plurality of sets of key-value pairs.
3. The method as recited in claim 1, wherein the test case
base object includes a set of test case common properties
cach of which 1s set with one of: a test case common element
received with the set of test case common elements in a
request for executing the plurality of test cases, or a coded
value used 1n constructing the test case base object.
4. The method as recited 1n claim 1, wherein the method
1s performed by a test agent, wherein the test case data 1s
generated by a test user interacting with a test master, and
wherein the test case data 1s sent by the test master to the test
agent, 1 a request for executing a test that includes the
plurality of test cases.
5. The method as recited 1n claim 1, wherein the plurality
ol test cases 1s used to test whether a plurality of applications
in the one or more systems 1s performing correctly and
responsively.
6. The method as recited in claim 1, wherein the plurality
of applications 1s accessed through different endpoints of
one or more web servers in the one or more systems.
7. One or more non-transitory computer readable media
storing a program of instructions that 1s executable by a
device to perform:
receiving test case data, defined by a user, for a plurality
of individual test cases, the test case data including a
plurality of sets of test case specific elements;

wherein the test case data identifies a set of dependent and
independent test steps for each test case 1n the plurality
of individual test cases:

generating, based on the test case data as defined by a

user, a test case base object that represents a generic test
case, the test case base object including a set of test case
specific properties to be populated by test case specific
values;

US 10,558,551 B2

23

expanding the test case base object mnto a plurality of
individual test case specific objects that represents the
plurality of individual test cases, each individual test
case specific object 1n the plurality of individual test
case specific objects being generated at least 1n part by
setting the set of test case specific properties in each
such individual test case specific object to a respective
set of test case specific values as indicated 1n a respec-
tive set of test case specific elements 1n the plurality of
sets of test case specific elements;

using the plurality of individual test case specific objects

to execute the plurality of individual test cases against
one or more systems under test, each individual test
case specilic object 1n the plurality of individual test
case specific objects representing a respective test case
in the plurality of test cases;

wherein the test case generic object implements at least a

test execution method, wherein the test execution
method 1s cloned by the plurality of individual test case
specific objects; and wherein the test execution method,
when mvoked through the plurality of individual test
case specific objects, performs same test checks across
all test cases 1n the plurality of individual test cases.

8. The medium as recited in claim 7, wherein the plurality
of sets of test case specific elements 1s represented as a
plurality of sets of key-value pairs.

9. The medium as recited 1n claim 7, wherein the test case
base object mncludes a set of test case common properties
cach of which 1s set with one of: a test case common element
received with the set of test case common elements 1n a
request for executing the plurality of test cases, or a coded
value used 1n constructing the test case base object.

10. The medium as recited 1in claim 7, wherein the test
case data 1s generated by a test user interacting with a test
master, and wherein the test case data i1s sent by the test
master to a test agent, 1n a request for executing a test that
includes the plurality of test cases.

11. The medium as recited 1n claim 7, wherein the
plurality of test cases 1s used to test whether a plurality of
applications in the one or more systems i1s performing
correctly and responsively.

12. The medium as recited 1in claim 7, wherein the
plurality of applications 1s accessed through different end-
points of one or more web servers i the one or more
systems.

13. A system, comprising;

one or more computing processors;

one or more non-transitory computer readable media

storing a program ol instructions that 1s executable by
the one or more computing processors to perform:

receiving test case data, as defined by a user, for a

plurality of individual test cases, the test case data
including a plurality of sets of test case specific ele-
ments;

10

15

20

25

30

35

40

45

50

24

wherein the test case data identifies a set of dependent and
independent test steps for each test case 1n the plurality
of 1individual test cases:

generating, based on the test case data as defined by the

user, a test case base object that represents a generic test
case, the test case base object including a set of test case
specific properties to be populated by test case specific
values;

expanding the test case base object ito a plurality of

individual test case specific objects that represents the
plurality of individual test cases, each individual test
case specilic object 1n the plurality of individual test
case specific objects being generated at least 1n part by
setting the set of test case specific properties 1 each
such individual test case specific object to a respective
set of test case specific values as indicated 1n a respec-
tive set of test case specific elements 1n the plurality of
sets of test case specific elements;

using the plurality of individual test case specific objects

to execute the plurality of individual test cases against
one or more systems under test, each individual test
case specific object 1 the plurality of individual test
case specific objects representing a respective test case
in the plurality of test cases;

wherein the test case generic object implements at least a

test execution method, wherein the test execution
method 1s cloned by the plurality of individual test case
specific objects; and wherein the test execution method,
when invoked through the plurality of individual test
case specific objects, performs same test checks across
all test cases 1n the plurality of individual test cases.

14. The system as recited in claim 13, wherein the
plurality of sets of test case specific elements 1s represented
as a plurality of sets of key-value pairs.

15. The system as recited in claim 13, wherein the test
case base object includes a set of test case common prop-
erties each of which 1s set with one of: a test case common
clement received with the set of test case common elements
in a request for executing the plurality of test cases, or a
coded value used in constructing the test case base object.

16. The system as recited in claim 13, wherein the test
case data 1s generated by a test user interacting with a test
master, and wherein the test case data 1s sent by the test
master to a test agent, in a request for executing a test that
includes the plurality of test cases.

17. The system as recited in claim 13, wherein the
plurality of test cases 1s used to test whether a plurality of
applications i1n the one or more systems i1s performing
correctly and responsively.

18. The system as recited in claim 13, wherein the
plurality of applications 1s accessed through diflerent end-
points of one or more web servers 1n the one or more
systems.

	Front Page
	Drawings
	Specification
	Claims

